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Abstract

Many real processes can be modeled by stochastic differential equations with aftereffect [1-
3]. Stability conditions for such systems can be obtained by construction of appropriate
Lyapunov functionals using special procedure of Lyapunov functionals construction [4-15].
In this paper asymptotic mean square stability of stochastic linear differential equations with
distributed delay is considered. Stability conditions are formulated in terms of existence of
positive definite solutions of matrix Riccati equations. The method of different Riccati
equations construction is proposed.
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1. Introduction. Consider the stochastic linear differential equation

ẋ(t) = Ax(t) + Cx(t)ξ̇(t). (1)

Here A and C are constant (n ∗ n)-matrices, x(t) ∈ Rn, ξ(t) is a scalar Wiener process.
Denote P > 0 any symmetric positive definite matrix. Then an appropriate Liapunov function V

for the equation (1) is a quadratic form V = x′Px, where the matrix P is a positive solution of the
linear matrix equation [16]

A′P + PA + C ′PC = −Q. (2)

The necessary and sufficient conditions of asymptotic mean square stability of the system (1) can
be formulated in terms of existence of a positive definite solution P of the matrix equation (2) for any
positive definite matrix Q.

But for stochastic linear differential equations with delays, for example,

ẋ(t) = Ax(t) +
∫ t

t−h(t)

Bx(s)ds +
∫ t

t−τ(t)

Cx(s)dsξ̇(t), (3)

x0(s) = ϕ(s), s ≤ 0.

this problem is more complicated.
Below we will obtain the conditions of asymptotic mean square stability for the equation (3).
Let {Ω, σ,P} be the probability space, {ft, t ≥ 0} be the family of σ-algebras, ft ∈ σ, H be the

space of f0-adapted functions ϕ(s) ∈ Rn, s ≤ 0, ‖ϕ‖20 = sups≤0E|ϕ(s)|2, E be the mathematical
expectation, ‖B‖ be arbitrary matrix norm of matrix B, L be the generator of the equation (3).

Definition 1. The zero solution of the equation (3) is called mean square stable if for any ε > 0
there exists δ > 0 such that E|x(t)|2 < ε for all t ≥ 0 if ‖ϕ‖20 < δ. If, besides, limt→∞E|x(t)|2 = 0,
then the zero solution of the equation (3) is called asymptotically mean square stable.

Theorem 1. Let there exists the functional V (t, ϕ), which satisfies the conditions EV (0, ϕ) ≤
c1||ϕ||2, EV (t, xt) ≥ c2E|x(t)|2, ELV (t, xt) ≤ −c3E|x(t)|2, where ci > 0, i = 1, 2, 3, xt = x(t+s), s ≤
0. Then the zero solution of the equation (3) is asymptotically mean square stable.
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2. Lyapunov functionals construction. From Theorem 1 it follows that the construction
of stability conditions for the equation (3) is reduced to the construction of appropriate Lyapunov
functionals. Constructing different Lyapunov functionals we can obtain different stabillity conditions.
Using the general method of Lyapunov functionals construction [4-15], we will construct two different
Lyapunov functionals for the equation (3).

It is supposed that the delays h(t) and τ(t) are functions satisfying the conditions:

0 ≤ h0 ≤ h(t) ≤ h1, ĥ = h1 − h0, 0 ≤ τ(t) ≤ τ1, (4)

2.1. First way. We will construct the Lyapunov functional V in the form V = V1 + V2, where
V1 = x′(t)Px(t). Calculating LV1, we get LV1 = x′(t)(A′P + PA)x(t) + I0 + I1, where

I0 =
∫ t

t−τ(t)

∫ t

t−τ(t)

x(s)C ′PCx(θ)dθds, (5)

I1 =
∫ t

t−h(t)

(x′(s)B′Px(t) + x′(t)PBx(s))ds,

Note that for arbitrary vectors a, b and any R > 0 we have

a′b + b′a = a′Ra + b′R−1b− (Ra− b)′R−1(Ra− b) ≤ a′Ra + b′R−1b. (6)

Using (6) for any R0 > 0, a = x(s), b = C ′PCx(θ) and (4) we obtain

I0 =
1
2

∫ t

t−τ(t)

∫ t

t−τ(t)

(x′(θ)C ′PCx(s) + x′(s)C ′PCx(θ))dθds ≤

≤ τ1

2

∫ t

t−τ1

x′(s)(R0 + C ′PCR−1
0 C ′PC)x(s)ds. (7)

Using (6) for R1 > 0, a = x(t), b = PBx(s) and (4) we have

I1 ≤ h1x
′(t)R1x(t) +

∫ t

t−h1

x′(s)B′PR−1
1 PBx(s)ds.

