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Obtained results are applied for stability investigation of some mathematical predator-prey models.

AMS (MOS) Subject Classification. 34D20.

1. INTRODUCTION

The study of realistic mathematical models in ecology, especially the study of re-

lations between species and their environment has become a very popular topic that

interested both mathematicians and biologists. Investigations on various population

models reflect their use in helping to understand the dynamic processes involved

in such areas as predator-prey and competition, renewable resource management,

evolution of pesticide resistant strains, ecological control of pests, multispecies soci-

eties, plant-herbivore systems, and so on. Well known Lotka-Volterra predator-prey

mathematical model after its appearance got specially wide development in many dif-

ferent directions, in particular, for systems with delays and stochastic perturbations

[1, 3, 10, 11, 12, 16, 17, 18, 27, 28, 33, 34, 35, 36].

In this paper some general nonlinear mathematical model is considered that is

destined to unify different known models, in particular, the models type of predator-

prey. The following method for stability investigation of the positive point of equi-

librium is proposed. The system under consideration is exposed to stochastic per-

turbations and is linearized in the neighborhood of the positive point of equilibrium.

Asymptotic mean square stability conditions are obtained for the constructed linear

system. In the case if the order of nonlinearity more than 1 these conditions are

sufficient ones [2, 30, 31, 32] for stability in probability of the initial nonlinear system

by stochastic perturbations.
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This method can be successfully used for stability investigation of many other

types of known biological systems: stage-structure predator-prey models [9, 15, 37],

SIR epidemic models [2, 6], chemostat models [4, 5] and other [7, 8, 14, 25, 26].

2. SYSTEM UNDER CONSIDERATION INTRODUCTION

Consider the system of two nonlinear differential equations

(2.1)

ẋ1(t) = x1(t) (a− F0(x1t, x2t)) − F1(x1t, x2t),

ẋ2(t) = −x2(t) (b+G0(x1t, x2t)) +G1(x1t, x2t),

xi(s) = φi(s), s ≤ 0, i = 1, 2.

Here xi(t), i = 1, 2, is a value of process xi in the point of time t and xit = xi(t+ s),

s ≤ 0, is a trajectory of the process xi to the point of t.

Put, for example,

(2.2)

F0(x1t, x2t) =
∫∞

0
f0(x1(t− s))dK0(s),

F1(x1t, x2t) =
∏2

i=1

∫∞

0
fi(xi(t− s))dKi(s),

G0(x1t, x2t) =
∫∞

0
g0(x1(t− s))dR0(s),

G1(x1t, x2t) =
∏2

i=1

∫∞

0
gi(xi(t− s))dRi(s),

where Ki(s) and Ri(s), i = 0, 1, 2, are nondecreasing functions, such that

(2.3)
Ki =

∫∞

0
dKi(s) <∞, Ri =

∫∞

0
dRi(s) <∞,

K̂i =
∫∞

0
sdKi(s) <∞, R̂i =

∫∞

0
sdRi(s) <∞,

and all integrals are understanding in Stieltjes sense. In this case system (2.1) takes

the form

(2.4)
ẋ1(t) = x1(t)

(

a−
∫∞

0
f0(x1(t− s))dK0(s)

)

−
∏2

i=1

∫∞

0
fi(xi(t− s))dKi(s),

ẋ2(t) = −x2(t)
(

b +
∫∞

0
g0(x1(t− s))dR0(s)

)

+
∏2

i=1

∫∞

0
gi(xi(t− s))dRi(s).

Systems type of (2.1) are investigated in some biological problems. Put here, for

example,

(2.5)
f0(x) = f1(x) = f2(x) = g1(x) = g2(x) = x,

g0(x) = 0, dK1(s) = δ(s)ds, dR0(s) = 0,

(δ(s) is Dirac’s function). If a and b are positive constants, x1(t) and x2(t) are

respectively the densities of prey and predator populations then (2.4) is transformed

to the mathematical predator-prey model [32]

(2.6)
ẋ1(t) = x1(t)

(

a−
∫∞

0
x1(t− s)dK0(s) −

∫∞

0
x2(t− s)dK2(s)

)

,

ẋ2(t) = −bx2(t) +
∫∞

0
x1(t− s)dR1(s)

∫∞

0
x2(t− s)dR2(s).

Putting in (2.6)

(2.7)
dK0(s) = a1δ(s)ds, dK2(s) = a2δ(s)ds,

dRi(s) = biδ(s− hi)ds, i = 1, 2,
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we obtain the known predator-prey mathematical model with delays

(2.8)
ẋ1(t) = x1(t)(a− a1x1(t) − a2x2(t)),

ẋ2(t) = −bx2(t) + b1b2x1(t− h1)x2(t− h2).

If here h1 = h2 = 0 we have the classical Lotka-Volterra model

(2.9)
ẋ1(t) = x1(t)(a− a1x1(t) − a2x2(t)),

ẋ2(t) = x2(t)(−b + b1b2x1(t)).

Many authors [1, 3, 9, 11, 12, 34, 35] consider ratio-dependent predator-prey

models with delays type of

(2.10)
ẋ1(t) = x1(t)

(

a−
∫∞

0
x1(t− s)dK0(s)

)

−
∫∞

0

xk

1
(t−s)x2(t)

xk

1
(t−s)+a2xk

2
(t−s)

dK1(s),

ẋ2(t) = −bx2(t) +
∫∞

0

xm

1
(t−s)x2(t)

xm

1
(t−s)+b2xm

2
(t−s)

dR1(s).

Here it is supposed that m and k are positive constants.

