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1. INTRODUCTION 

Boundedness of solutions of some difference Volterra equations is investigated, using some ideas 
from the books [1,2]. 

2. EQUATION WITH NONNEGATIVE COEFFICIENTS 
Consider the scalar equation 

z(i + 1) = z(i) + 2 A(i, j)z(j), i 2 0. (2.1) 
j=O 

It is supposed that 
A(6 j) 2 0, i>j>O. (2.2) 

THEOREM 2.1. The necessary and sufficient condition for boundedness of the solution of equa 
tion (2.1) is 

2 kA(i, j) < m. (2.3) 
i=O j=O 

PROOF. NECESSITY. Assume that all solutions of equation (2.1) are bounded, i.e., 

SUP I44 < 0% 
i>O 

(2.4) 
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and prove that inequality (2.3) is valid. Assume that z(O) 2 0. Then from equation (2.1) for i = 0 
and condition (2.2), it follows that z(1) 1 z(O) > 0. Note also that if z(j + 1) 2 z(j) 2 z(O) for 
j = 0,. . . ,i - 1, then from (2.1),(2.2) it follows that z(i + 1) > z(i) 2 z(O) for i > 0. Therefore, 
after summing equation (2.1) from i = 0 to k, we obtain 

x(k + 1) = x(0) + +, -+I(i,j)x(j) 2 x(0) . 
iso j=o 

From here and (2.4) follows (2.3). 

SUFFICIENCY. Assume that inequality (2.3) is valid, but there exists unbounded solution z(i) > 0 
of equation (2.1) such that Ax(i) = z(i + 1) - z(i) 2 0. Dividing equation (2.1) by s(i) and 
summing both parts of the obtained equality from i = 0 to k, we obtain 

c 
iIo $.f = & kA(i, j)$$. (2.5) 

+O j=O 

Consider the continuous function z(t) = z(i) + (t - i)Az(i) for t E [i,i + 11. Then k(t) = A%(i) 
and z(t) 2 z(i). Therefore, 

i+l f!C! & - lnx(i + 1) - lnx(i). 
44 - 

(2.6) 

Substituting (2.6) into (2.5) and using (2.3) and z(j) 5 x(i) for j < i, we obtain 

lnz(k + 1) - lnx(0) I e 2 A(i, j)$$ 2 e 2 A(i, j) < 00. 
i=O j=O r=O j=O 

So, as a result we obtain the absurdity of the assumption about unboundedness of x(k). Theo- 
rem 2.1 is proven. 
EXAMPLE 2.1. Consider the equation 

x(i -I- 1) = z(i) + 2 Qi+jz(j), 
j=O 

4 E (O,l). 

The solution of this equation is bounded since 

EXAMPLE 2.2. Consider the equation 

i 
x(i + 1) = 

1 
x(i) + C (i + j + l)* x(j). 

j=O 

If Q > 2, then the solution of this equation is bounded since 

3. NONOSCILLATORY SOLUTIONS 

Consider the Volterra difference equation in the form 

z(i + 1) = ao(i)z(i) - alflijl)x(i - 1) - E A(i, j)z(j), i > 0. 
j=O 

(3.1) 
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THEOREM 3.1. Assume that equation (3.1) has nonoscillatory solutions, and the following in- 
equalities are v&d: 

- 
a0(i) - a(i 1) 

al(i) 
< - 1 ' al(i) > 0, i 1 0, 

(3.2) 
A(i,j) 2 0, i > 2, j = 0,. . i - . ) 2, 

(3.3) 

Then all nonoscillatory solutions of equation (3.1) are bounded. 

PROOF. Without loss of generality we can assume that the solution z(i) of equation (3.1) is 
greater than 0 for all i 2 -1 and nonoscillatory. Hence, from equation (3.1) and inequalities (3.2) 
it follows that 

x(i + 1) 5 so(i) - 
al(i - 1) 

al(i) > 
x(i) + 

al(i - 1) 

al(i) 
Az(i - 1) 

or 

L x(i) + 
al(i - 1) 

al(i) Axc(i - 1) 

al(i < al(i - l)A~(i - 1). 

Continuing inequality (3.4), we have 

al(i)Az(i) I al(- 

or 

z(i + 1) < x(i) + %A+1). 

(3.4) 

(3.5) 

Summing both parts of inequality (3.5), we obtain 

x(i + 1) I x(0) + al(- 2 1 
j=. al (3 ’ 

Fkom here and (3.3), it follows that the nonoscillating solutions of Volterra equation (3.1) are 
bounded for all values of i 1 0. Theorem 3.1 is proven. 

EXAMPLE 3.1. Consider the difference equation 

al(i = al(i - l)Ax(i - 1) - a;‘(i)x(i), (3.6) 

where al(i) > 0 for i 2 0 and satisfies the condition Cz”=, a;‘(i) < co. 
Equation (3.6) can be rewritten in form (3.1) with A(i,j) = 0 for 0 < j 5 i - 2 and 

so(i) = 1 + 
al(i-1) 1 

al(i) -a:(i)’ 

From Theorem 3.1, it follows that all nonoscillatory solutions of equation (3.6) are bounded. 

