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Stability of equilibrium states of a nonlinear delay differential
equation with stochastic perturbations
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SUMMARY

The nonlinear delay differential equation with exponential and quadratic nonlinearities is considered. It is
assumed that the equation is exposed to stochastic perturbations of the white noise type, which are directly
proportional to the deviation of the system state from the equilibrium point. Sufficient conditions for stability
in probability of the zero and positive equilibriums of the considered system under stochastic perturba-
tions are obtained. The research results are illustrated by numerical simulations. The proposed investigation
procedure can be applied for arbitrary nonlinear stochastic delay differential equations with an order of
nonlinearity higher than one. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A lot of mathematical models in different applications are described via nonlinear difference or
delay differential equations [1–4]. Models of such type are enough popular among researchers,
for example, growth models in economics [5–12] , different types of epidemic models [13–18],
the known Mackey–Glass model [19], models of population dynamics, in particular, predator–prey
models [20–23], well-known Nicholsons blowflies equation [24–30], and many other [31–33]. It
is known that nonlinear equations can have several equilibria, so, one of the main directions in
investigation of the nonlinear models is stability analysis of these equilibria, in particular, stability
positive or zero equilibria under stochastic perturbations [3, 4, 10–13, 15–18, 23, 28, 30].

In the succeeding sections, it is shown that investigation of stability in probability of equilib-
ria of nonlinear stochastic differential equation can be reduce to investigation of asymptotic mean
square stability of some linear stochastic differential equation. The idea of the proposed method
of stability investigation is similar to the stability method of the first approximation, namely, the
nonlinear equation is centralized and linearized around an equilibrium point, and the zero solu-
tion of the obtained linear equation is investigated on asymptotic mean square stability. Obtained
asymptotic mean square stability conditions of the zero solution of the linear equation at the same
time are conditions for stability in probability of corresponding equilibrium of the initial nonlinear
equation. This method can be applied for arbitrary nonlinear differential equation with the order of
nonlinearity higher than one.

1.1. Description of the considered model

The nonlinear delay differential equation

PM.t/ D re�˛M.t��/e���M.t � �/ � pM.t/ � kM 2.t/; (1)
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with a positive initial function

M.s/ D �.s/; s 2 Œ��; 0�; (2)

describes [20] a population growth for adult female mosquitoes. Here,M.t/ is the population size of
female mosquitoes at time t ; r , d , and k are per capita birth rate, per capita death rate, and intraspe-
cific competition rate, respectively; � is the natural death rate of mosquitoes during the preadult
stages; � is the maturation time; and 1

˛
is used to measure the maximum blood meal resource

that the maximum eggs reproductivity can be reached. It is supposed that the parameters satisfy
the conditions

r > p > 0; k > 0; � > 0; � > 0; ˛ > 0; ˛2 C k2 6D 0: (3)

In the case � D k D 0, the equation (1) describes the population dynamics of well-known
Nicholsons blowflies, which is one of the most important mathematical models in ecology [24–30].

In [20], it is shown that for a strictly positive initial function (2), the solution M.t/ of the
equation (1) remains positive and bounded. In this paper, sufficient conditions for stability in prob-
ability of the zero and positive equilibriums of the equation (1) under stochastic perturbations
are obtained.

1.2. Equilibrium points

It is easy to see that for arbitrary values of the parameters (3), the equation (1) has the zero equi-
librium. Putting in the equation (1) M.t/ D M � and supposing that M � 6D 0, we obtain that the
positive equilibrium point of this equation is defined by the algebraic equation

re�˛M
�

e��� D p C kM �: (4)

Via (4) for M � > 0, we obtain

e�˛M
�

D
p C kM �

r
e�� 6 1: (5)

From this, it follows that if

� 6 �m D
1

�
ln
r

p
; (6)

then the positive equilibrium M � exists and via (5) satisfies the condition

M � 6 re
��� � p

k
6 r � p

k
: (7)

Note that in the case ˛ D 0 from (5), we have

M � D
re��� � p

k
: (8)

Consider the positive equilibrium M � as a function of the delay � , that is, M � D M �.�/.
Representing (4) in the form

re��� D .p C kM �.�//e˛M
�.�/; (9)

one can see thatM �.�/ is a strictly decreasing function. Substituting �m from (6) into (4), we obtain
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p > pe�˛M�.�m/ D p C kM �.�m/ > p:

From this (and also from (8) in the case ˛ D 0), it follows that M �.�m/ D 0.

2. STOCHASTIC PERTUBATIONS AND LINEARIZATION

Let ¹�;F;Pº be a basic probability space, ¹Ft ; t > 0º be a nondecreasing family of sub-� -algebras
of F, that is, Ft1 � Ft2 for t1 < t2, P¹�º be the probability of the event enclosed in the braces, and E
be the mathematical expectation.

