
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 530472, 13 pages
doi:10.1155/2012/530472

Research Article
Analysing Social Epidemics by
Delayed Stochastic Models

Francisco-José Santonja1 and Leonid Shaikhet2

1 Department of Statistics and Operational Research, University of Valencia, Dr. Moliner 50,
46100 Burjassot, Spain

2 Department of Higher Mathematics, Donestsk State University of Management,
163a Chelyuskintsev Street, 83015 Donetsk, Ukraine

Correspondence should be addressed to Francisco-José Santonja, francisco.santonja@uv.es
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We investigate the dynamics of a delayed stochastic mathematical model to understand the
evolution of the alcohol consumption in Spain. Sufficient condition for stability in probability of the
equilibrium point of the dynamic model with aftereffect and stochastic perturbations is obtained
via Kolmanovskii and Shaikhet general method of Lyapunov functionals construction. We
conclude that alcohol consumption in Spain will be constant (with stability) in time with around
36.47% of nonconsumers, 62.94% of nonrisk consumers, and 0.59% of risk consumers. This
approach allows us to emphasize the possibilities of the dynamical models in order to study human
behaviour.

1. Introduction

In this paper, we propose amathematical framework tomodel social epidemics. To be precise,
we propose delayed and stochastic consideration on mathematical models to analyze human
behaviors related to addictions.

Hereditary systems or systems with delays are very popular in researches (see, e.g.,
[1–4] and the references therein). In this paper, a nonlinear dynamic alcohol consumption
model [5] is generalized via adding distributed delays. Sufficient conditions for existence
of the positive equilibrium points of this system are obtained. It is also supposed that this
nonlinear system is exposed to additive stochastic perturbations of white noise that are
directly proportional to the deviation of the system current state from the equilibrium point.
Such type of stochastic perturbations first was proposed in [6, 7] and successfully used later
in [8–11]. One of the important point of this assumption is that the equilibrium point is the
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solution of the stochastic system too. In this case, the influence of the stochastic perturbations
on the considered system is small enough in the neighbourhood of the equilibrium point and
big enough if the system state is far enough from the equilibrium point.

The considered nonlinear system is linearized in the neighborhood of the positive
point of equilibrium, and sufficient condition for asymptotic mean square stability of the
zero solution of the constructed linear system is obtained via Kolmanovskii and Shaikhet
general method of Lyapunov functionals construction (GMLFC) that is used for stability
investigation of stochastic functional-differential and difference equations [12–22]. Since the
order of nonlinearity more than 1, this condition is also sufficient one [23, 24] for stability in
probability of the initial nonlinear system by stochastic perturbations.

This way of stability investigation was successfully used for investigation of different
mathematical models of systems with delays: SIR epidemic model [6], predator-prey model
[7, 11], Nicholson blowflies model [9], inverted pendulum [25–27].

The present paper is organized as follows. Section 2 presents the delayed model
including the study of its equilibrium points. Stochastics characteristics of the delayed model
are shown in Section 3. Section 4 is related to the study of stability of the equilibrium point
of the delayed stochastics model proposed. The main conclusions derived from the study are
presented in the last section.

2. Delayed Mathematical Model

Taking into account the proposal presented by Rosenquist et al. in [28], we consider alcohol
consumption habit as susceptible to be transmitted by peer pressure or social contact. This
fact lead us to propose an epidemiological type mathematical model to study this social
epidemic.

Let A(t) be nonconsumers, individuals that have never consumed alcohol or they
infrequently have alcohol consumption, and M(t) nonrisk consumers, individuals with
regular low consumption; to be precise, menwho consume less than 50 cc of alcohol every day
and women who consume less than 30 cc of alcohol every day. Let R(t) be risk consumers,
individuals with regular high consumption, that is, men who consume more than 50 cc of
alcohol every day and women who consume more than 30 cc of alcohol every day.

