21-228 Discrete Mathematics
 Assignment \# 5
 Due: Friday, March 15

1. Let the sequence a_{0}, a_{1}, \ldots be defined by $a_{0}=2, a_{1}=8$ and $a_{i}=\sqrt{a_{i-1} a_{i-2}}$ for $i \geq 2$. Determine $\lim _{n \rightarrow \infty} a_{n}$.
Hint: This is a generating functions question.
2. Prove that any edge coloring of the edge set of K_{17} with the colors Red, Blue and Green has a monochromatic triangle.
3. Let $k \geq 3$ and $n=(k-1)^{2}$. Give an explicit 2-coloring of the edges of K_{n} that does not have a monochromatic K_{k}.
4. Prove $R(3,5)>11$.

Hint: Modify the argument that we used to show $R(3,4)>8$.
5. We say that a pair of events A, B in a probablity space are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

(a) Let A and B be independent events in a probability space defined on the set Ω. Prove that $\bar{A}=\Omega \backslash A$ and $\bar{B}=\Omega \backslash B$ are independent events.
(b) Define a probability space with three events A, B, C with the following properties:
i. A and B are independent events,
ii. A and C are independent events,
iii. B and C are independent events, but
iv. $\mathbb{P}(A \cap B \cap C) \neq \mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)$.
6. A women walks randomly on the $n \times n$ grid $\{(x, y): x, y \in\{1, \ldots, n\}\}$ starting at the point $(1,1)$ (i.e. the lower left corner). Each minute the women moves either to the right or up (i.e. a move of the form $(a, b) \rightarrow(a+1, b)$ or a move of the form $(a, b) \rightarrow(a, b+1))$. Her walk ends when she reaches the upper right corner, the point (n, n). At each stage in which the woman has a choice of 2 moves she flips a fair coin to determine her next move. (If the woman is on the right edge (i.e. (x, y) such that $x=n$) she automatically moves up and if she is on the top edge (i.e. (x, y) such that $y=n$) she automatically moves right.) Define a probability space that describes this random walk. What is the probability that the woman reaches the top row of the grid before reaching (n, n) ? Explain your answer.

