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Abstract—-It is well known that many processes in automatic regulation, physics, mechanics,
biology, economy, ecology, etc., can be modelled by hereditary systems. Many stability results in
the theory of hereditary systems and their applications were obtained by construction of appropriate
Lyapunov functionals (see, for instance, [1-4]). The construction of every such functional was a long
time an art of its author. In this paper, formal procedure for construction of Lyapunov functionals for
stochastic difference and differential equations and some results on asymptotic mean square stability
conditions are considered. More details on these results are presented in [5-52]. The bibliography
does not contain works of other researchers since this paper is a short survey of the authors’ works,
© 2002 Elsevier Science Ltd. All rights reserved.
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1. STATEMENT OF THE PROBLEM

1.1. Introduction

Let ¢ be a discrete time, i € ZUZp, Z = {0,1,...}, Zo = {—h,...,0}, h be a given nonnegative
number, process ; € R™ be a solution of the equation

Tigr = F(i, 5 n,. ., 2} + Y G65, 3k, 2)E5, L€ Z, (1.1)
=0

Ti; = Pis i€ Zp.
Here F: ZxS = R", G:Z*xZx5 = R" S is a space of sequences with elements in R"™.

It is assumed that F(i,...) does not depend on z; for j > 4, G(3,7,...) does not depend on x
for k > j and F(i,0,...,0) =0, G(,4,0,...,0) = 0.
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Let {©,0,P} be a basic probability space, f; € 0, i € Z, be a sequence of o-algebras, f; C f;
for i < j, & be a sequence of mutually independent f;;i-adapted random variables, E£; = 0,
E¢2 = 1. Recall that f;;1-adapted means that random variable &; is f;;1-measurable for each
1€ Z.

DEFINITION 1.1. The zero solution of equation (1.1) is called p-stable, p > 0, if for every € > 0
there exists a § > 0 such that E|z;|P < ¢, i € Z, if ||¢||P = sup,cz, Blos|P < 6. If, besides,
lim; o E|z;|? = 0 for every initial function ¢, then the zero solution of equation (1.1) is called
asymptotically p-stable. In particular, if p = 2 then the zero solution of equation (1.1) is called
asymptotically mean square stable.

THEOREM 1.1. (See [15,27,37].) Let there exist a nonnegative functional V(i,x_, ..., x;), which
satisfies the conditions

EV(O’ Tehy--- ,fL'()) < cl“"p”p’
EAV; < —02E|.'I,‘i|p, 1€ Z.
Herec; >0, ¢ >0, p >0, and
AVL = V(l + 1,.’IJ_h, ces ,.’Ei+1) - V(i,m_h, e ,.’L‘i). (12)

Then the zero solution of equation (1.1} is asymptotically p-stable.

From Theorem 1.1 it follows that an investigation of stability of stochastic equations can be
reduced to the construction of appropriate Lyapunov functionals. Below some formal procedure
of Lyapunov functionals construction for equations of type (1.1) is proposed.

1.2. Formal Procedure of Lyapunov Functionals Construction
The proposed procedure of Lyapunov functionals construction consists of four steps.
Step 1. Represent the functions F' and G at the right-hand side of equation (1.1) in the form

F(i,l‘_h,. .. ,.’Ei) = Fl(i,l‘i_.,-, R ,xi) + Fz(i,x_h,. .. ,.’I?i) + AFg(i,l‘_h, e ,.’1:,‘),
Fl(i,O,...,O) = Fg(i,O,...,O) = Fg(i,o,...,O) = 0,

(1.3)
G(i,JyTepy -y 25) = G1(4, s Tjery oy T5) + G2(8, 1, Ty . ., 25),
Gy(i,4,0,...,0) = G2(4,4,0,...,0) =0.
Here 7 > 0 is a given integer, operator A is defined by (1.2).
Step 2. Suppose that the zero solution of the auxiliary difference equation
Yi+1 :Fl(iayi—‘rv"'?yi)+ZG1(i1jayj—Ta"'7yj)§j7 1€Z, (14)

=0

is asymptotically mean square stable and there exists a Lyapunov function v; =
v(%, Yi—r, .-, yi) for this equation which satisfies the conditions of Theorem 1.1.

Step 3. A Lyapunov functional V; is constructed in the form V; = Vy; + V5;, where the main
component is

Vie = v(4, Timry oo oy Lo, T — F3(4, T p, . .0, 5).

Step 4. In order to satisfy the conditions of Theorem 1.1 it is necessary to calculate EAV);,
and in a reasonable way to estimate it. After that the additional component Vb, is
chosen in a standard way.
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Consider some peculiarities of this procedure.

It is clear that representation (1.3} in the first step is not unique. Hence, for different rep-
resentations {1.3) it is possible to construct different Lyapunov functionals, and therefore, get
different stability conditions.

In the second step for one auxiliary equation (1.4) it is possible to choose different Lyapunov
functions v;, and therefore, to construct different Lyapunov functionals for equation (1.1).

At last it is necessary to stress that choosing different ways of estimation of EAV); it is
possible to construct different Lyapunov functionals and as a result to obtain different stability
conditions [39,52].

2. ILLUSTRATIVE EXAMPLE

Here it is shown that using different representations of the initial equation in form (1.3) it is
possible to get different stability conditions.
Let us investigate a region of asymptotic mean square stability of the scalar equation with
constant coefficients
Tit1 = @oTi + a1%i—1 + OTi1 €,y i€ Z. (2.1)

2.1. First Way of Lyapunov Functional Construction

Using the four steps of the procedure described above, we obtain the following.

1. The right-hand side of equation (2.1) is represented already in form (1.3) with 7 = 0,
F}_(i, .’E;,) = 9Z¥i, Fg(i,x_l, see ,xi) = a1Z%;-1, Fg(i,ﬁ'}_;, [N ,235) = Gl(i,j, ;Z‘j) = 0,
Gg(i,j,x-l,. . ,.’Ej) = {J, ] =4Q,. ,’& - 1, Gg(i,é,l‘-l,...,xi) =0Z;_1.

