1. Suppose \(n \geq 4 \) and \(F \) is a collection of \(n \)-element subsets of some ground set \(X \). Prove that if
\[
|F| < \frac{4^{n-1}}{3^n}
\]
then there is a coloring of \(X \) with 4 colors such that every color appears at least once in every set in \(F \).

2. Prove that for any real number \(p \) such that \(0 \leq p \leq 1 \) and any integer \(n \) we have
\[
R(k, \ell) > n - \binom{n}{k} p^{(\ell)} - \binom{n}{\ell} (1-p)^{(\ell)}.
\]

3. Let \(A \) and \(B \) be sets such \(|A| = m\) and \(|B| = n\). Let \(\Omega \) be the set of all functions from \(A \) to \(B \). (I.e. \(\Omega = B^A \).) Let \(f \) be function drawn uniformly at random from \(\Omega \). Let the random variable \(X \) be the cardinality of set of elements of \(B \) that are not in the image of \(f \). Formally,
\[
X = |\{b \in B : \forall a \in A \ f(a) \neq b\}|.
\]
(a) Determine \(E[X] \).
(b) Prove that if \(m > n(\log n + 3) \) then \(Pr(X = 0) > 0.9 \).

A graph \(G = (V, E) \) is bipartite if there is a partition of the vertex set \(V = X \cup Y \) such that neither \(X \) nor \(Y \) contains an edge. (I.e. \(E \cap \binom{X}{2} = \emptyset \) and \(E \cap \binom{Y}{2} = \emptyset \).) In other words, every edge has one vertex in \(X \) and one vertex in \(Y \).

4. Let \(G = (V, E) \) be a graph. Show that there is a bipartite graph \(H = (V, F) \) such that \(|F| \geq |E|/2 \). In words \(G \) contains a bipartite subgraph that includes at least half of the edges of \(G \).

\textit{Hint: Consider a random bipartition.}

5. Suppose we color the edge set of \(K_n \) with 2 colors uniformly at random (so, we have \(|\Omega| = 2^{\binom{n}{2}}\) and the uniform distribution). Let \(X \) be the number of monochromatic triangles in the random coloring. Determine \(Var(X) \).

Random variables \(X \) and \(Y \) defined on the same probability space \(\Omega \) are \textit{independent} if the events \(\{X = \alpha\} \) and \(\{Y = \beta\} \) are independent for every \(\alpha, \beta \).

6. Let \(X \) and \(Y \) be independent random variables defined on the same finite probability space. Suppose \(X \) and \(Y \) take values in \(\{0, 1, 2, \ldots\} \).
(a) Prove \(E[XY] = E[X]E[Y] \).
(b) Prove \(Var(X + Y) = Var[X] + Var[Y] \).