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Abstract

One general method of Lyapunov functionals construction which was used earlier both for stochastic differential
equations with aftereffect and for stochastic difference equations with discrete time here is applied for stochastic
difference equations with continuous time.
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0. Introduction

Stability investigation of hereditary systems[2–4] is connected often with construction of Lyapunov
functionals. One general method of Lyapunov functionals construction was proposed and developed in
[5–9,14]both for stochastic differential equations with aftereffect and for stochastic difference equations
with discrete time. Here it is shown that after some modification of the basic Lyapunov type theorem
this method can be used also for stochastic difference equations with continuous time, which are enough
popular with researches[1,10–13].

1. Stability theorem

Let {Ω,F,P} be a probability space and{ft, t ≥ t0} be a nondecreasing family of sub-σ-algebras of
F, i.e.ft1 ⊂ ft2 for t1 < t2. Consider a stochastic difference equation

x(t + h0)= a1(t, x(t), x(t − h1), x(t − h2), . . . )

+ a2(t, x(t), x(t − h1), x(t − h2), . . . )ξ(t + h0), t > t0 − h0 (1.1)

∗ Tel.: +380-62-3359362; fax:+380-62-3377108.
E-mail address:leonid.shaikhet@usa.net (L. E. Shaikhet).

0378-4754/$30.00 © 2004 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.matcom.2004.03.006



510 L. E. Shaikhet / Mathematics and Computers in Simulation 66 (2004) 509–521

with the initial condition

x(θ) = φ(θ), θ ∈ Θ =
[
t0 − h0 − max

j≥1
hj, t0

]
. (1.2)

Herex ∈ Rn, h0, h1, . . . are positive constants, the functionalsa1 ∈ Rn anda2 ∈ Rn×m satisfy the
condition

|al(t, x0, x1, x2, . . . )|2 ≤
∞∑
j=0

alj |xj|2, A =
2∑

l=1

∞∑
j=0

alj < ∞, (1.3)

φ(θ), θ ∈ Θ, is a ft0-measurable function, the perturbationξ(t) ∈ Rm is a ft-measurable stationary
stochastic process with conditions

Eξ(t) = 0, Eξ(t)ξ′(t) = I. (1.4)

A solution of problem(1.1), (1.2) is a ft-measurable processx(t) = x(t; t0, φ), which is equal to the
initial functionφ(t) from (1.2) for t ≤ t0 and with probability 1 is defined byEq. (1.1)for t > t0.

Definition 1.1. The trivial solution ofEq. (1.1), (1.2)is calledp-stable,p > 0, if for anyε > 0 andt0 ≥ 0
there exists aδ = δ(ε, t0) > 0 such thatE|x(t; t0, φ)|p < ε for all t ≥ t0 if ‖φ‖p = supθ∈Θ E|φ(θ)|p < δ.

Definition 1.2. The trivial solution ofEq. (1.1), (1.2) is called asymptoticallyp-stable,p > 0, if it is
p-stable and for all initial functionsφ

lim
t→∞ E|x(t; t0, φ)|p = 0. (1.5)

Definition 1.3. The trivial solution ofEq. (1.1), (1.2) is called asymptoticallyp-quasistable,p > 0, if it
is p-stable and for eacht ∈ [t0, t0 + h0) and all initial functionsφ

lim
j→∞

E|x(t + jh0; t0, φ)|p = 0. (1.6)

Definition 1.4. The solution ofEq. (1.1)with initial condition(1.2) is calledp-integrable,p > 0, if for
all initial functionsφ∫ ∞

t0

E|x(t; t0, φ)|p dt < ∞. (1.7)

If in Definitions 1.1–1.4p = 2 then the solution is called correspondingly mean square stable, asymp-
totically mean square stable, asymptotically mean square quasistable, mean square integrable.

Remark 1.1. It is easy to see that condition(1.6)follows from(1.5)but the inverse statement is not true.

