21-228 Discrete Mathematics Assignment # 6

Due: Friday, November 7

1. Prove that if there is a number p such that $0 \le p \le 1$ and

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1,$$

then the Ramsey number R(k,t) satisfies R(k,t) > n.

- 2. Suppose we color the edge set of K_n with 2 colors uniformly at random (so, we have $|\Omega| = 2^{\binom{n}{2}}$ and the uniform distribution).
 - (a) Let X be the number of monochromatic triangles in the random coloring. Determine E(X).
 - (b) Conclude that there exists a coloring of the edge set of K_n that has at most $\frac{1}{4} \binom{n}{3}$ monochromatic triangles.
- 3. A collection of k people enter an elevator in a building that has n+1 floors. Each of the k people has a destination floor that is chosen uniformly at random from floors $2, \ldots, n+1$. What is the expected number of stops that the elevator makes?
- 4. Consider the probability space on the finite set Ω with the uniform distribution. Let X be a random variable that takes values in the set $\{0, 1, 2, ..., M\}$ such that E[X] = M a. Prove that for any $1 \le b \le M$ we have

$$\mathbb{P}(X \ge M - b) \ge \frac{b - a}{b}.$$

- 5. If f is a permutation of the set $X = \{1, 2, ..., n\}$ then a **cycle** in f is a sequence of distinct elements $a_1, a_2, ..., a_k$ of X with the property that $f(a_i) = a_{i+1}$ for i = 1, ..., k-1 and $f(a_k) = a_1$. The number of elements in the sequence is the **length** of the cycle. Note that every element of X is in a unique cycle of f and that an element $x \in X$ such that f(x) = x is a cycle of length 1.
 - Let Ω be the set of permutations of the set $\{1, 2, ..., n\}$. Consider the probability space on Ω given by the uniform distribution. Determine the expected length of the cycle containing 1 in a permutation chosen at random from this probability space.
- 6. Let G = (V, E) is a graph. Recall that the **degree** of vertex $v \in V$, denoted d(v), is the number of edges in G that contain v (e.g. the degree of every vertex in the complete graph K_n is n-1). Does there exist a graph with vertex set $V = \{v_1, \ldots, v_n\}$ such that $d(v_i) = i 1$ for $i = 1, \ldots, n$? Explain your answer.