Let us suppose that the equation (1) is influenced by stochastic perturbations of the white noise
type that are directly proportional to the deviation of the solution M.t/ from the equilibrium M �.
Then (1) takes the form of the Ito stochastic differential equation [34]

dM.t/ D
h
re�˛M.t��/e���M.t � �/

�pM.t/ � kM 2.t/
i
dt C �.M.t/ �M �/dw.t/;

(10)

where w.t/ is the standard Ft -adapted Wiener process [34, 36].
Note that the proposed type of stochastic perturbations was first considered in [13] and used later

in a lot of different mathematical models (see [35, 36] and references therein). In that case, the
equilibrium M � of the deterministic differential equation (1) is also the solution of the stochastic
differential equation (10).

Putting in (10), M.t/ D x.t/CM �, that is

dx.t/ D
h
re�˛.x.t��/CM

�/e���
�
x.t � �/CM �

�

�p
�
x.t/CM �

�
� k

�
x.t/CM �

�2i
dt C �x.t/dw.t/;

(11)

and using (4), we obtain for x.t/ the nonlinear equation

dx.t/ D
h�
p C kM �

�
e�˛x.t��/x.t � �/CM �

�
p C kM �

�
.e�˛x.t��/ � 1/

�
�
p C 2kM �

�
x.t/ � kx2.t/

i
dt C �x.t/dw.t/:

(12)

It is easy to see that stability of the equilibrium M � of the equation (10) is equivalent to stability
of the zero solution of the equation (12).

Together with the equation (12), we will consider the linearization of this equation around the
zero solution

dy.t/ D
��
p C kM �

� �
1 � ˛M �

�
y.t � �/ �

�
p C 2kM �

�
y.t/

�
dt C �y.t/dw.t/: (13)

From (11), it follows that for the zero equilibrium of the equation (1), the equations similar to
(12) and (13) are respectively

dx.t/ D
h
re�˛x.t��/e���x.t � �/ � px.t/ � kx2.t/

i
dt C �x.t/dw.t/: (14)

and

dy.t/ D Œre���y.t � �/ � py.t/� dt C �y.t/dw.t/: (15)
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3. SOME DEFINITIONS AND AUXILIARY STATEMENTS

Definition 3.1
The zero solution of the equation (12) (or (14)) is called stable in probability if for any "1 > 0 and
"2 > 0 there exists ı > 0 such that the solution x.t; �/ of (12) (or (14)) satisfies the condition
P¹supt>0 jx.t; �/j > "1jF0º < "2 for any initial function � such that P¹sups2Œ��;0� j�.s/j < ıº D 1.

Definition 3.2
The zero solution of the equation (13) (or (15)) is called mean square stable if for each " > 0

there exists a ı > 0 such that Ejy.t; �/j2 < ", t > 0, provided that sups2Œ��;0� Ej�.s/j2 < ı;
asymptotically mean square stable if it is mean square stable and for each initial function � the
solution y.t/ of (13) (or (15)) satisfies the condition limt!1 Ejy.t/j2 D 0.

Remark 3.1
As it follows from [36], in order to obtain sufficient conditions for stability in probability of the zero
solution of the nonlinear differential equation (12) (or (14)) with the order of nonlinearity higher
than one (Appendix), it is enough to obtain sufficient conditions for asymptotic mean square stability
of the zero solution of the linear equation (13) (or (15)).

Consider now the linear Ito stochastic differential equation

dx.t/ D ŒAx.t/C Bx.t � �/� dt C �x.t � h/dw.t/; (16)

where A, B , � , � > 0, h > 0 are known constants. It is easy to see that the equations (13), (15) are
particular cases of the equation (16).

Lemma 3.1
[36, p. 44] A necessary and sufficient condition for asymptotic mean square stability of the zero
solution of the equation (16) is

AC B < 0; G�1 >
1

2
�2; (17)

where

G D

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

Bq�1 sin.q�/�1
ACB cos.q�/; B C jAj < 0; q D

p
B2 � A2;

1
2

�
� C 1

jAj

�
; B D A < 0;

Bq�1 sinh.q�/�1
ACB cosh.q�/ ; AC jBj < 0; q D

p
A2 � B2;

(18)

sinh.q�/ and cosh.q�/ in (18) are the hyperbolic sine and hyperbolic cosine, respectively.
Via Remark 3.1, to obtain sufficient condition for stability in probability of the zero solution of

the nonlinear equation (12) (or (14)), it is enough to apply the conditions (17), (18) for asymptotic
mean square stability of the zero solution of the linear equation (13) (or (15)), respectively.

