
Automatica 74 (2016) 288–296
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Delay-induced stability of vector second-order systems via simple
Lyapunov functionals✩

Emilia Fridman, Leonid Shaikhet
School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

a r t i c l e i n f o

Article history:
Received 23 January 2016
Received in revised form
28 June 2016
Accepted 30 June 2016

Keywords:
Time-delay systems
Stabilization by using delay
Lyapunov–Krasovskii method

a b s t r a c t

It is well known that some important classes of systems (e.g. inverted pendulums, oscillators, double
integrators) that cannot be stabilized by a static output-feedback, may be stabilized by inserting an
artificial time-delay in the feedback. Static output-feedback controllers have advantages over observer-
based controllers in the presence of uncertainties in the system matrices and/or uncertain input/output
delays, where the observer-based design becomes complicated. The existing Lyapunov-based methods
that may treat the case of stabilizing delays and that lead to stability conditions in terms of Linear Matrix
Inequalities (LMIs) suffer from high-dimensionality of the resulting LMIs with a large number of decision
variables. In this paper, we suggest simple Lyapunov functionals for vector second-order systems with
stabilizing delays that lead to reduced-order LMIs with a small number of decision variables. Moreover,
differently from the existing methods, we show that the presented LMIs are always feasible for small
enough delays.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that time-delay is, in many cases, a source of
instability. However, for some systems, the presence of delay can
have a stabilizing effect (Abdallah, Dorato, Benitez-Read, & Byrne,
1993; Niculescu &Michiels, 2004; Richard, 2003). Thus, the double
integrator

ÿ(t) = u(t), y(t) ∈ R

is not stabilizable by the non-delayed static output-feedback
u(t) = K0y(t). However, this system is stabilizable by the delayed
static output-feedback

u(t) = K1y(t) + K2y(t − h), h > 0

since it is stabilizable by u(t) = K̄1y(t) + K̄2ẏ(t) and

ẏ(t) ≈
y(t) − y(t − h)

h
, h > 0.
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Simple static output-feedback control has advantages over
observer-based control in the presence of uncertainties in the sys-
tem matrices and/or uncertain input/output delays, where the
observer-based design becomes complicated. The idea of using ar-
tificial delay became attractive and was applied e.g. for sliding
mode control (Seuret, Edwards, Spurgeon, & Fridman, 2009) and
for delay-induced consensus in multi-agent systems (Yu, Chen,
Cao, & Ren, 2013).

Lyapunov-based methods for stabilizing delay may treat
uncertain systems and analyze system performance (see e.g.
Fridman & Tsodik, 2009, Fridman, 2014, Gu, Kharitonov, & Chen,
2003). The main Lyapunov method leading to LMI conditions that
has been used till now for the case of stabilizing delay is discretized
Lyapunov method (Gu, 1997; Gu et al., 2003). This method is
based on the discretization of the general Lyapunov functional that
corresponds to necessary and sufficient conditions for stability of
systems with constant delay. In some cases, augmented Lyapunov
functional of Seuret and Gouaisbaut (2013) (that may be also
considered as a certain choice of general Lyapunov functional
Fridman, 2014) is applicable to the case of stabilizing delay. Both
methods (Gu et al., 2003; Seuret & Gouaisbaut, 2013) lead to high-
order LMIs with a large number of decision variables.

A model transformation-based method for stabilization by us-
ing constant artificial delay of the scalar second-order system that
models inverted pendulumwas suggested in Borne, Kolmanovskii,
and Shaikhet (2000). The latter method uses simple Lyapunov
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functionals for the analysis of the transformed neutral type sys-
tems. The stability conditions in Borne et al. (2000) are given in
terms of inequalities on the system coefficients.

The objective of the present paper are simple LMI conditions
for delay-induced stabilization of the vector second-order sys-
tems. Both cases of constant and time-varying stabilizing de-
lays are considered. Two main approaches are suggested for the
Lyapunov–Krasovskii stability analysis via simple Lyapunov func-
tionals. The first one is a new method based on the application
of Wirtinger’s inequality that leads to the simplest LMI condi-
tions. However, this method employs a Lyapunov functional de-
pending on the state derivative that seems to be not applicable
to the stochastic case. The second approach extends the model
transformation-based approach of Borne et al. (2000) and Shaikhet
(2013) to linear vector second-order systems via a comprehen-
sive technique. The latter approach is applied to deterministic and
stochastic systems. Differently fromGu et al. (2003) and Seuret and
Gouaisbaut (2013) we explain that the new LMI conditions are al-
ways feasible for small enough values of the delay. The presented
LMIs essentially reduce the number of decision variables compara-
tively to Gu et al. (2003) and Seuret and Gouaisbaut (2013) leading
in examples to a slightly more conservative results.

The paper is organized as follows. After Problem Formulation in
Section 2, we present two different Lyapunov methods for delay-
induced stability in Sections 3 and 4, and give illustrating examples
in Section 5.

Notation. Throughout the paper the superscript ‘′’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean
space with vector norm | · |, Rn×m is the set of all n × m real
matrices, and the notation P > 0, for P ∈ Rn×n means that P is
symmetric and positive definite, In is the identity n × n-matrix.
The symmetric elements of the symmetric matrix is denoted by ∗.
By O(h) we denote a matrix/scalar function of h ∈ R+ such that
limh→0+

|O(h)|
h = M , where M > 0 is constant.