Theorem 1.1. Let there exist a nonnegative functionalV(t) = V(t, x(t), x(t − h1), x(t − h2), . . . ) and
positive numbersc1, c2, such that

EV(t) ≤ c1 sup
s≤t

E|x(s)|2, t ∈ [t0, t0 + h0), (1.8)
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E�V(t) ≤ −c2E|x(t)|2, t ≥ t0, (1.9)

where

�V(t) = V(t + h0) − V(t). (1.10)

Then the trivial solution ofEq. (1.1), (1.2) is asymptotically mean square quasistable.

Proof. Rewrite condition(1.9) in the formE�V(t + jh0) ≤ −c2E|x(t + jh0)|2, t ≥ t0, j = 0,1, . . . .
Summing this inequality fromj = 0 to j = i, by virtue of(1.10)we obtain

EV(t + (i + 1)h0) − EV(t) ≤ −c2

i∑
j=0

E|x(t + jh0)|2.

Therefore,

c2

∞∑
j=0

E|x(t + jh0)|2 ≤ EV(t), t ≥ t0. (1.11)

From here it follows also that

c2E|x(t)|2 ≤ EV(t), t ≥ t0. (1.12)

Using(1.9)and(1.10), we have

EV(t) ≤ EV(t − h0) ≤ EV(t − 2h0) ≤ · · · ≤ EV(s), t ≥ t0, (1.13)

wheres = t − [(t − t0)/h0]h0 ∈ [t0, t0 + h0), [t] is the integer part of a numbert. From(1.8) it follows

sup
s∈[t0,t0+h0)

EV(s) ≤ c1 sup
t≤t0+h0

E|x(t)|2. (1.14)

Using(1.1)–(1.4), for t ≤ t0 + h0 we obtain

E|x(t)|2 =
2∑

l=1

E|al(t − h0, x(t − h0), x(t − h0 − h1), x(t − h0 − h2), . . . )|2

≤
2∑

l=1


al0E|φ(t − h0)|2 +

∞∑
j=1

alj E|φ(t − h0 − hj)|2

 ≤ A‖φ‖2. (1.15)

From(1.11)–(1.15)we have

c2

∞∑
j=0

E|x(t + jh0)|2 ≤ c1A‖φ‖2, t ≥ t0, (1.16)

and also

c2E|x(t)|2 ≤ c1A‖φ‖2, t ≥ t0. (1.17)

From(1.17)we get that the trivial solution ofEq. (1.1), (1.2)is mean square stable. From(1.16)it follows
that for eacht ≥ t0 limj→∞ E|x(t + jh0)|2 = 0. Therefore, the trivial solution ofEq. (1.1), (1.2) is
asymptotically mean square quasistable. Theorem is proven. �
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Remark 1.2. If the conditions ofTheorem 1.1hold andA < 1 (A is defined by(1.3)) then the trivial
solution ofEq. (1.1), (1.2) is asymptotically mean square stable. Really, similar to(1.15)one can get
E|x(t)|2 ≤ A[(t−t0)/h0]+1‖φ‖2, t ≥ t0. Therefore, limt→∞ E|x(t)|2 = 0 for all initial functionsφ.

Remark 1.3. If the conditions ofTheorem 1.1hold then the solution ofEq. (1.1)for each initial function
(1.2)is mean square integrable. Really, integrating(1.9)from t = t0 to t = T , by virtue of(1.10)we have∫ T+h0

T

EV(t)dt −
∫ t0+h0

t0

EV(t)dt ≤ −c2

∫ T

t0

E|x(t)|2 dt.

From here and(1.14)and(1.15)it follows

c2

∫ T

t0

E|x(t)|2 dt ≤
∫ t0+h0

t0

EV(t)dt ≤ c1A‖φ‖2h0 < ∞,

and byT → ∞ we obtain(1.7).

Corollary 1.1. Let there exist a functionalV(t) = V(t, x(t), x(t−h1), x(t−h2), . . . )and positive numbers
c1, c2,p, such that conditions(1.8)and(1.12)andE�V(t) ≤ 0 hold. Then the trivial solution ofEq. (1.1)
is mean square stable.