Considering homogeneous mixing [29], that is, each individual can contact with
any other individual (peer pressure), dynamic alcohol consumption model is given by the
following nonlinear system of ordinary differential equations with distributed delay:

Ȧ(t) = μP(t) + γR(t) − dAA(t) − βA(t)
∫∞

0
f(s)

(
M(t − s) + R(t − s)

P(t − s)

)
ds, (2.1)

Ṁ(t) = βA(t)
∫∞

0
f(s)

(
M(t − s) + R(t − s)

P(t − s)

)
ds − dM(t) − αM(t), (2.2)

Ṙ(t) = αM(t) − γR(t) − dR(t), (2.3)

P(t) = A(t) +M(t) + R(t), (2.4)

where

(i) μ: birth rate in Spain;

(ii) γ : rate at which a risk consumer becomes a nonconsumer;
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(iii) dA: death rate in Spain;

(iv) β: transmission rate due to social pressure to increase alcohol consumption (family,
friends, marketing, TV, etc.);

(v) d: augmented death rate due to alcohol consumption. Accidents at work, traffic
accidents and diseases derived by alcohol consumption are considered. The
information available to calculate the augmented death rate due to alcohol
consumption is aggregate. This fact does not allow us to consider the difference
between the augmented death rate in nonrisk and risk consumers;

(vi) α: rate at which a nonrisk consumer moves to the risk consumption subpopulation.

It is supposed that the parameters α, β, γ, μ, dA, d and the function f(s) are nonnegative
and the following condition holds:

∫∞

0
f(s)ds = 1. (2.5)

In the particular case f(s) = δ(s − h), where h > 0, δ(s) is Dirac’s function, system (2.1) is a
system with discrete delay h. The case of a system without delay (h = 0) is considered in [5].

It is assumed that when a nonconsumer individual is infected by alcohol consumers,
there is a time s during which the alcohol consumption habit develops in nonconsumer and
it is only after that time that nonconsumer individual becomes nonrisk consumer. It is also
assumed that at any time t alcohol consumers population is simply proportional to alcohol
consumers population at time t − s. Let f(s) be the fraction of nonconsumer population that
takes time s to become alcohol consumers (nonrisk consumer).

2.1. Normalization of the Delayed Model

Put

a(t) =
A(t)
P(t)

, m(t) =
M(t)
P(t)

, r(t) =
R(t)
P(t)

. (2.6)

From (2.1) and (2.6), it follows that

a(t) +m(t) + r(t) = 1. (2.7)

Adding the first three equations (2.1) by virtue of (2.7), we obtain

Ṗ(t)
P(t)

= μ − d + (d − dA)a(t). (2.8)
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It is easy to see that

ȧ(t) =
Ȧ(t)P(t) −A(t)Ṗ(t)

P 2(t)
=

Ȧ(t)
P(t)

− A(t)
P(t)

× Ṗ(t)
P(t)

=
Ȧ(t)
P(t)

− a(t)
[
μ − d + (d − dA)a(t)

]
,

(2.9)

and similarly

ṁ(t) =
Ṁ(t)
P(t)

−m(t)
[
μ − d + (d − dA)a(t)

]
,

ṙ(t) =
Ṙ(t)
P(t)

− r(t)
[
μ − d + (d − dA)a(t)

]
.

(2.10)

Thus, putting

I(at) =
∫∞

0
f(s)a(t − s)ds, (2.11)

from (2.1), (2.5), (2.7), (2.9), (2.10), we have

ȧ(t) = μ + γr(t) + βa(t)I(at) − a(t)
[
β + μ − (d − dA)(1 − a(t))

]
,

ṁ(t) = βa(t) − βa(t)I(at) −m(t)
[
α + μ + (d − dA)a(t)

]
,

ṙ(t) = αm(t) − r(t)
[
γ + μ + (d − dA)a(t)

]
.

(2.12)

Via (2.7), the last equation can be rejected, and, as a result, we obtain the system of two
differential equations

ȧ(t) = μ + γ − γm(t) + βa(t)I(at) − a(t)
[
β + μ + γ − (d − dA)(1 − a(t))

]
,

ṁ(t) = βa(t) − βa(t)I(at) −m(t)
[
α + μ + (d − dA)a(t)

]
.

