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Abstract
This paper is concerned with the oscillatory behavior of first-order retarded
[advanced] difference equation of the form

�x(n) + p(n)x(τ (n)) = 0, n ∈ N0
[∇x(n) – q(n)x(σ (n)) = 0, n ∈N

]
,

where (p(n))n≥0 [(q(n))n≥1] is a sequence of nonnegative real numbers and τ (n) [σ (n)]
is a non-monotone sequence of integers such that τ (n)≤ n – 1, for n ∈N0 and
limn→∞ τ (n) =∞ [σ (n)≥ n + 1, for n ∈N]. Sufficient conditions, involving lim sup,
which guarantee the oscillation of all solutions are established. These conditions
improve all previous well-known results in the literature. Also, using algorithms on
MATLAB software, examples illustrating the significance of the results are given.
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1 Introduction
The paper deals with the difference equation with a single variable retarded argument of
the form

�x(n) + p(n)x
(
τ (n)

)
= , n ∈N, (E)

and the (dual) difference equation with a single variable advanced argument of the form

∇x(n) – q(n)x
(
σ (n)

)
= , n ∈N, (E′)

where N and N are the sets of nonnegative integers and positive integers, respectively.
Equations (E) and (E′) are studied under the following assumptions: everywhere

(p(n))n≥ and (q(n))n≥ are sequences of nonnegative real numbers, (τ (n))n≥ is a sequence
of integers such that

τ (n) ≤ n – , ∀n ∈ N and lim
n→∞ τ (n) = ∞, (.)
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and (σ (n))n≥ is a sequence of integers such that

σ (n) ≥ n + , ∀n ∈N. (.′)

Here, � denotes the forward difference operator �x(n) = x(n+)–x(n) and ∇ corresponds
to the backward difference operator ∇x(n) = x(n) – x(n – ).

Set

w = – min
n≥

τ (n).

Clearly, w is a finite positive integer if (.) holds.
By a solution of (E), we mean a sequence of real numbers (x(n))n≥–w which satisfies (E) for

all n ≥ . It is clear that, for each choice of real numbers c–w, c–w+, . . . , c–, c, there exists a
unique solution (x(n))n≥–w of (E) which satisfies the initial conditions x(–w) = c–w, x(–w +
) = c–w+, . . . , x(–) = c–, x() = c.

By a solution of (E′), we mean a sequence of real numbers (x(n))n≥ which satisfies (E′)
for all n ≥ .

A solution (x(n))n≥–w (or (x(n))n≥) of (E) (or (E′)) is called oscillatory, if the terms x(n)
of the sequence are neither eventually positive nor eventually negative. Otherwise, the
solution is said to be nonoscillatory. An equation is oscillatory if all its solutions oscillate.

In the last few decades, the oscillatory behavior and the existence of positive solutions
of difference equations with deviating arguments have been extensively studied; see, for
example, papers [–] and the references cited therein. Most of these papers concern
the special case where the arguments are nondecreasing, while a small number of these
papers are dealing with the general case where the arguments are non-monotone. See,
for example, [–, , ] and the references cited therein. By the consideration of non-
monotone arguments of other than the pure mathematical interest, it approximates the
natural phenomena described by equation of the type (E) or (E′). That is because there
are always natural disturbances (e.g. noise in communication systems) that affect all the
parameters of the equation and therefore the fair (from a mathematical point of view)
monotone arguments become non-monotone almost always.

1.1 Retarded difference equations
In  Chatzarakis, Koplatadze and Stavroulakis [, ] proved that, if

lim sup
n→∞

n∑

j=h(n)

p(j) > , (.)

where h(n) = max≤s≤n τ (s), or

lim inf
n→∞

n–∑

j=τ (n)

p(j) >

e

, (.)

then all solutions of (E) oscillate.
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It is obvious that there is a gap between the conditions (.) and (.) when the limit

lim
n→∞

n–∑

j=τ (n)

p(j)

does not exist. How to fill this gap is an interesting problem which has been investigated
by several authors. For example, in , Chatzarakis, Philos and Stavroulakis [] proved
that if

lim sup
n→∞

n∑

j=h(n)

p(j) >  –
 – a –

√
 – a – a


, (.)

where a = lim infn→∞
∑n–

j=τ (n) p(j), then all solutions of (E) oscillate.
In , Braverman and Karpuz [] proved that if

lim sup
n→∞

n∑

j=h(n)

p(j)
h(n)–∏

i=τ (j)


 – p(i)

> , (.)

then all solutions of (E) oscillate, while, in , Stavroulakis [], improved (.) to

lim sup
n→∞

n∑

j=h(n)

p(j)
h(n)–∏

i=τ (j)


 – p(i)

>  –
 – a –

√
 – a – a


. (.)

