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Abstract-It is well known that many processes in automatic regulation, physics, mechanics, 
biology, economy, ecology, etc., can be modelled by hereditary systems. Many stability results in 
the theory of hereditary systems and their applications were obtained by construction of appropriate 
Lyapunov functionals (see, for instance, [l-4]). The construction of every such functional was a long 
time an art of its author. In this paper, formal procedure for construction of Lyapunov functionals for 
stochastic difference and differential equations and some results on asymptotic mean square stability 
conditions are considered. More details on these results are presented in [5-521. The bibliography 
does not contain works of other researchers since this paper is a short survey of the authors’ works. 
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1. STATEMENT OF THE PROBLEM 

1.1. Introduction 

Let i be a discrete time, i E ZUZu, 2 = (0, 1, . . . }, 20 = {-h, . . . ,O}, h be a given nonnegative 

number, process zi E Rn be a solution of the equation 

i 

%+I = F(it x-h,. . . , xi) + c G(i, j, x_..~, . . . ,x&& i E 2, 
j=O 

fl*l) 

Here F : 2 * S + R”, G : Z * 2 * S + R”, S is a space of sequences with elements in Rn. 

It is assumed that F(i,. . . ) does not depend on xj for j > i, Gfi, j, . . . ) does not depend on Zk 

for k>j and F(i,O,... ,O) = 0, G(i,j,O,. . . ,O) = 0. 
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Let {C&g, P} be a basic probability space, fi E C, i E 2, be a sequence of a-algebras, fi c fj 
for i < j, & be a sequence of mutually independent fi+l-adapted random variables, EEc = 0, 

Et: = 1. Recall that f,+l-adapted means that random variable & is fi+l-measurable for each 
i E z. 

DEFINITION 1.1. The zero solution of equation (1.1) is called p-stable, p > 0, if for every E > 0 
there exists a 6 > 0 such that ElzilP < E, i E Z, if II’pIIP = supiEZo ElvijP < 6. If, besides, 
limi-oo ElzilP = 0 for every initial function cp, then the zero solution of equation (1.1) is called 
asymptotically p-stable. In particular, if p = 2 then the zero solution of equation (1 .l) is called 

asymptotically mean square stable. 

THEOREM 1.1. (See [15,27,37].) Let there exist a nonnegative functional V(i,x_h, , xi), which 
satisfies the conditions 

EV(0, x-h,. . . ,x01 I c~ll~ll~, 
EAK 5 -cZEIxilP, i E z. 

Here cl > 0, c2 > 0, p > 0, and 

AV, = V(i+ 1,X-h, . . . ,Xi+l)- V(i, X-h,.. .,Xi)e (1.2) 

Then the zero solution of equation (1 .l) is asymptotically p-stable. 

From Theorem 1.1 it follows that an investigation of stability of stochastic equations can be 
reduced to the construction of appropriate Lyapunov functionals. Below some formal procedure 
of Lyapunov functionals construction for equations of type (1.1) is proposed. 

1.2. Formal Procedure of Lyapunov Functionals Construction 

The proposed procedure of Lyapunov functionals construction consists of four steps. 

Step 1. Represent the functions F and G at the right-hand side of equation (1. _) in the form 

F(i, x-h,. . . rXi) =Fl(i,Xi-,,...,Xi)fF2(i,X_h,...,Xi)+ AFs(i,Z_h,.. 

Step 2. 

FI(i, 0,. . . , 0) = FZ(i, 0,. . . ,O) = F3(i,0 ,..., 0) -0, 

G(i,j, x-h,. . . , xj) = Gl(i,j, xj_,, . . . , zj) + G2(i,j, x-h,. . . , xj), 

G1 (i, j, 0, . . . ,O) rGz(i,j,O ,..., 0) ~0. 

Here 7 2 0 is a given integer, operator A is defined by (1.2). 
Suppose that the zero solution of the auxiliary difference equation 

Step 3. 

Step 4. 

i 

Yi+l = Fl(i,~i-rr.. .,yi) + CGl(i,j,yj-T,.. . ,yj)<j, i E z, 
j=o 

Xi), 

(1.3) 

(1.4) 

is asymptotically mean square stable and there exists a Lyapunov function vi = 
~(i,yi-,,...,yi) for this equation which satisfies the conditions of Theorem 1.1. 
A Lyapunov functional Vi is constructed in the form V, = Vii + Vzi, where the main 
component is 

Vii = V(i,Xi-_r,. . . ,Xi_l,Xi - Fs(ir X_h,..e,Xi)). 

In order to satisfy the conditions of Theorem 1.1 it is necessary to calculate EAVl, 
and in a reasonable way to estimate it. After that the additional component V2i is 
chosen in a standard way. 
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Consider some peculiarities of this procedure. 

It is clear that representation (1.3) in the first step is not unique. Hence, for different rep- 

resentations (1.3) it is possible to construct different Lyapunov functionals, and therefore, get 

different stability conditions. 
In the second step for one auxiliary equation (1.4) it is possible to choose different Lyapunov 

functions wi, and therefore, to construct different Lyapunov functionals for equation (1.1). 

At last it is necessary to stress that choosing different ways of estimation of EAVri it is 

possible to construct different Lyapunov functionals and as a result to obtain different stability 

conditions [39,52]. 

2. ILLUSTRATIVE EXAMPLE 

Here it is shown that using different representations of the initial equation in form (1.3) it is 

possible to get different stability conditions. 

Let us investigate a region of asymptotic mean square stability of the scalar equation with 

constant coefficients 

Xi+1 = cz&r~ + aiz+i + czri-l&, i E 2. (2.1) 

2.1. First Way of Lyapunov Functional Construction 

Using the four steps of the procedure described above, we obtain the following. 

1. 

2. 

3. 

4. 

The right-hand side of equation (2.1) is represented already in form (1.3) with Y- = 0, 

~~(~,~~~ = aozi, &(i,z-1, * *. ,Ei) = U12&1, lqi,5_1,. . .,Q) = G&j,q) = 0, 

G~(~,~,z_I,...,Ic~)=O,~=O ,..., i-l,Gz(i,i,z-l ,..., ~i)=mi-l_ 
Auxiliary equation (1.4) in this case has the form yi+r = aoyi. The function vi = TJ~ is a 

Lyapunov function for this equation if la01 < 1, since Avi = (ai - 1)~:. 

