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We consider a stochastically perturbed Nowak–May model of virus dynamics
within a host. Using the direct Lyapunov method, we found sufficient conditions
for the stability in probability of equilibrium states of this model.
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1. Background

During the last decade, a significant advance was made in the global analysis of mathematical
models in epidemiology and viral dynamics. This advance is based on an application of the
direct Lyapunov method and follows the initial breakthrough in [1,2]. In these paper, the
so-called Volterra–Lyapunov function of the form

V (x1, . . . , xn) =
n∑

i=1

Ai
(
xi (t) − x∗

i ln xi (t)
)
,

where Ai are positive constants which have to be defined, xi (t) are the phase variables,
and x∗

i are coordinates of the equilibrium state to be studied, was first time successfully
applied to a three-dimensional SEIR model. (It is worthy of mentioning that application
of this function to two-dimensional models had been well developed by this time.) This
result initiated a vast literature, which currently includes a few thousands of items. This
technique was applied by many other authors to a variety of models in mathematical biology
and epidemiology, and subsequently extended to the models with an arbitrary number of
subpopulations and compartments,[3–7] models with nonlinear functional responses,[8–11]
models with time delays [12,13] and models with distributed subpopulations.[14–17]

However, all these results have a certain drawback, as they are dealing with com-
paratively simple deterministic models which ability to reflect the complexity of real-life
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Applicable Analysis 1229

biological systems is rather limited. Processes in biology are extremely complex and involve
a large number of factors; impacts of these factors are often not known in details. Moreover,
details of the interactions between the major agents are usually also known with a large
degree of uncertainty. In the deterministic models framework, this complexity can be to
some extend captured by further increase of the model order, by introduction of delays and
by distributed parameters. However, the majority of factors, which are involved in real-life
processes or have influence on these, are not known in sufficient details. In such a situation,
the use of stochastic models, where these complexity and uncertainty can be captured
by stochastic perturbations, appears to be a natural choice. Moreover, analysing the impact
which stochastic perturbation can have the dynamics of deterministic models, can justify the
results obtained for these deterministic models. However, the analysis of stochastic models
is a considerably more challenging task, and it is hardly surprising, therefore, that just a few
dozens of publications, dealing with the analysis of stochastic models in epidemiology and
viral dynamics, appeared for the last decade.

In this notice, we consider a stochastically perturbed model of virus dynamics within
a host; the deterministic version of this model was suggested by Nowak and May [17]
in order to describe the dynamics of HIV-1 in vivo. Our objective is to establish sufficient
conditions of the stability in probability [18] for equilibrium states of this model. To address
this problem, we apply the direct Lyapunov method.

The Nowak–May model of virus dynamics comprises three variable quantities, namely
concentrations of the susceptible target cells, x(t), the infected cells, y(t) and free virus
particles, v(t), respectively. The model postulates that there is a constant influx of the
susceptible target cells with a rate λ, that the susceptible cells are infected by free virus
particles with a bilinear incidence rate βx(t)v(t), and that the infected cells produce free
virus particles with a rate ky(t); average life spans of the susceptible cells (in absence of the
virus), the infected cells and free virus particles are 1/m, 1/a and 1/u, respectively. Under
these assumptions, the model is represented by the following system of ordinary differential
equations:

ẋ(t) = λ − mx(t) − βx(t)v(t),

ẏ(t) = βx(t)v(t) − ay(t),

v̇(t) = ky(t) − uv(t). (1.1)

Equilibrium states of this model satisfy the following system of algebraic equations:

λ = mx + βxv,

ay = βxv,

ky = uv. (1.2)

It is easy to see that the model can have at most two equilibrium states, namely an infection-
free equilibrium state E0 = (x0, y0, z0), where

x0 = λ

m
, y0 = 0, v0 = 0, (1.3)

and a positive equilibrium state E∗ = (x∗, y∗, v∗), where

x∗ = au

kβ
, y∗ = λ

a
− mu

kβ
, v∗ = λk

au
− m

β
. (1.4)
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1230 L. Shaikhet and A. Korobeinikov

