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a b s t r a c t

In the paper it is shown how the known results of stability theory can be simply applied to
stability investigation of equilibrium points of some systems of nonlinear difference equa-
tions with stochastic perturbations. A system of two difference equations with exponen-
tial nonlinearity is considered and it is shown that instead of the zero equilibrium this
system can have also a positive equilibrium. Sufficient conditions for stability in probability
of the both equilibriums of the initial nonlinear system with stochastic perturbations are
obtained. Numerical simulations and figures illustrate a convergence of the positive solu-
tions of the considered system to one of two (zero or positive) equilibriums in determinis-
tic and stochastic cases. The proposed investigation procedure can be applied for arbitrary
nonlinear equations with an order of nonlinearity higher than one.

© 2015 Elsevier B.V. All rights reserved.

1. Nonlinear systems and equilibrium states

Nonlinear differential equations with exponential nonlinearity often enough are used in different applied mathematical
models. Consider, for instance, the economic delay differential neoclassical growth model [1,2]

ẋ(t) = axγ (t − τ)e−bx(t−τ)
− cx(t),

where a, b, c, γ are positive parameters, τ is the delay in the production process. If, in particular, γ = 1, then this model
describes the population dynamics of well-known Nicholson’s blowflies, which is one of the most important mathematical
models in ecology [3,4]. In connectionwith numerical simulation of special interest is the investigation of discrete analogues
of this model [5,6]. Difference equations with exponential nonlinearity are used also immediately in different applied
models [7], in particular, in the known discrete delay Mosquito population equation [8,9]

xn+1 = (axn + bxn−1)e−νxn .

To construct more complicated models some authors use also systems of difference equations with exponential nonlinear-
ity [10–13]. Other models described by difference equations containing exponential terms one can find in [14] and in the
references cited therein.

One of the most popular research directions for nonlinear system is asymptotic behavior and stability of its positive
equilibriums [1,2,4,6,8,9,14–16]. Here stability of both the zero and positive equilibriums of the system of two nonlinear
difference equations

x1(n + 1) = ax1(n) + bx2(n − 1)e−µx1(n),

x2(n + 1) = cx2(n) + dx1(n − 1)e−νx2(n),

n = 0, 1, 2, . . . ,

(1.1)
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with positive initial functions

x1(j) = ϕ1(j), x2(j) = ϕ2(j), j = −1, 0, (1.2)

and positive parameters a, b, c, d, µ, ν is studied. Asymptotic behavior of the positive solutions of the system (1.1), (1.2) (in
the case µ = ν = 1) is investigated in [14].

Putting in the system (1.1) xk(n) = x∗

k , k = 1, 2, we obtain that the equilibrium points of this system are defined by the
system of two algebraic equations

(1 − a)x∗

1 = bx∗

2e
−µx∗1 ,

(1 − c)x∗

2 = dx∗

1e
−νx∗2 .

(1.3)

It is easy to see that for arbitrary positive values of the parameters the system (1.3) has the zero solution E0 = (0, 0).
Let us suppose that x∗

1 ≠ 0, x∗

2 ≠ 0. Then from (1.3) we obtain

η =
bd

(1 − a)(1 − c)
= eµx∗1eνx∗2 . (1.4)

From (1.4) it follows that for positive x∗

1 and x∗

2 the condition η > 1 holds.

Lemma 1.1. If the conditions

bd > (1 − a)(1 − c), a < 1, c < 1, (1.5)

hold, then the positive equilibrium point E+ = (x∗

1, x
∗

2) of the system (1.1) there exists and satisfies the conditions

µx∗

1 + νx∗

2 = ln η, (1.6)

x∗

1 =
ln η

µ + νb−1(1 − a)eµx∗1
, (1.7)

x∗

2 =
ln η

ν + µd−1(1 − c)eνx∗2
, (1.8)

where η is defined in (1.4).