In , Braverman, Chatzarakis, and Stavroulakis [] proved that if for some r ∈N

lim sup
n→∞

n∑

j=h(n)

p(j)a–
r

(
h(n), τ (j)

)
> , (.)

or

lim sup
n→∞

n∑

j=h(n)

p(j)a–
r

(
h(n), τ (j)

)
>  –

 – a –
√

 – a – a


, (.)

where

a(n, k) =
n–∏

i=k

[
 – p(i)

]
, ar+(n, k) =

n–∏

i=k

[
 – p(i)a–

r
(
i, τ (i)

)]
, (.)

then all solutions of (E) oscillate.
Recently, Asteris and Chatzarakis [] proved that if for some � ∈N

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p�(j)

> , (.)

where

p�(n) = p(n)

[

 +
n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p�–(j)

]

(.)

with p(n) = p(n), then all solutions of (E) oscillate.
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1.2 Advanced difference equations
In , Chatzarakis and Stavroulakis [] proved that, if

lim sup
n→∞

ρ(n)∑

i=n

q(i) > , (.)

or

lim sup
n→∞

ρ(n)∑

i=n

q(i) >  – ( –
√

 – b), (.)

where ρ(n) = mins≥n σ (s) and b = lim infn→∞
∑σ (n)

i=n+ p(i), then all solutions of (E′) oscillate.
In , Braverman, Chatzarakis, and Stavroulakis [] proved that if for some r ∈N

lim sup
n→∞

ρ(n)∑

j=n

q(j)b–
r

(
ρ(n),σ (j)

)
> , (.)

or

lim sup
n→∞

ρ(n)∑

j=n

q(j)b–
r

(
ρ(n),σ (j)

)
>  –

 – b –
√

 – b – b


, (.)

where

b(n, k) =
k∏

i=n+

[
 – q(i)

]
,

br+(n, k) =
k∏

i=n+

[
 – q(i)b–

r
(
i,σ (i)

)]
(.)

and b = lim infn→∞
∑σ (n)

i=n+ p(i), then all solutions of (E′) oscillate.
Recently, Asteris and Chatzarakis [] proved that if for some � ∈N

lim sup
n→∞

ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q�(j)

> , (.)

where

q�(n) = q(n)

[

 +
ρ(n)∑

i=n+

q(i)
σ (i)∏

j=ρ(n)+


 – q�–(j)

]

(.)

with q(n) = q(n), then all solutions of (E′) oscillate.
In this paper we study further (E) and (E′) and derive new sufficient oscillation condi-

tions. Examples illustrate cases when the results of the present paper imply oscillation
while previously known results fail.
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2 Main results
2.1 Retarded difference equations
We study further (E) and derive a new sufficient oscillation condition, involving lim sup,
which essentially improves all the previous results.

Let

h(n) = max
≤s≤n

τ (s), n ≥ . (.)

Clearly, the sequence h(n) is nondecreasing and τ (n) ≤ h(n) ≤ n –  for all n ≥ .
The proof of our main result is essentially based on the following lemmas.

Lemma  Assume that (.) holds and

 < a := lim inf
n→∞

n–∑

j=τ (n)

p(j).

Then we have

lim inf
n→∞

n–∑

j=h(n)

p(j) = lim inf
n→∞

n–∑

j=τ (n)

p(j) = a, (.)

where h(n) is defined by (.).

Proof Since h(n) is nondecreasing and τ (n) ≤ h(n) ≤ n –  for all n ≥ , we have

n–∑

j=h(n)

p(j) ≤
n–∑

j=τ (n)

p(j).

Therefore

lim inf
n→∞

n–∑

j=h(n)

p(j) ≤ lim inf
n→∞

n–∑

j=τ (n)

p(j).

If (.) does not hold, then there exist a′ >  and a subsequence (θ (n)) such that θ (n) → ∞
as n → ∞ and

lim
n→∞

θ (n)–∑

j=h(θ (n))

p(j) ≤ a′ < a.

