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A b s t r a c t - - T h e  general method of Lyapunov functionals construction for stability investigation of 
stochastic hereditary systems which was proposed and developed before is considered. Some features 
of this method for difference systems which allow one to use the method more effectively are discussed. 
© 2002 Elsevier Science Ltd. All rights reserved. 
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Let {~, P ,  a} be a probability space, h be a given nonnegative number, i be a discrete time, 

i E Z0 U Z, Z0 = { - h , . . . , 0 } ,  Z = {0 ,1 , . . . } ,  fi E a, i • Z, be a sequence of a-algebras, 
E be the mathematical expectation, ~0, ~1,...  be a sequence of mutually independent random 

variables, ~ • R m, ~ be f i+l-adapted and independent on fi, E~i = 0, E~i~ = I ,  i • Z, I be 
identity matrix, process xi • R n be a solution of the equation 

i 

xi+l = F ( i , x -h , . . .  ,Xi) + ~ G(i , j ,X_h, . . .  ,Xj)~j, 
,4=0 

i e z ,  (1) 

with initial function 

xi = ~i, i E Z0. 

Here F : Z * S ¢~ R n, G : Z • Z * S ¢:~ R n-m, S is a space of sequences with elements from R n. 
It  is assumed that  F( i , . . . )  is independent on xj for j > i, G( i , j , . . . )  is independent on xk 
for k > j,  F(i,O,.. . ,O) = O, G(i,j ,O,.. . ,O) = O. 
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DEFINITION. The zero solution of equation (1) is cMled mean square stable / / f o r  any e > 0 
there exists a 6 > 0 such that E[xi[ 2 < e, i c Z, if  [[~[[2 = supiez ° E[~[2 < 6. If, besides, 
limi-.oo E[xi[ 2 = 0 for 021 initial functions qo, then the zero solution of equation (1) is called 
asymptotically mean square stable. 

THEOREM. (See [1].) Let there exist a nonnegative functional Vi = V(i,  Z - h , . . . ,  x~), i E Z, 
which satisfies the conditions 

EV(O,X-h , . . .  ,xo) <_ Clllqal[ 2, 

EAV~ _< -c2E[xd  2, i ~ Z, 

where A V / =  V~+I - V/, Cl > 0, c2 > 0. Then the zero solution of equation (1) is asymptoticMly 
mean square stable. 

From Theorem 1 it follows that  the stability investigation of stochastic equations can be reduced 
to construction of appropriate Lyapunov functionals. Following the general method of Lyapunov 
functionals construction, which was proposed and developed in [1-24], it is necessary to construct 
Lyapunov functional Vi in the form Vi -- Vii + V2i, where the main component Vii must be chosen 
by a special way. This choice is not unique. Hence, for each choice of Vu we can construct other 
Lyapunov functionMs and therefore to get other stability conditions. Besides choosing different 
ways of estimation of EAVli we can construct different Lyapunov functionals and as a result can 
again obtain different stability conditions. 

Let us demonstrate these peculiarities of the general method of Lyapunov functionais construc- 
tion for the equation 

k rn 

X,+l = ax ,  + b ~ (k + 1 - j)x~_j + ~ ~ (m + 1 - j )~i- j~, .  (2) 
j = l  j = 0  

Here it is supposed that  k > 0, m _> 0. 
Following [1], we will construct Lyapunov functional for equation (2) in the form V /=  Vii + V2i, 

where Vii = x 2. Calculating EAVIi by virtue of (2), we get 

k 

EAVli = E 2 
j = l  

b2E (~___ (k + 1 - j ) x i - j  + a2E (m + 1 - + 
\ j=~ j=0 

k 
< (.~ - 1)Ex~ + I.bl ~ (~ + 1 - j) (~.~ + E~L~) 

j = l  

k k 

+ b 2 ~ (k + l - l) ~ (k + l - j)Ex2_j 
I = 1  j = l  

m m 

+ o  2 ~ (m + l - l) ~ (m + l - j ) E x L j  
/=0 j = 0  

= (a2+[abl k(k-bl)------~---ba2(m+l)2(rn+2)-l)Ex 2 2  

+ (l~bl + b~),kl) ~ (k + 1 - j )E~L~ + ~:~,~o (m + 1 - j )ExL~ ,  
j=l j = l  

where 
1 ( k + l - l ) ( k + 2 - 1 ) .  (a) 
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Choosing the functional V2, in the form 

i--1 i--1 

l = i - k  l = i - m  

where 
Al = (lab[ + b2Akl) "~kl, B l ~ O'2~rnOAml,  (4)  

we get 

i i 

l=i+ l - k  l=i+ l - m  

i - 1  

= (Ax + Ba)x~ + y ~  (A,+l-t  - Ai-t)x~ - AkXLk  
l = i + l - k  

i - 1  

+ Z ( B i + l - t -  B,-I)x~ - Bmx2i_m 
l=i+ l - - m  

k m 

(A1 + B1)x2i ( labl + b2Akl)" Z (k + 1 • 2 = - - 3)xi- j  - °'2Am0 Z (m + 1 - j ) x L j .  
j = l  j = l  