2. Problem formulation and preliminaries

We consider stabilization of the vector second-order system

ÿ(t) = A1y(t) + A2ẏ(t) + Bu(t − h1) (2.1)

by a static output-feedback of the form

u(t) = K1y(t) + K2y(t − h). (2.2)

Here, y(t) ∈ Rn is the measurement, u(t) ∈ Rk(k ≤ n) is the
control input, A1, A2 ∈ Rn×n and B ∈ Rn×k are system matrices.
K1, K2 ∈ Rk×n are controller gains, h1 ≥ 0 is input delay and h > 0
is a ‘stabilizing delay’. In the case of scalar y and A2 = 0 the stability
of (2.1), (2.2) was analyzed in Borne et al. (2000) and Shaikhet
(2013) via Lyapunov–Krasovskii method. The scalar system (2.1)
with B = 1 and A2 = 0 may model a double integrator (for A1 =

0), an inverted pendulum (for A1 > 0) and a double oscillator
(for A1 < 0). In the vector case, (2.1) may present e.g. a model
of inverted pendulum on the cart (see Example 3) or large-scale
system of double integrators, inverted pendulums or oscillators.

Denoting

x(t) = col{x1(t), x2(t)} = col{y(t), ẏ(t)}, h2 = h1 + h,

we present the closed-loop system (2.1), (2.2) as

ẋ(t) =


0 In
A1 A2


x(t) +

2
i=1


0
B


Kix1(t − hi). (2.3)

We assume that the delay h > 0 is constant and known. For the
delay h1, we will consider two cases:
(1) h1 is constant and known;
(2) h1 = h1(t) is piecewise-continuous in time and bounded

h1(t) ∈ [0, h1M ], h2(t) = h + h1(t) ∈ [h, h + h1M ],

where h1M (and, thus, h2M = h + h1M ) is known.
Throughout the paper we assume
A1 The pair


0 In
A1 A2


,

0
B


is stabilizable.

In case (1) of the known h1, under A1 there exist k × n gains K̄1
and h2K̄2 such that the following matrix is Hurwitz:

D̄1 = D̄1(h2) =


0 In
A1 A2


+


0
B


[K̄1 h2K̄2]. (2.4)

Assuming h1 = O(h2
2) (meaning that the stabilizing delay h is larger

than the input one h1) and substituting

x1(t) = x1(t − h1) + O(h1),

h2x2(t) = x1(t) − x1(t − h2) + O(h2
2)

= x1(t − h1) − x1(t − h2) + O(h2
2)

into K̄1x1(t)+h2K̄2x2(t), the system ẋ(t) = D̄1x(t) can be presented
as

ẋ(t) =


0 In
A1 A2


x(t) +

2
i=1


0
B


Kix1(t − hi) + O(h2

2)

with

K1 = K̄1 + K̄2, K2 = −K̄2. (2.5)

Hence, under A1 the system (2.3) is asymptotically stable for small
enough h2. From (2.5), we have K̄1 = K1 + K2, K̄2 = −K2.
Substituting the latter into D̄1, we arrive at the Hurwitz matrix

D1 = D1(h2) =


0 In

A1 + B(K1 + K2) A2 − h2BK2


. (2.6)

In the present paper, for case (1) given Ki, hi(i = 1, 2) we assume
that D1 defined by (2.6) is Hurwitz. In case (2), K1 and K2 may be
found from (2.5), where K̄1 and K̄2 are such that the matrix D̄1(h)
defined by (2.4) is Hurwitz. In both cases, we will derive sufficient
stability conditions for the system (2.3) in terms of the low-order
LMIs with a small number of decision variables. We will show that
these LMIs are always feasible for small enough h2.

We present below some useful lemmas.

Lemma 1 (Wirtinger’s Inequality Liu, Suplin, & Fridman, 2010). Let
z(t) : (a, b) → Rn be absolutely continuous with ż ∈ L2(a, b) and
z(a) = 0 or z(b) = 0. Then for any n×nmatrixW > 0 the following
inequality holds: b

a
z ′(ξ)Wz(ξ)dξ ≤

4(b − a)2

π2

 b

a
ż ′(ξ)Wż(ξ)dξ . (2.7)

Lemma 2 (Jensen’s Inequality Solomon & Fridman, 2013). Denote

G =

 b

a
f (s)x(s)ds,

where a ≤ b, f : [a, b] → [0, ∞), x(s) ∈ Rn and the integration
concerned is well defined. Then for any n × n matrix R > 0 the
following inequality holds:

G′RG ≤

 b

a
f (θ)dθ

 b

a
f (s)x′(s)Rx(s)ds. (2.8)
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Lemma 3 (Melchor-Aguilar, Kharitonov, & Lozano, 2010). Consider
the integral equation

z(t) =

m
i=1

 0

−hi
Fi(s)z(t + s)ds, z(t) ∈ Rn, (2.9)

where Fi(s) ∈ Rn×n is integrable. If there exists a continuous func-
tional V (ϕ) such that V (zt) is differentiable in t ≥ 0 and the follow-
ing conditions hold

α1

m
i=1

 0

−hi
|ϕ(s)|2ds ≤ V (ϕ) ≤ α2

m
i=1

 0

−hi
|ϕ(s)|2ds, (2.10)

d
dt

V (zt) ≤ −β

m
i=1

 0

−hi
|z(t + s)|2ds, (2.11)

with some positive constants α1 ≤ α2 and β , then (2.9) is exponen-
tially stable.

3. Wirtinger’s inequality-based approach

In this section we consider (2.3) in case 2 of time-varying delay
h1 = h1(t) ∈ [0, h1M ] and h2 = h2(t) ∈ [h, h2M ]. The term with
stabilizing delay x1(t − h2) can be presented as

x1(t − h2) = x1(t) − h2x2(t) + δ2(t), (3.1)
δ2(t) = h2x2(t) − [x1(t) − x1(t − h2)].