Proof. From (1.5), (1.4) it follows that η > 1. The condition (1.6) follows immediately from (1.4). Substituting x∗

2 from (1.6)
into the first equation (1.3) we obtain (1.7). Substituting x∗

1 from (1.6) into the second equation (1.3) we obtain (1.8). The
proof is completed.

Lemma 1.2. If the conditions (1.5) hold, then the positive equilibrium point E+ = (x∗

1, x
∗

2) satisfies the inequalities

ln η

µ + νd(1 − c)−1
< x∗

1 <
ln η

µ + νb−1(1 − a)
, (1.9)

ln η

ν + µb(1 − a)−1
< x∗

2 <
ln η

ν + µd−1(1 − c)
. (1.10)

1 − a
b

<
x∗

2

x∗

1
<

d
1 − c

. (1.11)

Proof. The right bounds of the inequalities (1.9), (1.10) follow immediately from the conditions (1.7), (1.8) respectively. To
get the left bound of the inequality (1.9) note that via (1.6) and the right bound of (1.10) we have

x∗

1 =
1
µ

(ln η − νx∗

2)

>
1
µ


ln η −

ν ln η

ν + µd−1(1 − c)


=

ln η

µ


µd−1(1 − c)

ν + µd−1(1 − c)


=

ln η

µ + νd(1 − c)−1
.
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Similarly the left bound of the inequality (1.10) can be obtained. The right bound of the inequality (1.11) simply follows from
(1.9), (1.10)

x∗

2

x∗

1
<

ln η[µ + νd(1 − c)−1
]

[ν + µd−1(1 − c)] ln η
=

d
1 − c

.

Similarly the left bound of the inequality (1.11) can be obtained. The proof is completed.

Remark 1.1. The inequalities (1.9), (1.10) specify and generalize the corresponding inequalities obtained in [14] for the case
µ = ν = 1

ln η

1 + d(1 − c)−1
< x∗

1 < ln η,

ln η

1 + b(1 − a)−1
< x∗

2 < ln η.

2. Stochastic perturbations and some auxiliary equations, definitions, statements

Let {Ω, F, P} be a basic probability space, Fn ∈ F, n ∈ Z = {0, 1, . . .}, be a family of σ -algebras, E be an expectation,
ξk(n), k = 1, 2, n ∈ Z , are mutually independent sequences of Fn-adapted random variables such that

Eξk(n) = 0, Eξ 2
k (n) = 1, Eξ1(n)ξ2(n) = 0. (2.1)

Let us suppose that the system (1.1) is influenced by stochastic perturbations that are directly proportional to the devia-
tion of the system state (x1(n), x2(n)) from the equilibrium point (x∗

1, x
∗

2). It means that if the deviation of the system state
from the equilibrium point increases, then the stochastic perturbations also increase. The stochastic perturbations of such
type were first proposed in [17] and successfully used later by many other researchers for different mathematical models
with continuous and discrete time (see [4,6,9] and references cited therein).

By this assumption the system (1.1), (1.2) takes the form

x1(n + 1) = ax1(n) + bx2(n − 1)e−µx1(n) + σ1(x1(n) − x∗

1)ξ1(n + 1),

x2(n + 1) = cx2(n) + dx1(n − 1)e−νx2(n) + σ2(x2(n) − x∗

2)ξ2(n + 1),
(2.2)

with an F0-adapted initial function

xk(l) = ϕk(l), l ∈ Z0 = {−1, 0}. (2.3)

Here σ1 and σ2 are arbitrary constants and (x∗

1, x
∗

2) is an equilibrium point E+ of the system (1.1) defined by (1.7), (1.8). Note
that the equilibrium point (x∗

1, x
∗

2) is a solution of Eq. (2.2) too.
Putting in (2.2) xk(n) = yk(n) + x∗

k , k = 1, 2, and using (1.3), we obtain

y1(n + 1) = ay1(n) + bx∗

2e
−µx∗1 (e−µy1(n) − 1) + by2(n − 1)e−µ(y1(n)+x∗1)

+ σ1y1(n)ξ1(n + 1),

y2(n + 1) = cy2(n) + dx∗

1e
−νx∗2 (e−νy2(n) − 1) + dy1(n − 1)e−ν(y2(n)+x∗2)

+ σ2y2(n)ξ2(n + 1).
(2.4)

It is easy to see that stability of the zero solution of the system (2.4) is equivalent to stability of the solution (x∗

1, x
∗

2) of the
system (2.2).