The main part Vii of the Lyapunov functional vi = V’I~ + V& must be chosen in the 
form Vii = z:. 
Estimating EAVri for equation (2.1), it is possible to show that 

1: 
I 

I 

1 
’ 2 

__t____________-_ __ ____ ____ ___ -2 
-1 
~ ____$_____ _______________~_) 

2 a 

; 

I 

; 

I 

-1’ 

Figure 1. 
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where A = a: + ~UOU~/ + u2. Put Vz = AZ&~. Then AVs = A($ - zr&) and for 

K = Ki + V& we have EAK 5 ((luol + 1~11)~ + o2 - l)Ex:. Therefore, under the 
condition 

laoI + Iall < 0 (2.2) 

the functional V;: satisfies the conditions of Theorem 1.1 and the zero solution of equa- 

tion (2.1) is asymptotically mean square stable. 

The stability regions for equation (2.1), given by inequality (2.2), are shown on Figure 1 

(with a = as, b = al) for different values of c2: 

(1) c? = 0; 

(2) Crz = 0.4; 

(3) cr2 = 0.8. 

2.2. Second Way of Lyapunov Functional Construction 

Use now another representation of equation (2.1). 

Represent the right-hand side of equation (2.1) in form (1.3) with T = 0, Fl(i, xi) = (a0 + 

cq)Xi, lqi,X_l,. . . , Xi) = 0, F3(ir2_1,. . . ) xi) = -alxi-I, and Gr(i,j,zj), Gz(i, j,J:_r, 

. . . , xj) as before. 

Auxiliary equation (2.2) in this case is yi+r = (a0 f ar)yi. The function ui = 317 is a 

Lyapunov function for this equation if Ias + al / < 1, since Ava = ((a0 + a1>2 - 119,“. 

The main part V;i of the Lyapunov functional VT = VI, + Vsi must be chosen in the form 

I& = (xp: + CQX&$. (2.3) 

Estimating EAVri by virtue of (2.1),(2.3), we can show that 

EAVri 5 ((a0 + ~1)~ - 1 + lur(ao + al - l)/) Eza + BE&, 

whereB=a2flar(aa+ar-l)[. PutV&=B$r, Then for the functional I$ = V& + V2i 

we have 

EA& < ((a0 + Q)~ - 1 + 2fur(ao i- aI - 1)1 f 02) Ex,~. 

h A 

Figure 2. 
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Therefore, if the condition 

695 

(a0 + a1)2 + 2jal(ao + a1 - 1)1 + cr2 < 1 (2.4) 

holds, then the functional & satisfies the conditions of Theorem 1.1 and the zero solution 

of equation (2.1) is asymptotically mean square stable. 

Note that condition (2.4) can be written in the form 

Ia0 + a11 < d=, a2 < (1 - a0 - Ul)(l + al) + a1 - 2lUll). (2.5) 

The stability regions, defined by condition (2.5), are shown on Figure 2 (with a = ao, b = al) 

for different, values of c2: 

(1) I72 = 0; 

(2) 02 = 0.4; 

(3) o2 = 0.8. 

2.3. Third Way of Lyapunov Functional Construction 

In some cases, the auxiliary equation can be obtained by iterating right-hand side of equa- 

tion (2.1). For example, from equation (2.1) we get 

Xi+1 = UO(UO2i_1 + U12&2 + Kri-2&_1) + U12&1 + K&-1& 

(a; + al) Xi-1 + UOUlZi-2 + uom-Z&-l + m&l&. 
(2.6) 

= 

Here representation (1.3) is used with r = 0, Fl(i,zi) = Fs(i,z-1,. . . ,zi) = 0, F.(~,x_~, 

. . . ) xi) = (u; +ul)rci-1 +u,,u1zi-2, Gl(i,j,zj) = 0, j = 0,. . . ,i, G2(i,j,~_l,. . . ,zj) = 0, 
j =o,... ,i-2,G2(i,i-1,x-l ,... ,zi_l) = uo~zi_l, Gz(i,i, z_l, . . . ,zJ = CTX~-~. 

The auxiliary equation is yi+l = 0, i E 2. The function zli = y’ is a Lyapunov function 

for this equation since Avi = YZ+~ - y’ = -y”. 

The main part Vii of the Lyapunov functional Vi = VIM + V2i must be chosen in the 

form Vii = XI. 
Estimating EAVli by virtue of (2.6), we obtain 

EAVli I -Ezf + AIE$_?_, + A2Ezf_‘_,, 

bA 
I 

Figure 3. 
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where AI = a2 + la~allla$ + a11 + (a; + a~)~, A2 = a2ai + laoa~lla~ + all + u&f. Put 

V,i = (AI + A2)& + Azxf_!_,. Then for vi = V,i + V2i we have EAK 5 -(l - Al - 

Az)Ezf. Therefore, the condition of asymptotic mean square stability of the zero solution 

