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An SMB system consists of multiple columns connected to each other making a circu-
lation loop (Fig. 1). SMB system consists of four zones, each fulfilling different functions.
The feed and desorbent are supplied continuously through the inlet ports and at the same
time extract and raffinate are withdrawn at the outlet ports. These four inlet/outlet ports
are switched in the direction of liquid flow at a regular interval, T . The same switching
operation is repeated for Ncol steps which constitutes a cycle. Since SMB repeats the
same operation for number of columns, this symmetric operation can be exploited to
reduce the problem size by a single-step optimization formulation [1]. Here, operation is
considered over only one step where the profiles at the beginning of a step are identical
to those of the downstream adjacent column at the end of the step which ensures a CSS
condition at the end of a cycle.
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Figure 1: SMB Process

The behavior of the chromatographic columns, identified by index n = 1 . . . Ncol is
described through an equilibrium assumption between the solid and liquid phases along
with a simple spatial discretization. Here, the mass balance in the liquid phase is given
by,
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The equilibrium relationship between the solid and liquid phases is given by,

∂qn,i(x, t)

∂t
= Ki(Cn,i)Cn,i(x, t) (2)

where, Cn,i is the concentration of component i in column n in the liquid phase; qn,i is the
concentration of component i in column n in the solid phase; Qn is the volumetric flow
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rate in each zone n; S is the cross-sectional area of the bed and ǫB is the bed voidage. We
assume that the zone velocities are constant during a step and all the inlet/outlet ports
are switched simultaneously. Dividing the column into Ndis compartments and applying
a simple backward difference results in,

dCn,i,j

dt
= Ki(Cn,i,j)NdisQn[Cn,i,j−1 − Cn,i,j] (3)

for j = 1 . . . Ndis; i = A, B (binary mixture); n = 1 . . . 6. We define the state variables
for this system, Cn,i,j = xm(t), m = 1 . . . 12Ndis as the concentrations of A and B in the
jth compartment for the six columns where the index is ordered as: m = j + (n− 1)Ndis

for component A and m = j + 6Ndis + (n − 1)Ndis for component B.

The SMB system considered in the AMPL file is divided into four zones each of which
consist of nI = 1, nII = 2, nIII = 3, nIV = 4 columns. The compartments are numbered
i = 0, ..., (nI + nII + nIII + nIV )Ndis − 1. The port switching time, T and the constant
flows, q = [QI , QDe, QEx, QFe]

T as independent decision variables while the remaining
flows QII , QIII , QIV , QRa are determined from a linear mass balance. In this case study,
we consider the linear adsorption isotherm: KA = 2, KB = 1. The indices of the port
locations are defined as,

nEx = nINdis (4)

nFe = (nI + nII)Ndis

nRa = (nI + nII + nIII)Ndis

nDe = (nI + nII + nIII + nIV )Ndis

Mass balance equations plus additional equations determing the compositions of both
components (i = A, B) in the raffinate, extract and feed are:

Ċ0,i = ki(QIV CnDe−1,i − QIC0,k) (5)

Ċj,i = kiQI(Cnj−1,i − Cj,i) j = 1..nEx−1

Ċj,i = kiQII(Cnj−1,i − Cj,i) j = nEx..nFe−1

ĊnF e,i = ki(QIICnF e−1,i + QFeCnF e,k − QIC0,k)

Ċj,i = kiQIII(Cnj−1,i − Cj,i) j = nFe+1..nRa−1

Ċj,i = kiQIV (Cnj−1,i − Cj,i) j = nRa..nDe−1

ṀEx,i = QExCnEx−1,i

ṀRa,i = QRaCnRa−1,i

ṀFe,i = QFe

The optimization problem considered is to maximize the throughput subject to the dy-
namic model equations, the CSS conditions and purity constraints. CSS conditions can
be formulated as equality constraints,

xm(0) − xm+Ndis
(T ) = 0 m = 1, ...5Ndis (6)

xm(0) − xm−5Ndis
(T ) = 0 m = 5Ndis + 1, ...6Ndis
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0.1 Exact Jacobian evaluation, A(xk)

Given, the state equations, we evaluate the Jacobian

A ≡ ▽CT =
[

I −
∂y(tf)

∂yo

... −
∂y(tf )

∂p

]

(7)

by using direct sensitivity equations which can be obtained by differentiating the
original model equations with respect to the parameters, yo and p. Define,
s(t) = ∂y(t)

∂p
∈ R

ny+np

∂

∂p
{ẏ = f(y, p) y(0) = y0} (8)

results in,
ṡ = fys + fpv s(0) = Iv

where

vk =

{

1 if k ≤ ny

0 otherwise
(9)

and I is an identity matrix of size (ny + np). The sensitivity equations depend on states
y(t) and can be solved simultaneously with the state system. The structure of the linear
sensitivity equations has been exploited in DAE/ODE solvers by using methods like
staggered-corrector techniques.
Since the sensitivities are independent of each other,, the sensitivity calculations can be
parallelized. Therefore, a subset of the sensitivities are solved on each processor along
with a copy of the state variables. The SMB bed model is solved for CSS using
Newton’s method. Here, we use the rSQP solver to solve the non-linear system. The
necessary function and gradient evaluation is provided by intergrating the differential
equations using CVODES and the RHS of the sensitvity equations is provided using
automatic differentiation tool, ADOL-C.
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