System (2.10) follows from (2.1) if

(2.11)

F0(x1t, x2t) =
∫∞

0
x1(t− s)dK0(s),

F1(x1t, x2t) =
∫∞

0
f(x1(t− s), x2(t− s))x2(t)dK1(s),

G1(x1t, x2t) =
∫∞

0
g(x1(t− s), x2(t− s))x2(t)dR1(s),

f(x1, x2) =
xk

1

xk

1
+a2xk

2

, g(x1, x2) =
xm

1

xm

1
+b2xm

2

.

Putting in (2.10), for example,

(2.12)
dK0(s) = a0δ(s)ds, dK1(s) = a1δ(s)ds, k = 1,

dR1(s) = b1δ(s− h)ds, m = 1,

we obtain the system

(2.13)
ẋ1(t) = x1(t)

(

a− a0x1(t) −
a1x2(t)

x1(t)+a2x2(t)

)

,

ẋ2(t) = x2(t)
(

−b + b1x1(t−h)
x1(t−h)+b2x2(t−h)

)

,

that was considered in [3, 9].

3. POSITIVE POINT OF EQUILIBRIUM, STOCHASTIC

PERTURBATIONS, CENTERING AND LINEARIZATION

3.1. Let in system (2.1) Fi = Fi(φ, ψ) and Gi = Gi(φ, ψ), i = 0, 1, be functionals

defined on H × H, where H be a set of functions φ = φ(s), s ≤ 0, with the norm

‖φ‖ = sups≤0 |φ(s)|, the functionals Fi and Gi be nonnegative ones for nonnegative

functions φ and ψ. Let us suppose also that system (2.1) has a positive point (x∗
1, x

∗
2)

of equilibrium. This point is obtained from the conditions ẋ1(t) ≡ 0, ẋ2(t) ≡ 0 and

is defined by the system of algebraic equations

(3.1)
x∗1(a− F0(x

∗
1, x

∗
2)) = F1(x

∗
1, x

∗
2),

x∗2(b+G0(x
∗
1, x

∗
2)) = G1(x

∗
1, x

∗
2).
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Note that system (3.1) has a positive solution only by the condition

(3.2) a > F0(x
∗
1, x

∗
2).

For example, for system (2.4) a positive point of equilibrium is defined by the equa-

tions

(3.3)
x∗1(a−K0f0(x

∗
1)) = K1K2f1(x

∗
1)f2(x

∗
2),

x∗2(b+R0g0(x
∗
1)) = R1R2g1(x

∗
1)g2(x

∗
2),

if a > K0f0(x
∗
1). In particular, in the case f0(x) = f1(x) = f2(x) = g0(x) = g1(x) =

g2(x) = x system (3.3) has the positive solution

(3.4) x∗1 =
b

R1R2 −R0
, x∗2 =

a−K0x
∗
1

K1K2
=
a−K0(R1R2 − R0)

−1b

K1K2
,

by the condition

a >
K0b

R1R2 −R0

> 0.

For system (2.10) the positive point of equilibrium is defined as follows

x∗1 =
A

K0

, x∗2 =
A

BK0

, A = a−
K1

B + a2B1−k
> 0, B =

(

b2b

R1 − b

)
1

m

> 0.

In particular, for system (2.13) it is

(3.5) x∗1 =
A

a0

, x∗2 =
A

Ba0

, A = a−
a1

B + a2

> 0, B =
bb2

b1 − b
> 0.

3.2. As it was proposed in [2, 32] and used later in [1, 8] let us assume that

system (2.1) is exposed to stochastic perturbations, which are of white noise type,

are directly proportional to the deviations of x1(t) and x2(t) from the values of x∗1,

x∗2 and influence on ẋ1(t), ẋ2(t) respectively. In this way system (2.1) is transformed

to the form

(3.6)
ẋ1(t) = x1(t) (a− F0(x1t, x2t)) − F1(x1t, x2t) + σ1(x1(t) − x∗1)ẇ1(t),

ẋ2(t) = −x2(t) (b +G0(x1t, x2t)) +G1(x1t, x2t) + σ2(x2(t) − x∗2)ẇ2(t).

Here σ1, σ2 are constants, w1, w2 are independent of each other Wiener processes [13].

3.3. Centering system (3.6) on the positive point of equilibrium via new variables

y1 = x1 − x∗1, y2 = x2 − x∗2, we obtain

ẏ1(t) = (y1(t) + x∗1) (a− F0(y1t + x∗1, y2t + x∗2))

−F1(y1t + x∗1, y2t + x∗2) + σ1y1(t)ẇ1(t),

ẏ2(t) = −(y2(t) + x∗2) (b +G0(y1t + x∗1, y2t + x∗2))(3.7)

+G1(y1t + x∗1, y2t + x∗2) + σ2y2(t)ẇ2(t).

It is clear that stability of system (3.6) equilibrium (x∗1, x
∗
2) is equivalent to stability

of the trivial solution of system (3.7).
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3.4. Along with system (3.6) we will consider the linear part of this system. Let

us suppose that the functions fi(x), gi(x), i = 0, 1, 2, in system (2.4) are differentiable

ones. Using for all these functions the representation

f(z + x∗) = f0 + f1z + o(z), f0 = f(x∗), f1 =
df

dx
(x∗),

and neglecting by o(z), via (2.2), (3.7)) we obtain the linear part (process (z1(t), z2(t)))

of system (2.4) after adding stochastic perturbations and centering

ż1(t) = (a−K0f00)z1(t) −

∫ ∞

0

z1(t− s)dK(s)

−K1f10f21

∫ ∞

0

z2(t− s)dK2(s) + σ1z1(t)ẇ1(t),

ż2(t) = −(b +R0g00)z2(t) +

∫ ∞

0

z1(t− s)dR(s)(3.8)

+R1g10g21

∫ ∞

0

z2(t− s)dR2(s) + σ2z2(t)ẇ2(t),

where

(3.9)
ḋK(s) = K2f20f11dK1(s) + f01x

∗
1dK0(s),

dR(s) = R2g20g11dR1(s) − g01x
∗
2dR0(s).