Note that Eqs. (2.4) are nonlinear equations with an order of nonlinearity higher than one. Together with the nonlinear
system (2.4) we will consider the linear approximation

z1(n + 1) = (a − µbx∗

2e
−µx∗1 )z1(n) + be−µx∗1z2(n − 1) + σ1z1(n)ξ1(n + 1),

z2(n + 1) = (c − νdx∗

1e
−νx∗2 )z2(n) + de−νx∗2z1(n − 1) + σ2z2(n)ξ2(n + 1),

(2.5)

of the system (2.4).
It is easy to see that for the zero equilibrium E0 the systems (2.4), (2.5) respectively are

y1(n + 1) = ay1(n) + by2(n − 1)e−µy1(n) + σ1y1(n)ξ1(n + 1),

y2(n + 1) = cy2(n) + dy1(n − 1)e−νy2(n) + σ2y2(n)ξ2(n + 1),
(2.6)

and

z1(n + 1) = az1(n) + bz2(n − 1) + σ1z1(n)ξ1(n + 1),
z2(n + 1) = cz2(n) + dz1(n − 1) + σ2z2(n)ξ2(n + 1).

(2.7)

Put now y(n) = (y1(n), y2(n))′, z(n) = (z1(n), z2(n))′, ϕ(n) = (ϕ1(n), ϕ2(n))′.
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Definition 2.1. The zero solution of the system (2.4) (or (2.6)) is called stable in probability if for any ε > 0 and ε1 > 0 there
exists a δ > 0 such that the solution y(n) = y(n, ϕ) of the system (2.4) (or (2.6)) satisfies the inequality P{supn∈Z |y(n)| >
ε} < ε1 for any initial function (2.3) such that P{∥ϕ∥0 < δ} = 1, where ∥ϕ∥0 = maxl∈Z0 |ϕ(l)|.

Definition 2.2. The zero solution of the system (2.5) (or (2.7)) is called mean square stable if for each ε > 0 there exists a
δ > 0 such that E|z(n)|2 < ε, n ∈ Z , for any initial function (2.3) such that ∥ϕ∥

2
= maxl∈Z0 E|ϕ(l)|2 < δ; asymptotically

mean square stable if it is mean square stable and for each initial function (2.3) such that ∥ϕ∥
2 < ∞ the solution z(n) of the

system (2.5) (or (2.7)) satisfies the condition limn→∞ E|z(n)|2 = 0.

Let Ei = E{./Fi} be the conditional expectation with respect to the σ -algebra Fi. Put Uε = {x : |x| ≤ ε} and 1Vi
= Vi+1 − Vi.

Theorem 2.1 ([6]). For the system (2.4) (or (2.6)) assume there exists a functional Vi = V (i, y(−1), . . . , y(i)) satisfying the
conditions

V (i, y(−1), . . . , y(i)) ≥ c0|y(i)|2, (2.8)

V (0, ϕ(−1), . . . , ϕ(0)) ≤ c1∥ϕ∥
2, (2.9)

Ei1Vi ≤ 0, xj ∈ Uε, −h ≤ j ≤ i, i ∈ Z, (2.10)

where ε > 0, c0 > 0, c1 > 0. Then the trivial solution of Eq. (2.4) (or (2.6)) is stable in probability.

Theorem 2.2 ([6]). For the system (2.5) (or (2.7)) there exists a nonnegative functional Vi = V (i, z(−1), . . . , z(i)) satisfying
the conditions (2.9) and

E1Vi ≤ −c2E|z(i)|2, i ∈ Z, (2.11)

where c2 > 0. Then the zero solution of the system (2.5) (or (2.7)) is asymptotically mean square stable.