But h(θ (n)) = max≤s≤θ (n) τ (s), hence there exists θ ′(n) ≤ θ (n), θ ′(n) ∈ N such that
h(θ (n)) = τ (θ ′(n)), and consequently

θ (n)–∑

j=h(θ (n))

p(j) =
θ (n)–∑

j=τ (θ ′(n))

p(j) ≥
θ ′(n)–∑

j=τ (θ ′(n))

p(j).



Chatzarakis and Shaikhet Advances in Difference Equations  (2017) 2017:62 Page 6 of 16

It follows that (
∑θ ′(n)–

j=τ (θ ′(n)) p(j))∞n= is a bounded sequence having a convergent subsequence,
say

θ ′(nk )–∑

j=τ (θ ′(nk ))

p(j) → c ≤ a′, as k → ∞

which implies that

lim inf
n→∞

n–∑

j=τ (n)

p(j) ≤ a′ < a.

This contradicts (.).
The proof of the lemma is complete. �

Lemma  ([], Lemma .) In addition to hypothesis (.), assume that h(n) is defined by
(.),

 < a := lim inf
n→∞

n–∑

j=τ (n)

p(j) ≤ 
e

(.)

and x(n) is an eventually positive solution of (E). Then

lim inf
n→∞

x(n + )
x(h(n))

≥  – a –
√

 – a – a


. (.)

Theorem  Assume that (.) holds, h(n) is defined by (.) and a by (.). If for some � ∈N

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p�(j)

>  –
 – a –

√
 – a – a


, (.)

where p�(n) is defined by (.), then all solutions of (E) oscillate.

Proof Assume, for the sake of contradiction, that (x(n))n≥–w is a nonoscillatory solution
of (E). Then it is either eventually positive or eventually negative. As (–x(n))n≥–w is also a
solution of (E), we may restrict ourselves only to the case where x(n) >  for all large n. Let
n ≥ –w be an integer such that x(n) >  for all n ≥ n. Then, there exists n ≥ n such that
x(τ (n)) > , ∀n ≥ n. In view of this, equation (E) becomes

�x(n) = –p(n)x
(
τ (n)

) ≤ , ∀n ≥ n,

which means that the sequence (x(n)) is eventually decreasing.
Therefore, since τ (n) < n, (E) implies

�x(n) + p(n)x(n) ≤ . (.)
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Applying the discrete Grönwall inequality, we obtain

x(k) ≥ x(n)
n–∏

i=k


 – p(i)

, for all n ≥ k ≥ n. (.)

Summing up (E) from τ (n) to n – , we have

x(n) – x
(
τ (n)

)
+

n–∑

i=τ (n)

p(i)x
(
τ (i)

)
= . (.)

Since τ (i) ≤ h(i) ≤ h(n), (.) and (.) give

x(n) – x
(
τ (n)

)
+ x

(
h(n)

) n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

≤ .

Multiplying the last inequality by p(n), we get

p(n)x(n) – p(n)x
(
τ (n)

)
+ p(n)x

(
h(n)

) n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

≤ ,

which, in view of (E), becomes

�x(n) + p(n)x(n) + p(n)x
(
h(n)

) n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

≤ .

Since h(n) < n, the last inequality gives

�x(n) + p(n)x(n) + p(n)x(n)
n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

≤ ,

or

�x(n) + p(n)

[

 +
n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

]

x(n) ≤ .

Therefore

�x(n) + p(n)x(n) ≤ ,

where

p(n) = p(n)

[

 +
n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

]

.



Chatzarakis and Shaikhet Advances in Difference Equations  (2017) 2017:62 Page 8 of 16

Repeating the above argument leads to a new estimate,

�x(n) + p(n)x(n) ≤ ,

where

p(n) = p(n)

[

 +
n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

]

.

Continuing by induction, for sufficiently large n we get

�x(n) + p�(n)x(n) ≤ ,

where

p�(n) = p(n)

[

 +
n–∑

i=τ (n)

p(i)
h(n)–∏

j=τ (i)


 – p�–(j)

]

.

Clearly, by the Grönwall inequality, we have

x
(
τ (i)

) ≥ x
(
h(n)

) h(n)–∏

j=τ (i)


 – p�(j)

. (.)

Summing up (E) from h(n) to n, we have

x(n + ) – x
(
h(n)

)
+

n∑

i=h(n)

p(i)x
(
τ (i)

)
= . (.)

Combining (.) and (.), we have

x(n + ) – x
(
h(n)

)
+ x

(
h(n)

) n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p�(j)

≤ ,

or

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p�(j)

≤  –
x(n + )
x(h(n))

.

