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Arithmetic progressions

An arithmetic sequence is a set of integers of the
form
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where � � and

�

are positive integers.
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Arithmetic progressions

An arithmetic progression of length
�

is a set of
integers of the form

� ��
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where � � and

�

are positive integers.
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Van der Waerden’s theorem

The van der Waerden theorem has a number of
equivalent forms. One is:

THEOREM [van der Waerden, 1927]
Let and be positive integers.
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Van der Waerden’s theorem

The van der Waerden theorem has a number of
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Van der Waerden’s theorem

The van der Waerden theorem has a number of
equivalent forms. One is:

THEOREM [van der Waerden, 1927]
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Van der Waerden’s theorem

The van der Waerden theorem has a number of
equivalent forms. One is:

THEOREM [van der Waerden, 1927]
Let

�

and � be positive integers. There exists a
constant �

� �
	

�
�

such that if � � �
� �

	

�
�

and
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� � � � � ��� � � �

�,
then some set � contains an arithmetic
progression of length

�

.
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The van der Waerden number

The quantity �
� �

	

�
�

(the van der Waerden
number) is well-studied.
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The van der Waerden number

The quantity �
� �

	

�
�

(the van der Waerden
number) is well-studied.

Shelah (1988) proved that the van der Waerden
numbers are primitive recursive.
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The van der Waerden number

The quantity �
� �

	

�
�

(the van der Waerden
number) is well-studied.

Gowers (1998) announced that
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number) is well-studied.

Gowers (1998) announced that
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But it has yet to be published.
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The van der Waerden number

The quantity �
� �

	

�
�

(the van der Waerden
number) is well-studied.

Gowers (1998) announced that
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An argument using a probabilistic technique (the
Lovász Local Lemma) gives that

�
� �

	

�
� �

�
�

� �

�

� 
 �
� 
 � �




The Regularity Lemma and Applications – p.4/60

http://www.wiley.com/cda/product/0,,0471370460,00.html


Plain language

Our version of van der Waerden says:

If we color the first � � positive integers
with � colors, we get a monochromatic
arithmetic progression of length

�

, as long
as ��� is large enough.

Which color?
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The average

If we color a set with � colors, then one of those
colors will contain


 �

� of the set.

That set is a very likely candidate. Is that the
one?
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Dense subsets

More generally, we can ask the following:

If we have a subset of

� 

	

�
	 
 
 
 	

�
�

with
positive density, does it have an arithmetic
progression of length

�

?
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Dense subsets

Let �

� � 

	

�
	 
 
 
 	

�
�

. The family � is said to

have positive upper density if there exists an �

such that

�

�
� � � �.
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Arithmetic progressions and density

Endre Szemerédi proved that positive upper
density is sufficient for the existence of a

�

-term
arithmetic progression.

THEOREM [Szemerédi, 1975]
For every integer and every , there
exists a threshold such that if, for
some , and , then

must contain an arithmetic progression of
terms.

The Regularity Lemma and Applications – p.8/60

http://www.renyi.hu/~szemered/


Arithmetic progressions and density

Endre Szemerédi proved that positive upper
density is sufficient for the existence of a

�
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For every integer
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� � � � �, then
must contain an arithmetic progression of
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The proof of Szemerédi’s theorem

The proof itself is quite long, complicated and
ingenious.

For example, consider a diagram of the structure
of the proof.
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The proof of Szemerédi’s theorem
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The Regularity Lemma

Buried in the proof of Szemerédi’s theorem is a
primitive version of the Regularity Lemma.

But the Regularity Lemma is not a statement
about number theory, it’s a statement about
graphs.
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Graph definitions

Let’s define some basic graph terms.

We have a set of

is said to be adjacent to if there is an edge
between them. The degree of , , is the
number of edges touching .
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Graph definitions

Let’s define some basic graph terms.