Remark 2.1. Let us suppose that for some nonlinear stochastic difference equations with an order of nonlinearity higher
than one there exists a functional Vi, which satisfies the conditions (2.8), (2.9), (2.11) for the linear part of the considered
nonlinear equation. As it is shown in [6, p. 150] this functional satisfies also the condition (2.10) for the initial nonlinear
equation. Thus, to get sufficient conditions for stability in probability of the zero solution of the nonlinear system (2.4) (or
(2.6)) it is enough by virtue of some functional, which satisfies the conditions (2.8), (2.9), (2.11), to get sufficient conditions
for asymptotic mean square stability of the zero solution of the linear system (2.5) (or (2.7)).

3. Stability condition

Consider the system of two linear stochastic difference equations

z1(n + 1) = a11z1(n) + b12z2(n − 1) + σ1z1(n)ξ1(n + 1),
z2(n + 1) = a22z2(n) + b21z1(n − 1) + σ2z2(n)ξ2(n + 1),

(3.1)

where σ1, σ1 are given constants and ξk(n), k = 1, 2, n ∈ Z , are mutually independent sequences of Fn-adapted random
variables satisfying the conditions (2.1).

It is easy to see that the systems (2.4) and (2.6) are particular cases of the system (3.1).
To get asymptotic mean square stability condition for the zero solution of the system (3.1) put

A0 =


a11 0
0 a22


, A1 =


0 b12
b21 0


,

A =


0 E
A1 A0


, D =


D11 D12
D′

12 D22


, U =


0 0
0 P


.

(3.2)

Here A0, A1 are matrices of dimension 2 × 2, A, D, U are matrices of dimension 4 × 4, where

E =


1 0
0 1


, P =


p11 p12
p12 p22


,

D11 =


d11 d12
d12 d22


, D12 =


d13 d14
d23 d24


, D22 =


d33 d34
d34 d44


,

(3.3)

are matrices of dimension 2 × 2.
Note that P , D and U are symmetric matrices. For two symmetric matrices P and Q we will write P > Q if the matrix

P − Q is a positive definite matrix.
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Theorem 3.1. Let for some positive definite matrix P the matrix equation

A′DA − D = −U (3.4)

have a positive semidefinite solution D of the form (3.2), (3.3) such that

P >


d33σ 2

1 0
0 d44σ 2

2


. (3.5)

Then the zero solution of Eq. (3.1) is asymptotically mean square stable.

Proof. Using the matrices A0 and A1 defined in (3.2) and

Θ(ξ(n)) =


σ1ξ1(n) 0

0 σ2ξ2(n)


, z(n) =


z1(n)
z2(n)


, (3.6)

represent the system (3.1) in the form

z(n + 1) = A0z(n) + A1z(n − 1) + Θ(ξ(n + 1))z(n). (3.7)

It is easy to see that by virtue of the matrix A defined in (3.2) and

B(ξ(n)) =


0 0
0 Θ(ξ(n))


, w(n) =


z(n − 1)
z(n)


, (3.8)

Eq. (3.7) can be written as follows

w(n + 1) = [A + B(ξ(n + 1))]w(n). (3.9)

Consider the Lyapunov functional

V (n) = w′(n)Dw(n),

with the matrix D defined in (3.2), (3.3). Calculating the expectation of

1V (n) = V (n + 1) − V (n)

via (3.9), (3.4) and the properties (2.1) of the sequences ξk(n) we obtain

E1V (n) = E(w′(n + 1)Dw(n + 1) − w′(n)Dw(n))
= Ew′(n)


[A + B(ξ(n + 1))]′D[A + B(ξ(n + 1))] − D


w(n)

= Ew′(n)

A′DA − D + B′(ξ(n + 1))DB(ξ(n + 1))


w(n)