FromTheorem 1.1, Remarks 1.2 and 1.3andCorollary 1.1it follows that an investigation of stability of
the trivial solution ofEq. (1.1)can be reduced to construction of appropriate Lyapunov functionals. Below
some formal procedure of Lyapunov functionals construction for equation of type(1.1) is described.

2. Formal procedure of Lyapunov functionals construction

The proposed procedure of Lyapunov functionals construction consists of four steps.

• Step1. Represent the functionalsa1 anda2 at the right-hand side ofEq. (1.1)in the form

a1(t, x(t), x(t − h1), x(t − h2), . . . ) = F1(t) + F2(t) + �F3(t),

a2(t, x(t), x(t − h1), x(t − h2), . . . ) = G1(t) + G2(t), (2.1)

whereF1(t) = F1(t, x(t), x(t − h1), . . . , x(t − hk)), G1(t) = G1(t, x(t), x(t − h1), . . . , x(t − hk)),
k ≥ 0 is a given integer,Fj(t) = Fj(t, x(t), x(t−h1), x(t−h2), . . . ), j = 2,3,G2(t) = G2(t, x(t), x(t−
h1), x(t − h2), . . . ), F1(t,0, . . . ,0) ≡ F2(t,0,0, . . . ) ≡ F3(t,0,0, . . . ) ≡ G1(t,0, . . . ,0) ≡
G2(t,0,0, . . . ) ≡ 0,�F3(t) = F3(t + h0) − F3(t).

• Step2. Suppose that for the auxiliary equation

y(t + h0)=F1(t, x(t), x(t − h1), . . . , x(t − hk))

+G1(t, x(t), x(t − h1), . . . , x(t − hk))ξ(t + h0), t > t0 − h0, (2.2)

there exists a Lyapunov functionalv(t) = v(t, y(t), y(t − h1), . . . , y(t − hk)), which satisfies the
conditions ofTheorem 1.1.
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• Step3. Consider Lyapunov functionalV(t) for Eq. (1.1)in the formV(t) = V1(t) + V2(t), where the
main component isV1(t) = v(t, x(t) − F3(t), x(t − h1), . . . , x(t − hk)). CalculateE�V1(t) and in a
reasonable way estimate it.

• Step4. In order to satisfy the conditions ofTheorem 1.1the additional componentV2(t) is chosen by
some standard way.

3. Linear Volterra equations with constant coefficients

Let us demonstrate the formal procedure of Lyapunov functionals construction described above for
stability investigation of the scalar equation

x(t + 1) =
[t]+r∑
j=0

ajx(t − j) +
[t]+r∑
j=0

σjx(t − j)ξ(t + 1), t > −1, (3.1)

x(s) = φ(s), s ∈ [−(r + 1),0],

wherer ≥ 0 is a given integer,aj andσj are known constants.

3.1. The first way of Lyapunov functional construction

Following Step 1 of the procedure representEq. (3.1)in form (2.1)with F3(t) = 0,G1(t) = 0, k ≥ 0,

F1(t) =
k∑

j=0

ajx(t − j), F2(t) =
[t]+r∑
j=k+1

ajx(t − j), G2(t) =
[t]+r∑
j=0

σjx(t − j), (3.2)

and consider (Step 2) the auxiliary equation

y(t + 1) =
k∑

j=0

ajy(t − j), t > −1, k ≥ 0, (3.3)

y(s) =
{
φ(s), s ∈ [−(r + 1),0],
0, s < −(r + 1).

Introduce into consideration the vectorY(t) = (y(t − k), . . . , y(t − 1), y(t))′ and represent the auxiliary
equation (3.3)in the form

Y(t + 1) = AY(t), A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1
ak ak−1 ak−2 · · · a1 a0


 . (3.4)
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Consider the matrix equation

A′DA − D = −U, U =




0 · · · 0 0
· · · · · · · · · · · ·
0 · · · 0 0
0 · · · 0 1


 , (3.5)

and suppose that the solutionD of this equation is a positive semidefinite symmetric matrix of dimension
k + 1 with dk+1,k+1 > 0. In this case the functionv(t) = Y ′(t)DY(t) is Lyapunov function forEq. (3.4),
i.e. it satisfies the conditions ofTheorem 1.1, in particular, condition(1.9). Really, using(3.4)and(3.5),
we have�v(t) = −y2(t).

