21-228 Discrete Mathematics Homework 4 Due: Friday, February 23

- 1. Let h_0, h_1, h_2, \ldots be the sequence defined by $h_n = \binom{n}{3}$. Determine the generating function for this sequence.
- 2. Let B_n be those strings in $\{1,2\}^n$ which do not contain 1, 2, 2 as a sub-string (in consecutive positions). Let $b_n = |B_n|$.
 - (a) Establish a recurrence for the sequence b_0, b_1, b_2, \ldots
 - (b) Determine the generating function for this sequence.
- 3. Consider a collection of n circles drawn in the plane such that:
 - (i) Each pair of circles intersects in two distinct points, and
 - (ii) the intersection of any three circles is empty (i.e. no point lies at the intersection of three circles).

Let h_n be the number of regions in the plane created by the collection of intersecting circles (e.g. $h_1 = 2$ as there is a region inside the circle and a region outside the circle, $h_2 = 4$ and $h_3 = 8$).

- (a) For $n = 2, 3, \ldots$ write h_n as a function of $h_1, h_2, \ldots, h_{n-1}$ and n.
- (b) Use your answer to (a) to determine the generating function for the sequence h_0, h_1, \ldots
- (c) Use your answer to (b) to give a closed form expression for h_n .
- 4. There are 2n points on a circle. We want to divide them into pairs and connect each pair with a segment (i.e. a chord) in such a way that these segments do not intersect. Show that the number of ways to do this is given by a Catalan number.
- 5. Suppose five points are chosen inside an equilateral triangle with side length 1. Show that there is at least one of pair of points whose distance apart is at most 1/2.
- 6. Prove that every set of n + 1 integers chosen from $\{1, 2, ..., 2n\}$ contains two numbers such that one divides the other.

Hint: Consider powers of 2.