
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2014.11.1167
AND ENGINEERING
Volume 11, Number 5, October 2014 pp. 1167–1174

STABILITY OF A POSITIVE EQUILIBRIUM STATE

FOR A STOCHASTICALLY PERTURBED

MATHEMATICAL MODEL OF

GLASSY-WINGED SHARPSHOOTER POPULATION

Leonid Shaikhet

Department of Higher Mathematics

Donetsk State University of Management
Chelyuskintsev str., 163-a, Donetsk 83015, Ukraine

(Communicated by Andrei Korobeinikov)

Abstract. The known nonlinear mathematical model of the Glassy-winged
Sharpshooter is considered. It is assumed that this model is influenced by

stochastic perturbations of the white noise type and these perturbations are

directly proportional to the deviation of the system state from the positive
equilibrium point. A necessary and sufficient condition for asymptotic mean

square stability of the equilibrium point of the linear part of the considered

stochastic differential equation is obtained. This condition is at the same time
a sufficient one for stability in probability of the equilibrium point of the initial

nonlinear equation. Numerical calculations and figures illustrate the obtained

results.

1. Introduction. The incentive of this work was the paper [11] where the nonlinear
mathematical model of the Glassy-winged Sharpshooter is investigated in the form

Ṅ(t) = −rN(t) ln
N(t− τ)

K
− cN(t) + I, (1)

with the initial condition

N(s) = N0(s), s ∈ [−τ, 0]. (2)

Here N(t) is the population size (number of insects) and the parameters and units
are:

- τ - time delay (month),
- K - carrying capacity (number of insects),
- r - intrinsic rate of growth (1/month),
- c - harvesting effort (1/month),
- I - immigration rate (number of insects/month).
In the paper [11] the conditions for asymptotic stability of the positive equilib-

rium point of the equation (1), (2) are obtained. Here these stability conditions
are generalized on the case when the equation (1), (2) is influenced by stochastic
perturbations of the white noise type that are directly proportional to a deviation
of the system state N(t) from the positive equilibrium point. Similar investigations

2010 Mathematics Subject Classification. Primary: 92D25, 92D40; Secondary: 34K20.
Key words and phrases. Mathematical model, glassy-winged sharpshooter population, equilib-

rium point, stochastic perturbations, asymptotic mean square stability, stability in probability.

1167

http://dx.doi.org/10.3934/mbe.2014.11.1167


1168 LEONID SHAIKHET

have been made previously for well known Nicholson’s blowflies equation and some
other nonlinear models (see, for example, [3, 9, 10] and references therein).

2. Equilibrium point and stochastic perturbations. The positive equilibrium
point N∗ of the system (1), (2) is defined by the equation

N∗
(
r ln

N∗

K
+ c

)
= I (3)

that follows from (1), (2) by the condition N(t) ≡ N∗. The equation (3) cannot be
solved analytically but can be easily solved numerically.

Let us assume that the equation (1) is influenced by stochastic perturbations
of white noise type that are directly proportional to the deviation of the system
state N(t) from the equilibrium point N∗ and influence Ṅ(t) immediately. Note
that stochastic perturbations of such type were first proposed in [2] and successfully
used later by other researches for different mathematical models (see, for example,
[1, 4, 6, 7, 8]).

So, the equation (1) takes the form of Ito’s stochastic differential equation [5]

Ṅ(t) = −rN(t) ln
N(t− τ)

K
− cN(t) + I + σ(N(t)−N∗)ẇ(t), (4)

where σ is a constant and w(t) is the standard Wiener process [5]. Note that via the
chosen type of stochastic perturbations the equilibrium point N∗ of the equation
(1) is also the equilibrium point of the equation (4).