2. Auxiliary equation (1.4) in this case has the form y;4+1 = aoy;. The function v; = y? is a
Lyapunov function for this equation if |ag| < 1, since Av; = (a2 — 1)y?2.

3. The main part Vj; of the Lyapunov functional V; = Vi; + Vo; must be chosen in the
form Vy; = z?2.

4. Estimating EAV); for equation (2.1), it is possible to show that

EAVy; < (ag — 1+ |aga1l) Ez? + AEz? |,

. ST T "SRR

]

Figure 1.
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where A = a? + |aga| + 02. Put Vo = Az? ;. Then AV, = A(z? — z2_,) and for
Vi = Vi; + Vo; we have EAV; < ((Jao] + la1])? + ¢% — 1)Ez?. Therefore, under the

condition
lao| +|a1] < V1~ o2 (2.2)

the functional V; satisfies the conditions of Theorem 1.1 and the zero solution of equa-
tion (2.1) is asymptotically mean square stable.

The stability regions for equation (2.1), given by inequality (2.2}, are shown on Figure 1
(with @ = ag, b = a;) for different values of o2:

(1) 62 =0;
(2) 02 =0.4;
(3) 02 =0.8.

2.2. Second Way of Lyapunov Functional Construction

Use now another representation of equation (2.1).
1. Represent the right-hand side of equation (2.1) in form (1.3) with r = 0, F1(4,2;) = (a0 +
al)xi, Fg(i,x_l, P ,:II,;) = O, F3(i,:1:_.1, ey :L‘z) = —~Q1Ti-1, and G1(i,j, CL‘j), Gg(i,j,lﬁ_h
..., ;) as before.
2. Auxiliary equation (2.2) in this case is yi+1 = (a0 + a1)y;. The function v; = y? is a
Lyapunov function for this equation if |ag - a1] < 1, since Av; = ((ap + a1)? — 1)y2.
3. The main part Vi; of the Lyapunov functional V; = Vi; + V5; must be chosen in the form

Vis = (3}5 + a1$i-1)2. (2.3)
4. Estimating EAVy; by virtue of (2.1),(2.3), we can show that
EAVy; < ((ao +a1)? = 1 + |ay(ao + ay — 1)]) Ez? + BE2?_,,

where B = 02 +|a;(ag + a1 —1)|. Put Vo; = Bz? ;. Then for the functional V; = Vy; + Va;

we have
EAV; < ((a0 +a1)? — 1 + 2lai(ao + a1 — 1)| + o%) Ex?.

ha

Figure 2.
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Therefore, if the condition
(ap +a1)? 4+ 2a(ao +a; — )| +0% <1 (2.4)

holds, then the functional V; satisfies the conditions of Theorem 1.1 and the zero solution
of equation (2.1) is asymptotically mean square stable.

Note that condition (2.4) can be written in the form

lag + a1] < V1 — 02, o2 <(l—ag—a1)(1+ao+a — 2|a1])- (2.5)

The stability regions, defined by condition (2.5), are shown on Figure 2 (with a = ag, b = a1)
for different values of o2:

(1) 6?2 =0;
(2) 02 =0.4;
(3) o2 =0.8.

2.3. Third Way of Lyapunov Functional Construction

In some cases, the auxiliary equation can be obtained by iterating right-hand side of equa-
tion (2.1). For example, from equation (2.1) we get
Ti+1 = Ao(A0Ti—1 + A1Ti-2 + 0T 2€i—1) + A1Ti—1 + 0T 1€

2 (2.6)
= (ao + (11) Ti—1 + apa1Ti-2 + ao0x;—2§i—1 + 0x;1&;.

1. Here representation (1.3) is used with 7 =0, F1(4,2;) = F3(4,2-1,...,2;) =0, Fa(i,7_1,
fee axi) = (a% +a1)zi—l +a001$i_2, Gl(lvj’m]) = 07 .7 = Ow .. ,iv G?(ivjvl‘—lv e 7xj) = 07

j = 0, .o ,’i - 2, Gz(i,i - 1,:13_1, e ,.’L‘i_l) = aQ0T;-1, Gg(i,i,:lt_l, o ,.’Ei) =0Tj-1-
2. The auxiliary equation is y;4+1 = 0, i € Z. The function v; = y? is a Lyapunov function
for this equation since Av; = y2,, — y2 = ~y2.

3. The main part Vi; of the Lyapunov functional V; = Vj; + V5; must be chosen in the
form Vh' = 11312
4. Estimating EAV}; by virtue of (2.6), we obtain

EAVy; < —-Ez? + A1Ez?_ | + AEx? ,,

Figure 3.
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where A1 = o2 + |apail|ad + a1] + (a3 + a1)?, A2 = 0%a? + |aoail|a? + a1| + aZa?. Put
Vo = (Al + AQ).’L',?__I -+ Azl‘,‘?_z. Then for V; = Vi; + Vo; we have EAV, < —(1 — Ay —
Ay)Ex?. Therefore, the condition of asymptotic mean square stability of the zero solution
of equation (2.6) has the form A; + A, <1 or

lagay| + |ag + a1| < /1 =02 (1 +a}). (2.7

The stability regions, defined by condition (2.7), are shown on Figure 3 (with a = ag, b = a;)
for different values of o2:

(1) 02 = 0;

(2) 0% =04

(3) e2=1038.

2.4. Fourth Way of Lyapunov Functional Construction

Consider now the case 7 = 1.

1. Represent equation (2.1) in form (1.3) with Fy (4,21, %;) = aoZ; + a124-1, Ga(i, 1,21,
e 1«7;1') = 0T;-1, Fg(i,m_.l, e ,.’L'i) = F3(i,ﬂ?-1, . ,.’L’i) = 0, Gl(z',j,:cj) = 0, ] = 0, .. .,i,
Ga(i,j,2—1,...,2;)=0,3=0,...,i—1.