4. MAIN RESULT. STABILITY OF THE EQUILIBRIUMS

4.1. Zero equilibrium.

Theorem 4.1
Let be

� > �m D
1

�
ln
r

p
: (19)
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The zero solution of the stochastic differential equation (15) is asymptotically mean square stable
if and only if

G�1 >
1

2
�2; (20)

where

G D
1 � re���q�1 sinh.q�/

p � re��� cosh.q�/
; q D

p
p2 � r2e�2�� : (21)

Proof
For the equation (15), we have A D �p < 0, B D re��� > 0. From (19), we obtain p > re��� ,
that is, AC jBj < 0. So, the representation (21) for G follows from the last line of (18). The proof
is completed. �

4.2. Positive equilibrium

Let us suppose that the condition (6) holds and therefore the positive equilibriumM � of the equation
(1) there exists and satisfies the condition (7). Denote

OM D

8<
:

2
˛

if k D 0;

1
2

�
3
˛
� p
k
C

q�
3
˛
� p
k

�2
C 8p

˛k

	
if k > 0:

(22)

Theorem 4.2
Let M � be the positive root of the equation (4). The zero solution of the stochastic differential
equation (13) is asymptotically mean square stable if and only if the condition (13) holds, where G
is defined as follows: for ˛ > 0 if M � > OM , then

G D
1C .p C kM �/.˛M � � 1/q�1 sin.q�/

p C 2kM � C .p C kM �/.˛M � � 1/ cos.q�/
;

q D
p
.p C kM �/2.˛M � � 1/2 � .p C 2kM �/2;

(23)

if M � D OM , then

G D
1

2



� C

1

p C 2kM �

�
; (24)

if M � < OM , then

G D
1 � .p C kM �/j1 � ˛M �jq�1 sinh.q�/

p C 2kM � � .p C kM �/j1 � ˛M �j cosh.q�/
;

q D
p
.p C 2kM �/2 � .p C kM �/2.1 � ˛M �/2I

(25)

for ˛ D 0 G is defined by (25) with ˛ D 0.

Proof
Via Lemma 3.1 for the equation (13), we have

A D �.p C 2kM �/ < 0; B D .p C kM �/.1 � ˛M �/: (26)

So, the first condition (17) for the linear equation (13) has the form

.p C kM �/.1 � ˛M �/ < p C 2kM �; (27)

and evidently holds for arbitrary values of the parameters given in (3).
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To define G for the condition (20), let us consider first the case ˛M � > 1, that is, B < 0. In this
case, via (18), we obtain that G is defined by (23) if jBj > jAj and by (24) if jBj D jAj. From
this and (26), it follows that G is defined by (23) or (24) if the condition .p C kM �/.˛M � � 1/ >
p C 2kM � or that is the same

˛k.M �/2 � .3k � ˛p/M � � 2p > 0; (28)

holds. Using (22), we obtain the solution of the inequality (28) in the form M � > OM . If jAj > jBj,
then via (18) and the inequality contrary to (28), we obtain that G is defined by (25) if

OM > M � > ˛�1: (29)

Let now 0 < ˛M � 6 1, that is, B > 0. Via (18), in this case, G is defined by (25) if jAj > B that
coincides with (27) and holds for all M � 6 ˛�1. Uniting this inequality with (29), we obtain that
G is defined by (25) if M � < OM . If ˛ D 0, then via (3), k > 0, and via (26), jAj > B > 0. So, G
is defined by (25) with ˛ D 0 too. The proof is completed. �

5. NUMERICAL ANALYSIS

Consider a dependence of the positive equilibrium M �.�/ on the delay � 2 Œ0; �m�, using (6) and
solving the equation (9). In Figure 1, the graph of the function M �.�/ (in thousands of pieces) is
shown on the interval Œ0; �m� for the following values of the parameters [20]:

r D 42; p D 1=21; k D 0:0001; � D 0:28; ˛ D 0:0001: (30)

Calculations show that M �.0/ D 27198, �m D 24:222, M �.�m/ D 0.
Putting in (9), M � D ˛�1, we obtain the value �1 of the delay � for which the condition

˛M �.�1/ D 1 holds:

�1 D
1

�



ln

r

p C ˛�1k
� 1

�
:

From this for the values of the parameters given in (30), we obtain �1 D 9:61, M �.�1/ D 10000.
The points

A.0;M �.0// DA.0; 27198/;

S.�1;M
�.�1// DS.9:61; 10000/;

B.�m;M
�.�m// DB.24:222; 0/

are shown in Figure 1.