Following Step 3 of the procedure, we will construct Lyapunov functionalV(t) for Eq. (3.1)in the form
V(t) = V1(t) + V2(t), where

V1(t) = X′(t)DX(t), X(t) = (x(t − k), . . . , x(t − 1), x(t))′. (3.6)

Using representation(3.2)rewrite nowEq. (3.1)as follows

X(t + 1) = AX(t) + B(t), B(t) = (0, . . . ,0, b(t))′, b(t) = F2(t) + G2(t)ξ(t + 1), (3.7)

where the matrixA is defined by(3.4). Calculating�V1(t), by virtue ofEq. (3.7)we have

�V1(t) = (AX(t) + B(t))′D(AX(t) + B(t)) − X′(t)DX(t) = −x2(t) + B′(t)DB(t) + 2B′(t)DAX(t).

(3.8)

Put

αl =
∞∑
j=l

|aj|, δl =
∞∑
j=l

|σj|, l = 0,1, . . . . (3.9)

Using(3.7), (3.2)and(3.9), we obtain

EB′(t)DB(t)= dk+1,k+1[EF2
2 (t) + EG2

2(t)]

≤ dk+1,k+1


αk+1

[t]+r∑
j=k+1

|aj|Ex2(t − j) + δ0

[t]+r∑
j=0

|σj|Ex2(t − j)


 , (3.10)

and

EB′(t)DAX(t)= Eb(t)

[
k∑

l=1

dl,k+1x(t − k + l) + dk+1,k+1

k∑
m=0

amx(t − m)

]

= Eb(t)

[
k−1∑
m=0

(amdk+1,k+1 + dk−m,k+1)x(t − m) + akdk+1,k+1x(t − k)

]

= dk+1,k+1EF2(t)

k∑
m=0

Qkmx(t − m), (3.11)
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where

Qkm = am + dk−m,k+1

dk+1,k+1
, m = 0, . . . , k − 1, Qkk = ak. (3.12)

Putting

βk =
k∑

m=0

|Qkm| = |ak| +
k−1∑
m=0

∣∣∣∣am + dk−m,k+1

dk+1,k+1

∣∣∣∣ (3.13)

and using(3.11), (3.2), (3.9)and(3.13), we have

2EB′(t)DAX(t)= 2dk+1,k+1

k∑
m=0

[t]+r∑
j=k+1

QkmajEx(t − m)x(t − j)

≤ dk+1,k+1


αk+1

k∑
m=0

|Qkm|Ex2(t − m) + βk

[t]+r∑
j=k+1

|aj|Ex2(t − j)


 . (3.14)

Put now

Rkm =
{
αk+1|Qkm| + δ0|σm|, 0 ≤ m ≤ k,

(αk+1 + βk)|am| + δ0|σm|, m > k.
(3.15)

Then from(3.8), (3.10)and(3.14)it follows

E�V1(t) ≤ −Ex2(t) + dk+1,k+1

[t]+r∑
m=0

RkmEx2(t − m). (3.16)

Choosing (Step 4) the functionalV2(t) in the form

V2(t) = dk+1,k+1

[t]+r∑
m=1

γmx
2(t − m), γm =

∞∑
j=m

Rkj, (3.17)

we obtain

�V2(t) = dk+1,k+1

(
γ1x

2(t) −
[t]+r∑
m=1

Rkmx
2(t − m)

)
. (3.18)

Put V(t) = V1(t) + V2(t). From (3.16) and (3.18) we haveE�V(t) ≤ −(1 − γ0dk+1,k+1)Ex2(t). If
γ0dk+1,k+1 < 1 then the functionalV(t) satisfies condition(1.9)of Theorem 1.1. It is easy to check that
condition(1.8)holds too. Using(3.17), (3.15)and(3.13), one can show thatγ0 = α2

k+1 + 2αk+1βk + δ2
0.

Thus, if

αk+1 <

√
β2
k + d−1

k+1,k+1 − δ2
0 − βk, (3.19)

then the trivial solution ofEq. (3.1)is asymptotically mean square quasistable.