The positive equilibrium state E∗ exists if the condition

R0 = λkβ

amu
> 1, (1.5)

holds. Here, R0 is called the basic reproduction number of virus.
The properties of the Nowak–May model are well studied. Specifically, it was proved that

if R0 ≤ 1 holds, then the infection-free equilibrium E0 (which is the only equilibrium state
of the model in this case) is globally asymptotically stable, whereas if R0 > 1 holds, then E0
is a saddle point, and the positive equilibrium state E∗ exists and is globally asymptotically
stable (in R3+, as x-axis is an invariant set of the model and the stable manifold of E0).[2,19]

2. A stochastically perturbed model

Let us now assume that system (1.1) is stochastically perturbed by white noises, and that
magnitudes of perturbations are proportional to the deviation of a current state (x(t), y(t),
v(t)) from an equilibrium point. Thus, for the positive equilibrium state E∗, the stochasti-
cally perturbed system takes the form

ẋ(t) = λ − mx(t) − βx(t)v(t) + σ1(x(t) − x∗)ẇ1(t),

ẏ(t) = βx(t)v(t) − ay(t) + σ2(y(t) − y∗)ẇ2(t),

v̇(t) = ky(t) − uv(t) + σ3(v(t) − v∗)ẇ3(t), (2.1)

where σ1, σ2 and σ3 are positive constants, and w1(t), w2(t) and w3(t) are mutually
independent Wiener processes. An advantage of this approach is that for the stochastic
perturbations of such a type the equilibrium point (x∗, y∗, v∗) of system (2.1) coincides
with the equilibrium point E∗ of system (1.1).

Stochastic perturbations of this form were for the first time proposed in [20] for SIR
epidemic model and later this idea was successfully applied by different authors to different
mathematical models, described by differential equations (see [18]) and references therein)
by finite difference equations with discrete and continuous time,[21] by partial differential
equations.[22] The technique which we use further in this paper for the analysis of system
(2.1) is similar to that in [18,20–22].

A substitution

x(t) = x1(t) + x∗, y(t) = x2(t) + y∗, v(t) = x3(t) + v∗,

transforms system (2.1) to the form

ẋ1(t) = λ − m(x1(t) + x∗) − β(x1(t) + x∗)(x3(t) + v∗) + σ1x1(t)ẇ1(t),

ẋ2(t) = β(x1(t) + x∗)(x3(t) + v∗) − a(x2(t) + y∗) + σ2x2(t)ẇ2(t),

ẋ3(t) = k(x2(t) + y∗) − u(x3(t) + v∗) + σ3x3(t)ẇ3(t),

or, using (1.2), to the form

ẋ1(t) = −(m + βv∗)x1(t) − βx∗x3(t) − βx1(t)x3(t) + σ1x1(t)ẇ1(t),

ẋ2(t) = β(v∗x1(t) + x∗x3(t) + x1(t)x3(t)) − ax2(t) + σ2x2(t)ẇ2(t),

ẋ3(t) = kx2(t) − ux3(t) + σ3x3(t)ẇ3(t). (2.2)
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Applicable Analysis 1231

The origin of the system (2.2) phase space corresponds to the positive equilibrium state E∗
of system (2.1) and is an equilibrium state of this system. Our objective is to establish the
stability of the origin.

Further, we will also consider the linear part of system (2.2) in the form

ẏ1(t) = −(m + βv∗)y1(t) − βx∗y3(t) + σ1 y1(t)ẇ1(t),

ẏ2(t) = β(v∗y1(t) + x∗y3(t)) − ay2(t) + σ2 y2(t)ẇ2(t),

ẏ3(t) = ky2(t) − uy3(t) + σ3 y3(t)ẇ3(t). (2.3)

Note that the order of nonlinearity of the system (2.2) is higher than one, and hence sufficient
conditions for the asymptotic mean square stability (Definition A.1) of the trivial solution of
the system (2.3) are, at the same time, the sufficient conditions for the stability in probability
(Definition A.1) for the trivial solution of the system (2.2) (Remark A.1).

