1. Let the sequence \(a_0, a_1, \ldots \) be defined by \(a_0 = 2, a_1 = 8 \) and \(a_i = \sqrt{a_{i-1}a_{i-2}} \) for \(i \geq 2 \). Determine \(\lim_{n \to \infty} a_n \).

2. Prove that any edge coloring of the edge set of \(K_{17} \) with the colors Red, Blue and Green has a monochromatic triangle.

3. Let \(k \geq 3 \) and \(n = (k - 1)^2 \). Give an explicit 2-coloring of the edges of \(K_n \) that does not have a monochromatic \(K_k \).

4. Prove \(R(3, 5) \leq 14 \).

5. If \(G = (V, E) \) is a graph and \(v \in V \) then the degree of \(v \), denoted \(d(v) \), is the number of edges in \(G \) that contain \(v \) (e.g. the degree of every vertex in the complete graph \(K_n \) is \(n - 1 \)).

 Let \(n \geq 2 \) be an integer. Does there exist a graph with vertex set \(V = \{v_1, \ldots, v_n\} \) such that \(d(v_i) = i - 1 \) for \(i = 1, \ldots, n \)?

6. A graph \(G = (V, E) \) is bipartite if there exists a partition \(V = A \cup B \) such that

 \[
 E \cap \binom{A}{2} = \emptyset \quad \text{and} \quad E \cap \binom{B}{2} = \emptyset.
 \]

 In other words, every edge has one vertex in \(A \) and one vertex in \(B \). The sets \(A \) and \(B \) are the parts of the bipartition of \(G \).

 A graph \(G = (V, E) \) is \(d \)-regular if every vertex in \(G \) has degree \(d \).

 Let \(G \) be a \(d \)-regular bipartite graph with parts \(A, B \). Prove that if \(d \geq 1 \) then \(|A| = |B| \).