We have a set of vertices, connected by edges

�

� is said to be adjacent to � if there is an edge
between them. The degree of �,

��� � � � �
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Bipartite

A graph is bipartite if we can partition the
vertex set into and so that all edges are
between and :

We denote such a graph as .

The Regularity Lemma and Applications – p.12/60



Bipartite

A graph is bipartite if we can partition the
vertex set into and so that all edges are
between and :

� � � � � � � � � � � �

� � � � � � � � � � � �

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

	
	

	
	

	
	

	
	

	

�
�

�
�

�
��
















We denote such a graph as �
�

	

� �

.
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Random bipartite graphs

Let

�

	

� �

be a bipartite graph.

� �

�
� �

� �

The number of edges is: .
Define the density to be:
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Binomial model

For each pair of vertices: � � ,

� � ,
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Binomial model

For each pair of vertices: � � ,

� � , let � �

be
an edge in the graph with probability

� � � �
	


 �

independently for each such pair.
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Binomial model

For each pair of vertices: � � ,

� � , let � �

be
an edge in the graph with probability

� � � �
	


 �

independently for each such pair.

I.e., take an � � and

� � and flip a biased
coin to see whether or not � �

is an edge.
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Binomial model

For each pair of vertices: � � ,

� � , let � �

be
an edge in the graph with probability

� � � �
	


 �

independently for each such pair.

The average density is
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� �
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Subgraphs

Choose

�

and

�

.
What is the probability that

� � �
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� �
	

�

�
� �

Easy to compute because is a binomial
random variable.
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Subgraphs

Choose

�

and

�

.
What is the probability that

� � �
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� �
	

�

�
� �

Easy to compute because
� � �

	

� �

is a binomial
random variable.

I.e., it is the average of coin flips.
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Chernoff bound

The Chernoff bound gives the probability that the
density between these subsets differs from

�

by
more than �.

This is ... tiny ...
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Chernoff bound

In fact, if
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Applies simultaneously to all such sets

In fact, the probability that ALL pairs of sets,
each with size � � �, have density in

� �

� �
	

�

�
�

approaches
as .
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Defining regularity

A pair

�

	

�

is �-regular with density
�

if

�

�

�

� �

	

�

For all and with
and
,

we have .

So, -regular pairs mimic random pairs.
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Random graphs

�-regular pairs are tied inexorably to random
pairs.
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In fact, an -regular pair has a surprising number
of properties that random pairs have.
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Random graphs
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The Regularity Lemma

The Regularity Lemma ensures that, for any
with enough vertices,

� �

has a partition with:

� a constant number of pieces,

all but one of equal size,

a dense subgraph has all pairs -regular,
density either

zero, or
bounded below by a constant.

It’s easier to see in a picture.
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What this does

Before Regularity:

After Regularity, the graph :

-regular, density

is very applicable.
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Formal definition

THEOREM [Szemerédi, 1978] (Degree Form)
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THEOREM [Szemerédi, 1978] (Degree Form)

�
� � �

,

�

�

�
�

�

such that,
if �

�
	

�

and

� � � �
	


 �

, then

The Regularity Lemma and Applications – p.22/60



Formal definition
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Geometry applications

One application is to look at distances in the
plane.
Let us be given � points in the plane.

There are

pairs of points.
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Getting large distances

Let � be a large number divisible by
�

.
Consider the following subset of

�
:

Consider two points, and and
compute their distance:

as long as .
Even if , the distance is at least 1.
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A picture of this family
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Distances are restricted

Thus, has at least
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Best possible, asymptotically

THEOREM [Erdős-Makai-Pach-Spencer, 1991]
Given � � �

, there is a � and a positive integer � �

satisfying the following condition:

For any set ( ) with
minimal distance at least and for any real ,
the number of pairs whose distance is

is at most
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There is a generalization.
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Best possible, asymptotically

THEOREM [Erdős-Makai-Pach, 1993]
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Graph theory applications

Most applications are in graph theory.