3. Stability for the positive equilibrium state E

In order to establish conditions for the stability of positive equilibrium state E∗, we represent
the linear system (2.3) in the matrix form

ẏ(t) = Ay(t) + B(y(t))ẇ(t); (3.1)

here

y(t) =
⎛
⎝y1(t)

y2(t)
y3(t)

⎞
⎠ , A =

⎛
⎝−(m + βv∗) 0 −βx∗

βv∗ −a βx∗
0 k −u

⎞
⎠ ,

B(y(t)) =
⎛
⎝σ1 y1(t) 0 0

0 σ2 y2(t) 0
0 0 σ3 y3(t)

⎞
⎠ , w(t) =

⎛
⎝w1(t)

w2(t)
w3(t)

⎞
⎠ .

It is easy to see that, if v∗ > 0 (that is, if R0 > 1) holds, then matrix A satisfies the Routh–
Hurwitz criterion for stability (see [23], p.197). Indeed, for coefficients of the characteristic
equation

λ3 − S1λ
2 + S2λ − S3 = 0,

the inequalities

S1 = trA = −(m + βv∗ + a + u) < 0,

S2 = (m + βv∗)(a + u) > 0,

S3 = det A = −auβv∗ < 0,

S3 > S1S2

hold (we used equalities (1.2) here). Therefore, for a positive definite matrix

Q =
⎛
⎝q1 0 0

0 q2 0
0 0 1

⎞
⎠ , q1 > 0, q2 > 0,

there exists a positive definite solution P = (pi j ) of the Lyapunov matrix equation

A′ P + P A = −Q. (3.2)
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1232 L. Shaikhet and A. Korobeinikov

Remark 3.1 The diagonal elements pii , i = 1, 2, 3, of the solution P to the matrix Equation
(3.2) are defined [18] as

pii = 1

2�3

2∑
r=0

γ
(r)
i �1,r+1. (3.3)

Here,

�3 =
∣∣∣∣∣∣
−S1 −S3 0

1 S2 0
0 −S1 −S3

∣∣∣∣∣∣ = (S1S2 − S3)S3 > 0

is the determinant of Hurwitz matrix; �1,r+1 is the algebraic adjunct of the element of the
first line and (r + 1)th column of the determinant �3, that is, �11 = −S2S3, �12 = S3 and
�13 = −S1 and γ

(r)
i are defined by the identity

3∑
k=1

qk Dik(λ)Dik(−λ) ≡
2∑

r=0

γ
(r)
i λ2(2−r), (3.4)

where qi are the elements of the matrix Q, that is, q1 > 0, q2 > 0 and q3 = 1, and Dik(λ)

are the algebraic adjuncts of the determinant

D(λ) =
∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23
a31 a32 a33 − λ

∣∣∣∣∣∣ .
From (3.3), (3.4) it follows that the diagonal elements of the solution P of the matrix

Equation (3.2) can be represented in the form

pii = p(1)
i i q1 + p(2)

i i q2 + p(3)
i i , i = 1, 2, 3. (3.5)

Sufficient stability conditions for the trivial solution of system (2.3) are given by
following Theorem:

Theorem 3.1 Let σi , i = 1, 2, 3, satisfy the conditions

σ 2
1 <

(
p(1)

11

)−1
, σ 2

2 <

(
p(2)

22 + σ 2
1 p(2)

11 p(1)
22

1 − σ 2
1 p(1)

11

)−1

,

σ 2
3 <

⎛
⎝p(3)

33 +
σ 2

1 p(1)
33

[
σ 2

2 p(2)
11 p(3)

22 + p(3)
11

(
1 − σ 2

2 p(2)
22

)]
(

1 − σ 2
1 p(1)

11

) (
1 − σ 2

2 p(2)
22

)
− σ 2

1 σ 2
2 p(2)

11 p(1)
22

+
σ 2

2 p(2)
33

[
σ 2

1 p(3)
11 p(1)

22 + p(3)
22

(
1 − σ 2

1 p(1)
11

)]
(

1 − σ 2
1 p(1)

11

) (
1 − σ 2

2 p(2)
22

)
− σ 2

1 σ 2
2 p(2)

11 p(1)
22

⎞
⎠

−1

. (3.6)

Then, the trivial solution of system (2.3) is asymptotically mean square stable.
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Applicable Analysis 1233