3. Centering and linearization. Putting in (4) N(t) = N∗+ x(t) we will center
the equation (4) in the neighborhood of the equilibrium point N∗. From (4) we
have

ẋ(t) =− r(N∗ + x(t)) ln
N∗ + x(t− τ)

K
− c(N∗ + x(t)) + I + σx(t)ẇ(t)

=− r(N∗ + x(t))

(
ln
N∗ + x(t− τ)

K
− ln

N∗

K

)
− r(N∗ + x(t)) ln

N∗

K
− c(N∗ + x(t)) + I + σx(t)ẇ(t)

=− r(N∗ + x(t))

(
ln
N∗ + x(t− τ)

N∗

)
−
(
r ln

N∗

K
+ c

)
x(t)−N∗

(
r ln

N∗

K
+ c

)
+ I + σx(t)ẇ(t).

As a result using (3) we obtain the nonlinear equation

ẋ(t) = −r(N∗ + x(t)) ln

(
1 +

x(t− τ)

N∗

)
− I

N∗
x(t) + σx(t)ẇ(t),

x(s) = φ(s), s ∈ [−τ, 0],

(5)

with the trivial solution x(t) ≡ 0.
It is clear that stability of the zero solution of the equation (5) is equivalent to

stability of the positive equilibrium N∗ of the equation (4).
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Using the representation ln(1+y) = y+o(y) (where o(y) means that lim
y→0

o(y)
y = 0)

and neglecting o(y), we obtain the linear part of the equation (5) in the form

ẋ(t) = − I

N∗
x(t)− rx(t− τ) + σx(t)ẇ(t),

x(s) = φ(s), s ∈ [−τ, 0].
(6)

4. Stability analysis. Consider some definitions and auxiliary statements where
E denotes the expectation and P{A} denotes the probability of an event A.

Definition 4.1. The zero solution of the equation (6) is called:

- mean square stable if for each ε > 0 there exists a δ > 0 such that the solution
x(t) = x(t, φ) of the equation (6) satisfies the condition E|x(t, φ)|2 < ε, t ≥ 0, for
arbitrary initial function φ(s) such that sup

s≤0
E|φ(s)|2 < δ;

- asymptotically mean square stable if it is mean square stable and for each initial
function φ(s) such that sup

s≤0
E|φ(s)|2 <∞ the solution x(t) = x(t, φ) of the equation

(6) satisfies the condition lim
t→∞

E|x(t)|2 = 0.

Definition 4.2. The zero solution of the equation (5) is called stable in probability
if for any ε1 > 0 and ε2 > 0 there exists δ > 0 such that the solution x(t) = x(t, φ)
of the equation (5) satisfies the condition P{sup

t≥0
|x(t, φ)| > ε1} < ε2 for any initial

function φ(s) such that P{sup
s≤0
|φ(s)| < δ} = 1.

Consider now the linear Ito stochastic differential equation with delays

ẋ(t) = Ax(t) +Bx(t− τ) + σx(t− h)ẇ(t), (7)

where A, B, σ, τ ≥ 0, h ≥ 0 are known constants. A necessary and sufficient
condition for asymptotic mean square stability of the trivial solution of the equation
(7) is defined by the following lemma [9, 10].

Lemma 4.3. A necessary and sufficient condition for asymptotic mean square sta-
bility of the trivial solution of (7) is

A+B < 0, G−1 >
1

2
σ2, (8)

where

G =


Bq−1 sin(qτ)−1
A+B cos(qτ) , B + |A| < 0, q =

√
B2 −A2,

1+|A|τ
2|A| , B = A < 0,

Bq−1 sinh(qτ)−1
A+B cosh(qτ) , A+ |B| < 0, q =

√
A2 −B2.

(9)

Corollary 1. The zero solution of the equation (6) is asymptotically mean square
stable if and only if

1

2
σ2 <


I(N∗)−1+r cos(qτ)

1+rq−1 sin(qτ) , rN∗ > I, q =
√
r2 − I2(N∗)−2,

2r
1+rτ , rN∗ = I,
I(N∗)−1+r cosh(qτ)

1+rq−1 sinh(qτ) , rN∗ < I, q =
√
I2(N∗)−2 − r2.

(10)

The proof follows from (6), (7), (8), (9).