Then

LV1 ≤ x′(t)(A′P + PA + h1R1)x(t) +
∫ t

t−h1

x′(s)B′PR−1
1 PBx(s)ds+

+
τ1

2

∫ t

t−τ1

x′(s)(R0 + C ′PCR−1
0 C ′PC)x(s)ds.

Choosing now the functional V2 in the form

V2 =
∫ t

t−h1

(s− t + h1)x′(s)B′PR−1
1 PBx(s)ds+

+
τ1

2

∫ t

t−τ1

(s− t + τ1)x′(s)(R0 + C ′PCR−1
0 C ′PC)x(s)ds.

we have

LV2 = h1x
′(t)B′PR−1

1 PBx(t)−
∫ t

t−h1

x′(s)B′PR−1
1 PBx(s)ds+

+
τ2
1

2
x′(t)(R0 + C ′PCR−1

0 C ′PC)x(t)− τ1

2

∫ t

t−τ1

x′(s)(R0 + C ′PCR−1
0 C ′PC)x(s)ds.
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As a result for V = V1 + V2 we have LV ≤ −x′(t)Qx(t), where

Q = −[A′P + PA + h1(R1 + B′PR−1
1 PB) +

τ2
1

2
(R0 + C ′PCR−1

0 C ′PC)]. (8)

Thus, it is proved
Theorem 2. Let for some symmetric matrices R0 > 0, R1 > 0 and Q > 0 there exists a positive

definite solution P of the matrix Riccati equation (8). Then the zero solution of the equation (3) is
asymptotically mean square stable.

Remark 1. Using the inequality (6) with other representations for a and b it is possible to
get other matrix Riccati equations in Theorem 2. For example, using (6) for R0 > 0, a = Cx(s),
b = PCx(θ) we obtain

I0 ≤ τ1

2

∫ t

t−τ1

x′(s)C ′(R0 + PR−1
0 P )Cx(s)ds.

Using the inequality (6) for R1 > 0, a = Px(t) and b = Bx(s) we have

I1 ≤ h1x
′(t)PR1Px(t) +

∫ t

t−h1

x′(s)B′R−1
1 Bx(s)ds.

Choosing in this case the functional V2 in the form

V2 =
∫ t

t−h1

(s− t + h1)x′(s)B′R−1
1 Bx(s)ds+

+
τ1

2

∫ t

t−τ1

(s− t + τ1)x′(s)C ′(R0 + PR−1
0 P )Cx(s)ds,

as a result for V = V1 + V2 we have LV ≤ −x′(t)Qx(t), where

Q = −[A′P + PA + h1(PR1P + B′R−1
1 B) +

τ2
1

2
C ′(R0 + PR−1

0 P )C]. (9)

Example. In scalar case both of the equations (8) and (9) have a positive solution if and only if
A + h1|B|+ 1

2τ2
1 C2 < 0.

2.2. Second way. Consider now another way of Lyapunov functional construction. Represent
the equation (3) in the form of a stochastic differential equation of neutral type

ẏ(t) = (A + h1B)x(t)−
∫ t−h(t)

t−h1

Bx(s)ds +
∫ t

t−τ(t)

Cx(s)dsξ̇(t),

where y(t) = x(t) +
∫ t

t−h1
(s − t + h1)Bx(s)ds. We will construct the Lyapunov functional V in the

form V = V1 + V2, where V1 = y′(t)Py(t). Calculating LV1, we get LV1 = x′(t)[(A + h1B)′P + P (A +
h1B)]x(t) + I0 + I1 + I2 + I3, where I0 is described by (5),