From (3),(4), it follows that  

A1 = labl - = - - 2  + k ( k  + 1) b2 k2(k4 + 1)5 ' B1 = o .2 m(m + 1)2(m4 + 2) 

Therefore, for ~ = Vu + ~ i  we obtain 

+ p - 1 Ex~ 2, 

where 
t7 2 

p = ~ -  (m + 1)~(m + 2) 2. 

Prom here and Theorem 1, it follows that  the inequality 

+ p < 1 (5) 

is a sufficient condition of asymptotic mean square stability of the zero solution of equation (2). 
Let us show that  choosing another way of estimation of EAVli and supposing some additional 

conditions on a and b, we can get stability conditions which differ from (5). 
2 again. Calculating EAVI~ and using (3), So let us use the functional Vii in the form Vii = x~ 

we get as previously 

k 

E~Vl ,  = (a 2 - 1) E ~  + 2ab ~ (k + ~ - j )E~,~,_j  
j = l  

+ b2E ~ (k + 1 - j ) ~ _ ,  + o~E ~ ( ~  + 1 - j ) ~ _ , ~ ,  
\ j = l  3=0 

k 
< ( a 2 + a 2 ( m + l ) 2 ( m + 2 ) - l )  2 

j=l  
k rn 

+ b2Akl Z (k + 1 - j ) E x L j  + a2Amo Z (m + 1 - j)Ex~_j. 
j = l  j = l  
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Suppose now that ab < 0 aad put 

j = l  /=1 l-.~i-k l = t - m  

where Bl are defined by (4), (3), and Cl = b2)~kl)~kz. 
Calculating EAV2i as previously, we get 

where 

Note that 

EAV2~ = lablE'h + (C1 + B1)Ex~ 
k m 

-b2Akl E (k + 1 - j)Ex~_j - a2Am0 E (m + 1 - j)Ex2 j, 
j = l  j~-t 

k+l 

~ i =  E 
j = l  

j = l  

j=l 

] 
Xi ~- l~ l  Xi--I -- Xi--j -~ ~ Xi--I 

/=1 

" j--1 ( 
2 X 2 x i 4- 2Z i E X i - l  -- i - j  + 2 X i - j  

1=1 

k 

/=1 

)] E :~i-I 
/=1 

where 

It is easy to see that 

k+l( 
E p~ = x~_j + 2xi_j 
j = l  

.1 ) 
E :~i-I • 
/=1 

It means that 

Note that 

k+l k~-I j - i  k 

Pi E 2 = x ~ _ j + E x ~ _ , E x ~ _ l + E x ~ _ ,  
j = l  3--=1 /=1 /=1 

k+l j k4-I k4-1 

j = l  1=1 j = l  l=j+l  

j = l  1=1 \ j = l  

k 

7i < (k + 1)z~ + 2x~ ~ (k + 1 - l)xi_~- 
/=1 

k+l 

E x~_j 
j= l+ l  

~2 (m + I)2(m + 2) 
+ B 1  = p .  

2 
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Therefore, for V~ = Vii + V2~, we have 

EAV~ < (a  2 + labl(k + 1) + b 2 k2(k ÷ 1)2 
- \ 4 

+ p -  1) Ez~. 

Thus, the inequalities 

a 2 + labI(k + 1) + b 2 k2(k + 1)2 
4 + p < 1, ab < O, (6) 

are a sufficient condition of asymptotic mean square stability of the zero solution of equation (2). 
Rewriting condition (5) in the form 

a s + ]ab]k(k + 1) + b 2 k2(k + 1)2 
4 + p < l  

and collating conditions (5) and (6) by ab < 0, it is easy to see that  by k = 1 condition (6) 
coincides with (5), but by k > 1 condition (6) is better than (5). 

REMARK. As it follows from [1] constructing other Lyapunov functionals we can obtain sufficient 
conditions of asymptotic mean square stability of the zero solution of equation (2) in other forms, 
for example, 

p <  ( l _ a _ b k ( k + l ) )  ( l + a q _ b k ( k + l )  k ( k ÷ l ) ( k + 2 ) )  a k ( k + l )  
2 2 Ibl 3 , + b 2 < 1, 

o r  

Ib[ (k(k - 1)/2) [21a [ + (1 - bk)lb I (k(k + 3)/2)] + (1 - bk)p 
< 1 ,  Iblk < l, lal < l - b k .  

(1 + bk) [(1 - bk) 2 - a s] 
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