Therefore

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p�(j)

≤  – lim inf
n→∞

x(n + )
x(h(n))

. (.)
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By combining Lemmas  and , it becomes obvious that inequality (.) is fulfilled. So,
(.) leads to

lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p�(j)

≤  –
 – a –

√
 – a – a


,

which contradicts (.). The proof of the theorem is complete. �

Example  Consider the retarded difference equation

�x(n) +


,
x
(
τ (n)

)
= , n ∈N, (.)

with (see Figure (a))

τ (n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n – , if n = μ,

n – , if n = μ + ,

n – , if n = μ + ,

n – , if n = μ + ,

n – , if n = μ + ,

μ ∈N.

By (.), we see (Figure (b)) that

h(n) = max
≤s≤n

τ (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n – , if n = μ,

n – , if n = μ + ,

n – , if n = μ + ,

n – , if n = μ + ,

n – , if n = μ + ,

μ ∈N.

Figure 1 The graphs of τ (n) and h(n).
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Observe that the function F : N →R+ defined as

F�(n) =
n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p�(j)

attains its maximum at n = μ + , μ ∈ N, for every � ∈ N. Specifically, by using an algo-
rithm of Matlab software, we obtain

F(n) =
n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

=
n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)[ +

∑j–
k=τ (j) p(k)

∏h(j)–
m=τ (k)


–p(m) ]

=
μ+∑

i=μ+


,

μ–∏

j=τ (i)


 – 

, [ +
∑j–

k=τ (j)


,
∏h(j)–

m=τ (k)


– 
,

]

� ..

Thus

lim sup
n→∞

F(n) = lim sup
n→∞

n∑

i=h(n)

p(i)
h(n)–∏

j=τ (i)


 – p(j)

� ..

Since

a = lim inf
n→∞

n–∑

j=τ (n)

p(j) = lim inf
n→∞

μ∑

j=μ

p(j) = .,

we have

. >  –
 – a –

√
 – a – a


� .,

that is, condition (.) of Theorem  is satisfied for � = . Therefore, all solutions of (.)
oscillate.

Observe, however, that

lim sup
n→∞

n∑

j=h(n)

p(j) = lim sup
μ→∞

μ+∑

i=μ+

p(j) =  · . = . < ,

a = . <

e

,

. <  –
 – a –

√
 – a – a


� .,
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lim sup
n→∞

n∑

j=h(n)

p(j)
h(n)–∏

i=τ (j)


 – p(i)

= lim sup
μ→∞

μ+∑

j=μ+

.
μ∏

i=τ (j)


 – .

= . · lim sup
μ→∞

{ μ∏

i=τ (μ+)


 – .

+
μ∏

i=τ (μ+)


 – .

+
μ∏

i=τ (μ+)


 – .

+
μ∏

i=τ (μ+)


 – .

}

= . · lim sup
μ→∞

{ μ∏

i=μ


 – .

+
μ∏

i=μ+


 – .

+
μ∏

i=μ–


 – .

+
μ∏

i=μ+


 – .

}

= . ·
{


 – .

+  +
(


 – .

)

+ 
}

� . < ,

. <  –
 – a –

√
 – a – a


� .,

. < .

That is, conditions (.), (.), (.), (.) ≡ (.) (for r = ), (.) ≡ (.) (for r = ) and
(.) are not satisfied.

Figure , illustrates that the three different solutions of (.), as predicted, appear to be
oscillatory.

Figure 2 Three solutions of (2.12).
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Notation It is worth noting that the improvement of condition (.) to the corresponding
condition (.) is significant, approximately .%, if we compare the values on the left-
hand side of these conditions. Also, the improvement compared to condition (.) (or (.)
or (.) or (.)) is very satisfactory, around .%. Also, observe that conditions (.), (.),
and (.) do not lead to oscillation for the first iteration. On the contrary, condition (.)
is satisfied from the first iteration. This means that our condition is better and much faster
than (.), (.), and (.).

2.2 Advanced difference equations
A similar oscillation theorem for the (dual) advanced difference equation (E′) can be de-
rived easily. The proof of this theorem is omitted, since it is quite similar to the proof for
a retarded equation.

Let

ρ(n) = min
s≥n

σ (s), n ≥ . (.)

Clearly, the sequence ρ(n) is nondecreasing and σ (n) ≥ ρ(n) ≥ n +  for all n ≥ .