(2.13)

2.2. Existence of the Equilibrium Point

Via (2.5), (2.7), (2.13), the point of equilibrium (a∗, m∗, r∗) is defined by the system of the
algebraic equations:

(
μ + γ

)
(1 − a∗) = a∗(β − d + dA

)
(1 − a∗) + γm∗, (2.14)

βa∗(1 − a∗) = m∗[α + μ + (d − dA)a∗], (2.15)

1 = a∗ +m∗ + r∗. (2.16)
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Lemma 2.1. If d ∈ [dA, β + dA), then system (2.14) has the unique positive solution (a∗, m∗, r∗) if
and only if

β > d − dA + μ +
αγ

α + γ + μ + d − dA
. (2.17)

If d ≥ β + dA, then system (2.14) does not have positive solutions.

Proof. From two first equations of system (2.14), we have

μ + γ − a∗(β − d + dA

)
=

βγa∗

α + μ + (d − dA)a∗ , (2.18)

or

Q(a∗)2 + Ba∗ − C = 0,

B =
(
β − d + dA

)(
α + γ + μ

) − μ(d − dA),

Q =
(
β − d + dA

)
(d − dA), C =

(
μ + α

)(
μ + γ

)
.

(2.19)

Thus, via (2.14), the equilibrium point (a∗, m∗, r∗) is defined by the system of the
algebraic equations (2.19) and

m∗ =
βa∗(1 − a∗)

α + μ + (d − dA)a∗ , r∗ = 1 − a∗ −m∗. (2.20)

It is easy to check that, by condition d ∈ [dA, β + dA) (or Q ≥ 0), the existence of the solution
a∗ of (2.19) in the interval (0, 1) is equivalent to the condition C < Q + B that is equivalent to
(2.17). If d ≥ β + dA, then Q ≤ 0 and B < 0. So, (2.19) cannot have positive roots. The proof is
completed.

Example 2.2. Consider the values of the parameters α, β, γ, μ, d, dA from [5]:

α = 0.000110247, β = 0.0284534, γ = 0.00144,

μ = 0.01, d = 0.009, dA = 0.008.
(2.21)

Then, condition (2.17) for these values of the parameters holds, and the solution of
systems (2.19) and (2.20) is

a∗ = 0.3647389407, m∗ = 0.6293831151, r∗ = 0.005877944497 (2.22)

or in the percents a∗ = 36.47%, m∗ = 62.94%, r∗ = 0.59%.
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3. Stochastic Perturbations, Centralization, and Linearization

Let us suppose that system (2.13) is exposed to stochastic perturbations type of white
noise (ẇ1(t), ẇ2(t)), which are directly proportional to the deviation of system (2.13) state
(a(t), m(t)) from the point (a∗, m∗), that is,

ȧ(t) = μ + γ − γm(t) + βa(t)I(at) − a(t)
[
β + μ + γ − (d − dA)(1 − a(t))

]
+ σ1(a(t) − a∗)ẇ1(t),

ṁ(t) = βa(t) − βa(t)I(at) −m(t)
[
α + μ + (d − dA)a(t)

]
+ σ2(m(t) −m∗)ẇ2(t).

(3.1)

Here, w1(t), w2(t) are the mutually independent standard Wiener processes, the stochastic
differential equations of system (3.1) are understanding in Ito sense [30].