2. In this case, the auxiliary equation is

Yiy1 = ao¥; + a1Yi-1. (2.8)
Using the vector y(i} = (¥i—1,¥:)’, equation (2.8} can be written in the form
. . 0 1
y(i + 1) = Ay(i), A= ( ) . (2.9)
a; Qo

Let C be an arbitrary nonnegative definite matrix. If the equation
ADA-D=-C (2.10)

has a positive definite solution D, then the function v; = y'(1)Dy(i) is a Lyapunov function
for equation (2.9). In particular, if

C = (cl 0 ) y C1 2 0, Cy > 0, (211)
0 Ca
then the solution D of equation (2.10) has the elements d;;, such that
apa
dii =c1+aidp, dip= T 3 ;1 daz,
P Y (¢ ) (212)
P M+ a) (1 -a)? ~af]’
It is easy to see that the matrix D is a positive definite matrix by the conditions
|a1| <1, [aol <1l-ay. (213)

3. The functional V3; must be chosen in the form Vi, = 2/(3) Dz(3).
4. Estimating EAVy; by virtue of (2.10),(2.11), we obtain
AVy; = —coEx? + (0%dpy — 1) Ez?_,.
Therefore, if 02day < c1, then Vo; = 0 and for the functional V; = Vi; we have EAV; <
—coEx?. If 0%dyy > ¢, then Vo; = (02dag — ¢1)z?_; and for the functional V; = Vy; + Vo,
we have EAV; = —(c; + ¢cg — 02da2)Ex?.
Thus, if condition (2.13) and 02day < ¢; + cg, or otherwise
(1 —a;)
(1 +a1)[(1-a1)? - af]
hold, then the zero solution of equation (2.1) is asymptotically mean square stable.

<1 (2.14)
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The stability regions, defined by conditions (2.13),(2.14), are shown on Figure 4 (with a = aq,
b = a;) for different values of o2

(1) o2 =0
(2) 0% = 0.4;
(3) 02 =0.8.

On Figure 5 {with a = ag, b = a1), a comparison of the stability regions, which are obtained
by conditions (2.2), {(2.5), (2.7), and (2.13),(2.14), is shown for two values of o?:
(1) o2 =0,
(2) 6?2 =0.8.
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REMARK 2.1. Note that if 02dgs > ¢; + co, then there exists the functional
Vi = &' (§)Dx(i) + (02daz — 1 — c2) 224,

for which EAV; = (0%dag —c1 —co)Ez? > 0. It means that if 02dag > c1+ca then the zero solution
of equation (2.1) do not asymptotically mean square stable. Therefore, conditions (2.13),(2.14)
are necessary and sufficient conditions of asymptotic mean square stability of the zero solution
of equation (2.1). For example, the inequality 2 < 1 is a necessary and sufficient condition of
asymptotic mean square stability of the zero solution of the equation ;11 = oz;_1&;. Really, in
this case we have Ez2,_, = ¢?"Ez?,,k=0,1,m=0,1,....

In more detail, construction of necessary and sufficient conditions of asymptotic mean square
stability is discussed in [26].

3. LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS
Now the proposed procedure of Lyapunov functionals construction is applied to the equation
% 4 J
Tip1 = Z a;_1Ty + Z Z o 1T, i€ Z, (3.1)
I=—h 3=0 I=—h
Ty = @i, i€ ZO'

Here a; and crj- are given constants. Below the following symbols are used also:

Z(th ) SkZiilaﬂ, k=1,23.

pe=0 p=k =0
3.1. First Way of Lyapunov Functional Construction

1. Represent the right-hand side of equation (3.1) in form (1.3) with 7 = 0, Fy (i, z;) = aox;,
F3(iﬁ T—pyo oo 71"'5) == Gl(i7j5 x}) = 03

i
R JE G
Foli,Top,...,25) = E Qi1 Z1, Go(t,/,Thy ., Tj) = E crj_fxz
[=—h i=—h

2. Auxiliary difference equation (1.4) in this case is y;+1 = aoyi. The function v; = y? can
be taken as a Lyapunov function for this equation if |ag| < 1, since Av; = (ad — 1)y?2.

3. The main part Vy; of the Lyapunov functional V; = Vj; + V5; must be chosen in the
form Vi; = xf

4. Estimating EAVy; by virtue of (3.1), it is possible to show that

@
EAVy; < —Ex} + ) AuEaj,
k=-h

where

i—Km l—km

A1k—(050+5'1 |az k|+a0 Z laz k— p|+ Z Iaz k— PIZIO

p=0

g = Z lai], km = max(0, k).
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Putting

Z z} Z AJ+ll

l=—h  j=i-I
and calculating EAV5;, we obtain

=] i—1
EAVQi = E.’L’f Z Aj+i,i - Z AikEﬂfi-
i=1 k=—-h

As a result, for the functional V; = Vi; + Vo; we get

EAV, < -Ez? |1- ZAj+i,i

It is shown [15] that Z(;io Ajyii < 024209S1+So. Therefore, the condition of asymptotic
mean square stability of the zero solution of equation (3.1) is

ag + 20051 + Sp < 1. (3.2)

In particular, for equation (2.1) we have ap = |ao| + |a1], So = 02, S; = 0, and from (3.2)
condition (2.2} follows.

3.2. Second Way of Lyapunov Functional Construction

1. Represent the right-hand side of equation (3.1) in form (1.3) with 7 = 0, Fy (i, z;) = Oz,
F2(i’x—h’ e 13:1') = Gl("v]axj) = 01

2. Auxiliary equation (1.4) in this case is y;4.1 = By;. The function v; = yf can be taken as
a Lyapunov function for this equation if |8] < 1, since Av; = (8% — 1)y2.

3. The main part Vy; of the Lyapunov functional V; = Vj; + V5, should be chosen in the
form Vy; = (x; — F3)2.

4. Using (3.1), it is possible to show [15], that

i—1
EAVy; < |32 —1+|ﬁ|51+|08|Z|a?\+|/3—1|a Ez} + »  ByEa},
1=0 k=—h
where
t—Kon [e's)
By =| e * Z o plzwﬂﬂﬂ—u > q
p=0 j=i—-k
G=Kon 00 oo | oo
+ o l k— p‘+82 Z am,, a:Z Zam"
p=2 m=i—k =1 {m=!
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Putting
-1 e
Vi = 2 B.
2i T j4k ks
k=—h j=i~k

as before it is possible to get [15] that
EAV; < [A% — 1 +20)B — 1] + So + 2[|8I51 + 0:S2]] Ex?.