of equation (2.6) has the form Al + A2 < 1 or 

~~~~~~~~u~+u~~ <~1-~2(1+~~). (2.7) 

The stability regions, defined by condition (2.7), are shown on Figure 3 (with a = ao, b = al) 

for different values of CJ~: 

(1) u2 = 0; 

(2) o2 = 0.4; 

(3) 52 = 0.8. 

2.4. Fourth Way of Lyapunov Functional Co~truction 

Consider now the case T = 1. 

1. Represent equation (2.1) in form (1.3) with Fr(i,zi_r,zi) = uszi -I- u~x~__~, G2(i,i,x_r, 

. .., xi) = cm~-~, F2(i,~_l,...r~i) = F3(irz_~,...,xi) = 0, Gl(i,j,sj) = 0,j = O,...,i, 

Gz(i,j,z+..,sj)= 0,j = O,...,i-1. 

2. In this case, the auxiliary equation is 

Z&i+1 = UOYi + al?&-10 (2.81 

Using the vector y(i) = (~d_r, yi)‘, equation (2.8) can be written in the form 

y(i -t- 1) = 4/(i), (2.9) 

Let C be an arbitrary nonnegative definite matrix. If the equation 

A’DA-D---C (2.10) 

has a positive definite solution D, then the function vi = ~‘~~)D~(~) is a Lyapunov function 

for equation (2.9). In particular, if 

c= “0’ j ( > , 
2 

then the solution D of equation (2.10) has 

d11 = cl + o&z, 

Cl 2 0, c2 > 0, 

the elements dij, such that 

a0m 
drz = - 

1 - ar 
&2, 

(2.11) 

(Cl + c2)(1 - 4 

d22 = (1t al) [(l - al>2 - r$I’ 

(2.12) 

It is easy to see that the matrix D is a positive definite matrix by the conditions 

Iall < 1, luel < 1 -ur. 

3. The functional VI, must be chosen in the form Vx, = ~‘~~)D~(~), 
4. Estimating EAVia by virtue of (2.10),(2.11), we obtain 

(2.13) 

A& = -c2E~t; + (a2d2s - cl) E&r. 

Therefore, if a2d22 < cl, then Vzi = 0 and for the functional Vi = Vii we have EA& < 

-csExF. If a2d22 > cl, then Vzi = (a2d22 - CI)CJ$_!_, and for the functional Vi = Vii + V& 
we have EAVi = -(cl -t- c2 - a2d22)Es:. 

Thus, if condition (2.13) and 02dzz < cr + cz, or otherwise 

cr2(1- ar) 

(1 + w> [(I - 42 - $j] 
<I (2.14) 

hold, then the zero solution of equation (2.1) is asymptotically mean square stable. 
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1; 

f. 
/‘\ 

./i 
2 / 

-~__-__________;__ ____ ______$______ 

01 
---- --- __.____________p_, 

~ 
/!,_ 

1 2 a 

/ \ 
-i 

Figure 4. 

Figure 5. 

The stability regions, defined by conditions (2.13),(2.14), are shown on Figure 4 (with a = a~, 
b = al) for different values of u2: 

(1) a2 = 0; 

(2) 02 = 0.4; 

(3) a2 = 0.8. 

On Figure 5 (with a = aor b = al), a comparison of the stability regions, which are obtained 

by conditions (2.2), (2.5), (2.7), and (2.~3),(2.14~, is shown for two values of c2: 

(1) ff2 = 0, 
(2) (rz = 0.8. 
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REMARK 2.1. Note that if cr2d2z > cl + cz, then there exists the ~nctional 

K = x’(i)Dx(i) + (a2d22 - Cl - c2) Xi-l, 

for which EA& = (a2&z -cl -cz)ExF 2 0. It means that if a2& 2 cl fez then the zero solution 

of equation (2.1) do not asymptotically mean square stable. Therefore, conditions (2.13),(2.14) 

are necessary and sufficient conditions of asymptotic mean square stability of the zero solution 

of equation (2.1). For example, the inequality g2 < 1 is a necessary and sufficient condition of 

asymptotic mean square stability of the zero solution of the equation zi+r = o~+r&. Really, in 

this case we have Ex!&__~ = (T~~Ez?~, k = 0, 1, m = 0, 1,. . . . 

In more detail, construction of necessary and su~cient conditions of ~ymptotic mean square 

stability is discussed in [26]. 

3. LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS 

Now the proposed procedure of Lyapunov functionals construction is applied to the equation 

xi = Pi> i E 2,. 

Here ai and aj are given constants. Below the following symbols are used also: 

p=k l=O 

k = 1,2,3. 

3.1. First Way of Lyapunov Functional Construction 

Represent the right-hand side of equation (3.1) in form (1.3) with r = 0, Fr(i, Q) = aoxi, 

F3(ir X-h,. . . ,xi) = Gl(i,j,xj) = 0, 

i-l 

Fz(i, x-f&, . . . , xi) = C ai-02, 
1=-h 

Gz(i, j, x-h,. . . , x.) = 2 i-j flj-p2. 
1=-h 

Auxiliary difference equation (1.4) in this case is vi+1 = aoyi. The function vi = yf can 

be taken as a Lyapunov function for this equation if laOI < 1, since Au, = (a! - 1)~:. 

The main part Vii of the Lyapunov functional I$ = Vii f Vzi must be chosen in the 

form Vii = x5. 

Estimating EAVli by virtue of (3.1), it is possible to show that 

k=-h 

where 

i-k,, i-k,,, 

Aik = (a0 + Sl)lai-kl + a0 c bf_k_pl f x b~_k-pl 2 b!?? 

p=l p=o I=0 

a0 = C hl, 
l=O 

km = max(O, k). 
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Putting 
i-l 

k-h j=i-1 

and calculating EAV&, we obtain 

EAVzi = Ex: ~ Aj+i,i - 2 A&& 
j=l k=-h 

As a result, for the functional Vi = Vii + V2i we get 

It is shown [15] that CT=, Aj+i,i I ~r~+2~raSi+Se. Therefore, the condition of asymptotic 

mean square stability of the zero solution of equation (3.1) is 

o; + 200% + so < 1. (3.2) 

In particular, for equation (2.1) we have cut = ]a~] + Jai], So = u2, Si = 0, and from (3.2) 

condition (2.2) follows. 

3.2. Second Way of Lyapunov Functional Construction 

