21-228 Discrete Mathematics
 Assignment \# 6
 Due: Friday, March 29

1. Suppose $6 n$ fair dice are rolled. Define a probability space that describes this experiment. Let p_{n} be the probability that every number (i.e. the numbers 1 through 6) appears exactly n times in one roll of the collection of dice. Give an exact expression for p_{n}. Find a simpler function f_{n} such that $p_{n} \sim f_{n}$.
2. Prove that if there is a number p such that $0 \leq p \leq 1$ and

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1
$$

then the Ramsey number $R(k, t)$ satisfies $R(k, t)>n$.
3. Suppose we color the edge set of K_{n} with 2 colors uniformly at random (so, we have $|\Omega|=2^{\binom{n}{2}}$ and the uniform distribution).
(a) Let X be the number of monochromatic triangles in the random coloring. Determine $E(X)$.
(b) Conclude that there exists a coloring of the edge set of K_{n} that has at most $\frac{1}{4}\binom{n}{3}$ monochromatic triangles.
4. A collection of k people enter an elevator in a building that has $n+1$ floors. Each of the k people has a destination floor that is chosen uniformly at random from floors $2, \ldots, n+1$. What is the expected number of stops that the elevator makes?
5. Consider the probability space on the finite set Ω with the uniform distribution. Let X be a random variable that takes values in the set $\{0,1,2, \ldots, M\}$ such that $E[X]=$ $M-a$. Prove that for any $1 \leq b \leq M$ we have

$$
\mathbb{P}(X \geq M-b) \geq \frac{b-a}{b}
$$

6. If f is a permutation of the set $X=\{1,2, \ldots, n\}$ then a cycle in f is a sequence of distinct elements $a_{1}, a_{2}, \ldots, a_{k}$ of X with the property that $f\left(a_{i}\right)=a_{i+1}$ for $i=$ $1, \ldots, k-1$ and $f\left(a_{k}\right)=a_{1}$. The number of elements in the sequence is the length of the cycle. Note that every element of X is in a unique cycle of f and that an element $x \in X$ such that $f(x)=x$ is a cycle of length 1 .

Let Ω be the set of permutations of the set $\{1,2, \ldots, n\}$. Consider the probability space on Ω given by the uniform distribution. Determine the expected length of the cycle containing 1 in a permutation chosen at random from this probability space.