To centralize system (3.1) in the equilibrium point, put now

x1(t) = a(t) − a∗, x2(t) = m(t) −m∗. (3.2)

Then, from (3.1), it follows that

ẋ1(t) = μ + γ − γ(m∗ + x2(t)) + β(a∗ + x1(t))(a∗ + I(x1t))

− (a∗ + x1(t))
[
β + μ + γ − (d − dA)(1 − a∗ − x1(t))

]
+ σ1x1(t)ẇ1(t),

ẋ2(t) = β(a∗ + x1(t)) − β(a∗ + x1(t))(a∗ + I(x1t))

− (m∗ + x2(t))
[
α + μ + (d − dA)(a∗ + x1(t))

]
+ σ2x2(t)ẇ2(t),

(3.3)

or

ẋ1(t) = μ(1 − a∗) + γ(1 − a∗ −m∗) − a∗(1 − a∗)
(
β − d + dA

) − μx1(t)

+ γ(−x1(t) − x2(t)) + x1(t)(1 − 2a∗)(d − dA) − βx1(t)(1 − a∗) + βa∗I(x1t)

− x2
1(t)(d − dA) + βx1(t)I(x1t) + σ1x1(t) ẇ1(t),

ẋ2(t) = βa∗(1 − a∗) −m∗[α + μ + (d − dA)a∗] + βx1(t)(1 − a∗)

−m∗x1(t)(d − dA) − βa∗I(x1t) − x2(t)
[
α + μ + (d − dA)a∗]

− βx1(t)I1(x1t) − x2(t)x1(t)(d − dA) + σ2x2(t)ẇ2(t).

(3.4)

Via (2.14) from (2.16), it follows that

ẋ1(t) = − a11x1(t) − γx2(t) + βa∗I(x1t)

+ βx1(t)I(x1t) − (d − dA)x2
1(t) + σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) − a22x2(t) − βa∗I(x1t)

− βx1(t)I(x1t) − x1(t)x2(t)(d − dA) + σ2x2(t)ẇ2(t),

(3.5)
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where

a11 = μ + γ +
(
β − d + dA

)
(1 − a∗) + (d − dA)a∗,

a21 =
β
(
α + μ

)
(1 − a∗)

α + μ + (d − dA)a∗ , a22 = α + μ + (d − dA)a∗.
(3.6)

Note that, for d ∈ [dA, β + dA), the numbers a11, a21, a22 are positive.
Rejecting the nonlinear terms in (3.5), we obtain the linear part of system (3.5)

ẋ1(t) = − a11x1(t) − γx2(t) + βa∗I(x1t) + σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) − a22x2(t) − βa∗I(x1t) + σ2x2(t)ẇ2(t).
(3.7)

4. Stability of the Equilibrium Point

Note that nonlinear system (3.5) has the order of nonlinearity more than 1. Thus, as it
follows from [23, 24], sufficient conditions for asymptotic mean square stability of the zero
solution of linear part (3.7) of nonlinear system (3.5) at the same time are sufficient conditions
for stability in probability of the zero solution of nonlinear system (3.5) and therefore are
sufficient conditions for stability in probability of the solution (a∗, m∗) of system (3.1).

To get sufficient conditions for asymptotic mean square stability of the zero solution
of system (3.7), rewrite this system in the form

ẋ(t) = Ax(t) + B(xt) + σ(x(t))ẇ(t), (4.1)

where

x(t) = (x1(t), x2(t))′, w(t) = (w1(t), w2(t))′,

B(xt) =
(
βa∗I(xt),−βa∗I(xt)

)′
,

A =
(−a11 − γ
a21 − a22

)
, σ(x(t)) =

(
σ1x1(t) 0
0 σ2x2(t)

)
.

(4.2)

Definition 4.1. The trivial solution of (2.20) is called as follows.

(i) Mean square stable if for any ε > 0 there exists a δ > 0 such that E|x(t, φ)|2 < ε for
any t ≥ 0 provided that the initial function x(s) = φ(s), s ≤ 0, satisfies the condition
sups≤0 E|φ(s)|2 < δ.

(ii) Asymptotically mean square stable if it is mean square stable and satisfies the condition
limt→∞ E|x(t, φ)|2 = 0 for each initial function φ.