1. Represent the right-hand side of equation (3.1) in form (1.3) with r = 0, Fi(i, xi) = pzi, 

F’J(i, x-h,. . . ,Xi) = Gl(i,j,zj) = 0, 

00 i-l co 

P = Caj, 
j=o 1=-h j=i-1 

Gz(i,j, X-h,. . . ,Xj) = 1 cq{Xl. 
1=-h 

Auxiliary equation (1.4) in this case is yi+i = pyi. The function Vi = y” can be taken as 

a Lyapunov function for this equation if ]P] < 1, since Avi = (p2 - l)$“. 

The main part Vii of the Lyapunov functional V, = Vii + V& should be 

form Vii = (Xi - Fs)~. 

Using (3.1), it is possible to show [15], that 

chosen in the 

EAVI~ I p2 - 1 + \plS, + lag1 9 /OFI + Ip - l]o Ex~ + 2 BikEXz, 
l=O 1 A=-h 

where 

z-k,,, i-k,,, 

Bik = IPl C Ior-k-pI f C lg~_k-p-pl 2 I$I + IP - ‘I fJ ‘j 
p=l p=o l=O 

I I 
j=i-k 
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Putting 

k=-h j+-k 

as before it is possible to get [15] that 

EAv, < [P” - 1 f 2o(P - 1/ + So -I- 2[]/3jSr + &]] Es:. 

Therefore, the zero solution of equation (3.1) is asymptotically mean square stable by 

condition p2 + 2a]p - 11 + 5’0 + 2[]/7Sr + aSz] < 1 or otherwise 

IPI < 1, so +2[~P~S1+aiS2] < (l-/3)(1-l-P-2a)* (3.3) 

In particular, for equation (2.1) we have p = a0 + al, o = [al], SO = a2, Si = Sz = 0, and 
from (3.3) condition (2.4) follows. 

3.3. Third Way of Lyapunov Functional Construction 

1. Represent the right-hand side of equation (3.1) in form (1.3) with r = 1, Fr(i,z~_r,s+) = 
uozi + a1~__1, Fa(i,~_h,. . . , cci) = G~(i,j, q) = 0, 

i-2 

&(i, X-h,. . . , Xi) = c %-1x1, Gz(i,_% z-h,. . . , 
1=-h k-h 

2. In this case, the auxiliary equation has the form (2.8) (or (2.9)). 
3. The functional V& is chosen in the form VIM = x’(i)Ds(i), where matrix D is defined by 

conditions (2.10)-(2.12). It is supposed also that conditions (2.13) hold. 
4. Estimating EAVri and choosing V& in a standard way, we obtain [15] that inequali- 

ties (2.13) and 

(a; +2a2& i-80 + /@/@a2 -@s2))(1 - a~) -t-2(&2 +&)laol < 1 

(1 + al) ](I - alI2 - gj] 
, (3.41 

where 03 
Qz = X] 1 a1 9 

1=2 

are sufficient conditions of asymptotic mean square stability of the zero solution of equa- 
tion (3.1). 

In particular, for equation (2.1) we have ~2 = 5’1 = Sz = Ss = 0, So = a2, and from (3.4) it 
follows condition (2.14). 

Note that, using other representations of equation (3.1) in form (1.3) (for instance, with T = 21, 
it is possible to obtain other sufficient conditions of asymptotic mean square stability of the zero 
solution of equation (3.1). 

EXAMPLE 3.1. Consider the scalar equation 

X&+1 = @a%$ + ek%i-& f Lfxa-l<i> 

xi = cPir i E 20, k > 1, 

i E 2, 

1 > 0. (3.5) 

In this case, cyg = lc&o] + /ok], So = cr 2, Sr = 0. From (3.2), we get the sufficient condition of 
asymptotic mean square stability of the zero solution of equation (3.5), which is more general 
than (2.2) 

loo] + lok] < d=. (3.6) 
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Since p = as + i&, a: = k]ak], & = Sz = 0, from (3.3) we obtain the su~cient condition of 

asymptotic mean square stability of the zero solution of equation (3.5), which is a generalization 

of condition (2.4) 

(&J + ek)’ + 2k]ak(ds + a,, - I)] + 0’ < I. (3.7) 

If k > 2, then al = 0, o.2 = 1~1, 5’1 = S2 = Ss = 0. In this case, from (2.13),(3.4) the sufficient 

condition of asymptotic mean square stability of the zero solution of equation (3.5) follows in 

form (3.6) as well. 

4. SYSTEMS WITH MONOTONE COEFFICIENTS 

By virtue of construction of appropriate Lyapunov functionals stability conditions type of (3.2)- 

(3.4) were obtained [15] also for the equation with variable coefficients 

These stability conditions contain some assumptions about convergence of series from coeffi- 

cients aij. Assumptions of such type sometimes are very limiting. 

Stability conditions of another type were obtained [39] for linear equation of the form 

THEOREM 4.1. Let 
a:j L ai,j-1 > 0, j=1,2 i, t*“, 

G+l,j-1 - Q+l,j - &j-l + Qj 2 0, 

SUP(%+1,i+1 -I= aii 
iEZ 

- Ql,i) < 2 (1 - cZ) 7 
(4.2) 

where 

Then the zero solution of equation (4.1) is asymptotically mean square stable. 

These stability conditions were obtained without any assumptions about convergence of the se- 

ries with coefficients agj by virtue of construction of special Lyapunov functional in the form Vi = 
Vii + Vzi, where Vii = z?, 

2 
i-l 

+ (1 +“i)cXi 2 Bj+k,k- 
k=O j&-k 

Parameters oij, EQ, and y are defined by virtue of coefficients of system (4.1). 

Note that in the case aij = u+_j, aij = c~+j, conditions (4.2) take the form 

ad > ai+i 2 0, i&i+2 - 2ui+1 + ai > 0, i =O,l,..., 

2as - a1 < 2 (1 - 0”) , CS2= f)CYji 2e 

( 1 
j=O 

EXAMPLE 4.1. Consider the equation 

(4.3) 

i 

Xi+1 = -UX$ - hx Xi-j + UXi_l<i. 
j=l 

(4.4) 
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It is easy to see, that conditions (3.2)-(3.4) cannot be used in this case. But from (4.3) it 

follows that the sufficient condition of asymptotic mean square stability of the zero solution of 

equation (4.4) has the form: 0 < b 5 a < b/2 + 1 - 0’. 