Therefore, the zero solution of equation (3.1) is asymptotically mean square stable by
condition 8% + 2|8 — 1] + S + 2[|8|S1 + aSs] < 1 or otherwise

1Bl <1,  Sp+2[B]Si +aS) < (1-8)(1+ 8- 2a). (3.3)

In particular, for equation (2.1) we have 8 = ap + a1, & = |ai], So = 0%, §1 = S = 0, and
from {3.3) condition (2.4) follows.

3.3. Third Way of Lyapunov Functional Construction

1. Represent the right-hand side of equation (3.1) in form (1.3) with 7 = 1, F1 (4,41, %) =
agx; + @1%i-1, F3(i?$~h7 seey xt) = Gl(isjv ‘rj) = 07

-2 i
. . =1
Fali,top,..,z:) = 3 ai@t,  Go(6,5,2-n,-.,25) = 3 05 jmu.
i=—h I=~h

2. In this case, the auxiliary equation has the form (2.8) (or (2.9)).

3. The functional Vi; is chosen in the form Vi; = /(i) Dz (), where matrix D is defined by
conditions (2.10)—(2.12). It is supposed also that conditions (2.13) hold.

4. Estimating EAV}; and choosing Vo; in a standard way, we obtain [15] that inequali-
ties (2.13) and

(03 + 20383 + Sp + la1|(202 + 252)) (1 — a1) + 2(0z + S1)lao| <1
(1+a1)[(1 ~a1)? - af] ’

(3.4)

where
x>
Q2 = Z ‘a’l‘a
=2

are sufficient conditions of asymptotic mean square stability of the zero solution of equa-
tion (3.1).
In particular, for equation (2.1) we have ay = 8§} = So = 83 =0, Sp = o2, and from (3.4) it
follows condition (2.14).
Note that, using other representations of equation (3.1) in form (1.3) (for instance, with 7 = 2},
it is possible to obtain other sufficient conditions of asymptotic mean square stability of the zero
solution of equation (3.1).

ExaMpLE 3.1. Consider the scalar equation
Tipl = Qo%; + QpTik + 023165, i€ Z,

5
Ty = Piy 1 € Zp, k>1, [>0. (3 )

In this case, ap = |ag| + lax|, So = 02, Si = 0. From (3.2), we get the sufficient condition of
asymptotic mean square stability of the zero solution of equation (3.5), which is more general

than (2.2)
lag| + lak| < V1 — o2, (3.6)
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Since 8 = ag + ax, a = klax], $1 = S2 = 0, from (3.3) we obtain the sufficient condition of
asymptotic mean square stability of the zero solution of equation (3.5}, which is a generalization
of condition (2.4)

{ag + ak)2 + 2k|ak(ao + ar — 1)| + o? < 1. (3.7)

Ifk > 2, then a1 = 0, ap = |ag}, S1 = S2 = S5 = 0. In this case, from (2.13),(3.4) the sufficient
condition of asymptotic mean square stability of the zero solution of equation (3.5) follows in
form (3.6) as well.

4. SYSTEMS WITH MONOTONE COEFFICIENTS

By virtue of construction of appropriate Lyapunov functionals stability conditions type of (3.2)-
(3.4) were obtained [15] also for the equation with variable coefficients

i i J
Tipr= Y aum+ Y oL

I=—h j=0 I=~h

These stability conditions contain some assumptions about convergence of series from coefli-
cients a;;. Assumptions of such type sometimes are very limiting.
Stability conditions of another type were obtained [39] for linear equation of the form

[ i
Tip1 = — Zaijxj + Zaijxjfi. (41)
§=0 =0

THEOREM 4.1. Let _ ’
a; > aij-1 20, jF=12,...4

Qit1,j—1 = Bitl,j ~ Gijj-1 +aij 2 0, (4.2)
Sup(@it1,i+1 + @i — Gip1) < 2 (1 —0?),
i€z
where
oo J+i
0% =sup Y |ojpial Y losanl.
€2 ;20 k=0

Then the zero solution of equation (4.1) is asymptotically mean square stable.

These stability conditions were obtained without any assumptions about convergence of the se-
ries with coefficients a;; by virtue of construction of special Lyapunov functional in the form V; =
Vii + Va;, where Vy; = 2,

2
i i -1 o
Vo, = Zaij zﬂfk +(1+7) szi Z Bjik k-
j=0 k=0

k=j =i Je=i—k

Parameters oy, B;;, and v are defined by virtue of coefficients of system (4.1).
Note that in the case a;; = a;—j, 04; = 0y ;, conditions (4.2) take the form

a; 2 aip1 >0, Gipg — 20341 +a; 20, 1=0,1,...,
2

s 4.3
200—01(2(1-—-0’2), % = ZIO’jI . ( )

—

ExXAMPLE 4.1, Consider the equation
i

Tiy] = —QT; — beg_j + oz _1&;. (4.4)

=1



702 V. KOLMANOVSKII AND L. SHAIKHET

It is easy to see, that conditions {3.2)—(3.4) cannot be used in this case. But from (4.3) it
follows that the sufficient condition of asymptotic mean square stability of the zero solution of
equation (4.4) has the form: 0 <b<a <b/2+1 -2

Note that for @ = b this condition has the form 0 < b < 2(1 — 0?) and it is a necessary and
sufficient condition of asymptotic mean square stability of the zero solution of equation (4.4).