= Ew′(n)

−U + B′(ξ(n + 1))DB(ξ(n + 1))


w(n). (3.10)

Note that via (3.2), (3.8) we have

B′(ξ(n))DB(ξ(n)) =


0 0
0 Θ(ξ(n))

 
D11 D12
D′

12 D22

 
0 0
0 Θ(ξ(n))


=


0 0
0 Θ(ξ(n))D22Θ(ξ(n))


(3.11)

and via (3.3), (3.6) using the properties (2.1) of ξk(n) we obtain

EΘ(ξ(n))D22Θ(ξ(n)) = E


σ1ξ1(n) 0
0 σ2ξ2(n)

 
d33 d34
d34 4d44

 
σ1ξ1(n) 0

0 σ2ξ2(n)


= E


d33σ 2

1 ξ 2
1 (n) d34σ1σ2ξ1(n)ξ2(n)

d34σ1σ2ξ1(n)ξ2(n) d44σ 2
2 ξ 2

2 (n)


=


d33σ 2

1 0
0 d44σ 2

2


. (3.12)
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From (3.10), (3.11), (3.12) via (3.2), (3.8) it follows that

E1V (n) = ETr((w(n)w′(n))[−U + B′(ξ(n + 1))DB(ξ(n + 1))])

= ETr


z(n − 1)z ′(n − 1) z(n − 1)z ′(n)
z(n)z ′(n − 1) z(n)z(n)


×


0 0
0 −P + Θ(ξ(n + 1))D22Θ(ξ(n + 1))


= ETr


0 (z(n − 1)z ′(n))[−P + Θ(ξ(n + 1))D22Θ(ξ(n + 1))]
0 (z(n)z ′(n))[−P + Θ(ξ(n + 1))D22Θ(ξ(n + 1))]


= Tr(E(z(n)z ′(n))[−P + EΘ(ξ(n + 1))D22Θ(ξ(n + 1))])

= Tr

E(z(n)z ′(n))


−P +


d33σ 2

1 0
0 d44σ 2

2


= Ez ′(n)


−P +


d33σ 2

1 0
0 d44σ 2

2


z(n).

From this and (3.5) it follows that E1V (n) ≤ −cE|z(n)|2 and via Theorem 2.2 the zero solution of Eq. (3.1) is asymptotically
mean square stable. The proof is completed.

Corollary 3.1. If the condition of Theorem 3.1 holds for the system (2.7) (or (2.5)), then via Remark 2.1 the zero solution of the
system (2.6) (or (2.4)) is stable in probability and therefore the zero (or positive) equilibrium of the system (1.1) with stochastic
perturbations is stable in probability.

Remark 3.1. Via (3.2), (3.3) the matrix equation (3.4) is equivalent to the following system of 10 algebraic equations

b221d44 = d11, b212d33 = d22, b12b21d34 = d12,
b21d14 + a11b21d34 = d13, b21d24 + a22b21d44 = d14,
b12d13 + a11b12d33 = d23, b12d23 + a22b12d34 = d24,

d11 + 2a11d13 + (a211 − 1)d33 = −p11,

d22 + 2a22d24 + (a222 − 1)d44 = −p22,
d12 + a22d14 + a11d23 + (a11a22 − 1)d34 = −p12.

(3.13)

Solving this system with respect to dij, 1 ≤ i ≤ j ≤ 4, (see Appendix) one can get the condition (3.5) in an explicit form.
Choosing different positive definite matrices P one can get different stability conditions.

Remark 3.2. Note that the proposed investigation procedure can be applied for arbitrary nonlinear difference equations
with an order of nonlinearity higher than one. For instance, by the condition (1.5) the system

x1(n + 1) = [ax1(n) + bx2(n − 1)]e−µx1(n),

x2(n + 1) = [cx2(n) + dx1(n − 1)]e−νx2(n),
(3.14)

which a bit differs from (1.1) instead of the zero equilibrium has a positive equilibrium too. Similarly to Lemmas 1.1 and 1.2
the following statement can be proved.

