21-228 Discrete Mathematics
 Assignment \# 3
 Due: Friday, February 9

1. Use the binomial theorem and integration to simplify the following sum:

$$
1+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\cdots+\frac{1}{n+1}\binom{n}{n}
$$

Note. This is NOT an approximation question.
2 . Let k, n be positive integers such that $k<n$.
(a) Use the binomial theorem to prove the following:

$$
0<x<1 \Rightarrow \sum_{i=0}^{k}\binom{n}{i} \leq \frac{(1+x)^{n}}{x^{k}}
$$

(b) Use part (a) to conclude

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{n e}{k}\right)^{k}
$$

3. Prove that for any two finite sets $I \subseteq J$ we have

$$
\sum_{I \subseteq K \subseteq J}(-1)^{|K \backslash I|}= \begin{cases}1 & \text { if } I=J \\ 0 & \text { if } I \neq J\end{cases}
$$

4. Let $V=\{1,2, \ldots, n\}$. A graph on vertex set V is an ordered pair $G=(V, E)$ where $E \subseteq\binom{V}{2}$. The set E is called the edge set of G. The degree of a vertex v in the graph G is the number edges in E that contain v.
(a) How many graphs on vertex V are there?
(b) Find an expression for the number of graphs on vertex set V that have no vertices of degree 0 .
5. Let $n \in \mathbb{N}^{+}$such that $n=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} p_{4}^{a_{4}}$ where p_{1}, \ldots, p_{4} are primes and $a_{1}, \ldots, a_{4} \in \mathbb{N}^{+}$. Let $\varphi(n)$ be the number of integers in the set $\{1,2, \ldots, n\}$ that are coprime to n. Prove

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)\left(1-\frac{1}{p_{3}}\right)\left(1-\frac{1}{p_{4}}\right) .
$$

6. Use the binomial theorem to prove the following identity. If $n \in \mathbb{N}^{+}$and $n \geq 2$ then

$$
\sum_{i=1}^{n} i\binom{n}{i}(-1)^{i-1}=0
$$