ExaMPLE 4.2. Consider the equation

i
Tip1 = —GT; — Z bj.'L‘i...j +oxi—1&;. (4.5)
j=1

From (4.3), it follows that the sufficient condition of asymptotic mean square stability of the zero
solution of equation (4.5) has the form: 0 <b< 1,26 -0 <a<b/2+1— o2
5. EQUATIONS WITH VARYING DELAYS

5.1. Systems with Nonincreasing Delays

Consider the equation
Tir1 = aT; +bTi_k(i) + OTj—mi)&i- (5.1)

It is assumed that the delays k(i) and m(?) satisfy the conditions
k(i) > k(i +1) >0, m(i) >m(i+1)>0. (5.2)

First, we construct a Lyapunov functional for equation (5.1) in the form V; = Vy; + Vo,
where V}; = z2. Estimating EAV;;, we obtain

EAV,; = E [(ax,- -+ b$i-k(i) + O'l'i_m(i)gi)z - 2]
< (a® — 1+ |abd]) Ez? + (b° + |ab]) Ez?_ ki) TO E:Ez_m(t)

Choosing the functional V5; in the form

i-1

Voi = (b% + |abl) Z x+0 Z m?

F=i—k(i) J=t—m{3)
and using (5.2), it is possible to show [35] that
AVQ, =~ (b2 + |ab| + 0'2) z; — (b2 + Iab') T k() — 0'2373_7”(')

As a result for V; = Vi; + Va; we have EAV; < ((Ja| + |b|)? + ¢% — 1)Ez2. So, by conditions (5.2)
and (|a] + |b])2 + 02 < 1 the zero solution of equation (5.1) is asymptotically mean square stable.

Consider now another way of Lyapunov functional construction. Following the general method
of Lyapunov functionals construction, represent right-hand side of equation (5.1) in form (1.3)
with 7 = 0, Fli = (a + b)iﬁ(f“

i—k{i+1) i-1 i—k{i+1)
ng = —b Z iEj, Fg,j ==} Z :z:j, Ang = —b i — Z :r:j
F=t+1-k(i) F=i—k(3) j=i—k(i)

As a result we have z;11 = Fy; + Fa; + AF3; + 0% m(i)&i- The functional V3; must be chosen in
the form

2
i1
Vii = (2 — Fa)? = (-'1711 +b > m,-) .

Fei—k(i)
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Calculating EAVy; and using the representations for x;41 and Fi;, we have

2
EAV; =E [(37:7+1 = Fait1)) — (2 ~ F3z')2]
=E(Tiy1 — & — AFy) (i1 + i — Fagg) — Fa)
= ((a+b)® - 1) Ez? + 2(a + b)Exz; Fo; + EF};
~2a+ b~ 1)Ex;F3; — 2EFy, F3; + O'QE.’B?mm(i).

Estimating x; Fb;, F%, 7;Fs;, and Fp; Fy;, and using that k(0) > k(1), we get [35)

t—ko i~1
EAV;; <(A-1Ez?+B Y Ezl+C Y Ea2?+0’Eal
F=i+1-k{0) J=i—-k{0)

where

A= (a+b)?+ [bla+b)ko + |b(a + b — 1)]k(0),
B =|b(a+b)| + b (ko +k(0)),  C=|b(a+b—1)|+ bk,
ko = sug(k(i) —kG@+1), k= LR
i€ i

Let

itkm =2 I=km i-1
V2i=B( > oo+ Y (j--i+1+k(0)-km)x§)

=i j=l+1-k(0) J=i—k(0)+km
i—1 i=1
+C Y (-it+1+k0)zl+0 Y 2k
j=i—k(0) j=imml{i)

For the functional V; = Vy; + Vo; it is shown [35] that
EAV; < (A + B(k(0) — kn) + Ck(0) + 0% — 1) Bz?.
Thus, by conditions (5.2) and

(a+b)? + 2k(0)[b(a + b — 1)} + |b(a + b)|(ko + k(0) — km)+

+b2 (kok(0) + (ko + k(0))(K(0) = km)) + 02 < 1 (5:3)

the zero solution of equation (5.1) is asymptotically mean square stable,
Note that if £(f) = k = const, then condition {(3.7) follows from (5.3) with a = ag, b = ay.

5.2. Systems With Unbounded Delays

Consider the equation

k(i) m(i)
Typy = Za_j.’ti..j + Z O'jil}i_.j&;. (54)
=0 j==0
Here it is supposed that the delays k(i) and m(¢) satisfy the conditions
i+ 1) — k(i) <1, m{i+1) — m(i) < 1, (5.5)
k = sup k(i) < oo, m = supm{i) < oo.
€z €z

Note that from (5.5) it follows that k(i) < k(0) + ¢, m(i) < m(0) + ¢.
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Using the Lyapunov functional V; = Vy; 4 Va;, where Vi; = 22,
k(i) k m(i)

m
Vai=D @by A+ 3wl D B
=i ;

Gt 3
J=1 i=

lojls

s

i}
<

k
Ar=ala|, By =ola, a= Z la;l, o=
— ]

it is shown [35] that EAV; < (a® + 02 — 1)Ez?. Thus, by conditions (5.5) and a? 4+ 02 < 1 the
zero solution of equation (5.4) is asymptotically mean square stable.
Other stability conditions for difference equations with varying delays were obtained in [37].

6. VOLTERRA EQUATIONS OF THE SECOND TYPE

6.1. Problem Statement

Let {Q2, P, 0} be a probability space, f; € o, ¢ € Z, be a sequence of o-algebras, f; C f; fori < 7,
H,, p > 0, be a space of sequences z = {z;,i € Z} of f;-adapted random variables z; € R™ with
norm [lz[[P = supicz Blal?.

Consider the stochastic difference equation in the form

Zip1 = Nip1 + F (4, 7o,..., T3), 1€ Z, zp="mnp. (6.1)
Here it is assumed that n € H), the functional F is such that F : Z % H, = R™ and F(i,")
does not depend on z; for j > 4, F(4,0,...,0) =0.

DEFINITION 6.1. A sequence z; from Hy, is called uniformly p-bounded if ||z||? < oo, asymptot-
ically p-trivial if lim;_, o, E|z;|? = 0, p-summable if }_ ;2 Elz;|? < co.

Note that if the sequence z; is p-sumnmable, then it is uniformly p-bounded and asymptotically
p-trivial.