Theorem  Assume that (.′) holds and ρ(n) is defined by (.). If for some � ∈N

lim sup
n→∞

ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q�(j)

>  –
 – b –

√
 – b – b


, (.)

where q�(n) is defined by (.) and  < b = lim infn→∞
∑σ (n)

i=n+ p(i) ≤ /e, then all solutions
of (E′) oscillate.

Example  Consider the advanced difference equation

∇x(n) –


,
x
(
σ (n)

)
= , n ∈N, (.)

with (see Figure (a))

σ (n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + , if n = μ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

μ ∈N.

By (.), we see (Figure (b)) that

ρ(n) = min
s≥n

σ (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + , if n = μ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

n + , if n = μ + ,

μ ∈ N.
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Figure 3 The graphs of σ (n) and ρ(n).

Observe that the function F : N →R+ defined as

F�(n) =
ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q�(j)

attains its maximum at n = μ + , μ ∈ N, for every � ∈ N. Specifically, by using an algo-
rithm of Matlab software, we obtain

F(n) =
ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q(j)

=
ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q(j)[ +

∑σ (j)
k=j+ q(k)

∏σ (k)
m=ρ(j)+


–q(m) ]

=
μ+∑

i=μ+


,

σ (i)∏

j=μ+


 – 

, [ +
∑σ (j)

k=j+


,
∏σ (k)

m=ρ(j)+


– 
,

]
� ..

Thus

lim sup
n→∞

F(n) = lim sup
n→∞

ρ(n)∑

i=n

q(i)
σ (i)∏

j=ρ(n)+


 – q(j)

� ..

Since

b = lim inf
n→∞

σ (n)∑

i=n+

q(i) = lim inf
n→∞

μ+∑

i=μ+

q(i) =


,
= .,

we have

. >  –
 – b –

√
 – b – b


� .
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that is, condition (.) of Theorem  is satisfied for � = . Therefore, all solutions of (.)
oscillate.

Observe, however, that

lim sup
n→∞

ρ(n)∑

i=n

q(i) = lim sup
μ→∞

μ+∑

i=μ+

q(i) =  · 
,

= . < ,

. <  – ( –
√

 – b) � .,

lim sup
n→∞

ρ(n)∑

j=n

q(j)b–


(
ρ(n),σ (j)

)

= lim sup
μ→∞

μ+∑

j=μ+


,

σ (j)∏

i=μ+


 – 

,

=


,
· lim sup

μ→∞

{
σ (μ+)∏

i=μ+


 – 

,
+

σ (μ+)∏

i=μ+


 – 

,
+

σ (μ+)∏

i=μ+


 – 

,

}

=


,
· lim sup

μ→∞

{ μ+∏

i=μ+


 – 

,
+

μ+∏

i=μ+


 – 

,
+

μ+∏

i=μ+


 – 

,

}

=


,
·
{


( – 

, )
+  +


 – 

,

}
� . < ,

. <  –
 – b –

√
 – b – b


� .,

. < .

That is, conditions (.), (.), (.), (.), and (.) are not satisfied.
Figure , illustrates three different solutions of (.), as predicted, appeared to be os-

cillatory.

Notation It is worth noting that the improvement of condition (.) to the correspond-
ing condition (.) is significant, approximately %, if we compare the values on the left-
side of these conditions. Also, the improvement compared to condition (.) (or (.)) is
very satisfactory, around .%. Also, observe that conditions (.) and (.) do not lead
to oscillation for first iteration. On the contrary, condition (.) is satisfied from the first
iteration. This means that our condition is better and much faster than (.) and (.).

2.3 Deviating difference inequalities
A slight modification in the proofs of Theorems  and  leads to the following results about
deviating difference inequalities.

Theorem  Assume that all conditions of Theorem  hold. Then
(i) the retarded difference inequality

�x(n) + p(n)x
(
τ (n)

) ≤ , n ∈N,

has no eventually positive solutions;



Chatzarakis and Shaikhet Advances in Difference Equations  (2017) 2017:62 Page 15 of 16

Figure 4 Three solutions of (2.15).

(ii) the retarded difference inequality

�x(n) + p(n)x
(
τ (n)

) ≥ , n ∈N,

has no eventually negative solutions.

Theorem  Assume that all conditions of Theorem  hold. Then
(i) the advanced difference inequality

∇x(n) – q(n)x
(
σ (n)

) ≥ , n ∈N,

has no eventually positive solutions;
(ii) the advanced difference inequality

∇x(n) – q(n)x
(
σ (n)

) ≤ , n ∈N,

has no eventually negative solutions.
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