Define a complete graph on vertices, , to be
the graph with vertices where there is an edge
between each pair of vertices.
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Theorem of Turán

Turán’s theorem is a classical result. Here is a
special case.

THEOREM [Turán, 1941]

Let be the complete graph on vertices.

Let , on vertices, contain no as a
subgraph.
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Theorem of Turán

Turán’s theorem is a classical result. Here is a
special case.

THEOREM [Turán, 1941]

� Let � be the complete graph on
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� Let �, on � vertices, contain no � as a
subgraph. Then,
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Consequence of Regularity Lemma

THEOREM
Let � �

be given and write � �
� � � � �

.

There is an such that if is large enough
and a graph has

,

then contains at least copies of .
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There is an
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Zero to many

There are graphs � such that

� �

�
� �

�
� �

�
� �

�
� � �

�
�

� �

but � contains no �.

So, just a few edges takes us from zero copies of
to a large number:

Note that is a constant.
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Size of �

Question: How big is this
�

�
�

?

Answer: Huge.
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OK, smart guy, how huge?

Applying the Regularity Lemma to a graph
requires it to have many vertices.

The proof of the Regularity Lemma gives a tower
function for .

What the proof gives is:
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Does it need to be so big?

Some kind of tower function is necessary.

THEOREM [Gowers, 1997] For any � � �

, there is a
graph so that any application of the Regularity
Lemma requires that the number of clusters is at
least a number which is a tower of twos of height
proportional to

�
� � � 
 �

�
�
.
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Results are still satisfying

Despite the size requirement, there are still pretty
results.

� A diameter 2 graph is one that has a path of
length 2 between any pair of nonadjacent
vertices.

A minimal diameter 2 graph is a diameter 2
graph but is not, .

Any complete bipartite graph is minimal
diameter 2.
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Complete bipartite graphs

Consider a complete bipartite graph ��
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Complete bipartite graphs

Delete an edge � �.
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Complete bipartite graphs

Distance between � and � is
�
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Minimal diameter 2 theorem

THEOREM [Füredi, 1992]
There is a � � such that if � � � and � is a
minimal graph of diameter 2, then

� �

�
� �

�
�

�

Furthermore, equality occurs if and only if
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Loebl’s Conjecture

CONJECTURE [Loebl]
If � is a graph on � vertices, and at least �

� �

vertices have degrees at least �
� �

, then
contains, as subgraphs, all trees with at most �

� �

edges.
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Loebl’s Conjecture

CONJECTURE [Loebl]
If � is a graph on � vertices, and at least �

� �

vertices have degrees at least �
� �

, then
contains, as subgraphs, all trees with at most �

� �

edges.

THEOREM [Zhao, 2003?]
There is a constant � � so that Loebl’s Conjecture
holds for � � � .
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Hajnal-Szemerédi

There is a classical theorem, not proven by
regularity, that gives a condition for which a
graph can be covered by copies of �.

Define

� � �

� � ��� � ��� � � � � � � � � � �

.

THEOREM [Hajnal-Szemerédi, 1969]
If , then contains
vertex-disjoint copies of .

Let’s just deal with .
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If

� �

�
� � 


�

 �

�
�

� , then � contains

�

�
�

�
�

vertex-disjoint copies of �.

Let’s just deal with � � �

.

The Regularity Lemma and Applications – p.39/60



Hajnal-Szemerédi

There is a classical theorem, not proven by
regularity, that gives a condition for which a
graph can be covered by copies of �.
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THEOREM [Corrádi-Hajnal, 1963]
If

� �

�
� � � � � �

� , then � contains

�

�
� � �

vertex-disjoint copies of �.

Let’s just deal with � � �

.

The Regularity Lemma and Applications – p.39/60



A small example

Here the minimum degree is

� �
� � � � �
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A small example

Hajnal-Szemerédi says that it can be covered by
triangles ( � ’s).