Below we will say about system (3.8) also as about the linear part appropriate

to system (2.4) or for brevity as about the linear part of system (2.4).

In particular, by conditions (2.5), (3.3) from (3.8), (3.9) we obtain the linear part

of system (2.6)

ż1(t) = −x∗1

(
∫ ∞

0

z1(t− s)dK0(s) +

∫ ∞

0

z2(t− s)dK2(s)

)

+σ1z1(t)ẇ1(t),

ż2(t) = −bz2(t) +R2x
∗
2

∫ ∞

0

z1(t− s)dR1(s)(3.10)

+R1x
∗
1

∫ ∞

0

z2(t− s)dR2(s) + σ2z2(t)ẇ2(t).

Via (2.7) from (3.10) we have the linear part of system (2.8)

(3.11)
ż1(t) = −x∗1(a1z1(t) + a2z2(t)) + σ1z1(t)ẇ1(t),

ż2(t) = −bz2(t) + b1b2(x
∗
2z1(t− h1) + x∗1z2(t− h2)) + σ2z2(t)ẇ2(t).

4. AUXILIARY STATEMENTS

We will use two definitions of stability.

Definition 4.1. The trivial solution of system (3.7) is called stable in probability if

for any ε1 > 0 and ε2 > 0 there exists δ > 0 such that the solution y(t) = y(t, φ),

where y = (y1, y2), φ = (φ1, φ2), satisfies P{supt≥0 |y(t, φ)| > ε1} < ε2 for any initial

function φ ∈ H satisfying P{‖φ‖ ≤ δ} = 1.
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Definition 4.2. The trivial solution of system (3.8) is called mean square stable

if for any ε > 0 there exists δ > 0 such that the solution z(t) = z(t, φ), where

z = (z1, z2), φ = (φ1, φ2), satisfies E|z(t, φ)|2 < ε for any initial function φ ∈ H such

that sups≤0 E|φ(s)|2 < δ. If besides limt→∞ E|z(t, φ)|2 = 0 for any initial function

φ ∈ H then the trivial solution of equation (3.8) is called asymptotically mean square

stable.

As it is shown in [28, 29] if the order of nonlinearity of the system under consider-

ation is more than 1 then a sufficient condition for asymptotic mean square stability of

the linear part of the initial nonlinear system is also a sufficient condition for stability

in probability of the initial system. So, in this paper we will obtain sufficient condi-

tions for asymptotic mean square stability of the linear part of considered nonlinear

systems.

We will use also the following auxiliary statements.

Theorem 4.3. [19] Let there exists a functional V (t, ϕ), t ≥ 0, ϕ ∈ H, such that

c1E|ϕ(0)|2 ≤ EV (t, ϕ) ≤ c2 sup
s≤0

E|ϕ(s)|2,

ELV (t, ϕ) ≤ −c3E|ϕ(0)|2,

where L is the generator [13] of equation (3.7), ci > 0, i = 1, 2, 3. Then the trivial

solution of system (3.7) is asymptotically mean square stable.

Consider system of stochastic differential equations without delays

(4.1)
u̇1(t) = α1u1(t) + α2u2(t) + σ1u1(t)ẇ1(t),

u̇2(t) = β1u1(t) + β2u2(t) + σ2u2(t)ẇ2(t),

and put

(4.2) εi =
1

2
σ2

i , i = 1, 2.

Lemma 4.4. Let there exist numbers µ and γ satisfying the conditions

(4.3) γ > µ2, α1 + µβ1 + ε1 < 0, µα2 + γ(β2 + ε2) < 0,

(4.4) 4(α1 + µβ1 + ε1)(µα2 + γ(β2 + ε2)) > (µ(α1 + β2) + α2 + γβ1)
2.

Then the trivial solution of system (4.1) is asymptotically mean square stable.

Proof. Let L0 be the generator [13] of system (4.1). Using the function

(4.5) v(t) = u2
1(t) + 2µu1(t)u2(t) + γu2

2(t)

and (4.2) for system (4.1) we have

L0v(t) = 2(u1(t) + µu2(t))(α1u1(t) + α2u2(t))

+2(µu1(t) + γu2(t))(β1u1(t) + β2u2(t)) + σ2
1u

2
1(t) + γσ2

2u
2
2(t)
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= 2(α1 + µβ1 + ε1)u
2
1(t) + 2(µα2 + γ(β2 + ε2))u

2
2(t)(4.6)

+2(µ(α1 + β2) + α2 + γβ1)u1(t)u2(t).

By conditions (4.3), (4.4) from (4.5), (4.6) it follows that function (4.5) is a positive

definite one and L0v(t) is a negative definite one, i.e. function (4.5) satisfies Theorem

4.3. Thus, the trivial solution of system (4.1) is asymptotically mean square stable.

Lemma is proven.