516 L. E. Shaikhet / Mathematics and Computers in Simulation 66 (2004) 509–521

Remark 3.1. If aj = 0 for j > k and matrixequation (3.5)has a positive semidefinite solutionD with
conditionδ2

0 < d−1
k+1,k+1 then the trivial solution ofEq. (3.1)is asymptotically mean square quasistable.

Remark 3.2. Suppose that inEq. (3.1)aj = 0 for j > k andσj = 0 if j �= m for somem ≥ 0. In
this caseαk+1 = 0, δ2

0 = σ2
m and from(3.8), (3.10)and(3.14) it follows that E�V1(t) = −Ex2(t) +

dk+1,k+1σ
2
mEx2(t−m).PuttingV2(t) = dk+1,k+1σ

2
m

∑m
j=1 x

2(t−j), for the functionalV(t) = V1(t)+V2(t)

we obtainE�V(t) = (dk+1,k+1σ
2
m − 1)Ex2(t). So, ifdk+1,k+1σ

2
m ≥ 1 thenEV(t) ≥ EV(0) > 0. But from

the other hand it is easy to see that if limt→∞ Ex2(t) = 0 then limt→∞ EV(t) = 0 too. From this
contradiction it follows that the conditiondk+1,k+1σ

2
m < 1 is [14] the necessary and sufficient condition

for asymptotic mean square quasistability.

Remark 3.3. In the casek = 0 condition(3.19)takes the formα2
0+δ2

0 < 1. Note that under this condition
the trivial solution ofEq. (3.1)is not asymptotically mean square quasistable only but asymptotically
mean square stable too. UsingRemark 1.2it is enough to show that forEq. (3.1)the constantA defined
by (1.3)isA = α2

0 + δ2
0 < 1. In the casek = 1 condition(3.19)is a condition of asymptotic mean square

quasistability only and can be written in the form

α2
0 + δ2

0 < 1 + 2|a0|
1 − a1

(|a1| − α0a1), |a1| < 1.

It is easy to see that this condition is not worse than previous one. One can show that for eachk = 1,2, . . .
an obtained condition is not worse than the condition obtained for previousk.

3.2. The second way of Lyapunov functional construction

Let us get another stability condition.Eq. (3.1)can be represented (Step 1) in form(2.1)with F1(t) =
βx(t), F2(t) = G1(t) = 0, k = 0,

β =
∞∑
j=0

aj, F3(t) = −
[t]+r∑
m=1

x(t − m)

∞∑
j=m

aj, G2(t) =
[t]+r∑
j=0

σjx(t − j), (3.20)

i.e.

x(t + 1) = βx(t) + �F3(t) + G2(t)ξ(t + 1). (3.21)

In this case the auxiliary equation (Step 2) isy(t + 1) = βy(t). The functionv(t) = y2(t) is Lyapunov
function for this equation if|β| < 1. We will construct (Step 3) Lyapunov functionalV(t) for Eq. (3.1)in the
formV(t) = V1(t)+V2(t), whereV1(t) = (x(t)−F3(t))

2. CalculatingE�V1(t), by virtue of representation
(3.21)we obtainE�V1(t) = (β2 − 1)Ex2(t) + Q(t), whereQ(t) = −2(β − 1)Ex(t)F3(t) + EG2

2(t).
Putting

α =
∞∑

m=1

∣∣∣∣∣∣
∞∑

j=m

aj

∣∣∣∣∣∣ , Bm = |β − 1|
∣∣∣∣∣∣

∞∑
j=m

aj

∣∣∣∣∣∣+ δ0σm, (3.22)

and using(3.20)and(3.9), one can show|Q(t)| ≤ (α|β − 1| + δ0σ0)Ex2(t) +∑[t]+r
m=1 BmEx2(t − m). As

a result we haveE�V1(t) ≤ (β2 − 1 + α|β − 1| + δ0σ0)Ex2(t) +∑[t]+r
m=1 BmEx2(t − m).
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Put now (Step 4)V2(t) = ∑[t]+r
m=1 γmx

2(t−m), γm = ∑∞
j=m Bj. Then similar to(3.18)for the functional

V(t) = V1(t)+V2(t) we haveE�V(t) ≤ (β2−1+2α|β−1|+δ2
0)Ex2(t). Thus, ifβ2+2α|β−1|+δ2

0 < 1
or

δ2
0 < (1 − β)(1 + β − 2α), |β| < 1. (3.23)

then the trivial solution ofEq. (3.1)is asymptotically mean square quasistable.