(iii) Stable in probability if for any ε1 > 0 and ε2 > 0 there exists δ > 0 such that the
solution x(t, φ) of (2.20) satisfies the condition P{supt≥0|x(t, φ)| > ε1/F0} < ε2 for
any initial function φ such that P{sups≤0|φ(s)| ≤ δ} = 1.
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Following the GMLFC [12–14] for stability investigation of (4.1), consider the auxiliary
equation without memory

ẏ(t) = Ay(t) + σ
(
y(t)

)
ẇ(t), (4.3)

and the matrix equation

A′P + PA + Pσ = −C, (4.4)

where

P =
(
p11 p12
p12 p22

)
, Pσ =

(
p11σ

2
1 0

0 p22σ
2
2

)
, C =

(
c 0
0 1

)
, (4.5)

c > 0, the matrix A is defined in (3.6), (4.2).
If matrix equation (4.4) has a positive definite solution P , then the function v(y) =

y′Py is a Lyapunov function for (4.3).
Note that matrix equation (4.4) can be represented as the system of the equations

2
(−p11a11 + p12a21

)
+ p11σ

2
1 = −c,

2
(−p12γ − p22a22

)
+ p22σ

2
2 = −1,

−p11γ − p12(a11 + a22) + p22a21 = 0,

(4.6)

with the solution

p11 =
c + 2a21p12

2A11
, p12 =

a21A11 − cγA22

2A
, p22 =

1 − 2γp12
2A22

, (4.7)

where

Aii = aii − δi, δi =
1
2
σ2
i , i = 1, 2,

A = A11A12A22 + γa21(A11 +A22), A12 = a11 + a22.

(4.8)

Lemma 4.2. If δ1 < a11 and δ2 < a22, that is,

A11 > 0, A22 > 0, (4.9)

then the matrix P = ‖pij‖ with entries (4.7) is a positive definite one.

Proof. Note that via (4.9) γa21Aii < A, i = 1, 2. Thus, from (4.7), it follows that for arbitrary
c > 0

p12 <
a21A11

2A
<

1
2γ

, c + 2a21p12 = c

(
1 − γa21A22

A

)
+
a2
21A11

A
> 0. (4.10)
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Therefore, via (4.9), p11 > 0, p22 > 0. Let us show that p11p22 > p212. Really, from

(
c + 2a21p12

)(
1 − 2γp12

)
4A11A22

> p212, (4.11)

it follows that 4Bp212 −2(a21 − cγ)p12 < c by B = A11A22 + γa21. Substituting into this inequality
p12 from (4.7), we have B(a21A11 − cγA22)

2 −A(a21 − cγ)(a21A11 − cγA22) < cA2 or

c2γ2A22(A − BA22) + cA11A22
(
AA12 + 2γa21B

)
+ a2

21A11(A − BA11) > 0. (4.12)

Since BAii < A, i = 1, 2, the obtained inequality holds for arbitrary c > 0. Thus, for arbitrary
c > 0, the matrix P with entries (4.7) is a positive definite one. The proof is completed.

Theorem 4.3. If conditions (4.9) hold and for some c > 0 the matrix P entries (4.7) satisfy the
condition

(
βa∗∣∣p12 − p22

∣∣)2 + 2βa∗∣∣p11 − p12
∣∣ < c (4.13)

then the solution (a∗, m∗) of system (3.1) is stable in probability.

Proof. Note that the order of nonlinearity of system (3.1) is more than one. Therefore, via [23,
24] to get for this system conditions of stability in probability, it is enough to get conditions
for asymptotic mean square stability of the zero solution of linear part (3.7) of this system.
Following the GMLFC [13–15], we will construct a Lyapunov functional for system (3.7) in
the form V = V1 +V2, where V1 = x′Px, x = (x1, x2)′, P is a positive definite solution of system
(4.6) with entries (4.7) and V2 will be chosen below.