Since ẋ1(t) = x2(t), the delayed term x1(t − h1) can be presented
as

x1(t − h1) = x1(t) + δ1(t), δ1(t) = −

 t

t−h1
x2(s)ds. (3.2)

Substituting (3.1) and (3.2) into (2.3) we arrive at the following
system

ẋ(t) = D1(h2)x(t) +

2
i=1


0
B


Kiδi(t). (3.3)

Theorem 1. Given Ki ∈ Rk×n(i = 1, 2), h1M ≥ 0 and h > 0 assume
that the matrix D1(h) defined by (2.6), is Hurwitz. Let there exist
positive definite k × k-matrices W , R and 2n × 2n-matrix P > 0
that satisfy the following LMIs

Ξ(h) < 0, Ξ(h2M) < 0, (3.4)

where h2M = h + h1M and

Ξ(h2) =


X1 X X h2

2MD′

1[0 K2]
′W

∗ −R 0 h2
2MB′K ′

2W

∗ ∗ −
π2

4
W h2

2MB′K ′

2W

∗ ∗ ∗ −W

 ,

X1 = D′

1(h2)P + PD1(h2) + diag

0, h2

1MK ′

1RK1

,

X = P · col{0, B}.

Then the system (2.3) is asymptotically stable for all h1(t) ∈ [0,
h1M ], h2(t) ∈ [h, h2M ]. Moreover, the LMIs (3.4) are always feasible
for small enough h and h1M = O(h2) provided A2 = O(h).

In case of constant h1 ≡ h1M , the system (2.3) is asymptotically
stable if Ξ(h2M) < 0.
Proof. Differentiating V1(x) = x′Px, P > 0, along (3.3) we have

d
dt

V1(x(t)) = 2x′(t)P


D1(h2)x(t) +

2
i=1


0
B


Kiδi(t)


. (3.5)

In order to compensate δ1 and δ2-terms in (3.5) consider

V2(xt) = h1M

 t

t−h1M
(s − t + h1M)x′

2(s)R̂x2(s)ds,

R̂ = K ′

1RK1, (3.6)

and

V3(xt) = h3
2M

 t

t−h2M
(s − t + h2M)ẋ′

2(s)Ŵ ẋ2(s)ds,

Ŵ = K ′

2WK2, (3.7)

respectively. We have

d
dt

V2(xt) ≤ h2
1Mx′

2(t)R̂x2(t) − h1M

 t

t−h1
x′

2(s)R̂x2(s)ds,

d
dt

V3(ẋt) ≤ h4
2M ẋ′

2(t)Ŵ ẋ2(t) − h3
2M

 t

t−h2
ẋ′

2(s)Ŵ ẋ2(s)ds.

Then, by Jensen’s inequality (2.8)

d
dt

V2(xt) ≤ h2
1Mx′

2(t)R̂x2(t) − δ′

1(t)R̂δ1(t). (3.8)

By Wirtinger’s inequality (2.7)

−h3
2M

 t

t−h2
ẋ′

2(s)Ŵ ẋ2(s)ds

≤ −
π2

4
h2M

 t

t−h2
[x2(t) − x2(s)]′Ŵ [x2(t) − x2(s)]ds.

Therefore
d
dt

V3(ẋt) ≤ h4
2M ẋ′

2(t)Ŵ ẋ2(t)

−
π2

4
h2M

 t

t−h2
[x2(t) − x2(s)]′Ŵ [x2(t) − x2(s)]ds.

Applying further Jensen’s inequality (2.8) to the last integral term
and taking into account that t

t−h2
[x2(t) − x2(s)]ds = δ2(t)

we arrive at

d
dt

V3(ẋt) ≤ h4
2M ẋ′

2(t)Ŵ ẋ2(t) −
π2

4
δ′

2Ŵδ2. (3.9)

Choose Lyapunov functional

V (xt , ẋt) = V1(x(t)) + V2(xt) + V3(ẋt).

Denote η(t) = col{x(t), K1δ1(t), K2δ2(t)}. Differentiating V along
(3.3) and using (3.5)–(3.9) we find

d
dt

V (xt , ẋt) ≤ η′(t)

X1 X X
∗ −R 0

∗ ∗ −
π2

4
W

 η(t)

+ h4
2M ẋ′

2(t)K
′

2WK2ẋ2(t). (3.10)

Substituting

K2ẋ2 = [0 K2]D1x(t) +

2
i=1

K2BKiδi(t)
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into (3.10) and applying Schur complement we conclude that
d
dt V ≤ −c|x(t)|2 for some c > 0 if Ξ(h2) < 0. Since D1 = D1(h2)
is affine in h2, the matrix Ξ(h2) is affine in h2. Therefore, the
feasibility of the LMIs (3.4) yields the inequality Ξ(h2) < 0 for all
h2 = h2(t) ∈ [h, h2M ]. The latter inequality implies the asymptotic
stability of (3.3) and thus of (2.3).

We prove next the feasibility of LMIs (3.4) for small enough
h1M = O(h2). Let P be a solution of the Lyapunov equation

D′

1(h)P + PD1(h) = −hI2n.

Then P = O(1) and for h1M = O(h2)

D′

1(h2M)P + PD1(h2M) = −hI2n + O(h2).

Choose R = h−1
1M Ik and W = h−2

2M Ik. Applying Schur complements
to Ξ(h) < 0 and Ξ(h2M) < 0, we arrive at

D′

1(h)P + PD1(h) + O(h2) < 0,

that holds for small h.
For constant delays h1 = h1M and h2 = h2M the result follows

from (3.10). �

Remark 1. Note that the objective of this paper is simple LMI
conditions for stability. It is clear that by adding additional terms
to V and applying appropriate inequalities (e.g. the standard by
now term

 t
t−h1M

x′(s)K ′

1SK1x(s)ds with S > 0 and the reciprocally
convex approach of Park, Ko, & Jeong, 2011) one can derive less
conservative conditions.