THEOREM 6.1. (See [21].) Let there exist a nonnegative functional V; = V (i, zo,...,x;) and a
sequence of nonnegative numbers -y;, such that

X
EV(O: Iﬂ) < o0, Z’Y’L < 0,
rd
EAV, < —cE|z;|? + v, i1€Z, c>0.
Then the solution of equation (6.1) is p-summable.

6.2. Illustrative Example

Using the procedure of Lyapunov functionals construction, described above, let us investigate
the asymptotic behavior of the scalar equation with constant coefficients

Zo = 7o, Ty = 1M1 + GoTo, 6.2

Tip1 = Mit+1 + ATy + A1T4-1, 1> 1 62)

The right-hand side of equation (6.2} is represented already in form (1.3) with r = 0, Fy(i,z;) =

agzi, Fali, zo,...,2:) = a1Ti—1, F3{i,xg,...,2:) = 0. The auxiliary equation (1.4) in this case

is yi+1 = aoy;- The function v; = y? is a Lyapunov function for this equation if |ag| < 1,
since v; = (a — 1)y2.
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The main part Vj; of the Lyapunov functional V; =V};+V5; must be chosen in the form Vy; =22,
Estimating EV}; for equation (6.2), we have

EAV,; = E [(774.;.1 + agz; + Q1$¢-1)2 - .Tf]

< [t+a Yaol + |a1])] En?y + (a3 — 1 + |aga1| + alag]) Ez? + AEz? |,

where A = a? + |aga1| + alai], @ > 0.
Let Va; = Az? ,. Then AVy; = A(z? —22_,) and for V; = V3, + Va; we get

EAV; < [1+a Y (jaol + |a1])] EnZy1 + [(lao] + laa])? + a(jao] + |a1]) — 1] E?.

If Jag| + |a1| < 1, then there exists a small o > 0 that (|ao| + |a1])? +a(lao| + |a1]) < 1. So, under
the condition Jag| + |a1| < 1 the functional V; satisfies the conditions of Theorem 6.1 with p = 2,
and therefore, the solution of equation (6.2} is mean square summable.

Similar to previous in [21,27] the summability conditions type of (2.4) and (2.13),(2.14) were
obtained for equation (6.2). Summability conditions, which are similar to (4.2}, were obtained
also for the Volterra equation of type

i
Titl = i1 + Zaijﬂfja
=0

To get another type of conditions consider the nonlinear Volterra equation

Tiv1 =M1+ D ayg(z;),  lg(@)] < Jal. (6.3)
=0

THEOREM 6.2. Let the sequence 1; be p-summable and the kernel a;; satisfy the condition
afP~t <1, p> 1, where

o0 i
= Ssu Gyl < 1, 8 =su ail.
iﬁggl +'H} zeggt z;
Then the solution of equation (6.3) is p-summable.

For proving Theorem 6.2 it was shown [48,50] that the functional V;, i € Z, where

i-1

o0
Vo=lzolf, Vi= Y lagsllez)P,  i>0,
J=0 l=i—j—1

satisfies the conditions of Theorem (6.2).

Note that if in equation (6.3) a;; = a;—j, thena =g = 2}“;0 la;| and the inequality o < 1 is
a sufficient condition of p-summability with p > 1.
EXAMPLE 6.1. Let in equation (6.3) a;; = a;—; and a; = A, i € Z, |g < 1. Then a =
IAI(1 — |g])~! and the sufficient condition of p-summability with'p > 1 has the form || + |g| < 1.

6.3. Nonlinear System with Monotone Coeflicients

In some cases, for some systems of special type it is possible to get summability conditions using
special characteristics of the system under consideration. Consider, for instance, the nonlinear
system

i
Tigr =Tit1 — »_ @i;9(T5), (6.4)
7=0
where the function g(z) satisfies the condition

0<C]S-g%2302, z # 0.
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THEOREM 6.3. (See [50].) Let the coefficients a5, i1 € Z, j = 0,...,1, satisfy the conditions

ai; 2 @i 41 2 0,

Qitl,j-1 — Git1,j — Gij—1 + Gi5 2 0,

2
a = sup(@it1,i+1 + Gis — Git1,4) < —,
i€Z €2

oo i
o = supZaHi,i < 00, 8= supZa.ij < 00.
i€Z 123 €253
Then the solution of equation (6.4) is mean square summable.

For proving this theorem the Lyapunov functional

2
i Z i—1 o]
Vi = z9{xs) + Z Q5 Zg(:vk) + Zi'?% Z Qj+k,k
=0 k=j k=0

=0  j=i—k

was constructed. Here the numbers a;; and @Q;; are defined by virtue of parameters of the initial
system (6.4).
Note that in the case a;; = a,; the conditions of Theorem 6.3 have the form

a; 2 a1 >0, Giy2 — 20441 +a; 2 0, i€ Z,
2 o
2a0 — 01 < — a=p0= a; < 00,
0= < = 8 gﬂ j

EXAMPLE 6.2. Let in equation (6.4) a;; = a;—; and a; = A¢', 1 € Z, A > 0, 0 < ¢ < 1. From
Theorem 6.2, using Example 6.1, we obtain the sufficient condition of mean square summability
in the form Acy + ¢ < 1. Theorem 6.3 gives us another sufficient condition of mean square
summability Acy < 2(2 — g)~}. It is easy to see that the second condition is weaker than first
one, ie,1—g<22-¢) L

ExAMPLE 6.3. Consider equation (6.4) with a;; = a;—; and a; = A(i+1)"7, A > 0, v > 1,
i € Z. In this case, o = 8 = A((7), where {(7) is the Riemann function {(7) = 3 ;0,177 < oo.
From Theorem 6.2, we obtain a sufficient condition of mean square summability in the form
ez < ¢~ (7). Theorem 6.3 gives us another summability condition Ac; < 2(2 — 277)71, It is
easy to see that ¢!(v) < 1, but 2(2~27)"1 > 1. Thus, the second condition is weaker than the
first one. For instance, for v = 2 these conditions take the forms Aez < (71(2) = 1.64571 = 0.608
and Acg < 2(2~272)"1 = 1.143,