Corollary 2. By the condition (10) the zero solution of the equation (5) (and the
equilibrium point N∗ of the equation (4)) is stable in probability.
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The proof follows from [10] where it is shown that a sufficient condition for
asymptotic mean square stability of the zero solution of the linear part (6) of the
nonlinear equation (5) is at the same time a sufficient condition for stability in
probability of the zero solution of the equation (5).

Figure 1. Stability region by the parameter values K = 16,
c = 0.35, τ = 1, ε = 0.1

Figure 2. Stability region by the parameter values K = 16,
c = 0.35, τ = 1, ε = 0.4

Remark 1. Note that from the conditions (3), (10) it follows that the equilibrium
point N∗ satisfies to one of the two inequalities:

I

r
< N∗ < Ke1−

c
r (11)
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or

Ke1−
c
r < N∗ <

I

r
. (12)

Put, for example, r = 0.52, K = 16, c = 0.35, I = 0.25. Solving the equation (3)
with these values of the parameters we obtain that N∗ = 8.63. So, the inequality
(11) holds and takes the form:

0.25

0.52
= 0.48 < 8.63 < 22.19 = 16e1−

0.35
0.52 .

Put now r = 9, K = 16, c = 0.5, I = 400. Solving the equation (3) in this case we
obtain that N∗ = 42.778. So, the inequality (12) holds and takes the form:

16e1−
0.5
9 = 41.142 < 42.778 < 44.444 =

400

9
.

5. Numerical illustrations. The stability condition (10) together with the equa-
tion (3) can be used for numerical investigation of the considered model (4) in
different directions. In particular, it allows to construct regions of stability in prob-
ability for the equilibrium point N∗ of the equation (4) for different values of the
parameters K, I, r, c, τ and ε, where

ε =
1

2
σ2,

and to investigate dependence of stability regions on the level of noise ε, on the
delay τ and on other parameters.

Figure 3. Stability region from Figure 1 in another scale

In Figure 1 the corresponding stability region is shown in the space of the pa-
rameters (r, I) for the following values of the other parameters: K = 16, c = 0.35,
τ = 1, ε = 0.1. Lighter part of the region is obtained by the condition N∗r < I,
darker part of the region is obtained by the condition N∗r > I. In Figure 2 the
similar picture for ε = 0.4 and the same values of the other parameters is shown.
In Figure 3 and Figure 4 respectively the same pictures are shown in another scale.

In Figure 5 in the space of the parameters (r,N) the functions N = I
r (the curve

1), N = Ke1−
c
r (the curve 2) and the solution N∗ of the equation (3) (the curve 3)
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Figure 4. Stability region from Figure 2 in another scale

are shown by the values of the parameters: K = 16, I = 13, c = 0.5. In compliance
with the inequalities (11), (12) the curve 3 locates between the curves 1 and 2.

The part AC of the curve 3 is a part of the stable equilibrium points N∗ by τ = 1
and ε = 0.6 (AB by the condition rN∗ < I and BC by the condition rN∗ > I).

In Figure 6 a similar picture for τ = 1.5 and the same values of the other
parameters is shown.

Figure 5. The part AC of the curve 3 is a part of the stable
equilibrium points N∗ by the values of the parameters K = 16,
I = 13, c = 0.5, τ = 1, ε = 0.6

6. Conclusions. It is supposed that the known nonlinear mathematical model
of the Glassy-winged Sharpshooter is influenced by stochastic perturbations that
are directly proportional to the deviation of the system state from the positive
equilibrium point. By this the equilibrium point of the system under stochastic
perturbations coincides with the equilibrium point of the deterministic system. A
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Figure 6. The part AC of the curve 3 is a part of the stable
equilibrium points N∗ by the values of the parameters K = 16,
I = 13, c = 0.5, τ = 1.5, ε = 0.6

necessary and sufficient condition for asymptotic mean square stability of the pos-
itive equilibrium point of the linearization system is obtained. This condition is
also a sufficient one for stability in probability of the positive equilibrium point
of the initial nonlinear system. The obtained results are illustrated by numerical
calculations. In particular, stability regions in the space of the system parameters
are constructed.
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