Let L be the infinitesimal operator [30] of system (3.7). Then, via (3.7), (4.6),

LV1 = 2
(
p11x1(t) + p12x2(t)

)(−a11x1(t) − γx2(t) + βa∗I(x1t)
)
+ p11σ

2
1x

2
1(t)

+ 2
(
p12x1(t) + p22x2(t)

)(
a21x1(t) − a22x2(t) − βa∗I(x1t)

)
+ p22σ

2
2x

2
2(t)

= − cx2
1(t) − x2

2(t) + 2βa∗[(p11 − p12
)
x1(t) +

(
p12 − p22

)
x2(t)

]
I(x1t).

(4.14)

Via (2.11), (2.5), we have 2x1(t)I(x1t) ≤ x2
1(t) + I(x2

1t) and 2x2(t)I(x1t) ≤ αx2
2(t) + α−1I(x2

1t) for
some α > 0. Using these inequalities, we obtain

LV1 ≤ − cx2
1(t) − x2

2(t) + βa∗∣∣p11 − p12
∣∣(x2

1(t) + I
(
x2
1t

))

+ βa∗∣∣p12 − p22
∣∣(αx2

2(t) + α−1I
(
x2
1t

))

=
(
βa∗∣∣p11 − p12

∣∣ − c
)
x2
1(t) +

(
βa∗∣∣p12 − p22

∣∣α − 1
)
x2
2(t) + qI

(
x2
1t

)
,

(4.15)

where

q = βa∗
(∣∣p11 − p12

∣∣ + ∣∣p12 − p22
∣∣α−1

)
. (4.16)
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Putting

V2 = q

∫∞

0
f(s)

∫ t

t−s
x2
1(θ)dθ ds, (4.17)

via (2.5), (2.11), we have LV2 = q(x2
1(t)−I(x2

1t)). Therefore, via (4.15), (4.16) for the functional
V = V1 + V2, we have

LV ≤
(
2βa∗∣∣p11 − p12

∣∣ + βa∗∣∣p12 − p22
∣∣α−1 − c

)
x2
1(t) +

(
βa∗∣∣p12 − p22

∣∣α − 1
)
x2
2(t). (4.18)

Thus, if

2βa∗∣∣p11 − p12
∣∣ + βa∗∣∣p12 − p22

∣∣α−1 < c, βa∗∣∣p12 − p22
∣∣α < 1, (4.19)

then the zero solution of system (3.7) is [3] asymptotically mean square stable. From (4.19),
it follows that

βa∗∣∣p12 − p22
∣∣

c − 2βa∗∣∣p11 − p12
∣∣ < α <

1
βa∗∣∣p12 − p22

∣∣ . (4.20)

Thus, if for some c > 0 condition (4.13) holds, then there exists α > 0 such that conditions
(4.20) (or (4.19)) hold too, and therefore the zero solution of system (3.7) is asymptotically
mean square stable. From here and [23, 24], it follows that the zero solution of system (3.5)
and therefore the equilibrium point of system (3.1) is stable in probability. The proof is
completed.

Example 4.4. Consider system (3.1) with the value of the parameters α, β, γ , μ, d, dA and the
equilibrium point (a∗, m∗, r∗) given in (2.21) and (2.22) and the levels of noises σ1 = 0.028969,
σ2 = 0.142252. We consider this value for σ1 and σ2 as an example.

From (3.6), it follows that the values of system (3.7) parameters are a11 = 0.029245,
a21 = 0.017446, a22 = 0.010475, and conditions (4.9), hold: δ1 = 0.00042 < a11, δ2 = 0.010118 <
a22. Put c = 20. Then, via (4.7), p11 = 477.4438, p12 = 215.6615, p22 = 530.4124 and condition
(4.13) holds: (βa∗|p12 − p22|)2 + 2βa∗|p11 − p12| = 16.1036 < 20. Thus, system (3.1) solution is
stable in probability.

Example 4.5. Consider system (3.1) with the previous values of all parameters except for the
levels of noises that are σ1 = 0.0075, σ2 = 0.0077. These values of σ1 and σ2 are selected taking
into account sample errors of the monitoring of the epidemic (alcohol consumption) in Spain
in the period 199720100332007. More details about these sample errors are shown in [31].