Corollary 4.5. Suppose that the parameters of system (4.1) satisfy the conditions

β1 > 0, (α1 + β2)(β2 + ε2) > β1α2,

(4.7)
α2(β2 + ε2)

(α1 + β2)(β2 + ε2) − β1α2
>
α1 + ε1

β1
, (α1 + β2)

2 > 4β1α2,

and the intervals

(4.8)

(

−
α2(β2 + ε2)

(α1 + β2)(β2 + ε2) − β1α2
,−

α1 + ε1

β1

)

,

(4.9)

(

−
√

(α1 + β2)2 − 4β1α2 − (α1 + β2)

2β1
,

√

(α1 + β2)2 − 4β1α2 − (α1 + β2)

2β1

)

have common points. Then the trivial solution of system (4.1) is asymptotically mean

square stable.

Proof. Choose γ from the condition µ(α1 + β2) + α2 + γβ1 = 0. To satisfy the condi-

tions (4.3), (4.4) µ has belong to intervals (4.8), (4.9).

Lemma 4.6. For positive P2, x, y and nonnegative P1, Q1, Q2, such that P2 >

Q1x+Q2y the following inequality holds

P1 +Q1x
−1 +Q2y

−1

P2 −Q1x−Q2y
≥

(

√

(Q1 +Q2)2 + P1P2 +Q1 +Q2

P2

)2

.

Proof. It is enough to show that the function

f(x, y) =
P1 +Q1x

−1 +Q2y
−1

P2 −Q1x−Q2y

reaches its minimum in the point

x0 = y0 =
P2

√

(Q1 +Q2)2 + P1P2 +Q1 +Q2

.

Lemma is proven.
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5. STABILITY OF EQUILIBRIUM OF SYSTEM (2.4) WITH

STOCHASTIC PERTURBATIONS

Consider system (3.8) as the linear part of system (2.4) with stochastic perturba-

tions. Following the general method of Lyapunov functionals construction (GMLFC)

[20, 21, 22, 23, 24, 29] rewrite system (3.8) in the form

(5.1)
Ż1(t) = α1z1(t) + α2z2(t) + σ1z1(t)ẇ1(t),

Ż2(t) = β1z1(t) + β2z2(t) + σ2z2(t)ẇ2(t),

where

(5.2)
Z1(t) = z1(t) −

∫∞

0

∫ t

t−s
z1(θ)dθdK(s) −K1f10f21

∫∞

0

∫ t

t−s
z2(θ)dθdK2(s),

Z2(t) = z2(t) +
∫∞

0

∫ t

t−s
z1(θ)dθdR(s) +R1g10g21

∫∞

0

∫ t

t−s
z2(θ)dθdR2(s),

and via (3.3), (3.9)

(5.3)

α1 = a−K −K0f00 = K1K2f20

(

f10

x∗

1

− f11

)

−K0f01x
∗
1,

α2 = −K1K2f10f21, β1 = R = R1R2g20g11 −R0g01x
∗
2,

β2 = R1R2g10g21 − b− R0g00 = −R1R2g10

(

g20

x∗

2

− g21

)

.

We will suppose that the corresponding auxiliary system without delays (4.1)

with αi, βi, i = 1, 2, defined by (5.3), is asymptotically mean square stable.

Following GMLFC, we have construct Lyapunov functional V for system (5.1) in

the form V = V1 + V2, where in corresponding with (4.5)

(5.4) V1(t) = Z2
1(t) + 2µZ1(t)Z2(t) + γZ2

2 (t)

and V2 has be chosen by some standard way after estimation of LV1, where L is the

generator of system (5.1). Via (5.1)

LV1(t) = 2(Z1(t) + µZ2(t))(α1z1(t) + α2z2(t))

+2(µZ1(t) + γZ2(t))(β1z1(t) + β2z2(t)) + σ2
1z

2
1(t) + γσ2

2z
2
2(t)

= 2(α1 + µβ1)Z1(t)z1(t) + 2(µα1 + γβ1)Z2(t)z1(t)(5.5)

+2(α2 + µβ2)Z1(t)z2(t) + 2(µα2 + γβ2)Z2(t)z2(t) + σ2
1z

2
1(t) + γσ2

2z
2
2(t).

Substituting (5.2) into (5.5) and using (4.2), we have

LV1 = 2(α1 + µβ1 + ε1)z
2
1(t) + 2(µα2 + γ(β2 + ε2))z

2
2(t)

+2(µ(α1 + β2) + α2 + γβ1)z1(t)z2(t)

−2(α1 + µβ1)

∫ ∞

0

∫ t

t−s

z1(t)z1(θ)dθdK(s)

−2(α1 + µβ1)K1f10f21

∫ ∞

0

∫ t

t−s

z1(t)z2(θ)dθdK2(s)

+2(µα1 + γβ1)

∫ ∞

0

∫ t

t−s

z1(t)z1(θ)dθdR(s)



STABILITY OF A POSITIVE POINT OF EQUILIBRIUM 243

+2(µα1 + γβ1)R1g10g21

∫ ∞

0

∫ t

t−s

z1(t)z2(θ)dθdR2(s)

−2(α2 + µβ2)

∫ ∞

0

∫ t

t−s

z2(t)z1(θ)dθdK(s)

−2(α2 + µβ2)K1f10f21

∫ ∞

0

∫ t

t−s

z2(t)z2(θ)dθdK2(s)

+2(µα2 + γβ2)

∫ ∞

0

∫ t

t−s

z2(t)z1(θ)dθdR(s)

+2(µα2 + γβ2)R1g10g21

∫ ∞

0

∫ t

t−s

z2(t)z2(θ)dθdR2(s).