� � � � �

�
�

�
�

�
�

�
�

�
�

� � � � �


























�����


























�����

�
�

�
�

�
�

�
�

�
�

The Regularity Lemma and Applications – p.40/60



Tripartite version

The following conjecture is a natural extension of
Corrádi-Hajnal, but not a consequence:

PROBLEM
Let be a graph that is

�

�

-partite (tripartite),

has vertices in each partition,

has each vertex adjacent to vertices in
each of the other classes.

Then contains vertex-disjoint copies of .

In fact, “ ” can be replaced by “ ”, but there is
one exceptional case.
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An example

Each vertex is adjacent to at least
� � � � � � �

� �

vertices in each of the other classes.
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The result is tight

Consider the following example. Each vertex is
adjacent to 2 in each other piece.
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The result is tight

Without loss of generality, � must be in the red
triangle.
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The result is tight

But then, � cannot be in any triangle.
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Example generalizes

This example generalizes.
For , an odd multiple of 3, there is a graph with

� vertices in each class,

each vertex adjacent to exactly
vertices in each of the two other parts, but

NO subgraph of vertex-disjoint copies of
.

There is only one such graph (up to
isomorphism) and we call it .
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� � � � �
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� NO subgraph of vertex-disjoint copies of �.
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isomorphism) and we call it
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Tripartite

THEOREM [Magyar-M., 2002]
Let be a tripartite graph such that

� there are vertices in each partition

each vertex is adjacent to at least
vertices in each of the other parts, and

for some absolute constant .

Then either has a subgraph which is
vertex-disjoint triangles, or for
an odd integer.

The Regularity Lemma and Applications – p.45/60



Tripartite

THEOREM [Magyar-M., 2002]
Let be a tripartite graph such that

� there are vertices in each partition

� each vertex is adjacent to at least

� � � � �

vertices in each of the other parts, and

for some absolute constant .

Then either has a subgraph which is
vertex-disjoint triangles, or for
an odd integer.

The Regularity Lemma and Applications – p.45/60



Tripartite

THEOREM [Magyar-M., 2002]
Let be a tripartite graph such that

� there are vertices in each partition

� each vertex is adjacent to at least

� � � � �

vertices in each of the other parts, and

� � for some absolute constant � .

Then either has a subgraph which is
vertex-disjoint triangles, or for
an odd integer.

The Regularity Lemma and Applications – p.45/60



Tripartite

THEOREM [Magyar-M., 2002]
Let be a tripartite graph such that

� there are vertices in each partition

� each vertex is adjacent to at least

� � � � �

vertices in each of the other parts, and

� � for some absolute constant � .

Then either has a subgraph which is
vertex-disjoint triangles, or

for
an odd integer.

The Regularity Lemma and Applications – p.45/60



Tripartite

THEOREM [Magyar-M., 2002]
Let be a tripartite graph such that

� there are vertices in each partition

� each vertex is adjacent to at least

� � � � �

vertices in each of the other parts, and

� � for some absolute constant � .

Then either has a subgraph which is
vertex-disjoint triangles, or � �

�

� � � �

for

� �

an odd integer.
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What’s with �?

Yep, that � is the

�
�

�

from the Regularity
Lemma.
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Quadripartite?

A partial result in the quadripartite case:

THEOREM [Fischer, 1999]
Let be a quadripartite graph with

� vertices in each part,

� each vertex adjacent to at least

� � � � �

vertices in each of the other three parts,

Then there is an absolute constant such that
has a subgraph which is a family of �

vertex-disjoint �’s.
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Diagram of Fischer’s result
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Quadripartite!

THEOREM [M.-Szemerédi, 200?]
Let be a quadripartite graph such that

� there are vertices in each partition

each vertex is adjacent to at least
vertices in each of the other parts, and

for some absolute constant .

Then has a subgraph which is
vertex-disjoint ’s.