Lemma 3.1. If the conditions (1.5) hold, then the positive equilibrium point E+ = (x∗

1, x
∗

2) of the system (3.14) there exists and
satisfies the conditions

e
ν
b x

∗
1(eµx∗1−a)

= c +
bd

eµx∗1 − a
,

e
µ
d x∗2(eνx

∗
2−c)

= a +
bd

eνx∗2 − c
,

x∗

2 =
x∗

1

b
(eµx∗1 − a),

and also (1.11). Further investigation of stability of the system (3.14) with stochastic perturbations is similar to the investigation
of the system (1.1).

4. Numerical simulations

Below the obtained results are illustrated by numerical simulations of the system (1.1) solution for both zero and positive
equilibriums.
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Fig. 4.1. The curve L defined by the equation bd = (1 − a)(1 − c) and the points A(0.65, 0.5) and B(0.9, 0.5).

Consider the system (1.1) with the following values of the parameters:

a = 0.65, b = 0.25, c = 0.5, d = 0.35, µ = ν = 0.5. (4.1)

Via (1.4) in this case η = 0.5 < 1 and therefore (Lemma 1.1) the zero equilibrium there exists only.
In Fig. 4.1 in the space of the parameters (a, c) two regions are shown: the regionM , where the system (1.1) can have the

zero equilibrium only, and the region N , where the system (1.1) besides the zero equilibrium has the positive equilibrium
too. Via Lemma 1.1 both these regions are separated by the curve L defined by the equation

bd = (1 − a)(1 − c)

for the values of the parameters b, d given in (4.1). So, in the point A(0.65, 0.5) the system (1.1) has the zero equilibrium E0
only, in the point B(0.9, 0.5) the system (1.1) has both equilibriums E0 and E+.

Solving the system (3.13) for the matrix P with the elements

p11 = p22 = 1, p12 = 0, (4.2)

we obtain the positive definite matrix

D =

0.239 0.089 0.385 0.437
0.089 0.188 0.586 0.274
0.385 0.586 3.012 1.020
0.437 0.274 1.020 1.950

 . (4.3)

So, from the conditions (3.5) and (4.2), (4.3) for the point A(0.65, 0.5) we obtain the following statements: if

σ1 < 1/3.012 = 0.332 and σ2 < 1/1.950 = 0.513, (4.4)

then
– the zero solution of the system (2.7) is asymptotically mean square stable;
– the zero solution of the system (2.6) (the zero equilibrium by stochastic perturbations) is stable in probability.

In Fig. 4.2 the solutions of the systems (2.7) (z1—blue, z2—lilac) and (2.6) (y1—green, y2—red) are shown for σ1 = σ2 = 0
and the initial conditions

z1(−1) = y1(−1) = 1.10, z1(0) = y1(0) = 0.30,
z2(−1) = y2(−1) = 0.40, z2(0) = y2(0) = 1.00.

(4.5)

The both solutions converge to zero.
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Fig. 4.2. The solutions of the systems (2.7) (z1—blue, z2—lilac) and (2.6) (y1—green, y2—red) in the case σ1 = σ2 = 0. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Put now a = 0.9. Using the values of all other parameters given in (4.1) via (1.4) we have η = 1.75 > 1. So, in the point
B(0.9, 0.5) the system (1.1) has a positive equilibrium and from (1.6)–(1.8) we get x∗

1 = 0.712, x∗

2 = 0.407. Note also that
for these x∗

1 , x
∗

2 the conditions (1.9)–(1.11) hold:

0.658 < x∗

1 = 0.712 < 0.895,
0.320 < x∗

2 = 0.407 < 0.461,

0.4 <
x∗

2

x∗

1
= 0.572 < 0.7.