Note that for a = b this condition has the form 0 5 b < 2(1 - c?) and it is a necessary and 

sufficient condition of asymptotic mean square stability of the zero solution of equation (4.4). 

EXAMPLE 4.2. Consider the equation 

X&l = ---axi - 2 tjXi_j + CTXi-lG. (4.5) 
j=l 

F’rom (4.31, it foflows that the su~cient condition of ~ymptotic mean square stability of the zero 

solution of equation (4.5) has the form: 0 5 b 5 1, 2b - b2 < a < b/2 + 1 - u’. 

5. EQUATIONS WITH VARYING DELAYS 

5.1. Systems with Nonincreasing Delays 

Consider the equation 

~i+i = axi + bxi-k(i) f ~~i-m(i)ci. 

It is assumed that the delays k(i) and m(i) satisfy the conditions 

(5.1) 

k(i) 2 kfi + 1) 2 0, m(i) > m(i + 1) 2 0. (5,2) 

First, we construct a Lyapunov functional for equation (5.1) in the form V, = Vii + V&, 

where Vii = xz. Estimating EAVii, we obtain 

EAVii = E [(axi + bfi-k(() + azi-m(i)<i)2 - xC~] 

5 (CL"- 1 + labi) Ez; + (b2 + labi) Ez&) -I- a2Ex;_,(+ 

Choosing the functional V& in the form 

i-l i-l . _ 
Vzi = (b2 + labi) c xj” -i-c? x xj” 

j=i--k(i) j=i-m(i) 

and using (5.2), it is possibie to show 1351 that 

AV& < (b2 + lubl + c2) of - (b2 + lubl) X:-k(i) - a2&!_,(i)* 

As a result for K = Vii + V& we have EA& 5 ((la1 + lbl)2 + CJ’ - 1)Ex:. So, by conditions (5.2) 

and (Ial + lbl)2 + o2 < 1 the zero solution of equation (5.1) is asymptotically mean square stable. 

Consider now another way of Lyapunov functional construction. Following the general method 

of Lyapunov functionals construction, represent right-hand side of equation (5.1) in form (1.3) 

with T = 0, Fli = (U + b)xi, 

i--k(i+l) i-1 

F2i = -b C xjy Fsi = -b C Xjy 

j=i+i-A(i) j=i-k(i) 

~F~i=-b(~i-~~~~xj) s 

As a result we have xi+1 = Fli + F2i + AFsi + KC++&. The functional Vii must be chosen in 
the form 
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Calculating EAVl, and using the representations for zi+r and FIi, we have 

Estimating x&i, F$, 2iFsi, and FziF3il and using that k(0) > k(i), we get [I%] 

i- k,n i-l 

EAVIi I: (A - l)E$ + B c Exj” -t- C x Ez; -+ CAKE&,+, 
j=i+l-k(O) j=i-k(0) 

where 

A = (u + b)2 + Ib(a -I- b)jko + Ib(a -I- b - l)]k(O), 

B = lb(a + b)l + b’(ko + k(O)), G = jb(a -t- b - l)[ + b2k0, 

ko = ;Q$(i) - k(i + l)), km = j$ A(i). 

Let 

i+k,-2 l-k, i-l 

V& = B c c G+ c (j -,i + 1+ k(0) - k&x; 
l=i j=l+l-k(0) j=i-k(O)+k,,t 

i-l i-1 

+c c (j-i + 1 +k(0))z;+(r2 c z;. 

j=i-k(0) j=i-m(i) 

For the functional Vi = Vii + V$ it is shown [35] that 

EA& < (A f B&(O) - km) + C%(O) f i.~’ - 1) Es;. 

Thus, by conditions (5.2) and 

(a f b)’ + Pk(O)[b(a -i- b - I)[ + Ib(a + b)l(ko + k(o) - km)+ 

~b2(~~~(0) + (ko t ~(o))(~(o) - km)) -I- a2 < 1 
(5.3) 

the zero solution of equation (5.1) is asymptotically mean square stable. 

Note that if k(i) = k = cons& then condition (3.7) follows from (5.3) with a = aa, b = dk. 

5.2. Systems With Unbounded Delays 

Consider the equation 

Xi+1 = CUjX$-j + x ajXi_jC$si. (5.4) 
j=o 3=0 

Here it is supposed that the delays k(i) and m(i) satisfy the conditions 

k(i 4 1) - 5 1, k(i) m(i -t- - 1) m(i) <_ 1, (5.5) 

k = supk(i) 5 03, A 5 = sup??%(i) KI. 
iEZ iEZ 

Note that from (5.5) it follows that k(i) < k(0) + i, m(i) 5 m(O) + i. 
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Using the Lyapunov functional Vi = Vii + V&, where Vii = ~5, 

k 

AZ = alazl, Bz = 4azl, a= Cl .I % ’ 
j=O j=o 

it is shown [35] that EAVi < (a2 + g2 - 1)Ezf. Thus, by conditions (5.5) and a2 + cr2 < 1 the 

zero solution of equation (5.4) is asymptotically mean square stable. 

Other stability conditions for difference equations with varying delays were obtained in [37]. 

6, VOLTERRA EQUATIONS OF THE SECOND TYPE 

6.1. Problem Statement 

Let {Sz, P, CT} be a probability space, fi E o, i E 2, be a sequence of a-algebras, fi c fj for i < j, 

H P, p > 0, be a space of sequences x = {xi, i E 2) of fi-adapted random variables xi E R” with 

norm #r/P = supiez EIz~IP. 

Consider the stochastic difference equation in the form 

xi+1 = ??a+1 + F(i,xo,. . . ,Xi), i E 2, x0 = 70. (6.1) 

Here it is assumed that q E HP, the functional F is such that F : Z * HP + R” and F(i, a) 

does not depend on xj for j > i, F(i, 0,. . . ,O) = 0. 

DEFIMTION 6.1. A sequence xi from HP is citlied unjfo~~~y ~~o~~~e~ if \/zr$ < 00, asyrnptot- 

ica~~y p-trivial if limi,, E/zi/P = 0, p-s~~~a~le if CEO E[zijP < co. 

Note that if the sequence xi is psummable, then it is uniformly pbounded and asymptotically 

ptrivial. 

THEOREM 6.1. (See 1211.) Let there exist a nonnegative functional vi = V(i,zo, . . ,Q) and a 

sequence of nonnegative numbers yi, such that 

Then the solution of equation (6.1) is p-summable. 

6.2. Illustrative Example 

Using the procedure of Lyapunov functionals construction, described above, let us investigate 

the asymptotic behavior of the scalar equation with constant coefficients 

x0 = 170, 21 = rll -t- a0rl0, 

Xi+1 = vi+1 + aoxi + al;ci_l, i 2 1. (6.2) 