4. Example

Consider the difference equation

x(t + 1) = ax(t) +
[t]+r∑
j=1

bjx(t − j) + σx(t − r)ξ(t + 1), t > −1, (4.1)

x(θ) = φ(θ), θ ∈ [−(r + 1),0], r ≥ 0.

From (3.9) and (3.22) it follows that by virtue of conditions(3.19) and (3.23) stability regions for
Eq. (4.1)can be obtained for|b| < 1 only. To obtain another type of condition for asymptotic mean
square quasistability of the trivial solution ofEq. (4.1)let us transform the sum from the right hand side
of Eq. (4.1)for t > 0 by the following way

[t]+r∑
j=1

bjx(t − j)= b


x(t − 1) +

[t]−1+r∑
j=1

bjx(t − 1 − j)




= b[(1 − a)x(t − 1) + x(t) − σx(t − 1 − r)ξ(t)]. (4.2)

Substituting(4.2) into (4.1)we obtainEq. (4.1)in the form

x(t + 1) = ax(t) +
r−1∑
j=1

bjx(t − j) + σx(t − r)ξ(t + 1), t ∈ (−1,0],

x(t + 1) = (a + b)x(t) + b(1 − a)x(t − 1) − bσx(t − 1 − r)ξ(t) + σx(t − r)ξ(t + 1), t > 0.

(4.3)

Consider now the functionalV1(t) in form (3.6)wherek = 1 and the matrixD is the solution ofEq. (3.5)
with the elements

d11 = a2
1d22, d12 = a0a1

1 − a1
d22, d22 = 1 − a1

(1 + a1)[(1 − a1)2 − a2
0]
,

a0 = a + b, a1 = b(1 − a). (4.4)

Note that the matrixD with the elements(4.4) is a positive semidefinite one if and only if

|b(1 − a)| < 1, |a + b| < 1 − b(1 − a). (4.5)
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Here�V1(t) is defined by(3.8)withA andX(t) defined by(3.4) and (3.6)for k = 1 withB(t) = (0, b(t))′,
b(t) = σx(t − r)ξ(t + 1) − bσx(t − 1 − r)ξ(t). CalculatingE�V1(t) similar to (3.8) and (3.10)–(3.16)
one can getE�V1(t) = −Ex2(t) + σ2d22[Ex2(t − r) + γEx2(t − 1 − r)], where

γ = b2 − 2b
a + b

1 − b(1 − a)
.

Note that by condition(4.5)γ > −1. Really,γ + 1 > b2 − 2|b| + 1 = (|b| − 1)2 ≥ 0.
Put nowγ0 = max(γ,0) and

V2(t) = σ2d22

[
(1 + γ0)

r∑
m=1

x2(t − m) + γ0x
2(t − 1 − r)

]
.

It is easy to show that�V2(t) = σ2d22[(1+ γ0)x
2(t)− x2(t − r)− γ0x

2(t − 1− r)]. So, for the functional
V(t) = V1(t) + V2(t) we have

E�V(t) = −(1 − σ2d22(1 + γ0))Ex2(t) + σ2d22(γ − γ0)Ex2(t − 1 − r). (4.6)

If γ ≥ 0 thenγ0 = γ andE�V(t) = −(1−σ2d22(1+γ))Ex2(t). So, similar toRemark 3.2the inequality

σ2d22(1 + γ) < 1 (4.7)

is [14] the necessary and sufficient condition for asymptotic mean square quasistability of the trivial
solution ofEq. (4.3)(or (4.1)).