The method of Theorem 1 is not extendable to stochastic case
because of V3-term in V that depends on ẋ2. To derive results
applicable to the stochastic case, in the next section we consider
a model transformation-based approach.

4. Model transformation-based approach

In this section, we start with the case of constant and known
delays. Only in the end of section (in Section 4.4), we consider the
case of time-varying delays.

4.1. Neutral type model transformation of the system

The idea of the transformation thatwe use below is to represent
the system (2.3) in the formof a neutral type systemwithout delays
in the right-hand side of the equation. The term with stabilizing
delay x1(t − h2) can be presented as

x1(t − hi) = x1(t) − hix2(t) +
d
dt

Gi(x2t), (4.1)

where i = 2 and

Gi(x2t) =

 t

t−hi
(s − t + hi)x2(s)ds. (4.2)

Indeed, since ẋ1(t) = x2(t) we have

d
dt

Gi(x2t) = hix2(t) − [x1(t) − x1(t − hi)].

The term x1(t − h1) can be presented either as

x1(t − h1) = x1(t) +
d
dt

G1(x1t),

G1(x1t) = −

 t

t−h1
x1(s)ds,

(4.3)

or as (4.1), (4.2), where i = 1.
Differentways of the presentation for x1(t−h1) lead to different
neutral type systems and to different (complementary) stability
conditions. Using G1 of (4.3) and G2 of (4.2), we represent the
system (2.3) in the form of a neutral type system

ż(t) = D1x(t), x(t), z(t) ∈ R2n, (4.4)

where D1 is given by (2.6) and

x(t) = col{x1(t), x2(t)},

z(t) = x(t) − col{0, B}
2

i=1

KiGi(xit).
(4.5)

Using G1 and G2 of (4.2) we represent the system (2.3) in the form

ż(t) = D2x(t), x(t), z(t) ∈ R2n, (4.6)

where

x(t) = col{x1(t), x2(t)},

z(t) = x(t) − col{0, B}
2

i=1

KiGi(x2t),

D2 =

 0 In

A1 + BK1 + BK2 A2 −

2
i=1

hiBKi

 .

(4.7)

Note that if the matrix D1 is Hurwitz, then for small enough h1 =

O(h2
2) the matrix D2 is Hurwitz too. In Borne et al. (2000) and

Shaikhet (2013) representation (4.6), (4.7) was used.

Remark 2. Differently from the so-called first model transforma-
tion (see e.g. p. 81 of Fridman, 2014), the neutral type one does not
introduce additional dynamics. Indeed, it is easy to see that if x(t)
subject to continuous initial condition x(s) = φ(s), s ∈ [−h2, 0]
satisfies (2.3) for t ≥ 0, then it satisfies the transformed neutral
type systems and vise versa.

4.2. Stability of the integral equations

In order to use the Lyapunov–Krasovskii theorem for the
stability of the neutral type systems (see e.g. Theorem 8.1 on p. 293
of Hale & Verduyn Lunel, 1993), we first derive conditions for the
exponential stability of the corresponding integral equations

z(t) = 0. (4.8)

We will start with (4.8), where z(t) is defined by (4.5), i.e. with the
following system:

x1(t) = 0, x2(t) − BK1G1(x1t) − BK2G2(x2t) = 0.

It is clear that the latter system is exponentially stable if the
equation x2(t) = BK2G2(x2t) is exponential stable, i.e. if the
following integral equation

x2(t) =

 t

t−h2
(s − t + h2)BK2x2(s)ds (4.9)

is exponentially stable.

Lemma 4. Let there exists an n × n-matrix S2 > 0 such that the
following LMI holds

h2
2K

′

2B
′S2BK2 − 4h−2

2 S2 < 0. (4.10)

Then the integral equation (4.9) (and, thus, the integral equation (4.8),
where z(t) is defined by (4.5)) is exponentially stable.
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Proof. It is easy to see that the functional

VS(x2t) =

 t

t−h2
(s − t + h2 + α)2x′

2(s)S2x2(s)ds, (4.11)

where α > 0 and 0 < S2 ∈ Rn×n, satisfies the condition (2.10)
of Lemma 3. Calculating the derivative of the functional (4.11) we
obtain
d
dt

VS(x2t) ≤ (h2 + α)2x′

2(t)S2x2(t)

− 2
 t

t−h2
(s − t + h2)x′

2(s)S2x2(s)ds

− 2α
 t

t−h2
x′

2(s)S2x2(s)ds. (4.12)

Via Jensen’s inequality (2.8) we have

− 2
 t

t−h2
(s − t + h2)x′

2(s)S2x2(s)ds

≤ −4h−2
2 G′

2(x2t)S2G2(x2t). (4.13)

From this and (4.12) it follows that

d
dt

VS(x2t) ≤ (h2 + α)2x′

2(t)S2x2(t)

− 4h−2
2 G′

2(x2t)S2G2(x2t) − β

 t

t−h2
|x′

2(s)|
2ds (4.14)

where β = 2αλmin(S2) > 0. Here, λmin(S2) is the minimal eigen-
value of S2.

Substituting into (4.14) x2(t) = BK2G2(x2t), we obtain

d
dt

VS(x2t) ≤ G′

2(x2t)

(h2 + α)2K ′

2B
′S2BK2 − 4h−2

2 S2


×G2(x2t) − β

 t

t−h2
|x2(s)|2ds.