The right-hand side of equation (6.2) is represented already in form (1.3) with r = 0, FI (i, xi) = 

am, Edi, ZO, . . . , xi) = alzi_1, F3(i,zo, . . . ,Q) = 0. The auxiliary equation (1.4) in this case 

is yfi+l = ao~i. The function zli = $ is a Lyapunov function for this equation if laoi < 1, 

since 21i = (a$ - l)$. 
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The main part Vii of the Lyapunov functional Vi = V’i i- V& must be chosen in the form VI+ = $. 
Estimating EVri for equation (6.2), we have 

Let V2; = Ax:__,. Then AV& = A(za - xf ,> and for V: = V,i -I- VQ, we get 

EAI/1, < [I + o-rtlool + M)] E&r + [(leoi + lM2 + ~(iuo~ + /all> - l] E& 

If jue) -t Iall < 1, then there exists a small o > 0 that (laa[ + 1ur1j2 -t-o(las[ + lull) < 1. So, under 

the condition luel+ Iall < 1 the functional Vi satisfies the conditions of Theorem 6.1 with p = 2, 

and therefore, the solution of equation (6.2) is mean square summable. 

Similar to previous in [21,27j the summability conditions type of (2.4) and (2.13~,(2.14) were 

obtained for equation (6.2). Summability conditions, which are similar to (4.2), were obtained 

also for the Volterra equation of type 

f 

xi+1 = rfi-tl + Ix uij xj I 

j=O 

To get another type of conditions consider the nonlinear Volterra equation 

%I-1 = rli+1+ ~Uij9(Xj), lg(x>I I lx/. (6.3) 
j=o 

THEOREM 6.2. Let the sequence Q be psummable and the kernel adj satisfy the cmxfition 
c~pP_~ < 1, p 2 1, where 

Then i&e so~~tjon of eq~atjon (‘6.3) is ~summab~e. 

For proving Theorem 6.2 it was shown [48,50] that the functional Vi, i E 2, where 

v, = IzoIP, vd = 2 E jol+j,jll9(~j>l”, i > 0, 
j=O l=i-j-1 

satisfies the conditions of Theorem (6.2). 

Note that if in equation (6.3) aij = ~a._$, then cr = /3 = C& lujl and the inequality Q < 1 

a sufficient condition of ~summability with p 1 1. 

EXAMPLE 6.1, Let in equation (6.3) uij = ui_j and ai = Xqi, i E 2, 141 < 1. Then Q 

jXl(l - lql)-l and the sufficient condition of ~summability withp 2 1 has the form IX/ + jqi < 

6.3, Nonlinear System with Ivlonotone Coefficients 

is 

= 

1. 

In some cases, for some systems of special type it is possible to get summability conditions using 

special characteristics of the system under consideration. Consider, for instance, the nonlinear 

system 

a+1 = %+1 - k %j9(Xj), (6.4) 
j=O 

where the function g(z) satisfies the condition 

0 < Cl < J?@ 5 C2, 
X 

x # 0. 
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THEOREM 6.3. (See ~~~~.~ Let the coe~cje~ts aij, i f 2, j = 0,. . . , i, satisfy the conditions 

Gj 2 &J-l 2 03 

%+l,j--I - G+l,j - G,j-1 + Uij L 0, 

a = suP(ai+l,i+l + aii - ai+l,i) < t, 
iEZ 

Then the solution of equation (‘6.4) is mean square summab~e. 

For proving this theorem the Lyapunov functional 

2 

+f?&: 5 Qj+lc,k 
k=O j=i-k 

was constructed. Here the numbers cz~ij and Qij are defined by virtue of parameters of the initial 

system (6.4). 

Note that in the case aij = a+j the conditions of Theorem 6.3 have the form 

ui+2 - 2ai+l -I- ai. L 0, i f Z, 

2ac - a1 < $ 

M 

n=/3=&<oo 
j=o 

EXAMPLE 6.2. Let in equation (6.4) aij = Ui-j and ai = A$, i E 2, X > 0, 0 < CJ < 1. From 

Theorem 6.2, using Example 6.1, we obtain the sufficient condition of mean square summability 

in the form Xc2 -t q < 1. Theorem 6.3 gives us another sufficient condition of mean square 

summability Xc2 < 2(2 - q)- I. It is easy to see that the second condition is weaker than first 

one, i.e., 1 - Q < 2(2 - Q)-‘. 

EXAMPLE 6.3. Consider equation (6.4) with CI+ = oi-j and ai = X(i + 1)-Y, X > 0, y > 1, 

i E 2. In this case, o = /3 = AC(r), where C(r) is the Riemann function c(y) = Cz”=, i-7 < co. 

From Theorem 6.2, we obtain a sufficient condition of mean square summability in the form 

Xc:, CC c-l(y). Theorem 6.3 gives us another summability condition XCZ < 2(2 - 2-7)-i. It is 

easy to see that <-l(r) < 1, but 2(2-2-7)-l > 1. Thus, the second condition is weaker than the 

first one. For instance, for y = 2 these conditions take the forms Xc2 < <-i(2) = 1.645-l = 0.608 
and Xc2 < 2(2 - 2-“)-” = 1.143. 

EXAMPLE 6.4. Consider equation (6.4) with u+ = Ajr(i + l)-(l+y), 0 5 j I i, X > 0, y > 0. 

It is shown 1501 that in this case a < Xy-‘, @ < X(1 + y)-‘. Thus, Theorem 6.2 gives us 

with p = 2 the sufficient condition of mean square summability in the form Xc2 < dm. 

Using Theorem 6.3 and the estimate a 5 2X(1 + y)-‘, we obtain the condition of mean square 
summability in the form Xc2 < 1+ y. In spite of the fact that the estimate of a is rough enough, 

the last condition is weaker than previous one. In fact, for concrete y > 0 it is possible to get 

an estimate of a which is essentially better than we used above. For instance, for y = 1 it is 

easy to show that a < 13X/36 and the summability conditions take the forms Xc2 < Ji = 1.414, 

Xc2 < 72/13 = 5.538. If y = 2, then a 5 17A/72 and the summability conditions take the forms 

Xcz < & = 2.449, Xc2 < 144,‘17 = 8.471. 