From here, using (2.3),

|K̂| =

∫ ∞

0

s|dK(s)|, |R̂| =

∫ ∞

0

s|dR(s)|,

and some positive numbers γi, i = 1, . . . , 4, we obtain

LV1 ≤ 2(α1 + µβ1 + ε1)z
2
1(t) + 2(µα2 + γ(β2 + ε2))z

2
2(t)

+2(µ(α1 + β2) + α2 + γβ1)z1(t)z2(t)

+|K̂||α1 + µβ1|z
2
1(t) + |α1 + µβ1|

∫ ∞

0

∫ t

t−s

z2
1(θ)dθ|dK(s)|

+γ1K1K̂2f10|f21||α1 + µβ1|z
2
1(t)

+γ−1
1 K1f10|f21||α1 + µβ1|

∫ ∞

0

∫ t

t−s

z2
2(θ)dθdK2(s)

+|R̂||µα1 + γβ1|z
2
1(t) + |µα1 + γβ1|

∫ ∞

0

∫ t

t−s

z2
1(θ)dθ|dR(s)|

+γ2R1R̂2g10|g21||µα1 + γβ1|z
2
1(t)

+γ−1
2 R1g10|g21||µα1 + γβ1|

∫ ∞

0

∫ t

t−s

z2
2(θ)dθdR2(s)

+γ−1
3 |K̂||α2 + µβ2|z

2
2(t) + γ3|α2 + µβ2|

∫ ∞

0

∫ t

t−s

z2
1(θ)dθ|dK(s)|

+K1K̂2f10|f21||α2 + µβ2|z
2
2(t) +K1f10|f21||α2 + µβ2|

∫ ∞

0

∫ t

t−s

z2
2(θ)dθdK2(s)

+γ−1
4 |R̂||µα2 + γβ2|z

2
2(t) + γ4|µα2 + γβ2|

∫ ∞

0

∫ t

t−s

z2
1(θ)dθ|dR(s)|

+R1R̂2g10|g21||µα2 + γβ2|z
2
2(t) +R1g10|g21||µα2 + γβ2|

∫ ∞

0

∫ t

t−s

z2
2(θ)dθdR2(s)

or

LV1 ≤ [2(α1 + µβ1 + ε1) + |K̂||α1 + µβ1| + γ1K1K̂2f10|f21||α1 + µβ1|

+|R̂||µα1 + γβ1| + γ2R1R̂2g10|g21||µα1 + γβ1|]z
2
1(t)
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+[2(µα2 + γ(β2 + ε2)) + γ−1
3 |K̂||α2 + µβ2| +K1K̂2f10|f21||α2 + µβ2|(5.6)

+γ−1
4 |R̂||µα2 + γβ2| +R1R̂2g10|g21||µα2 + γβ2|]z

2
2(t)

+2[µ(α1 + β2) + α2 + γβ1]z1(t)z2(t) +
2
∑

i=1

∫ ∞

0

∫ t

t−s

z2
i (θ)dθdFi(s),

where

dF1(s) = (|α1 + µβ1| + γ3|α2 + µβ2|)|dK(s)|

+(|µα1 + γβ1| + γ4|µα2 + γβ2|)|dR(s)|,

dF2(s) = K1f10|f21|(γ
−1
1 |α1 + µβ1| + |α2 + µβ2|)dK2(s)

+R1g10|g21|(γ
−1
2 |µα1 + γβ1| + |µα2 + γβ2|)dR2(s).

Following GMLFC, the additional functional V2 we have to choose in the form

V2(t) =
2
∑

i=1

∫ ∞

0

∫ t

t−s

(θ − t+ s)z2
i (θ)dθdFi(s).

Then

(5.7) LV2(t) = F̂1z
2
1(t) + F̂2z

2
2(t) −

2
∑

i=1

∫ ∞

0

∫ t

t−s

z2
i (θ)dθdFi(s),

where

F̂1 = (|α1 + µβ1| + γ3|α2 + µβ2|)|K̂|

+(|µα1 + γβ1| + γ4|µα2 + γβ2|)|R̂|,

F̂2 = K1f10|f21|(γ
−1
1 |α1 + µβ1| + |α2 + µβ2|)K̂2

+R1g10|g21|(γ
−1
2 |µα1 + γβ1| + |µα2 + γβ2|)R̂2.

Via (5.6), (5.7) the functional V = V1 +V2 satisfies the condition LV (t) ≤ z′(t)Pz(t),

where

z(t) =

(

z1(t)

z2(t)

)

, P =

(

p11 p12

p12 p22

)

,(5.8)

p11 = 2(α1 + µβ1 + ε1)

+(2|K̂| + γ1K1K̂2f10|f21|)|α1 + µβ1|

+(2|R̂| + γ2R1R̂2g10|g21|)|µα1 + γβ1|

+γ3|K̂||α2 + µβ2| + γ4|R̂||µα2 + γβ2|,

p22 = 2(µα2 + γ(β2 + ε2))(5.9)

+γ−1
1 K1K̂2f10|f21||α1 + µβ1| + γ−1

2 R1R̂2g10|g21||µα1 + γβ1|

+(γ−1
3 |K̂| + 2K1K̂2f10|f21|)|α2 + µβ2|

+(γ−1
4 |R̂| + 2R1R̂2g10|g21|)|µα2 + γβ2|,
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p12 = µ(α1 + β2) + α2 + γβ1.

Corollary 5.1. If there exist numbers µ, γ > µ2, γi > 0, i = 1, 2, 3, 4, such that the

matrix P , defined by (5.8), (5.9), is negative definite one, i.e.

p11 < 0, p22 < 0, p11p22 > p2
12,

then the trivial solution of system (3.8) is asymptotically mean square stable and the

positive point of equilibrium of system (2.4) with stochastic perturbations is stable in

probability.

