1. Suppose 6n fair dice are rolled. Define a probability space that describes this experiment. Let \(p_n \) be the probability that every number (i.e. the numbers 1 through 6) appears exactly \(n \) times in one roll of the collection of dice. Give an exact expression for \(p_n \). Find a simpler function \(f_n \) such that \(p_n \sim f_n \).

2. A woman walks randomly on the \(n \times n \) grid \(\{(x, y) : x, y \in \{1, \ldots, n\} \} \) starting at the point \((1,1)\) (i.e. the lower left corner). Each minute the woman moves either to the right or up (i.e. a move of the form \((a, b) \to (a + 1, b)\) or a move of the form \((a, b) \to (a, b + 1)\)). Her walk ends when she reaches the upper right corner, the point \((n,n)\). At each stage in which the woman has a choice of 2 moves she flips a fair coin to determine her next move. (If the woman is on the right edge (i.e. \((x,y)\) such that \(x = n\)) she automatically moves up and if she is on the top edge (i.e. \((x,y)\) such that \(y = n\)) she automatically moves right.) Define a probability space that describes this random walk. What is the probability that the woman reaches the top row of the grid before reaching \((n,n)\)? Explain your answer.

3. Let \(M \) be a \(n \times n \), 0-1 matrix chosen uniformly at random from the set of all such matrices.

 (a) Let \(k < n \) be a positive integer. What is the probability that a fixed \(k \times k \) sub-matrix of \(M \) is the all 1’s matrix?

 (b) Use the Union Bound to that if \(k \geq 4 \log_2 n \) then the probability that \(M \) has a \(k \times k \) sub-matrix of all 1’s goes to zero as \(n \) goes to infinity.

4. Consider a probability space on a finite set \(\Omega \) with the uniform distribution. Suppose \(|\Omega|\) is prime and let \(A \) and \(B \) be events such that \(0 < P(A) < 1 \) and \(0 < P(B) < 1 \). Prove that \(A \) and \(B \) are not independent.

5. We say that a graph \(G = (V,E) \) is connected if for every partition \(A, B \) of the vertex set into two nonempty parts there is an edge that connects \(A \) and \(B \) (i.e. there is an edge with one vertex in \(A \) and one vertex in \(B \).) For each \(n \geq 2 \) let \(V_n \) be a vertex set of cardinality \(n \) and consider a graph chosen uniformly at random from the collection of all graphs on vertex set \(V_n \). (N.b. This is equivalent to flipping an independent fair coin to determine whether or not each element of \(\binom{V_n}{2} \) appears in the graph.) Let \(C_n \) be the event that this graph is connected. Use the union bound to prove

\[
\lim_{n \to \infty} P(C_n) = 1.
\]