Proof Let L be the generator (see Appendix 1) of the Equation (3.1), P = (pi j ) be the
solution of the matrix Equation (3.2), and V = y′ Py. Then,

LV = y′(t)(A′ P + P A)y(t) +
3∑

i=1

σ 2
i pii y2

i (t)

=
(
−q1 + σ 2

1 p11

)
y2

1(t) +
(
−q2 + σ 2

2 p22

)
y2

2(t) +
(
−1 + σ 2

3 p33

)
y2

3(t),

and hence the sufficient conditions for the asymptotic mean square stability of the trivial
solution of Equation (3.1) are (see Theorem A.1)

σ 2
1 p11 < q1, σ 2

2 p22 < q2, σ 2
3 p33 < 1. (3.7)

Using (3.5), we can rewrite conditions (3.7) in the form

σ 2
1

(
p(1)

11 q1 + p(2)
11 q2 + p(3)

11

)
< q1, (3.8)

σ 2
2

(
p(1)

22 q1 + p(2)
22 q2 + p(3)

22

)
< q2, (3.9)

σ 2
3

(
p(1)

33 q1 + p(2)
33 q2 + p(3)

33

)
< 1. (3.10)

It is easy to see that Theorem hypotheses (3.6) imply that (3.8)–(3.10) hold for some
positive q1 and q2. Indeed, combining inequalities (3.8) and (3.9), we get

0 <
σ 2

2

(
p(1)

22 q1 + p(3)
22

)
1 − σ 2

2 p(2)
22

< q2 <

(
1 − σ 2

1 p(1)
11

)
q1 − σ 2

1 p(3)
11

σ 2
1 p(2)

11

. (3.11)

Hence, if there exists q1 > 0 such that the inequality

0 <
σ 2

2

(
p(1)

22 q1 + p(3)
22

)
1 − σ 2

2 p(2)
22

<

(
1 − σ 2

1 p(1)
11

)
q1 − σ 2

1 p(3)
11

σ 2
1 p(2)

11

(3.12)

holds, then there also exists q2 > 0 such that (3.11) holds. Furthermore, from (3.12) it
follows that

q1 >
σ 2

1

[
σ 2

2 p(2)
11 p(3)

22 + p(3)
11

(
1 − σ 2

2 p(2)
22

)]
(

1 − σ 2
1 p(1)

11

) (
1 − σ 2

2 p(2)
22

)
− σ 2

1 σ 2
2 p(2)

11 p(1)
22

. (3.13)

Likewise, inequalities (3.8) and (3.9) yield

0 <
σ 2

1

(
p(2)

11 q2 + p(3)
11

)
1 − σ 2

1 p(1)
11

< q1 <

(
1 − σ 2

2 p(2)
22

)
q2 − σ 2

2 p(3)
22

σ 2
2 p(1)

22

, (3.14)

and hence the existence of q2 > 0, such that the inequality

0 <
σ 2

1

(
p(2)

11 q2 + p(3)
11

)
1 − σ 2

1 p(1)
11

<

(
1 − σ 2

2 p(2)
22

)
q2 − σ 2

2 p(3)
22

σ 2
2 p(1)

22

(3.15)
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1234 L. Shaikhet and A. Korobeinikov

holds, also ensures the existence of q1 > 0 such that (3.14) holds. Moreover, from (3.15),
it follows that

q2 >
σ 2

2

[
σ 2

1 p(3)
11 p(1)

22 + p(3)
22

(
1 − σ 2

1 p(1)
11

)]
(

1 − σ 2
1 p(1)

11

) (
1 − σ 2

2 p(2)
22

)
− σ 2

1 σ 2
2 p(2)

11 p(1)
22

. (3.16)

Theorem hypothesis, and specifically the first and the second inequalities in (3.6),
guaranties that the right-hand parts in (3.13) and (3.16) are positive. Furthermore, by (3.13),
(3.16) and the third condition in (3.6), inequality (3.10) holds as well. That is, Theorem
hypothesis (3.6) ensure the existence of q1 > 0 and q2 > 0 such that conditions (3.8)–
(3.10) hold, and, thereby, the asymptotic mean square stability of the trivial solution of
linear Equation (2.3). The proof is now completed. �

Corollary 3.1 Under Theorem 3.1.1 hypothesis, the trivial solution of nonlinear
system (2.2), or, what is the same, of the positive equilibrium state E∗ of system (2.1),
is stable in probability.