To simplify the obtained stability condition consider some particular cases of

system (3.8).

Via (2.5), (3.9), (5.3) for system (3.10) that is the linear part of system (2.6) with

stochastic perturbations we have:

(5.10)

α1 = −K0x
∗
1 < 0, α2 = −K2x

∗
1 < 0,

β1 = R1R2x
∗
2 > 0, β2 = 0,

dK(s) = K2x
∗
2δ(s)ds+ x∗1dK0(s), dR(s) = R2x

∗
2dR1(s),

K1 = 1, |K̂| = K̂0x
∗
1, |R̂| = R̂1R2x

∗
2.

Choosing γ from the condition p12 = 0, we obtain

(5.11) γ = −
µα1 + α2

β1
=
µ|α1| + |α2|

β1
.

From the condition p11 < 0 it follows α1 +µβ1 < 0. So, using (5.9), (5.10), (5.11), we

have

p11 = 2(−|α1| + µβ1 + ε1) + (2K̂0 + γ1K̂2)x
∗
1(|α1| − µβ1)

+(2R̂1R2x
∗
2 + γ2R1R̂2x

∗
1)|α2| + γ3K̂0x

∗
1|α2| + µγ4R̂1R2x

∗
2|α2|,

p22 = 2

(

−µ|α2| + ε2
µ|α1| + |α2|

β1

)

+ γ−1
1 K̂2x

∗
1(|α1| − µβ1) + γ−1

2 R1R̂2x
∗
1|α2|

+(γ−1
3 K̂0 + 2K̂2)x

∗
1|α2| + µ(γ−1

4 R̂1R2x
∗
2 + 2R1R̂2x

∗
1)|α2|.

From the conditions p11 < 0, p22 < 0 it follows

(5.12)
A1 +B1γ

−1
1 +B2γ

−1
2 +B3γ

−1
3

A4 +B0γ
−1
1 − B4γ

−1
4

< µ <
A2 − B1γ1 −B2γ2 − B3γ3

A3 −B0γ1 +B4γ4
,

where

(5.13)

A1 = 2|α2|(K̂2x
∗
1 + ε2β

−1
1 ), A2 = 2[|α1|(1 − K̂0x

∗
1) − R̂1R2|α2|x

∗
2 − ε1],

A3 = 2β1(1 − K̂0x
∗
1), A4 = 2[|α2|(1 − R1R̂2x

∗
1) − ε2|α1|β

−1
1 ],

B0 = K̂2β1x
∗
1, B1 = K̂2|α1|x

∗
1, B2 = R1R̂2|α2|x

∗
1,

B3 = K̂0|α2|x
∗
1, B4 = R̂1R2|α2|x

∗
2.
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Via (5.12) we can write

(5.14)

(

A1 +B1γ
−1
1 +B2γ

−1
2 +B3γ

−1
3

A2 − B1γ1 −B2γ2 − B3γ3

)(

A3 − B0γ1 +B4γ4

A4 +B0γ
−1
1 − B4γ

−1
4

)

< 1

and minimize the left part of inequality (5.14) with respect to γ1, γ2, γ3, γ4 by

conditions

(5.15) A2 > B1γ1 +B2γ2 +B3γ3, A3 +B4γ4 > B0γ1, A4 +B0γ
−1
1 > B4γ

−1
4 .

Corollary 5.2. If minimum of the left part of inequality (5.14) with respect to γ1,

γ2, γ3, γ4 by conditions (5.15) less than 1 then the trivial solution of system (3.10)

is asymptotically mean square stable and the positive equilibrium of system (2.6) with

stochastic perturbations is stable in probability.

Let us show that in some cases minimum of the left part of inequality (5.14) can

be easy obtained. Suppose, for example, that K̂2 = 0.

From (5.13) it follows that B0 = B1 = 0 and A1 = 2|α2|ε2β
−1
1 . Inequality (5.14)

takes the form
(

A1 +B2γ
−1
2 +B3γ

−1
3

A2 − B2γ2 −B3γ3

)(

A3 +B4γ4

A4 −B4γ
−1
4

)

< 1

Note µ from inequalities (5.12) satisfies the condition γ > µ2 that via (5.10),

(5.11) is equivalent to β1µ
2 − µ|α1| − |α2| < 0 or

|α1| −
√

α2
1 + 4β1|α2|

2β1
< µ < µ0 =

|α1| +
√

α2
1 + 4β1|α2|

2β1
.

Really, from (5.12), (5.15) via B0 = B1 = 0 it follows

0 < µ <
A2

A3
<

|α1|

β1
< µ0.

Using Lemma 4.2 firstly for P1 = A1, P2 = A2, Q1 = B2, Q2 = B3, x = γ2,

y = γ3 and secondly for P1 = A3, P2 = A4, Q1 = B4, Q2 = 0, x = γ−1
4 , we obtain the

following

Corollary 5.3. Let A1, A2, A3, A4, B2, B3, B4 are defined by (5.13). If K̂2 = 0,

A2 > 0, A3 ≥ 0, A4 > 0 and

(

√

(B2 +B3)2 + A1A2 +B2 +B3

)

(

√

B2
4 + A3A4 +B4

)

< A2A4

then the trivial solution of equation (3.10) is asymptotically mean square stable and

the positive point of equilibrium of system (2.6) is stable in probability.

