21-228 Discrete Mathematics
 Assignment \# 1
 Due: Friday, January 26

1. Find all positive integers $a>b>c$ for which

$$
\binom{a}{b}\binom{b}{c}=2\binom{a}{c}
$$

Give a combinatorial justification for your answer (i.e. appeal to the fact that $\binom{a}{b}$ gives the number of subsets of an a-element set having exactly b elements).
2. If m indistinguishable 4 -sided die are rolled how many distinguishable outcomes are there? (E.g. if $m=2$ then there are 10 possibilities.) How many outcomes are there in which each of the four numbers appear at least once?
3. Let p and q be positive integers. How many sequences of $p 1$'s and $q 0$'s are there with the property that there are at least two 0's between every pair of 1's?
4. A function $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ is monotone if $i<j$ implies $f(i) \leq f(j)$. How many monotone functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ are there?
5. Let \mathcal{F} be a collection of k-element subsets of the set X, where $|X|=n$. The shadow of \mathcal{F} is defined to be the set

$$
\partial \mathcal{F}=\left\{B \in\binom{X}{k-1}: \exists A \in \mathcal{F} \text { such that } B \subset A\right\} .
$$

Show

$$
|\partial(\mathcal{F})| \geq \frac{k|\mathcal{F}|}{n-k+1} .
$$

Hint. Count ordered pairs (A, B) such that $|A|=k,|B|=k-1, B \subset A$ and $A \in \mathcal{F}$.
6. Use a combinatorial argument to prove the following: for all positive integers m_{1}, m_{2}, n we have

$$
\sum_{k=0}^{n}\binom{m_{1}}{k}\binom{m_{2}}{n-k}=\binom{m_{1}+m_{2}}{n} .
$$