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7. DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE 

Here, the general method of Lyapunov ~nction~s construction is demo~trated for ~eredit~y 

systems with continuous time. Consider the stochastic differential equation of neutral type 

&r(t) - G(kQ)) = w(t, %I & + az(t, xt) dE(Q, 

t 30, 5(t) E. IIn, xfs) = V(S)> s < 0. 
(7.1) 

Here, xCt = xcft + s), s 5 0, E(t) E Rm is a standard Wiener process, ai(t,O) = 0, i = 1,2, 

(7.2) 

DEFINITION 7.1. The zero solution of equation (7.1) is called mean square stabk if for any E > 0 

there exists a 6 > 0 such that E~z(t)j2 < t-, t L: 0, if /(p]i2 = s~p,~~El~(s)[~ < 6. If, besides, 

limt_,oo E(x(~)/~ = 0 for every initial function p(s) then the zero solution of equation (7.1) is 

cached asymptotically mean square stable. 

THEOREM 7.1. (See (141.) L t e condition (7.2) hold and there exist the functional 

I% P) = @‘G, cp) f tip(O) - Gtt, y3)12, 

such that 

ELv(t, G) 5 -czElz(t)I”, 

where ci > 0, i = 1,2, L is the generator of equation (7.1). Then the zero sorption of equation (7.1) 

is ~ymp~otica~ly mean square stable. 

As before the proposed procedure of Lyapunov functionals construction consists of four steps. 

Step 1. Transform equation (7.1) to the form 

Mt, zt) = &(&z(t)) + Cl(G 4) & + b.(~, 4t)) f C2(& %)I d<(t), (7.3) 

where z(t,~) is some functional on Q, z(t,O) = 0, functionaIs bi, i = 1,2, depend 

on t and z(t) only and do not depend on the previous values s(t -i- s), s < 0, of the 

solution, bi(t, 0) = 0. 

Step 2. Assume that the zero solution of the auxiliary equation without memory 

dy(t) = bl(C I/(t)) & + b2Ch !&)I @(9. (7.4) 

is asymptotically mean square stable, and therefore, there exists a Lyapunov func- 

tion v(t, y), for which the condition Lov(t, y) 5 --1g12 holds. Here, Lo is the generator 

of equation (7.4). 

Step 3. 

Step 4. 

A Lyapunov functional V(t,zt) is constructed in the form V = VI c Vz, where 

V~(t,st) = v(t,z(t,~)). Here the argument y of the function v(t, y) is replaced 

on the functional z(t, Q) from the left-hand part of equation (7.3). 

Usually, the functional VI almost satisfies the conditions of Theorem 7.1. In order to 

satisfy these conditions completely, it is necessary to caicuiate LVl and estimate it. 
Then the additional component Vz can be easily chosen in a standard way. 
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Note that representation (7.3) is not unique. This fact allows us, using different representa- 
tions (7.3), to construct different Lyapunov functionals and, as a result, get different sufficient 
conditions of asymptotic mean square stability. 

EXAMPLE 7.1. Using the proposed procedure, it is simple enough to construct conditions of 
asymptotic mean square stabiIity for the scalar equation of neutral type 

k(t) f as(t) + bzft - h) -t c*(t - h) + az(t - 7)((t) = 0, [cl < 1, (7.5) 

Note that conditions of asymptotic mean square stability for equation (7.5) were obtained 
already in [5]. But conditions, constructed here, give us greater stability region. 

Following Step I, rewrite equation (7.5) in the form 

.2(t) = -as(t) - bz(t - h) - m(t - T)@), 

where z(t) = z(t) + cz(t - h). Suppose that a > 0. Then the function 2, = ,y2(t) is a Lyapunov 
function for the auxiliary equation s(t) = -ay(t), since 6 = -2~~~(~~. Thus, the zero solution of 
the auxiliary equation is asymptotically stable. Put VI = a2(t). Then 

LV; = 2z(t)(-ax(t) - bx(t - h)) + a20z(t - T) 

= -2as2(t) - 2bcx2(t - h) - 2(ac + b)z(t)aft - h) + ~‘x?(t - I) 

5 (-2~ + /UC + bi)i?(t) + p2(t - h) + i~~z?(t - T}, 

where p = jac + bl - 2bc if jac +- bl > 2bc and p = 0 if /ac + bl < 2bc. 
Let t t vz = P J 2(s)&s+2 J 2(s)&, t-h t--7 

then for the functional V = VI -k V,, we obtain 

LV < (-2~ + /UC + bl + p + u2) x2(t). 

So, if lac f bj + p -I- tr2 < Za, then the zero solution of equation (7.5) is ~ymptotically mean 
square stable. Using two representations for p, we obtain two stability conditions 

2bc > /ac + b/, c’+lac+bj <2a (7.6) 

and 

2be < /ac+ bl, p + /UC + bl - be < a, 
cr2 

p=-. 
2 (7.7) 

Prom (7.6) and a > 0, we have bc = /beI and lac f bl = ajcl + lb!. So, inequalities (‘7.6) take 
the form 2/bcl 2 aleI -t 161 an d a2 -+- ale/ + lb/ < 2~. The first from these inequalities is impossible 
if 214 < 1. Suppose that 2lcj > 1. Then 

u2 + lb1 

2 - I4 (7.8) 

It is easy to see, that these inequalities are incompatible. Really, from (7.8) the impossible 
inequality 0’lcl + 2/bj(l - lclj2 < 0 follows. Thus, condition (7.6) is impossible. 

Consider condition (7.7). Suppose that bc 2 0. Prom here and a > 0 we have bc = lbcl, 

lac -I- bl = a/c/ + Ibl an condition (7.7) takes the form. d 

Vcl < 44 + PI, a > lb/ + p. 
1 - I4 
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If Z/c/ < 1, then the first in~u~ity holds for all a and b. If Z/cl 2 1, then the second inequality 

implies the first one. So, if be 2 0, then from condition (7.7) we have 