Then, conditions (4.9) hold: δ1 = 0.000028 < a11, δ2 = 0.000030 < a22. Put c = 4. Then,
via (4.7), p11 = 78.6856, p12 = 17.1347, p22 = 45.5060, and condition (4.13) holds: (βa∗|p12 −
p22|)2 + 2βa∗|p11 − p12| = 1.36 < 4. Thus, system (3.1) solution is stable in probability.
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Let us get now two corollaries fromTheorem 4.3which simplify verification of stability
condition (4.13). Put

B0 =
A22

(
A12 + γ

)
+ γa21

2A
, B1 =

a21(a21 −A11)
2A

,

D0 =
γ
(
A22 + γ

)
2A

, D1 =
A11(A12 − a21) + γa21

2A
,

f(c) =
(
βa∗)2(D0c +D1)2 + 2βa∗|B0c + B1| − c,

S =
(
βa∗D0

)2(D1

D0
− B1

B0

)2

+
B1

B0
,

R = 2βa∗B0

(
1 − 2βa∗B0

2
(
βa∗D0

)2 − D1

D0
+
B1

B0

)
, Q =

1

4
(
βa∗D0

)2 − D1

D0
− B2

0

D2
0

.

(4.21)

Remark 4.6. From (4.7) and (4.21), it follows that p22 − p12 = D0c +D1 and p11 − p12 = B0c +B1.
Thus, condition (4.13) is equivalent to the condition f(c) < 0.

Corollary 4.7. If conditions (4.9) hold and S < 0, then the solution of system (3.1) is stable in
probability.

Proof. Note that from S < 0 follows that B1 < 0. Putting c0 = −B1/B0 > 0, we obtain f(c0) =
S < 0, that is, condition (4.13) holds. The proof is completed.

Corollary 4.8. If conditions (4.9) hold and 0 ≤ R < Q, then the solution of system (3.1) is stable in
probability.

Proof. Let us suppose that B0c+B1 ≥ 0. Then, the minimum of the function f(c) is reached by

c0 = 1 − 2βa∗B0

2
(
βa∗D0

)2 − D1

D0
≥ −B1

B0
. (4.22)

Substituting c0 into the function f(c), we obtain that the condition f(c0) < 0 is equivalent to
the condition 0 ≤ R < Q. The proof is completed.

Example 4.9. Consider system (3.1) with the values of the parameters from Example 4.4.
Calculating S, R, Q, we obtain, S = 4.56 > 0, R = 740.0 < Q = 1313.59. From Corollary 4.8, it
follows that the solution of system (3.1) is stable in probability.

Example 4.10. Consider system (3.1) with the values of the parameters from Example 4.5.
Calculating S, R, Q, we obtain S = −0.38 < 0, R = 2499.07 < Q = 4708.10. From
both Corollary 4.7 and Corollary 4.8 it follows that the solution of system (3.1), is stable in
probability.
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5. Conclusions

In this work, a modelling approach based on delayed and stochastic differential equations is
proposed to understand social behaviours and their evolutionary trends. Taking into account
this approach, we can know how social habits can evolve in the future. Considering the study
proposed related to the alcohol consumption habit, we note that around 63.5% of Spanish
population is (and will be) alcohol consumers (risk or nonrisk consumers). The existence of a
equilibrium point (stable in probability) in a∗ = 36.47% (a: nonconsumers), m∗ = 62.94% (m:
nonrisk consumers), r∗ = 0.59% (r: riskconsumers), see (2.22), allows us to confirm it.

This mathematical approach is an example as to how delayed and stochastic models
can also be an useful tool to model human behaviour. We consider that this approach can be
an interesting framework for public health authorities and policy makers.

Note also that the system (2.1) with delay is considered here first. The conditions for
the existence of the equilibrium point of the considered system by stochastic perturbations
are new result too. The main result of the paper is the conditions for stability in probability
of the equilibrium point by stochastic perturbations. The here proposed research method can
be used for stability investigation of other important models.
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