EXAMPLE 6.4. Consider equation (6.4) with a;; = Aj7(i+ 1)), 0< 5 <i, A >0, 7> 0.
It is shown [50] that in this case o < Ay™!, 8 < A1 + v)~!. Thus, Theorem 6.2 gives us
with p = 2 the sufficient condition of mean square summability in the form Acz < /(1 + 7).
Using Theorem 6.3 and the estimate a < 2A(1 + v)~!, we obtain the condition of mean square
summability in the form Acg < 1+ . In spite of the fact that the estimate of a is rough enough,
the last condition is weaker than previous one. In fact, for concrete v > 0 it is possible to get
an estimate of a which is essentially better than we used above. For instance, for v = 1 it is
easy to show that a < 13)\/36 and the summability conditions take the forms Acy < V2 = 1.414,
Acz < 72/13 = 5.538. If v = 2, then a < 17A/72 and the summability conditions take the forms
Acg < 6 = 2.449, Ay < 144/17 = 8.471.
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7. DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE

Here, the general method of Lyapunov functionals construction is demonstrated for hereditary
systems with continuous time. Consider the stochastic differential equation of neutral type

dlx(t) — G(t,z¢)) = a1(t, ) dt + aq(t, ;) dE(E),

7.1
t>0, z{t) € R, z(s) = (s}, s <0. 1)
Here, 7; = z(t + 5), s < 0, &(t) € R™ is a standard Wiener process, a;(t,0) =0, 1= 1,2,
o0 lo »3
Gl < [ lealar), [T <1 (7.2)

DEFINITION 7.1. The zero solution of equation (7.1) is called mean square stable if for any € > 0
there exists a § > 0 such that Elz(t)]* < ¢, t > 0, if [Jo|* = sup,<o Elp(s)|> < 6. If, besides,
lim; o E|z(t)]> = 0 for every initial function ¢(s) then the zero solution of equation (7.1) is
called asymptotically mean square stable.

THEOREM 7.1. (See [14].) Let condition (7.2) hold and there exist the functional

Vit, @) = W(t.¢) +|o(0) — G(t, ),

such that
0 <EW(t,z;) < eyl

ELV(t,z;) < —coElz(t)[%,

wheree; > 0,1 = 1,2, L is the generator of equation (7.1). Then the zero solution of equation (7.1)
is asymptotically mean square stable.

As before the proposed procedure of Lyapunov functionals construction consists of four steps.

Step 1. Transform equation (7.1) to the form

dz(t, z;) = (b1 (t, 2(8)) + e1(t, ) dt + (ba(t, (1)) + o, 71)) d(2), (7.3)

where z{t, z;) is some functional on z;, 2(¢,0) = 0, functionals b;, ¢ = 1,2, depend
on ¢t and z(t) only and do not depend on the previous values z(t + s}, s < 0, of the
solution, b;(t,0) = 0.

Step 2. Assume that the zero solution of the auxiliary equation without memory

dy(t) = ba(t,y(t)) di + b2(t, y(t)) dE(2). (7.4)

is asymptotically mean square stable, and therefore, there exists a Lyapunov func-
tion v(t, y), for which the condition Lov(t,y) < —|y|* holds. Here, Ly is the generator
of equation (7.4).

Step 3. A Lyapunov functional V'(t,z;) is constructed in the form V = V; + V, where
Vi(t,x) = v(t,2(t,x:)). Here the argument y of the function v(t,y) is replaced
on the functional z(t, z;) from the left-hand part of equation (7.3).

Step 4. Usually, the functional V; almost satisfies the conditions of Theorem 7.1. In order to
satisfy these conditions completely, it is necessary to calculate LV and estimate it.
Then the additional component V5 can be easily chosen in a standard way.
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Note that representation (7.3) is not unique. This fact allows us, using different representa-
tions (7.3), to construct different Lyapunov functionals and, as a result, get different sufficient
conditions of asymptotic mean square stability.

ExaMpPLE 7.1. Using the proposed procedure, it is simple enough to construct conditions of
asymptotic mean square stability for the scalar equation of neutral type

i(t) + ax(t) + ba(t — k) + ci(t — h) + oz(t — 7)) =0, | < 1. (7.5)

Note that conditions of asymptotic mean square stability for equation (7.5) were obtained
already in [5]. But conditions, constructed here, give us greater stability reglon
Following Step 1, rewrite equation (7.5) in the form

£(t) = —az(t) — ba(t — h) — ox(t — T)E(t),

where 2(t) = z(t) + cx(t — h). Suppose that a > 0. Then the function v = y?(t) is a Lyapunov
function for the auxiliary equation §(t) = —ay(t), since ¥ = —2ay*(t). Thus, the zero solution of
the auxiliary equation is asymptotically stable. Put V; = 2%(t). Then

LV; = 2z(8)(—az(t) — bx(t — h)) + oz2%(t — 7)
= —2az2(t) — 2bex?(t — h) — 2(ac + b)z(t)z(t — h) + o22?(t — 7)
< (—2a + |ac + b))z () + pz(t — h) + 0?23(t — 1),

where p = |ac + b — 2bc if Jac + b} > 2bc and p = 0 if |ac + b] < 2be.

Let
t ¢
Vo = p/ (s)ds + 02/ z%(s) ds,
t—h teT
then for the functional V' = V7 4+ V%, we obtain
LV < (~2a+|ac+b| + p+ o?) 23(t).

So, if lac + b + p + 0? < 2a, then the zero solution of equation (7.5) is asymptotically mean
square stable. Using two representations for p, we obtain two stability conditions

2> lac+b], o%+lac+b <2 (7.6)

and
o2

2bc < lac+bl, p+lac+ bl —be < aq, p= (7.7)

From (7.6) and a > 0, we have bc = |bc| and |ac + b| = alc| + |b|. So, inequalities (7.6) take
the form 2|bc| > alc| + [b] and 2 + alc| + |b] < 2a. The first from these inequalities is impossible
if 2|c| < 1. Suppose that 2|c| = 1. Then

2
Zl j‘ﬁl <a< (2 B !) Ibl. (7.8)

It is easy to see, that these inequalities are incompatible. Really, from (7.8) the impossible
inequality o%|c| + 2]b|(1 — |¢|)? < 0 follows. Thus, condition (7.6) is impossible.