I1 =
∫ t

t−h1

(s− t + h1)[x′(s)B′P (A + h1B)x(t) + x′(t)(A + h1B)′PBx(s)]ds,

I2 = −
∫ t−h(t)

t−h1

[x′(t)PBx(s) + x′(s)B′Px(t)]ds,

I3 = −
∫ t

t−h1

∫ t−h(t)

t−h1

(s− t + h1)[x′(s)B′PBx(θ) + x′(θ)B′PBx(s)]dθds.
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Using (6) and (4)we obtain

I1 ≤ 1
2
h2

1x
′(t)R1x(t) +

∫ t

t−h1

(s− t + h1)x′(s)B′P (A + h1B)′PBR−1
1 (A + h1B)′PBx(s)ds,

I2 ≤
∫ t−h(t)

t−h1

[x′(t)R2x(t) + x′(s)B′PR−1
2 PBx′(s)]ds ≤

≤ ĥx′(t)R2x(t) +
∫ t−h0

t−h1

x′(s)B′PR−1
2 PBx′(s)ds,

I3 ≤
∫ t

t−h1

∫ t−h(t)

t−h1

(s− t + h1)[x′(θ)R3x(θ) + x′(s)B′PBR−1
3 B′PBx(s)]dθds ≤

≤ 1
2
h2

1

∫ t−h0

t−h1

x′(θ)R3x(θ)dθ + ĥ

∫ t

t−h1

(s− t + h1)x′(s)B′PBR−1
3 B′PBx(s)ds.

Then
LV1 ≤ x′(t)[(A + h1B)′P + P (A + h1B) +

1
2
h2

1R1 + ĥR2]x(t)+

+
∫ t

t−h1

(s− t + h1)x′(s)B′P (A + h1B)R−1
1 (A + h1B)′PBx(s)ds+

+
∫ t−h0

t−h1

x′(s)[B′PR−1
2 PB +

1
2
h2

1R3]x(s)ds+

+ĥ

∫ t

t−h1

(s− t + h1)x′(s)B′PBR−1
3 B′PBx(s)ds+

+
τ1

2

∫ t

t−τ1

x′(s)(R0 + C ′PCR−1
0 C ′PC)x(s)ds.

Choosing the functional V2 in the form

V2 =
1
2

∫ t

t−h1

(s− t + h1)2x′(s)B′P (A + h1B)R−1
1 (A + h1B)′PBx(s)ds+

+
∫ t−h0

t−h1

(s− t + h1)x′(s)[B′PR−1
2 PB +

1
2
h2

1R3]x(s)ds+

+ĥ

∫ t

t−h0

x′(s)[B′PR−1
2 PB +

1
2
h2

1R3]x(s)ds+

+
ĥ

2

∫ t

t−h1

(s− t + h1)2x′(s)B′PBR−1
3 B′PBx(s)ds+

+
τ1

2

∫ t

t−τ1

(s− t + τ1)x′(s)(R0 + C ′PCR−1
0 C ′PC)x(s)ds,

as a result for the functional V = V1 + V2 we obtain LV ≤ −x′(t)Qx(t), where

Q = −[(A + h1B)′P + P (A + h1B) +
1
2
h2

1(R1 + B′P (A + h1B)R−1
1 (A + h1B)′PB)+

+ĥ(R2 + B′PR−1
2 PB) +

1
2
h2

1ĥ(R3 + B′PBR−1
3 B′PB) +

τ2
1

2
(R0 + C ′PCR−1

0 C ′PC)]. (10)
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Remark 2. Functional V1 in this case is so-called degenerated functional (i.e. nonpositive definite).
It means that direct application of Theorem 1 is impossible. The appropriate modification of Theorem
1 for degenerated functionals there is in [1]. Using this modification we obtain the following

Theorem 3. Let the inequality h2
1‖B‖ < 2 hold and for some symmetric matrices Ri > 0,

i = 0, 1, 2, 3 and Q > 0 there exists a positive definite solution P of the matrix Riccati equation (10).
Then the zero solution of the equation (3) is asymptotically mean square stable.

Remark 3. By analogy with Remark 1 instead of the equation (10) can be obtained other variants
of Riccati equations.

Remark 4. Analogously results can be obtained for more general systems:

ẋ(t) = Ax(t) +
m∑

i=1

∫ t

t−hi(t)

Bix(s)ds +
k∑

i=1

∫ t

t−τi(t)

Cix(s)dsξ̇(t),
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