Solving the system (3.13) for the matrix P with the elements (4.2) we obtain the positive definite matrix

D =

0.158 0.121 0.696 0.346
0.121 0.286 1.535 0.437
0.696 1.535 9.338 2.418
0.346 0.437 2.418 1.943

 . (4.6)

So, from the conditions (3.5) and (4.2), (4.6) for the point B(0.9, 0.5) we obtain the following statements: if

σ1 < 1/9.338 = 0.107 and σ2 < 1/1.943 = 0.515, (4.7)

then

– the zero solution of the system (2.5) is asymptotically mean square stable;
– the zero solution of the system (2.4) (and therefore the equilibrium point (x∗

1, x
∗

2) = (0.712, 0.407) of the system (2.2))
is stable in probability.

In Fig. 4.3 the solutions of the systems (2.5) (z1—blue, z2—lilac) and (2.2) (x1—green, x2—red) are shown for σ1 = σ2 = 0
and the initial conditions

z1(−1) = 0.700, z1(0) = 0.300,
z2(−1) = 0.400, z2(0) = 0.750,
x1(−1) = 0.001, x1(0) = 0.000,
x2(−1) = 0.000, x2(0) = 0.001.

(4.8)

Here one can see the following:

– the zero solution of the system (2.5) is asymptotically mean square stable, so, the solution of the system (2.5) with
nonzero initial functions goes to the zero;

– the zero solution of the system (2.2) is unstable, so, the solution of the system (2.2) with almost zero initial functions
(see (4.8)) converges to the asymptotically stable positive equilibrium (x∗

1, x
∗

2) = (0.712, 0.407).

The last statementmeans in particular that by the considered values of the parameters the zero equilibrium of the system
(1.1) (since the system (2.2) with σ1 = σ2 = 0 coincides with (1.1)) is unstable. Really, solving the system (3.13) for the
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Fig. 4.3. The solutions of the systems (2.5) (z1—blue, z2—lilac) and (2.2) (x1—green, x2—red) in the case σ1 = σ2 = 0. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.4. The solutions of the systems (2.7) (z1—blue, z2—lilac) and (2.6) (y1—green, y2—red) in the case σ1 = σ2 = 0. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

matrix P with the elements (4.2) we obtain that all diagonal elements of the matrix D are negative:

d11 = −0.017, d22 = −0.334, d33 = −5.347, d44 = −0.139,

i.e., the matrix D is not a positive definite. In Fig. 4.4 the solutions of the systems (2.7) (z1—blue, z2—lilac) and (2.6) (y1—
green, y2—red) are shown for σ1 = σ2 = 0 and the initial conditions (4.5). The zero solution of the system (2.7) is unstable,
therefore, the solution converges to the infinity. The solution of the system (2.6) (by σ1 = σ2 = 0 it coincides with (1.1))
converges to the positive equilibrium point E+(0.712, 0.407).

Consider now numerical simulation of the system (1.1) with stochastic perturbations that are directly proportional to the
deviation of the system state from the equilibrium point. More exactly consider the system (2.6) that is the system (1.1) with
stochastic perturbations around the zero equilibrium E0(0, 0) and the system (2.2) that is the system (1.1) with stochastic
perturbations around the positive equilibrium E+(0.712, 0.407).
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Fig. 4.5. 100 trajectories of the solution of the system (2.6) (y1—green, y2—red) in the point A(0.65, 0.5). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

For numerical simulation of the system (2.6) solution we will use the values of the parameters given in (4.1) and put
σ1 = 0.33, σ2 = 0.51. Via (4.4) for these values of σ1, σ2 the zero equilibrium E0(0, 0) in the point A(0.65, 0.5) (see Fig. 4.1)
is stable in probability.

For simulation of stochastic perturbations we will use sequences of random variables ξ(n) uniformly distributed on the
interval (−

√
3,

√
3). So, Eξ(n) = 0, Eξ 2(n) = 1.

In Fig. 4.5 100 trajectories of the solution of the system (2.6) with the initial conditions (4.5) are shown. According to
stability in probability of the zero equilibrium of the system (2.6) all trajectories converge to zero (y1—green, y2—red).