Example 5.4. Suppose that the parameters of system (2.8) that is a particular case

of system (2.6) satisfy the condition

(5.16) A = a−
a1b

b1b2
> 0.
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From (3.4) via (2.3), (2.5), (2.7) it follows that the positive point of equilibrium of

system (2.8) is

x∗1 =
b

b1b2
, x∗2 =

A

a2
.

The linear part of system (2.8) with stochastic perturbations is defined by (3.11). Via

(2.7), (5.10), (5.13) we obtain

A1 =
ba2

2σ
2
2

Ab21b
2
2

, A2 = 2b

(

a1

b1b2
− Ah1

)

− σ2
1, A3 =

2Ab1b2
a2

,

A4 =
a2b

b1b2

(

2(1 − bh2) −
a1σ

2
2

Ab1b2

)

, B2 =
a2b

2

b1b2
h2, B4 = Abh1.

Via Corollary 5.3 if

h1 <
1

A

(

a1

b1b2
−
σ2

1

2b

)

, h2 <
1

b

(

1 −
a1σ

2
2

2Ab1b2

)

and

(5.17)

(

√

B2
2 + A1A2 +B2

)(

√

B2
4 + A3A4 +B4

)

< A2A4

then the trivial solution of equation (3.11) is asymptotically mean square stable and

the positive point of equilibrium of system (2.8) is stable in probability.

Note that in the case h1 = h2 = 0 the obtained stability condition follows from

Corollary 5.1 via α1 = −a1x
∗
1, α2 = −a2x

∗
1, β1 = b1b2x

∗
2, β2 = 0. In the case σ2

1 =

σ2
2 = h1 = h2 = 0 inequality (5.17) holds and condition (5.16) ensures asymptotic

stability of the positive point of equilibrium of the classical Lotka-Volterra model

(2.9).

Stability regions for the positive point of equilibrium of system (2.8), obtained

by conditions (5.16), (5.17), are shown in the space (a, b) for a1 = 0.6, a2 = 1, b1 = 1,

b2 = 1 and different values of the other parameters on Fig. 5.1 (σ2
1 = 0, σ2

2 = 0,

h1 = 0, h2 = 0), Fig. 5.2 (σ2
1 = 0.4, σ2

2 = 0.6, h1 = 0, h2 = 0), Fig. 5.3 (σ2
1 = 0,

σ2
2 = 0, h1 = 0.1, h2 = 0.15), Fig. 5.4 (σ2

1 = 0.1, σ2
2 = 0.3, h1 = 0.01, h2 = 0.1).
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6. SHORT SKETCH OF RESEARCH OF SYSTEM (2.10) WITH

STOCHASTIC PERTURBATIONS

Consider now system (2.10) that was obtained from (2.1) by conditions (2.11).

Via (3.1), (3.2) the positive point of equilibrium (x∗1, x
∗
2) of system (2.10) is defined

by the conditions

(6.1)
x∗1(a−K0x

∗
1) = K1f(x∗1, x

∗
2)x

∗
2,

b = R1g(x
∗
1, x

∗
2), a > K0x

∗
1.

Suppose that the functions f(x1, x2) and g(x1, x2) in (2.11) are differentiable and can

be represented in the form

f(y1 + x∗1, y2 + x∗2) = f0 + f1y1 − f2y2 + o(y1, y2),

g(y1 + x∗1, y2 + x∗2) = g0 + g1y1 − g2y2 + o(y1, y2),

where lim|y|→0
o(y1,y2)

|y|
= 0 for |y| =

√

y2
1 + y2

2 and

f0 = f(x∗1, x
∗
2), f1 = x∗2f̂ , f2 = x∗1f̂ , f̂ =

ka2(x
∗
1x

∗
2)

k−1

((x∗1)
k + a2(x∗2)

k)2
,

g0 = g(x∗1, x
∗
2), g1 = x∗2ĝ, g2 = x∗1ĝ, ĝ =

mb2(x
∗
1x

∗
2)

m−1

((x∗1)
m + b2(x∗2)

m)2
.

So, the functionals F0(x1t, x2t), F1(x1t, x2t), G1(x1t, x2t) in (2.11) have representations

F0(y1t + x∗1, y2t + x∗2) = K0x
∗
1 +

∫ ∞

0

y1(t− s)dK0(s),

F1(y1t + x∗1, y2t + x∗2) = K1f0x
∗
2 + f1x

∗
2

∫ ∞

0

y1(t− s)dK1(s) +

+K1f0y2(t) − f2x
∗
2

∫ ∞

0

y2(t− s)dK1(s) + o(y1, y2),(6.2)

G1(y1t + x∗1, y2t + x∗2) = R1g0x
∗
2 + g1x

∗
2

∫ ∞

0

y1(t− s)dR1(s) +

+R1g0y2(t) − g2x
∗
2

∫ ∞

0

y2(t− s)dR1(s) + o(y1, y2).