Figure 1. Graph of the function M� DM�.�/ and stability regions.
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Substituting the values of the parameters given in (30) into (22), we obtain OM D 29527. Using
that M �.�/ is a decreasing function, we have M �.�/ 6 M �.0/ D 27198 < 29527 D OM ,
� 2 Œ0; �m�. From this, it follows that for the parameters values (30), the condition M � > OM is
impossible, and therefore, via Theorem 4.2, G cannot be defined by (23) or (24).

Thus, if the condition (20) with G defined by (25) holds, then the zero solution of the equation
(13) with the values of the parameters (30) is asymptotically mean square stable, and therefore the
positive equilibrium M � of the equation (10) is stable in probability.

Besides, of the points A, S , B , in Figure 1, the part ŒA; Bi � of the function M �.�/ graph with
A.0;M �.0// andBi ; i D 1; :::; 7, obtained by virtue of the conditions (20), (25) for different values
of " D 1

2
�2:

1/ " D 0:1; B1.21:6; 470/; 2/ " D 0:3; B2.18:6; 1502/;

3/ " D 0:5; B3.16:7; 2555/; 4/ " D 1:0; B4.13:7; 5014/;

5/ " D 1:5; B5.11:6; 7349/; 6/ " D 2:8; B6.6:9; 14212/;

7/ " D 3:3; B7.4:9; 17688/;

shows the points .�;M �.�//, for which the zero solution of the equation (13) is asymptotically mean
square stable, and therefore, the positive equilibrium of the equation (10) is stable in probability.

The following results of numerical simulation of solutions of the equations (10) and (14) are rep-
resented. Trajectories of the Wiener process are simulated via the algorithm described in [36, p. 30].

In Figure 2, 100 trajectories of the equation (10) solution are shown in the point P.15; 3822/ with
the initial function M.s/ D 4000.1 C 0:7 cos.s//, s 2 Œ�15:0�, the delay � D 15, and � D 1. In
this case, " D 0:5 and P.15; 3822/ 2 ŒA; B3�, that is, the point P.15; 3822/ is a point of stability in

Figure 2. One hundred trajectories of the equation (10) solution in the point P.15; 3822/.

Figure 3. Ten trajectories of the equation (14) solution in the point Q.20; 938/.
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Figure 4. One hundred trajectories of the equation (14) solution, � D 30.

probability for the equilibrium M �.15/ D 3822 of the equation (10), and all trajectories converge
to this equilibrium.

In Figure 3, 10 trajectories of the equation (14) solution are shown in the point Q.20; 938/
(Figure 2) with the initial function M.s/ D 10.5 C sin.s//, s 2 Œ�20:0�, the delay � D 20, and
� D 1. From (19), via � D 20 < �m D 24:222, it follows that the point Q.20; 938/ is not a point
of stability in probability for the zero solution of the equation (14). So, the trajectories with a small
enough initial function do not converge to zero and fill with itself whole space.

In Figure 4, 100 trajectories of the equation (14) solution are shown with the initial function
M.s/ D 10000.1C 0:4 sin.s//, s 2 Œ�30:0�, the delay � D 30, and � D 0:25. Calculations show
that � D 30 > �m D 24:222, G�1 D 0:04049 > 1

2
�2 D 0:03125. So, the conditions (19)–(18)

hold, the zero solution of the equation (14) stable in probability, and all trajectories converge to zero.

6. CONCLUSIONS

In this paper, a nonlinear differential equation with exponential and quadratic nonlinearities is con-
sidered. It is supposed that the equation is exposed to stochastic perturbations that are directly
proportional to the deviation of the solution from one of two (the zero or positive) equilibrium
points. The special procedure is proposed, which allows to obtain sufficient conditions for stability
in probability of the equation equilibriums. The obtained results are illustrated by numerical simu-
lations of solutions of the considered equation. The proposed investigation procedure can be applied
for arbitrary nonlinear differential equation with an order of nonlinearity higher than one.

APPENDIX

Consider the nonlinear Ito stochastic differential equation

dx.t/ D


Z 1
0

dK.s/x.t � s/C g.t; xt /

�
dt C �x.t/dw.t/; (A1)

where the functional g.t; '/ satisfies the condition

jg.t; '/j 6
Z 1
0

j'.�s/j�dr.s/; sup
s60
j'.s/j 6 ı; � > 1; (A2)

ı is small enough, r.s/ is nondecreasing integrable function, and the integrals are understood as
Stieltjes integrals.
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Understanding that in the neighborhood of zero a nonlinear function with the order of nonlin-
earity higher that one (the condition (A2)) tends to zero sooner than a linear function explains why
asymptotic mean square stability of the zero solution of the equation (A1) without g.t; xt / guar-
antees stability in probability of the zero solution of the nonlinear equation (A1). In details and in
more general case, it is shown in [36].
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