21-228 Discrete Mathematics
 Assignment \# 2
 Due: Friday, February 4

1. Use a combinatorial argument to show that if n is a positive integer then $(n!)^{3}$ divides (3n)!.
2. (a) Give a combinatorial proof of the following equation

$$
\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

If you make use of a partition, explicitly state the equivalence relation that gives the partition.
(b) Use (a) to calculate $\sum_{i=1}^{n} i^{2}$. Hint: Consider $k=2$.
(c) Use (a) to calculate $\sum_{i=1}^{n} i^{3}$.
3. Let n, k be positive integers such that $1 \leq k \leq n-1$.
(a) Prove the following inequalities:

$$
\frac{n^{k}}{k^{k}} \leq\binom{ n}{k} \leq \frac{n^{k}}{k!}
$$

(b) Prove that if k is fixed and $n \rightarrow \infty$ then

$$
\binom{n}{k} \sim \frac{n^{k}}{k!}
$$

4. Prove that for $n \in \mathbb{N}^{+}$we have

$$
2 \sqrt{n+1}-2<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1
$$

5. Prove the following bound:

$$
n!\leq e \sqrt{n}\left(\frac{n}{e}\right)^{n}
$$

6. (a) Prove

$$
1-x \leq e^{-x}
$$

for all real numbers x.
(b) Prove

$$
1-x \geq e^{-x-x^{2}}
$$

for $0 \leq x \leq 0.5$.