So, if

(h2 + α)2K ′

2B
′S2BK2 − 4h−2

2 S2 < 0 (4.15)

then the functional (4.11) satisfies also the condition (2.11) of
Lemma 3 and therefore (4.9) is exponentially stable. It is easy
to see that if (4.10) holds then (4.15) holds with a small enough
α > 0. �

Remark 3. Note that the feasibility of the LMI (4.10) is equivalent
to the fact that all the eigenvalues of 0.5h2

2BK2 are inside of the unit
circle (this LMI is Lyapunov inequality for the discrete-time system
x(k + 1) = 0.5h2

2BK2x(k), k = 0, 1, . . .).

Consider next (4.8), where z(t) is defined by (4.7), i.e. the following
system:

x1(t) = 0, x2(t) − BK1G1(x2t) − BK2G2(x2t) = 0.

In this case, the stability of (4.8) is reduced to the stability of the
integral equation with two delays

x2(t) =

2
i=1

 t

t−hi
(s − t + hi)BKix2(s)ds. (4.16)

We immediately arrive at the following result:

Lemma 5. Let there exist some positive definite n×n-matrices S1, S2
such that the following LMI holds

B̄′

h2
1S1 + h2

2S2

B̄ − S̄ < 0,

B̄ = (BK1 BK2), S̄ = diag{4h−2
1 S1, 4h−2

2 S2}.
(4.17)
Then the integral equation (4.16) (and, thus, (4.8) with notation
(4.7)) is exponentially stable.

4.3. Stability of (2.3): constant delays

Consider the neutral type system (4.4), (4.5), where the matrix
D1 is Hurwitz.

Theorem 2. Given Ki ∈ Rk×n(i = 1, 2) and constant known delays
h1 ≥ 0 and h2 > 0 such that D1 defined by (2.6) is Hurwitz, let
there exist positive definite matrices S2 ∈ Rn×n, R1, R2 ∈ Rk×k and
P ∈ R2n×2n that satisfy LMIs (4.10) and

Ψ1 =


Φ1 Φ Φ

∗ −R1 0
∗ ∗ −4R2


< 0, (4.18)

Φ = D′

1P · col{0, B},

Φ1 = D′

1P + PD1 + diag

h2
1K

′

1R1K1, h4
2K

′

2R2K2

. (4.19)

Then the system (2.3) is asymptotically stable. Moreover, the LMIs
(4.10) and (4.18) are always feasible for small enough h2 and h1 =

O(h2
2) provided A2 = O(h2).

Proof. Via the condition (4.10) the integral equation (4.9) is
exponentially stable. Differentiating V1(xt) = z ′(t)Pz(t), P > 0,
along (4.4), (4.5) and using notation (4.18), we have

d
dt

V1(xt) = 2


x(t) −


0
B

 2
i=1

KiGi(xit)

′

PD1x(t)

= 2x′(t)PD1x(t) − 2
2

i=1

K ′

i G
′

i(xit)Φ
′x(t). (4.20)

In order to compensate Gi-terms in (4.20) consider

V2(xt) = h1

 t

t−h1
(s − t + h1)x′

1(s)R̂1x1(s)ds,

+ h2
2

 t

t−h2
(s − t + h2)

2x′

2(s)R̂2x2(s)ds,

R̂i = K ′

i RiKi, i = 1, 2. (4.21)

Taking into account the representations (4.3), (4.2) for G1(x1t),
G2(x2t) and applying Jensen’s inequality (2.8), similarly to (4.13)
we find
d
dt

V2(xt) ≤ h2
1x

′

1(t)R̂1x1(t) + h4
2x

′

2(t)R̂2x2(t)

−G′

1(x1t)R̂1G1(x1t) − 4G′

2(x2t)R̂2G2(x2t). (4.22)

Denote η(t) = col{x(t), −K1G1(t, x1t), −K2G2(t, x2t)}. Then for
the Lyapunov functional V (xt) = V1(xt)+V2(xt) from (4.18), (4.20)
and (4.22), (4.18) we obtain

d
dt

V (xt) ≤ 2x′(t)PD1x(t) − 2
2

i=1

x′(t)Φ ′KiGi(xit)

+ h2
1x

′

1(t)R̂1x1(t) + h4
2x

′

2(t)R̂2x2(t)

−G′

1(x1t)R̂1G1(x1t) − 4G′

2(x2t)R̂2G2(x2t)

= η′(t)Ψ1η(t) ≤ −c|x(t)|2

for some c > 0. The latter inequality guarantees asymptotic
stability of the neutral type system (4.4), (4.5) (and, thus, of (2.3))
with the asymptotically stable integral equation (Hale & Verduyn
Lunel, 1993).
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We prove next the feasibility of LMIs (4.10) and (4.18) for small
enough h2. It is easy to see that (4.10) is feasible with S2 = In
for small enough h2. Let P be a solution of the Lyapunov equation
D′

1P + PD1 = −h2I2n and Ri = h−i
i Ik(i = 1, 2). Applying Schur

complements to (4.18), we arrive at D′

1P + PD1 + O(h2
2) < 0, that

holds for small enough h2 because −h2I2n + O(h2
2) < 0. �

Consider next the system (4.6), (4.7), where D2 is Hurwitz.
Modifying the arguments of Theorem 2 and using the Lyapunov
functional V in the form

V (xt) = z ′(t)Pz(t)

+

2
i=1

h2
i

 t

t−hi
(s − t + hi)

2x′

2(s)K
′

i RiKix2(s)ds,

0 < P ∈ R2n×2n, 0 < Ri ∈ Rk×k, i = 1, 2,

we arrive at the following theorem.