The proof follows from Theorems A.1, A.2 and Remark A.1 (see Appendix 1), since the
order of nonlinearity of the system (2.2) is higher than one.

Remark 3.2 Note that if all conditions (3.7) do not hold then LV ≥ 0 and the trivial
solution of the system (2.3) cannot be asymptotically mean square stable.[18]

4. Stability of the infection-free equilibrium E0

For the infection-free equilibrium state E0, systems (2.1)–(2.3), respectively, have the forms

ẋ(t) = λ − mx(t) − βx(t)v(t) + σ1(x(t) − x0)ẇ1(t),

ẏ(t) = βx(t)v(t) − ay(t) + σ2 y(t)ẇ2(t),

v̇(t) = ky(t) − uv(t) + σ3v(t)ẇ3(t); (4.1)

ẋ1(t) = −mx1(t) − βx0x3(t) − βx1(t)x3(t) + σ1x1(t)ẇ1(t),

ẋ2(t) = β(x0x3(t) + x1(t)x3(t)) − ax2(t) + σ2x2(t)ẇ2(t),

ẋ3(t) = kx2(t) − ux3(t) + σ3x3(t)ẇ3(t), (4.2)

and

ẏ1(t) = −my1(t) − βx0 y3(t) + σ1 y1(t)ẇ1(t),

ẏ2(t) = −ay2(t) + βx0 y3(t) + σ2 y2(t)ẇ2(t),

ẏ3(t) = ky2(t) − uy3(t) + σ3 y3(t)ẇ3(t). (4.3)

For these systems, conditions for the asymptotic mean square stability of the trivial solution
of system (4.3) at the same time are the conditions for the stability in probability of the trivial
solution of system (4.2) and for the stability in probability of the infection-free equilibrium
state E0 of system (4.1).
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Applicable Analysis 1235

Conditions of the stability are given by following Theorem:

Theorem 4.1 Let R0 < 1 holds, and σi , i = 1, 2, 3, satisfy the conditions

δ1 < m, δ2 <
|tr(A)| det(A)

A2
, δ3 <

|tr(A)| det(A) − A2δ2

A1 − |tr(A)|δ2
, (4.4)

where

δi = 1

2
σ 2

i , i = 1, 2, 3,

A =
(−a βx0

k −u

)
, tr(A) = −(a + u) < 0,

det(A) = au − kβx0 = au − kβλm−1 = au(1 − R0) > 0,

A1 = det(A) + a2, A2 = det(A) + u2.

Then, the trivial solution of the system (4.3) is asymptotically mean square stable.

Proof We note that the second and the third equations of (4.3) are independent of y1(t),
and hence the system of two equation (y2(t), y3(t)) can be considered separately. Sufficient
conditions for the asymptotic mean square stability of the trivial solutions for systems of
such a type are well known (for instance, see [18]). Theorem hypothesis (4.4) ensures that
these conditions are held. The conditions (4.4) also imply the stability in probability of the
equilibrium point (1.3) of the system (4.1). �

5. Conclusion

The concept of stochastic modelling allows to capture, to some extent, the complexity of
biological processes and to imitate the impacts of unavoidable in the real-life uncertainties.
This consideration motivates the growing interest to stochastic modelling in mathematical
biology. In this paper, we considered a stochastic version of the Nowak–May model of virus
dynamics within a host, which was originally suggested to describe HIV-1 dynamics. Using
the direct Lyapunov method, we found sufficient conditions for the stability in probability
for the equilibrium states of this model.