Consider condition (7.7). Suppose that bc > 0. From here and a > 0 we have bc = |bc|,
lac + b] = alc| + |b] and condition (7.7) takes the form.

p
2]be| < ale| + [b], a > bl + T
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If 2ic] < 1, then the first inequality holds for all a and b. If 2|¢| > 1, then the second inequality

implies the first one. So, if bec > 0, then from condition (7.7) we have

b

>
be > 0, a>;b!+1—}c!

Let be < 0. Then the first inequality (7.7) holds and condition (7.7) takes the form
be < 0, p+lac+ bl —be < a.

Since be < 0, then |ac+ b| = |aje| — |b]|- So, if alc| > |b| then from (7.10) we have

P
1—|c

—a < |b| £ alc.

If alc| < |b], then

P
b -
ale] < bl < a T4 17
Combining (7.11) and (7.12), we obtain

p
1-|d

p

bc<0, m.

—a<lbl<a—

Note that the system
P

;bi:—-:—c——'ﬂ;, Ibl=a—m

k]

by be < 0, has the solution
r pc

a=——s =- .
1-—¢2’ 1—¢c2

So, combining (7.9), (7.13), (7.14), we obtain the stability conditions in the form

p pc
> e+ b b> ~—
a l—c_l_7 > 1—c2’
Y4 pc
> = — b, b< — .
R STio&2

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

Thus, if the conditions |¢| < 1 and (7.15) hold, then the zero solution of equation (7.5) is

asymptotically mean square stable.

The stability regions for equation (7.5), given by stability conditions (7.15), are shown on

Figure 6 for ¢ = —0.5, h = 1 and different values of p:

(1) p=0;
(2) p=105;
) p=1,
4y p=15.

In Figure 7, the stability regions are shown for ¢ = 0.5 and the same values of other parameters.

To get another stability condition represent equation (7.5} in the form
#(t) = —(a + b)z(t) — oz(t — T)E(L),

where
t

2(t) = z(t) + cx(t — h) — b] z(s) ds.

t—h
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Suppose that @ + b > 0. Then the function v = y%(t) is a Lyapunov function for the auxiliary
equation 7(t) = —(a + b)y(t), since ¢ = —2(a + b)y?(¢). Thus, the zero solution of the auxiliary
equation is asymptotically stable. Put V; = z%(t). Then

LWy = =2(a + b)z(t)z(t) + %z (t — 7)

= —2(a + b)2?(t) — 2(a + b)ex(t)x(t — h) + 2(a + b)b /t z(t)z(s) ds + oz (t — 1)
Jt-h
< (a+b) (=2 + le| + |plh)z%(t) + o%2%(t ~ 7) + (a + b) (lc!:c2(t - h) + |b| /t z2(s) ds) .
t~h

Let ; .
Vs = (a+b) / el + [bis =+ W]z (s)ds + o / 22(s) ds.
fo f—r

Then for the functional V' = V; + V5 we obtain
LV < [-2(a+b)(1 - |¢| - [blh) + o?] 22(2).
Thus, the stability condition has the form p < (a + b)(1 — |¢| — |blh), |¢| + [bjh < 1 or

-

p
a>1~101—lblh b, Ib] < A (7.16)

The stability regions for equation (7.5), given by stability condition (7.16), are shown in Figure 8
for |c] = 0.5, A = 0.2 and different values of p:

(1) p=02;

(2) p=06;

) p=1

(4) p=14;

and on Figure 9 for {¢| = 0.5, p = 0.4 and different values of h:

(1) h=0.1;

(2) h=0.15;

(3) h=10.2;

(4) h =0.25.

It is easy to see, that for b < 0 conditions (7.15) are better than (7.16). So, condition (7.16) it
is better to use for b > 0 only in the form

D 1 -l
a>1—{c{~bh b, 0<bx« P (7.17)
For h — 0 condition (7.17) takes the form
a>—L— b  b>o0 (7.18)
11— 7

Note that for h = 0 we have LV; = —2(a + b)(1 + c)z%(t) + 622%(t — 7) and LV = [-2(a + b)
(1+e¢)+0?)z3(t). So, for h = 0 the necessary and sufficient condition of asymptotic mean square
stability has the form

P
l+c¢
For b > 0 and ¢ > 0, condition (7.18) is essentially worse than (7.19). But for b > 0 and ¢ < 0 con-
ditions (7.18) and (7.19) coincide. The second condition of (7.15) coincides with condition (7.19)
as well.

a >

(7.19)
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The stability regions for equation (7.5), given by stability conditions (7.15) and (7.17) together,
are shown in Figure 10 for ¢ = —0.6, p = 0.4 and different values of A:

(1) k= 0.05;
(2) h=0.1;
(3) h=0.15;
(4) h=0.2.

In Figure 11, the stability regions are shown for ¢ = 0.6 and the same values of other parameters.
Other examples of stability conditions for stochastic differential equations are in [5-9,14,22].

8. CONCLUSIONS

Besides problems described above, many other stability problems, which were solved by general
method of Lyapunov functionals construction, are considered in [5-52]. For instance, some pecu-
liarities of this method are considered in [39,52], stability in probability for nonlinear differential

and

difference equations is considered in [17,18,40,49)], stability of systems with Markov switch-

ing is considered in [22,25,46,47], investigation of numerical approximations of nonlinear integro-
differential equations is considered in [23,44,45], stability of hereditary systems with varying and
distributed delays is considered in [24,33], a comparison of delay-dependent stability criteria for
stochastic delay differential equations, which were obtained here, with similar results, obtained
by other methods, is considered in [46,47], applications for medical, ecological, and mechanical
problems are considered in [29,36,41,42,51].
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