Theorem 3. Given Ki ∈ Rk×n(i = 1, 2) and constant known delays
h1 ≥ 0 and h2 > 0 such that D2 defined by (4.7) is Hurwitz, let
there exist positive definite matrices S1, S2 ∈ Rn×n, R1, R2 ∈ Rk×k

and P ∈ R2n×2n that satisfy LMIs (4.17) and

Ψ2 =


Φ2 Φ Φ

∗ −4R1 0
∗ ∗ −4R2


< 0, (4.23)

Φ = D′

2P · col{0, B},

Φ2 = D′

2P + PD2 + diag


0,

2
i=1

h4
i K

′

i RiKi


.

(4.24)

Then the system (2.3) is asymptotically stable. Moreover, the LMIs
(4.17) and (4.23) are always feasible for small enough h2 and h1 =

O(h2
2) provided A2 = O(h2).

Remark 4. As seen fromExample 2, Theorems 2 and 3 lead to close
and complementary results for h1 > 0 (they are equivalent for
h1 = 0). However, Theorem 3 is based on a higher-order LMI
(4.17) with an additional decision variable S1 for the stability of
the integral equation.

4.4. Stability: variable delays and stochastic perturbations

In this subsection, we consider time-varying and unknown
h1(t) ∈ [0, h1M ] and h2(t) ∈ [h, h2M ], where h2M = h + h1M .
Assume that the matrix D1(h) is Hurwitz. We present

x1(t − h1) = x1(t) + δ1(t),

x1(t − h2) = x1(t) − hx2(t) +
d
dt

G2(x2t) + δ2(t),

δ1(t) = −

 t

t−h1
x2(s)ds, δ2(t) = −

 t−h

t−h2
x2(s)ds,

G2(x2t) =

 t

t−h
(s − t + h)x2(s)ds.

Similarly to (4.4) the system (2.3) can be written as

ż(t) = D1(h)x(t) +

2
i=1


0
B


Kiδi(t), (4.25)

x(t) = [x′

1(t) x
′

2(t)]
′, z(t) = x(t) − [0 B′

]
′K2G2(x2t).

Denote

Y = col{0, B}′X, X = Pcol{0, B}, Φ = D′

1(h)X . (4.26)
Differentiating V1(xt) = z ′(t)Pz(t), P > 0, along (4.25), we have

d
dt

V1(xt) = 2

x(t) −


0
B


K2G2(x2t)

′

P

×


D1(h)x(t) +

2
i=1


0
B


Kiδi(t)



= 2x′(t)


PD1(h)x(t) + X

2
i=1

Kiδi(t)



− 2G′

2(x2t)K
′

2


Φ ′x(t) + Y

2
i=1

Kiδi(t)


. (4.27)

In order to compensate G2, δ1, δ2-terms in (4.27) consider

V2(xt) = h2
 t

t−h
(s − t + h)2x′

2(s)Q̂ x2(s)ds

+ h1M

 t

t−h1M
(s − t + h1M)x′

2(s)R̂1x2(s)ds

+ h1M

 t−h

t−h2M
(s − t + h2M)x′

2(s)R̂2x2(s)ds

+ h2
1M

 t

t−h
x′

2(s)R̂2x2(s)ds

Q̂ = K ′

2QK2, R̂i = K ′

i RiKi, i = 1, 2, (4.28)

where Q , R1 and R2 are positive definite k × kmatrices.
Differentiating V2(xt), we find

d
dt

V2(xt) = h4x′

2(t)Q̂ x2(t) + h2
1Mx′

2(t)(R̂1 + R̂2)x2(t)

− 2h2
 t

t−h
(s − t + h)x′

2(s)Q̂ x2(s)ds

− h1M

 t

t−h1M
x′

2(s)R̂1x2(s)ds

− h1M

 t−h

t−h2M
x′

2(s)R̂2x2(s)ds.

Note that via (4.2) and Jensen’s inequality (2.8) we have

2G′

2(x2t)Q̂ G2(x2t) ≤ h2
 t

t−h
(s − t + h)x′

2(s)Q̂ x2(s)ds,

δ′

1(t)R̂1δ1(t) ≤ h1M

 t

t−h1M
x′

2(s)R̂1x2(s)ds.

Similarly, using that h2 − h ≤ h2M − h = h1M , we obtain

δ′

2(t)R̂2δ2(t) ≤ h1M

 t−h

t−h2M
x′

2(s)R̂2x2(s)ds.

So,

d
dt

V2(xt) ≤ x′

2(t)[h
4Q̂ + h2

1M(R̂1 + R̂2)]x2(t)

− 4G′

2(x2t)Q̂ G2(x2t) − δ′

1(t)R̂1δ1(t) − δ′

2(t)R̂2δ2(t).

As a result for the Lyapunov functional V (xt) = V1(xt)+V2(xt), we
have

d
dt

V (xt) ≤ 2x′(t)


PD1(h)x(t) + X

2
i=1

Kiδi(t)



− 2G′

2(x2t)K
′

2


Φ ′x(t) + Y

2
i=1

Kiδi(t)


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+ x′

2(t)[h
4Q̂ + h2

1M(R̂1 + R̂2)]x2(t)

− 4G′

2(x2t)Q̂ G2(x2t) − δ′

1(t)R̂1δ1(t)

− δ′

2(t)R̂2δ2(t) = −η′(t)Ψ3η(t),
(4.29)

where η(t) = col{x(t), −K2G2(x2t), K1δ1(t), K2δ2(t)} and

Ψ3 =

Φ3 Φ X X
∗ −4Q Y Y
∗ ∗ −R1 0
∗ ∗ ∗ −R2

 , (4.30)

Φ3 = PD1(h) + D′

1(h)P

+ diag


0, h4K ′

2QK2 + h2
1M

2
i=1

K ′

i RiKi


.