It is noteworthy that the approach used in this paper can be applied to a wider variety
of the stochastic models.
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Appendix 1.
Let us consider the Itô stochastic differential equation (see [24])

dx(t) = a1(t, x(t))dt + a2(t, x(t))dw(t),

t ≥ 0, x(t) ∈ Rn, x(0) = x0. (A1)

We assume that ai (t, 0) ≡ 0, i = 1, 2, and hence Equation (A1) has the trivial solution. The generator

LV (t, x) = Vt (t, x) + ∇V ′(t, x)a1(t, x) + 1

2
T r
[
a′

2(t, x)∇2V (t, x)a2(t, x)
]
, (A2)

where

Vt = ∂u(t, x)

∂t
, ∇V =

(
∂V (t, x)

∂x1
, . . . ,

∂V (t, x)

∂xn

)
,

∇2V =
(

∂2V (t, x)

∂xi ∂x j

)
, i, j = 1, . . . , n,

is associated with Equation (A1) (see [24]).

Definition A.1 The trivial solution of Equation (A1) is called:

• mean square stable, if for each ε > 0 there exists δ > 0 such that E|x(t, x0)|2 < ε holds for
all t ≥ 0, provided that E|x0|2 < δ;

• asymptotically mean square stable, if it is mean square stable, and, for any initial value x0,
limt→∞ E|x(t, x0)|2 = 0;

• stable in probability, if for any ε1 > 0 and ε2 > 0 there exists δ > 0 such that, for any initial
value x0, solution x(t, x0) to Equation (A1) satisfies condition P{supt≥0 |x(t, x0)| > ε1} < ε2,
where P{|x0| < δ} = 1.

Theorem A.1 Let there exist a function V (t, x) such that for any solution x(t) to Equation (A1)
the following inequalities hold:

EV (t, x(t)) ≥ c1E|x(t)|2, t ≥ 0, (A1)

EV (0, x0) ≤ c2E|x0|2, (A2)

ELV (t, x(t)) ≤ −c3E|x(t)|2, t ≥ 0, (A3)

where ci > 0 and i = 1, 2, 3. Then the trivial solution of Equation (A1) is asymptotically mean
square stable.

Theorem A.2 Let there exist a function V (t, x) such that for any solution x(t) of the Equation
(A1) the following inequalities hold:

V (t, x(t)) ≥ c1|x(t)|2, (A4)

V (0, x0) ≤ c2|x0|2, (A5)

LV (t, x(t)) ≤ 0, t ≥ 0, (A6)

ci > 0, i = 1, 2, for any initial value x0 such that P{|x0| ≤ δ} = 1, where δ > 0 is small enough.
Then the trivial solution of the equation of (A1) is stable in probability.

Remark A.1 Let us assume, that for some nonlinear stochastic differential equation with an order of
nonlinearity higher than one, there exists a function V (t, x), which satisfies Theorem A.1 hypotheses
for the linear part (or the linear approximation) of the considered nonlinear equation. As it is shown in
[18, p.131], this functional satisfies also TheoremA.2 hypotheses for the original nonlinear differential
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equation. Thus, to get sufficient conditions for the stability in probability of the trivial solution of
the nonlinear equation with an order of nonlinearity higher than one, it is enough, by the virtue
of a function V (t, x) that satisfies Theorem A.1 hypotheses, to obtain sufficient conditions for the
asymptotic mean square stability of the trivial solution of the linear part of the original nonlinear
equation.

Consider the system of two stochastic differential equations without delays

ẋ1(t) = a11x1(t) + a12x2(t) + σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) + a22x2(t) + σ2x2(t)ẇ2(t), (A7)

where ai j , σi , i, j = 1, 2, are constants, and w1(t), w2(t) are mutually independent standard Wiener
processes. Let

A =
(

a11 a12
a21 a22

)
, δi = 1

2
σ 2

i , i = 1, 2,

T r(A) = a11 + a22, det(A) = a11a22 − a12a21,

A1 = det(A) + a2
11, A2 = det(A) + a2

22. (A8)

Lemma A.1 Suppose that T r(A) < 0, det(A) > 0, a12 �= 0 and

δ1 <
|T r(A)| det(A)

A2
, δ2 <

|T r(A)| det(A) − A2δ1

A1 − |T r(A)|δ1
. (A9)

Then the trivial solution of system (A7) is asymptotically mean square stable.

Corollary A.1 If a12 = 0, then conditions (A9) take the form

δ1 < −a11, δ2 < −a22.

So, if the trivial solution of the first Equation (A7) is asymptotically mean square stable, then the
stability condition of the trivial solution of the second Equation (A7) does not depend on a21.
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