bc 2 0, a > lb1 + 2. 
1 - I4 

Let bc < 0. Then the first inequality (7.7) holds and condition (7.7) takes the form 

bc < 0, p + lac + bl - bc < a. 

Since bc < 0, then lac+ bl = lalcl - Ibll. So, if alcl 2 Ibl then from (7.10) we have 

P - - a < lb] 5 alcl. 
1 - ICI 

If ulcl < lbl, then 

alcl < Ibl < a - p. 
1 + ICI 

Combining (7.11) and (7.12), we obtain 

bc < 0, P - 
1 - 14 

-a<lbl<a-p. 
1 + I4 

Note that the system 

lb1 = -.i!_ - a, P 

1 - ICI Ibl = a - 1 + 1cI 1 

by bc < 0, has the solution 
P 

a=iyz¶ b=-5. 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

So, combining (7.9), (7.13), (7.14), we obtain the stability conditions in the form 

P 
a’ l-c 

- + b, 

U> ’ b 
l+c_' 

b+%. 
(7.15) 

1 - c2 

Thus, if the conditions ICI < 1 and (7.15) hold, then the zero solution of equation (7.5) is 

asymptotically mean square stable. 

The stability regions for equation (7.5), given by stability conditions (7.15), are shown on 

Figure 6 for c = -0.5, h = 1 and different values of p: 

(1) P = 0; 
(2) p = 0.5; 

(3) P = 1, 
(4) p = 1.5. 

In Figure 7, the stability regions are shown for c = 0.5 and the same values of other parameters. 

To get another stability condition represent equation (7.5) in the form 

i(t) = -(u + b)x(t) - az(t - &(t), 

where 

J 
t z(t) = x(t)+ cz(t - h) -b r(s) ds. 

t-h 
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Figure 6. 

Figure 7. 
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Suppose that a + b > 0. Then the function v = y’(t) is a Lyapunov function for the auxiliary 
equation $(t) = -(a f ~)~(~), since 6 = -2(o + ~)~‘(~). Thus, the zero solution of the auxiliary 
equation is ~ymptotic~ly stable. Put VI = z?(t). Then 

LVr = -2(a + b)z(t)z(t) + &i+ - 7) 

/ 

t 
= -2(a + &)zZ(t) - 2(u + b)CC(t)2(t - h) 4 2(u + b)b z(t)z(s) ds + a%2(t - 7) 

s t-h 

< (a + b)(-2 -I- ICI + lblh>z2(t) + 22(t - T) + (u i-b) ( /c\s2(t - h) -I- lb/ ~~hh4dS). 
Let 

v, = (a -t b) 
s 
,‘,[lcl -i- jbj(s - t + h)]z2(s) ds + 2 1” x2(s) ds. 

b--r 

Then for the functional V = VI i- Vi we obtain 

LV < [-2(a + b)(l - Jcl - lb/h) + a21 X2(t). 

Thus, the stability condition has the form p < (a + b)(l - jcl - lb/h), /cl + lbjh < 1 or 

P 
a ’ 1 - /cl - lblh - b, 

1 - ICI PI < 7’ (7.16) 

The stability regions for equation (7.5), given by stability condition (7.16), are shown in Figure 8 
for ICI = 0.5, h = 0.2 and different values of p: 

(1) p = 0.2; 
(2) p = 0.6; 

(3) P = 1; 
(4) p = 1.4; 

and on Figure 9 for ICI = 0.5, p = 0.4 and different values of h: 

(1) h = 0.1; 
(2) h = 0.15; 
(3) h = 0.2; 
(4) h = 0.25. 

It is easy to see, that for b < 0 conditions (7.15) are better than (7.16). So, condition (7.16) it 
is better to use for b > 0 only in the form 

P a ’ 1 - /cl - bh 
- b, O<b<q. 

For h --+ 0 condition (7.17) takes the form 

’ b -_ a ’ 1 - /cl ’ 
b > 0. 

(7.17) 

(7.18) 

Note that for k = 0 we have LVl = -2(a + b)(l + c)z2(t) + a2z2(t - 7) and LV = [-2(a + b) 

(1 + c) + a2]z2(t). So, for h = 0 the necessary and sufficient condition of ~ymptotic mean square 
stability has the form 

’ b a>--. 
1+c 

(7.19) 

For 6 > 0 and c > 0, condition (7.18) is essentially worse than (7.19). But for b > 0 and c < 0 con- 
ditions (7.18) and (7.19) coincide. The second condition of (7.15) coincides with condition (7.19) 
as well. 
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Figure 10. 

bb / 

__-_4___ 

-i oi A’ 

\ 
; 
; 

\\ 

4 
-2$ 3 

f 2 

Figure 11. 



714 V. KOLMANOVSKIIAND L.SHAIKHET 

The stability regions for equation (7.5), given by stability conditions (7.15) and (7.1’7) together, 

are shown in Figure 10 for c = -0.6, p = 0.4 and different values of h: 

(1) h = 0.05; 

(2) h = 0.1; 

(3) h = 0.15; 

(4) h = 0.2. 

In Figure 11, the stability regions are shown for c = 0.6 and the same values of other parameters. 

Other examples of stability conditions for stochastic differenti~ equations are in [5-9,14,22]. 

8. CONCLUSIONS 

Besides problems described above, many other stability problems, which were solved by general 

method of Lyapunov functionals construction, are considered in [5-521. For instance, some pecu- 

liarities of this method are considered in [39,52], stability in probability for nonlinear differential 

and difference equations is considered in [17,18,40,49], stability of systems with Markov switch- 

ing is considered in [22,25,46,47], investigation of numerical approximations of nonlinear integro- 

differential equations is considered in [23,44,45], stability of hereditary systems with varying and 

distributed delays is considered in [24,33], a comparison of delay-dependent stability criteria for 

stochastic delay differential equations, which were obtained here, with similar results, obtained 

by other methods, is considered in 146,471, applications for medical, ecological, and mechanical 

problems are considered in [29,36,41,42,51]. 
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