Suppose now that the elements of A1 and A2 in (2.1) are under
the influence of stochastic perturbations of the type of white noise.
So, the Eq. (2.1) takes the form

ÿ(t) = (A1 + σ1ẇ1(t)) y(t)
+ (A2 + σ2ẇ2(t)) ẏ(t) + Bu(t − h1), (4.31)

where σj ∈ Rn×n×qj(j = 1, 2) are constant matrices, wj(t) ∈

Rqj are mutually independentWiener processes with independent
components (Gikhman & Skorokhod, 1972; Shaikhet, 2013). In this
case the closed-loop system (4.31), (2.2) similarly to (4.25) can
be presented as Ito stochastic differential equation (Gikhman &
Skorokhod, 1972)

dz(t) =


D1(h)x(t) +

2
i=1


0
B


Kiδi(t)


dt

+ C(x(t))dw(t), (4.32)

where

C(x(t)) = col{0, σ (x(t))} ∈ R2n×q,

σ (x(t)) =

(σ1x1(t))(σ2x2(t))


∈ Rn×q,

w(t) = col{w1(t), w2(t)} ∈ Rq, q = q1 + q2.
(4.33)

Let L be the generator (Gikhman & Skorokhod, 1972; Shaikhet,
2013) of the stochastic differential equation (4.32). Using the
functional V (xt) constructed above and (4.33) similarly to (4.29),
we obtain

LV (xt) ≤ η′(t)Ψ3η(t) + Tr[C ′(x(t))PC(x(t))]

= η′(t)Ψ3η(t) +

2
i=1

x′

i(t)Tixi(t),

Ti = Tr[σ ′

i [0 In]P[0 In]′σi], i = 1, 2.

Summarizing we arrive at the following result:

Theorem 4. Given Ki ∈ Rk×n(i = 1, 2), h1M ≥ 0 and h > 0
assume that the matrix D1(h) defined by (2.6) is Hurwitz. If there
exist positive definite matrices S2 ∈ Rn×n,Q , R1, R2 ∈ Rk×k and
P ∈ R2n×2n that satisfy LMIs (4.10) and Ψ3 + diag{T1, T2, 03k×3k} <
0, where Ψ3 is defined by (4.26) and (4.30), then the closed-loop
system (4.31), (2.2) with time-varying and unknown delays h1(t) ∈

[0, h1M ] and h2(t) = h+ h1(t) is asymptotically mean square stable.

Remark 5. The LMIs of all the theorems in this paper are affine in
A1 and A2. Therefore, in case of A1 and A2 from an uncertain time-
varying polytope one have to solve these LMIs simultaneously
for all the vertices of the polytope applying the same decision
matrices.
Remark 6. The integral terms of Lyapunov functionals that have
been used for the proof of the theorems coincide with the widely
used by now double and triple integral terms (Fridman, 2014; Sun,
Liu, & Chen, 2009). Indeed, the first term of V2 given by (4.21) can
be presented as a double integral term 0

−h1

 t

t+θ

x′

1(s)R̂1x1(s)dsdθ.

The second term can be written as a triple integral term:

2
 0

−h2

 0

θ

 t

t+λ

x′

2(s)R̂2x2(s)dsdλdθ.

Similarly integral terms in (3.6), (3.7), (4.11) and (4.28) can be
presented as double or triple integral terms. Thus, all the presented
results are based on simple Lyapunov functionals.

5. Examples

Example 1 (Gu et al., 2003). Consider the system

ẋ(t) =


0 1

−2 0.1


x(t) +


0
1


u(t),

u(t) = K2x1(t − h), x(t) = col{x1(t), x2(t)}.
(5.1)

Clearly, (5.1) cannot be stabilized by a non-delayed feedback
u(t) = K2x1(t) for any K2 because the resulting matrix of the
closed-loop system


0 1

−2 + K2 0.1


is not Hurwitz. Choose as in Gu

et al. (2003) K2 = 1. The system (5.1) can be presented as (2.3)
with K1 = 0, K2 = 1, h1 = 0 and n = k = 1. By the frequency
domain analysis, (5.1) is asymptotically stable for the constant
delay h ∈ (0.1002, 1.7178).

We apply here LMIs of Theorem2with h1 = 0 and of Theorem1
with h1M = 0. As shown in Table 1, the results of Theorems 1 and
2 are more conservative than the results obtained via discretized
Lyapunov method with N = 1 (Gu et al., 2003) and augmented
Lyapunov functional (Seuret & Gouaisbaut, 2013), respectively.
However, the number of scalar decision variables in LMIs of
Theorem 2 (with R1 = S1 = 0) is equal to 2n(2n + 1)/2 + n(n +

1)/2+k(k+1)/2 = 2.5n2
+1.5n+0.5k2+0.5k, which is essentially

smaller than by the other two methods. LMIs of Theorem 1 have
minimal number of decision variables. The results of Borne et al.
(2000) and Shaikhet (2013) are confined to the case of A2 = 0 (here
A2 = 0.1), and thus are not applicable to this example.

Remark 7. Note that the results of Gu et al. (2003) and Seuret
and Gouaisbaut (2013) are derived for general linear time-
delay systems. When these results are applied to a particular
system (2.3), where delay appears in x1 only, there are some
redundant decision variables. Thus, Lyapunov functional of Seuret
and Gouaisbaut (2013) for (2.3) with h1 = 0 and n = k can be
modified as follows

Vaug =

 x(t) t

t−h
x1(s)ds

′

P

 x(t) t

t−h
x1(s)ds


+

 t

t−h
x′

1(s)Sx1(s)ds + h
 t

t−h

 t

θ

x′

2(θ)Rx2(θ)dθds

with positive matrices P ∈ R3n×3n and S, R ∈ Rn×n. This leads
to 5.5n2

+ 2.5n decision variables which is less than the one
brought by a modified in a similar manner Lyapunov functional of
Gu et al. (2003), but greater than 3n2

+2n and 2.5n2
+1.5n decision

variables of Theorems 1 and 2, respectively. More important,
differently fromGu et al. (2003) and Seuret and Gouaisbaut (2013),
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Table 1
Example 1: stability interval h ∈ [hmin, hmax].