Put now a = 0.9 and consider behavior of the zero equilibrium E0(0, 0) in the point B(0.9, 0.5). In Fig. 4.6 50 trajectories
of the system (2.6) solution (y1—green, y2—red) are shown for the initial conditions (4.5) and small enough σ1, σ2: σ1 = 0.1,
σ2 = 0.2. In the point B(0.9, 0.5) the zero equilibrium of the system (2.6) is unstable, so, the trajectories fill whole space.

In Fig. 4.7 100 trajectories of the system (2.2) solution with the initial conditions

x1(−1) = 0.9, x1(0) = 0.3,
x2(−1) = 0.1, x2(0) = 0.9,

and σ1 = 0.1, σ2 = 0.51 are shown. Via (4.7) by these values of the parameters σ1, σ2 the positive equilibrium of the system
(2.2) in the point B is stable in probability, so, all trajectories converge to the positive equilibrium E+(0.712, 0.407).

In Fig. 4.8 for comparison with Fig. 4.7 a similar picture is shown with the initial conditions which are close to
E+(0.712, 0.407) (x1(−1) = x1(0) = 0.7, x2(−1) = x2(0) = 0.4) and doubled noise levels. One can see that by these
noise levels the equilibrium E+ is unstable.

5. Conclusions

In this paper, a system of nonlinear difference equations with exponential nonlinearity is considered. It is supposed that
this system is exposed to stochastic perturbations that are directly proportional to the deviation of the system state from
one of two (the zero or positive) equilibrium points. The special procedure is proposed which allows to get sufficient con-
ditions for stability in probability of the system equilibriums. The obtained results are illustrated by numerical simulations
of solutions of the considered system.

The proposed investigation procedure can be applied for arbitrary nonlinear difference equations with an order of non-
linearity higher than one.
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Fig. 4.6. 50 trajectories of the solution of the system (2.6) (y1—green, y2—red) in the point B(0.9, 0.5). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4.7. 100 trajectories of the solution of the system (2.2) (x1—green, x2—red) in the point B(0.9, 0.5) with σ1 = 0.1, σ2 = 0.51. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix. Solution of the system (3.13)

Put

α1 =
a11b212

1 − b212b
2
21

, α2 =
γ2b12

1 − b212b
2
21

, α3 =
a22b212b

2
21

1 − b212b
2
21

,

β0 =
p22

2α2a22
, β1 =

b212
2α2a22

+
α1

α2
, β2 =

1 − a222
2α2a22

−
α3

α2
,

γ1 = a11 + α2b21, γ2 = a22 + a11b12b21, γ3 = α3 + a22
Q00 = α2γ2b21 + a11a22 + b12b21(1 + a211) − 1,
Q10 = 2β0γ1a11b21 − p11,
Q11 = a11(a11 + 2α1b221) − 2β1γ1a11b21 − 1,

Q12 = 2β2γ1a11b21 + b221(2a11γ3 + 1),
Q20 = β0Q00 − p12,
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Fig. 4.8. 100 trajectories of the solution of the system (2.2) solution (x1—green, x2—red) in the point B(0.9, 0.5) with doubled noise levels. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Q21 = α1γ2b21 + a211b12 − β1Q00,

Q22 = β2Q00 + γ2γ3b21,
ρ = Q11Q22 − Q12Q21.

Then the solution of the system (3.13) can be obtained by the following way:

d33 =
1
ρ

(Q10Q22 − Q12Q20), d44 =
1
ρ

(Q11Q20 − Q10Q21),

d34 = −β0 − β1d33 + β2d44,

d24 =
1

2a22
((1 − a222)d44 − b212d33 − p22), d23 =

1
b12

(d24 − a22b12d34),

d14 = b21d24 + a22b21d44, d13 = b21d14 + a11b21d34,
d11 = b221d44, d12 = b12b21d34, d22 = b212d33.
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