If γ < 0, i.e.γ ∈ (−1,0), thenγ0 = 0 and from(4.6) it follows

E�V(t) = −(1 − σ2d22)Ex2(t) + σ2d22γEx2(t − 1 − r). (4.8)

Sinceγ < 0 thenE�V(t) ≤ −(1 − σ2d22)Ex2(t) and fromTheorem 1.1it follows that the inequality
σ2d22 < 1 is a sufficient condition for asymptotic mean square quasistability of the trivial solution of
Eq. (4.3)(or (4.1)).

Let us suppose thatσ2d22 ≥ 1 but condition(4.7)holds. In this case each mean square bounded solution
of Eq. (4.3), i.e. Ex2(t) ≤ C, is asymptotically mean square quasitrivial, i.e. limj→∞ Ex2(t + j) = 0.
Really, putting in(4.8) t + j instead oft and summing fromj = 0 to j = i we obtain

EV(t + i + 1) − EV(t)= −(1 − σ2d22)

i∑
j=0

Ex2(t + j)

+ σ2d22γ


i−1−r∑

j=0

Ex2(t + j) +
−1∑

j=−1−r

Ex2(t + j)


 .

From here, usingV(t + i + 1) ≥ 0 andγ < 0, we have

(1 − σ2d22)

i∑
j=0

Ex2(t + j) − σ2d22γ

i−1−r∑
j=0

Ex2(t + j) ≤ EV(t),



L. E. Shaikhet / Mathematics and Computers in Simulation 66 (2004) 509–521 519

or

(1 − σ2d22(1 + γ))

i∑
j=0

Ex2(t + j) ≤ EV(t) + σ2d22|γ|
i∑

j=i−r

Ex2(t + j).

If the solution ofEq. (4.3)is mean square bounded, i.e.Ex2(t) ≤ C, then

(1 − σ2d22(1 + γ))

∞∑
j=0

Ex2(t + j) ≤ EV(t) + σ2d22|γ|(r + 1)C,

and therefore limj→∞ Ex2(t+j) = 0. So, by condition(4.7)in the regions{γ ≥ 0} and{γ < 0, σ2d22 < 1}
the trivial solution ofEq. (4.1)is asymptotically mean square quasistable. In the region{γ < 0, σ2d22 ≥ 1}
we can conclude only that each mean square bounded solution ofEq. (4.1)is asymptotically mean square
quasitrivial.

In reality in the region{γ < 0, σ2d22 ≥ 1} the trivial solution ofEq. (4.1)can be asymptotically mean
square quasistable too. Really, inFig. 1 the region given by condition(4.7) for σ2 = 0.2 and also the
following different parts of this region: (1){γ ≥ 0}, (2) {γ < 0, σ2d22 < 1}, (3) {γ < 0, σ2d22 ≥ 1}, are
shown. Solving matrixequation (3.5)for k = 0, k = 1, k = 2 and by virtue of program “Mathematica”
for k = 3 andk = 4 stability regions for asymptotic mean square quasistability of the trivial solution
of Eq. (4.1)given by condition(3.19)were obtained. InFig. 2 the regions of asymptotic mean square
quasistability of the trivial solution ofEq. (4.1)for σ2 = 0.2 obtained by condition(3.19)for k = 0 (the

Fig. 1. Different parts of the stability region.
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Fig. 2. Stability regions given by different stability conditions.

curve number 1), fork = 1 (the curve number 2), fork = 2 (the curve number 3), fork = 3 (the curve
number 4), fork = 4 (the curve number 5), by condition(3.23) (the curve number 6) and the region
given by condition(4.7) (the curve number 7) are shown. It is easy to see that some part of the region
{γ < 0, σ2d22 ≥ 1} belongs to the regions given by condition(3.19)and therefore the trivial solution of
Eq. (4.1)is there asymptotically mean square quasistable.

According to Remark 3.3 inFig. 2 one can see also that the region of asymptotic mean square qua-
sistabilityQk of the trivial solution ofEq. (4.1), obtained by condition(3.19), expands ifk increases, i.e.
Q0 ⊂ Q1 ⊂ Q2 ⊂ Q3 ⊂ Q4.
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