Method hmin hmax No vars

Gu et al. (2003) (N = 1) 0.1006 1.4272 22n2
+ 5n

Seuret and Gouaisbaut
(2013)

0.1006 1.55 12n2
+ 4n

Theorem 2 0.106 1.409 0.5∗(5n2
+3n+k2+k)

Theorem 1 0.108 1.20 2n2
+ n + 0.5(k2 + k)

Table 2
Example 2 (σ 2

= 0): maximum h1 preserving the stability.

h2 0.99 0.8 0.6 0.4 0.2

Shaikhet (2013) – 0.11 0.16 0.14 0.086
Theorem 2 0.069 0.21 0.20 0.15 0.089
Theorem 3 0.099 0.20 0.18 0.14 0.086

the LMIs of Theorems 1 and 2 are always feasible for small enough
h provided D1(h) of (2.6) is Hurwitz.

Example 2 (Inverted Pendulum Borne et al., 2000; Shaikhet, 2013).
Consider the controlled inverted pendulum

ÿ(t) = [1 + σẇ(t)]y(t) + u(t − h1), y(t) ∈ R,

u(t) = K1y(t) + K2y(t − h),
(5.2)

where w(t) is the scalar standard Wiener process and either σ 2
=

0 (deterministic case) or σ 2
= 0.2 (stochastic case). It is easy to

see that for h1 = 0 and σ = 0 the system (5.2) is not stabilizable
by u(t) = Ky(t) for any K . Indeed, the characteristic polynomial
λ2

− λ − K of the resulting closed-loop system has roots with
positive real parts for any K . We further choose K1 = −4, K2 = 2.

In case 1 of constant delays, we apply LMIs of Theorems 2 and
3 to the closed-loop system for the values of h2 = h1 + h as given
in Table 2 and find the maximum values of h1 that preserve the
stability. As it is seen from Table 2, both theorems lead to close
but complementary results. The results are favorably compared to
those of Borne et al. (2000) and Shaikhet (2013).

Consider next case 2 of variable h1(t) and h = 0.8, h2(t) =

h + h1(t), where σ = 0. Applying Theorems 1 and 4 we find
that the system is asymptotically stable for all h1(t) ∈ [0, 0.06]
and h1(t) ∈ [0, 0.14], respectively. Note that Theorem 4
improves the results of Theorem 1, but this is on the account
of the LMIs complexity. For σ 2

= 0.2, where Theorem 1 is
not applicable, Theorem 4 guarantees asymptotic mean square
stability for h1(t) ∈ [0, 0.13].

Example 3 (Inverted Pendulum on the Cart Fridman, 2014). Con-
sider a model of the inverted pendulum on a cart


ẋ
θ̇
ẍ
θ̈

 =


0 0 1 0
0 0 0 1

0
−mg
M

0 0

0
(M + m)g

Ml
0 0


x

θ
ẋ
θ̇

+


0
0
a
M
−a
Ml

 u(t − h1)

with M = 3.9249,m = 0.2047, l = 0.2302, g = 9.81, a =

25.3. In this model, x and θ represent cart position coordinate
and pendulum angle from vertical, respectively. The system can be
stabilized by a state-feedback

u(t) = K̄1[x(t) θ(t)]′ + h2K̄2[ẋ(t) θ̇(t)]′,
[K̄1 h2K̄2] = [5.825 24.941 5.883 5.140].

Assume now that the measurement is given by y(t) = col{x(t),
θ(t)}, and we are looking for a static output-feedback that
stabilizes the system. As in the previous example, for h1 = 0 the
inverted pendulum on the cart is not stabilizable by a non-delayed
static output-feedback.We choose h2 = 0.01 and obtain from (2.5)

K1 = [594.125 538.941], K2 = [−588.3 − 514]. (5.3)

Applying Theorems 2 and 3 we find that the feedback

u(t − h1) =

2
i=1

Ki[x(t − hi) θ(t − hi)]
′

stabilizes the system for h1 ≤ 0.0075 and h1 ≤ 0.0073, respec-
tively. Numerical simulations of the solutions of the closed-loop
system confirm the asymptotic stability for all constant delays
h1 ≤ 0.0093, whereas for h1 = 0.0094 the system has unbounded
solutions.

Consider next case 2 of variable h1(t) and h = 0.01, h2(t) =

h + h1(t) and the gain (5.3). Applying Theorems 1 and 4, we find
that the closed-loop system is asymptotically stable for h1(t) ∈

[0, 0.0019] and h1(t) ∈ [0, 0.0039], respectively.

6. Conclusions

In the present paper, simple LMI conditions for stabilization of
vector second-order systems by using static output-feedback con-
trollers with artificial delays have been provided. The controllers’
gains may be found from the gains of the corresponding state-
feedback controllers. The results are applicable to linear uncer-
tain, either deterministic or stochastic, systems with uncertain
time-varying delays, where observer-based design becomes com-
plicated. The suggested controllers may be useful for networked-
based control, for delay-induced consensus in multi-agent sys-
tems and for many other control problems. As all sufficient con-
ditions, the presented results are conservative and can be further
improved. This may be a topic for the future research.
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