Via (6.1), (6.2) the linear part of system (2.10) with stochastic perturbations

takes the form

ż1(t) = (a−K0x
∗
1)z1(t) −K1f0z2(t)

−

∫ ∞

0

z1(t− s)dK(s) + f2x
∗
2

∫ ∞

0

z2(t− s)dK1(s) + σ1z1(t)ẇ1(t),(6.3)

ż2(t) = g1x
∗
2

∫ ∞

0

z1(t− s)dR1(s) − g2x
∗
2

∫ ∞

0

z2(t− s)dR1(s) + σ2z2(t)ẇ2(t),
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where dK(s) = x∗1dK0(s)+ f1x
∗
2dK1(s). Following GMLFC one can represent system

(6.3) in form (5.1) with

Z1(t) = z1(t) −

∫ ∞

0

∫ t

t−s

z1(θ)dθdK(s) + f2x
∗
2

∫ ∞

0

∫ t

t−s

z2(θ)dθdK1(s),

Z2(t) = z2(t) + g1x
∗
2

∫ ∞

0

∫ t

t−s

z1(θ)dθdR1(s) − g2x
∗
2

∫ ∞

0

∫ t

t−s

z2(θ)dθdR1(s),

α1 = K1x
∗
2

(

f0

x∗1
− f1

)

−K0x
∗
1, α2 = K1(f2x

∗
2 − f0),

β1 = R1g1x
∗
2, β2 = −R1g2x

∗
2.

Further investigations are similar to Section 5.

For short consider system (2.13) that is a particular case of system (2.10). The

point of equilibrium of system (2.13) is defined by (3.5). From (2.12), (3.5), (6.3)

it follows that the linear part of system (2.13) with stochastic perturbations has the

form

(6.4)
ż1(t) = α1z1(t) + α2z2(t) + σ1z1(t)ẇ1(t),

ż2(t) = β1z1(t− h) + β2z2(t− h) + σ2z2(t)ẇ2(t),

where

α1 = a1α(2B + a2) − a, α2 = −B2a1α, α =
1

(B + a2)2
,

β1 = b1b2β, β2 = −Bβ1, B =
bb2

b1 − b
, β =

1

(B + b2)2
.

System (6.4) can be represented in form (5.1) with

Z1(t) = z1(t), Z2(t) = z2(t) +

∫ t

t−h

(β1z1(θ) + β2z2(θ))dθ.

Suppose that all parameters of system (2.13) are positive and besides

b1 > b, α1 + ε1 < 0, β2 + ε2 < 0.(6.5)

Then α1 + β2 < 0. Since here β1 > 0, α2 < 0 then conditions (4.7) hold. Let us show

that intervals (4.8), (4.9) have common points. Really, it is easy to see that the left

bounds of both intervals are nonpositive ones. Besides,
√

(α1 + β2)2 − 4β1α2 − (α1 + β2)

2β1

≥
|α1 + β2|

β1

≥
|α1|

β1

≥ −
α1 + ε1

β1

> 0,

i.e., at least the positive part of interval (4.8) belongs to interval (4.9).

From Corollary 4.5 it follows that the trivial solution of system (6.4) with h = 0

is asymptotically mean square stable. It means that the trivial solution of system

(6.4) can be asymptotically mean square stable and for enough small h > 0. A coarse
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estimate for h one can get using the functional V1 defined in (5.4) for fixed values of

µ and γ. Putting for example µ = 0, γ = −α2β
−1
1 > 0, via (6.4), (4.2) we obtain

LV1(t) = 2Z1(t)(α1z1(t) + α2z2(t))

+2γZ2(t)(β1z1(t) + β2z2(t)) + σ2
1z

2
1(t) + γσ2

2z
2
2(t)

= 2z1(t)(α1z1(t) + α2z2(t)) + σ2
1z

2
1(t) + γσ2

2z
2
2(t)

+2γ(β1z1(t) + β2z2(t))

(

z2(t) +

∫ t

t−h

(β1z1(θ) + β2z2(θ))dθ

)

= 2(α1 + ε1)z
2
1(t) + 2γ(β2 + ε2)z

2
2(t)

+2γβ1

∫ t

t−h

(β1z1(t)z1(θ) + β2z1(t)z2(θ))dθ

+2γβ2

∫ t

t−h

(β1z2(t)z1(θ) + β2z2(t)z2(θ))dθ

≤ 2(α1 + ε1)z
2
1(t) + 2γ(β2 + ε2)z

2
2(t)

+γβ1

[

β1

(

hz2
1(t) +

∫ t

t−h

z2
1(θ)dθ

)

+ |β2|

(

hz2
1(t) +

∫ t

t−h

z2
2(θ)dθ

)]

+γ|β2|

[

β1

(

hz2
2(t) +

∫ t

t−h

z2
1(θ)dθ

)

+ |β2|

(

hz2
2(t) +

∫ t

t−h

z2
2(θ)dθ

)]

= [2(α1 + ε1) +Q1h]z
2
1(t) + [2γ(β2 + ε2) +Q2h]z

2
2(t) +

2
∑

i=1

Qi

∫ t

t−h

z2
i (θ)dθ,

where Q1 = γβ1(β1 + |β2|), Q2 = γ|β2|(β1 + |β2|). Following GMLFC, the additional

functional V2 we have to choose by standard way

V2(t) =
2
∑

i=1

Qi

∫ t

t−h

(θ − t+ h)z2
i (θ)dθ.

Then for the functional V = V1 + V2 we have

LV1(t) ≤ 2[α1 + ε1 + |α2|(β1 + |β2|)h]z
2
1(t)

+2γ[β2 + ε2 + |β2|(β1 + |β2|)h]z
2
2(t).

As a result we obtain the following statement: if conditions (6.5) hold and

h < min

(

|α1 + ε1|

|α2|(β1 + |β2|)
,

|β2 + ε2|

|β2|(β1 + |β2|)

)

then the trivial solution of system (6.4) is asymptotically mean square stable and the

positive point of equilibrium of system (2.13) with stochastic perturbations stable in

probability.

Note that choosing optimal values of µ and γ in the functional V1 (instead of the

fixed µ = 0 and γ = |α2|β
−1
1 ) one can loosen estimation for h.
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