This case has no exceptional graph.
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Let be a quadripartite graph such that

� there are vertices in each partition

� each vertex is adjacent to at least

� � � � �

vertices in each of the other parts, and

for some absolute constant .

Then has a subgraph which is
vertex-disjoint ’s.

This case has no exceptional graph.

The Regularity Lemma and Applications – p.49/60



Quadripartite!

THEOREM [M.-Szemerédi, 200?]
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A final application

We will begin with a family of graphs:

�
�

	

� �

��� �
�

� � � � � � �
�

We will take an arbitrary .

Then, add edges at random to , forming .

What is the diameter of the “random” graph ?
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Many possibilities

Let’s assume

�

is a small constant.

could be a variety of possibilites, including

� a traditional random graph,

� an �-regular pair,

�

� 
 � � �

disjoint cliques
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Diameter 7

� Fix a constant

�

.

Let be an arbitrary member of .

Add edges at random to ,
forming .

Let as .

Then, .
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Diameter 7

� Fix a constant
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.

� Let be an arbitrary member of
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� Add � � � �
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�

edges at random to ,
forming .

� Let � as � .

Then,
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The algorithm

Construct � � 	

� � 	 
 
 
 greedily such that

� ��� � � �
� 	

�
� � �

�

� �



Since , we stop in steps.
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Quick facts

� By the partition, every vertex is in the first or
second neighborhood of some �

� .

There is an edge in any pair
because .

So, for vertices and , the worst case is if
they are in second neighborhoods of different

.
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� By the partition, every vertex is in the first or
second neighborhood of some �

� .

� There is an edge in any pair
� � �

�

�
	

� � �
� �

because � �
�

�

.

� So, for vertices � and �, the worst case is if
they are in second neighborhoods of different

�
� .
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Diagram

First neighborhoods are red ovals.
Second neighborhoods are yellow ovals.

�
�

� �
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Diagram

A random edge is in

� � �
�

�
	

� � �
� �

.

Voilá! A path of length 7.

�
�

� �
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Infinite edges

We can do better with Regularity:

THEOREM [Bohman-Frieze-Krivelevich-M., 200?]
Fix a constant

�

. Let be an arbitrary member
of

�
�

	

� �

. Add � edges at random to , forming
. If � as � , then

��� � � ��� � � � � � 


as � .
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We can do better with Regularity:

THEOREM [Bohman-Frieze-Krivelevich-M., 200?]
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Small world problem

In 1967, Stanley Milgram conducted a famous
experiment.

He asked 160 families in Omaha, NE, to get a
package to a stockbroker in Boston who had a
home in Sharon, MA.

It had to be mailed or carried by hand from one
acquaintance to the next, until it was delivered in
person to the broker. Before the experiment
began, Milgram asked his colleagues how many
steps they thought it would take for the packages
to make the trip.
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Small world problem

The consensus was around 100.
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The consensus was around 100.

In fact, it took about five or six intermediary
transactions for most of the packages to get from
Omaha to the broker
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Small world problem

The consensus was around 100.

In fact, it took about five or six intermediary
transactions for most of the packages to get from
Omaha to the broker

– the "six degrees of separation" that we’re
familiar with today.
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Popular culture

We’ve seen similar phenomena in the
Kevin Bacon game.
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http://www.cs.virginia.edu/oracle/


Popular culture

Also in the Erdős number project.
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http://www.oakland.edu/~grossman/erdoshp.html


Our answer

So, if familiarity grows proportionally with the size
of the population and the amount of randomness
in the system grows also, then

It’s FIVE degrees of separation, not six!
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Thanks

Thank you for letting me talk today.

The file for this talk is available online at my website:
http://www.math.cmu.edu/˜rymartin

These slides were created by the Prosper document preparation system.
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http://www.math.cmu.edu/~rymartin/cv/reglempro.pdf
http://www.math.cmu.edu/~rymartin
http://prosper.sourceforge.net/
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