# 21-228 Discrete Mathematics <br> Assignment \# 7, revised <br> Due: Friday, April 5 

1. A collection of $n$ teams plays a round robin tournament. (I.e. a tournament in which every team plays every other team exactly once. There will be $\binom{n}{2}$ games in this tournament). We say that the tournament has property $S_{k}$ if for every set $S$ of $k$ teams there is some team that beats all teams in the set $S$. For example if we have 3 teams then the tournament would have property $S_{1}$ if, for example, team 1 beats team 2, team 2 beats team 3 and team 3 beats team 1. Prove that if

$$
\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1
$$

then it is possible that a tournament with $n$ teams has property $S_{k}$.
2. Which of the following statements are true for any random variable $X$ defined on a finite probability space with the uniform distribution? Provide proofs for the true statements and counterexamples for the false statements.
(a)

$$
E[1 / X]=1 / E[X]
$$

(b)

$$
E[X]^{2} \leq E\left[X^{2}\right]
$$

(c)

$$
\sqrt{E[X]} \geq E[\sqrt{X}]
$$

3. Let $p_{2}, p_{2}, \ldots$ be a sequence of real numbers such that $0<p_{n}<1$ for all $n$, and consider the following sequence of probability spaces. The set $\Omega_{n}$ consists of all graphs on vertex set $V_{n}$ where $\left|V_{n}\right|=n$, and for every graph $G=\left(V_{n}, E\right)$ we set

$$
\mathbb{P}(G)=p_{n}^{|E|}\left(1-p_{n}\right)^{\binom{n}{2}-|E|} .
$$

Note that this probability function is given by using $\binom{n}{2}$ mutually independent biased coin flips to determine whether or not each element of $\binom{V_{n}}{2}$ appears as an edge. (This object is called the binomial random graph or the Erdös-Rényi random graph.)
(a) Let the random variable $X_{n}(G)$ count the number of copies of $K_{3}$ in the graph $G$. Determine $E\left[X_{n}\right]$.
(b) Suppose $p_{n}=1 / n$. Prove $\mathbb{P}\left(X_{n}=0\right)>1 / 2$ for all $n$.
4. Consider the binomial random graph (as defined in the previous problem) with $p_{n}=$ $\frac{\log (n)}{n}$, and again let the random variable $X_{n}$ count the number of copies of $K_{3}$. Use Chebyshev's inequality to prove

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=0\right)=0
$$

Hint. Use indicator random variables for both the expectation and the variance.
5. Suppose the random variable $X$ is distributed as $B i(2 m, 1 / 2)$ where $m$ is a positive integer.
(a) Use Chebyshev's inequality to bound

$$
\mathbb{P}\left(X \leq m-m^{3 / 4}\right)
$$

(b) Use Claim 24 from the first review sheet to find a another bound on this probability that is substantially stronger when $m$ is large.

Hint. Use the estimate

$$
\sum_{i=0}^{m-t}\binom{2 m}{i} \leq m\binom{2 m}{m-t} .
$$

6. If $C$ is a cycle and $e$ is an edge connecting two non-consecutive vertices in $C$ then we call $e$ a chord of $C$.
(a) Prove that if every vertex in a graph $G$ has degree at least 2 then $G$ contains a cycle.
(b) Prove that if every vertex of a graph $G$ has degree at least 3 then $G$ contains a cycle with a chord.

Hint: Consider a maximal path.