4. BEHAVIOR OF’ SOLUTION INCREMENT 
Consider Volterra difference equation in the form 

x(i + 1) = ao( - 
a,(i-1) 

al(i) z(2 - 1) + $j a2(z) c A(i, $x(j), i 2 0, (4.1) 
3=0 

a2(i) = al(i) so(i) - (4.2) 

where 
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THEOREM 4.1. Let 
al(i) > 0, az(i> 10, i 2 0, 

A(6 j) 10, i 2 2, j=O,...,i-2. (4.3) 

Then the necessary condition for every function al(i of equation (4.1) to be bounded are 

az(i + 1) 
2 2 al(j) < 03’ 
+o j=o 

(4.4) 

PROOF. It is easy to see that equation (4.1) can be rewritten as Volt&a difference equation in 
the following form: 

i-l 

A[al(i)Ax(i)] = a2(i + 1) x(i + 1) + xA(i + l,j)x(j) . (4.5) 
j=o 

Choose the initial condition of equation (4.1) such that x(0) > x(-l) > 0 and assume that the 
function al(i is bounded. Then the solution of equation (4.1) satisfies the conditions 

x(i) > 0, Ax(i) > 0, i > 0. (4.6) 

From (4.5), it follows that 

A[al(i)Ax(i)] 2 az(i + l)x(i + 1) 10, i 2 0. (4.7) 

Summation of inequality (4.7) gives 

al(i 1 al(O) (4.8) 

Dividing both parts of inequa!ity (4.8) on al(i) and summing it, we obtain 

x(i + 1) z x(0) + al(O 2 ‘. 
j=o al(s) 

From (4.7),(4.9) it follows 

A[al(i)Ax(i)] 2 a2(i + 1) x(0) + al(O . 

(4-9) 

(4.10) 

Summation of inequality (4.10) from i = 0 to k gives 

al(k + l)ix(k + 1) 2 x(0) &i + 1) + al(O 2 0. 
i=O 

Consequently, because of boundedness of the function al(k) we can conclude that inequal- 
ity (4.4) is valid. Theorem 4.1 is proven. 

THEOREM 4.2. Assume that conditions (4.3), (4.4), and 

(4.11) 

are satisfied. Then for all solutions of equation (4.1), the function al(k is bounded. 
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PROOF. Without loss of generality, we can assume that the solution of equation (4.1) is positive 
and increasing, i.e., inequalities (4.6) are valid. Using inequalities (4.6) and or(i) > 0, let us find 
the first difference of the fraction z(i + l)/ai(i)Az(i).. We have 

A [u;;;j;+i,l = di + 2). “‘” + ‘1 
ul(i + l)Az(t + 1) - u~(z)Az(i) 

= ul(i)z(i + 2)Az(i) - ul(i + l)z(i + l)Az(i + 1) 
(4.12) 

al(i)ul(i + l)As(i)Az(i + 1) ’ 

In the first of the right-hand side of equality (4.12), we have 

ul(i)z(i + 2)Az(i) = ul(i)Az(i + l)Az(i) + u~(i)z(i + l)Az(i). (4.13) 

From (4.12), (4.13), (4.7) it follows that 

A [ u;:2;;+;i,] = 1 4i + l)+l(W4i)l 1 
uI(i + 1) - uI(i)u~(i + l)Az(i)Az(i + 1) ’ ul(i + 1)’ 

Consequently, summing this inequality we obtain 

z(i + 1) x(1) 1 
al(i)Az(i) ’ a~(o)Az(O) +e j=. al(j>’ 

(4.14) 

Dividing both parts of equation (4.5) on q(i)Az(i) and using inequality (4.14), we conclude that 

A[~l(i)W91 
ul(i)Az(i) 

= u2(i + 1) 

< uz(i + 1) 
’ 

where 
i-2 

S(i) = c A(i, $x(j). 
j=O 

Summing the above inequality over i, we have 

Now let us use inequality (4.14) in the following form: 

1 1 
q(i)Az(i) ’ z(i + 1) * 

As a result from inequalities (4.15),(4.16) it follows that 

(4.16) 

(4.17) 
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At the left-hand side of inequality (4.17) we can replace sum by the integral using the functions 

z(t) = or(i + (t - i)A[ur(i)Az(i)], i<t<i+1, 

k(t) = A[ar(i)Az(i)], x(i) = ur(i)Az(i). 

As a result, we have 

5 A[ar(i)Az(i)] > & J ‘+l k(t) 
i=. a1(9Wi) - i=. i 

z(t) dt = & ln[ar (i + l)Az(i + l)] 
i=o 

- ln[ar(i)As(i)] = ln[ar(k + l)Ahz(k + I)] - In[or(O)As(O)]. 

Now let us estimate the right part of (4.17). Because the sequence z(i) is increasing and (4.11), 
we have 

i-l 

- = xA(i + I,j)-& 5 EA(i + l,j) 5 a. S(i + 1) 
5(i + 1) j=O J=o 

From (4.17)-(4.19), it follows that 

ln[ar(k + l)Az(k + l)] - ln[ar(O)Az(O)] 

(4.19) 

(4.20) 

Using (4.4), note that 

0c-l > c c @;:(y > --& Cuz(i + 1). 
i=O j=O a=0 

From here and (4.4), it follows that the right part of (4.20) is bounded. Hence, the function 
ur(k)Az(k) is bounded. Theorem 4.2 is proven. 

EXAMPLE 4.1. Consider the difference equation 

ur(i)Az(i) = ur(i - l)Az(i - 1) + a;‘(i)z(i), (4.21) 

where al(i) > 0 for i 2 0 and satisfies the condition Cz”=, u;‘(i) < 00. 

Equation (4.21) can be rewritten in form (4.1) with A(i,j) = 0 for 0 5 j L: i - 2 and 

uo(i) = 1 + 
Ul(i - 1) 1 

al(i) 
+z. 

a1 (4 

As follows from (4.2), in this case an(i) = u;‘(i), and condition (4.4) takes the form 

So, all conditions of Theorem 4.2 are valid. Therefore, for each solution z(i) of equation (4.21) 
the function ur(i)Az(i) is bounded. 
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