
UMFPACK Version 4.0 User Guide

Timothy A. Davis
Dept. of Computer and Information Science and Engineering

Univ. of Florida, Gainesville, FL

April 11, 2002

Abstract

UMFPACK is a set of routines for solving unsymmetric sparse linear systems,
�������

,
using the Unsymmetric MultiFrontal method and direct sparse LU factorization. It is written
in ANSI/ISO C, with a MATLAB (Version 6.0 or 6.1) interface. UMFPACK relies on the
Level-3 Basic Linear Algebra Subprograms (dense matrix multiply) for its performance. This
code works on Windows and many versions of Unix (Sun Solaris, Red Hat Linux, IBM AIX,
SGI IRIX, and Compaq Alpha).

UMFPACK Version 4.0 (Apr 11, 2002), Copyright c
�

2002 by Timothy A. Davis. All Rights
Reserved.

UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMF-
PACK implies that you agree to this License.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EX-
PRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the Copyright, this
License, and the Availability of the original version is retained on all copies. User documenta-
tion of any code that uses UMFPACK or any modified version of UMFPACK code must cite the
Copyright, this License, the Availability note, and “Used by permission.” Permission to modify
the code and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included. This software
was developed with support from the National Science Foundation, and is provided to you free of
charge.

Availability: http://www.cise.ufl.edu/research/sparse/umfpack
Acknowledgments:
This work was supported by the National Science Foundation, under grants DMS-9504974 and

DMS-9803599.

1

Contents

1 Overview 4

2 Availability 5

3 Using UMFPACK in MATLAB 5

4 Using UMFPACK in a C program 7
4.1 The size of an integer . 8
4.2 Real and complex floating-point . 8
4.3 Primary routines, and a simple example . 8
4.4 A note about zero-sized arrays . 10
4.5 Alternative routines . 11
4.6 Matrix manipulation routines . 11
4.7 Getting the contents of opaque objects . 12
4.8 Reporting routines . 13
4.9 Utility routines . 14
4.10 Control parameters . 15
4.11 Larger examples . 15

5 Synopsis of C-callable routines 16
5.1 Primary routines: real/int . 16
5.2 Alternative routines: real/int . 16
5.3 Matrix manipulation routines: real/int . 16
5.4 Getting the contents of opaque objects: real/int 16
5.5 Reporting routines: real/int . 17
5.6 Primary routines: complex/int . 17
5.7 Alternative routines: complex/int . 17
5.8 Matrix manipulation routines: complex/int . 18
5.9 Getting the contents of opaque objects: complex/int 18
5.10 Reporting routines: complex/int . 18

6 Synopsis of utility routines 18

7 Installation 19

8 Known Issues 21

9 Future work 21

10 The primary UMFPACK routines 23
10.1 umfpack * symbolic . 23
10.2 umfpack * numeric . 30
10.3 umfpack * solve . 38
10.4 umfpack * free symbolic . 44

2

10.5 umfpack * free numeric . 46

11 Alternatives routines 48
11.1 umfpack * defaults . 48
11.2 umfpack * qsymbolic . 50
11.3 umfpack * wsolve . 53

12 Matrix manipulation routines 56
12.1 umfpack * col to triplet . 56
12.2 umfpack * triplet to col . 58
12.3 umfpack * transpose . 63

13 Getting the contents of opaque objects 67
13.1 umfpack * get lunz . 67
13.2 umfpack * get numeric . 70
13.3 umfpack * get symbolic . 74

14 Reporting routines 80
14.1 umfpack * report status . 80
14.2 umfpack * report control . 82
14.3 umfpack * report info . 84
14.4 umfpack * report matrix . 86
14.5 umfpack * report numeric . 90
14.6 umfpack * report perm . 92
14.7 umfpack * report symbolic . 94
14.8 umfpack * report triplet . 96
14.9 umfpack * report vector . 99

15 Utility routines 102
15.1 umfpack timer . 102

3

1 Overview

UMFPACK Version 4.0 is a set of routines for solving systems of linear equations, ������� , when
� is sparse and unsymmetric. It is based on the Unsymmetric MultiFrontal method [4, 5], which
factorizes ���
	 into the product �
� , where � and � are lower and upper triangular, respectively,
and � are 	 are permutation matrices. Both � and 	 are chosen to reduce fill-in (new nonzeros
in � and � that are not present in �). The permutation � has the dual role of reducing fill-in and
maintaining numerical accuracy (via relaxed partial pivoting and row interchanges).

The sparse matrix � can be square or rectangular, singular or non-singular, and real or complex
(or any combination). Only square matrices � can be used to solve ������� or related systems.
Rectangular matrices can only be factorized.

UMFPACK first finds a column pre-ordering that reduces fill-in, without regard to numerical
values, with a modified version of COLAMD [6, 7, 23]. The method finds a symmetric permutation
	 of the matrix ����� (without forming �
��� explicitly). This is a good choice for 	 , since the
Cholesky factors of ����	�� � ����	�� are an upper bound (in terms of nonzero pattern) of the factor �
for the unsymmetric LU factorization (���
	����
�) regardless of the choice of � [16, 17, 19].

Next, the method breaks the factorization of the matrix � down into a sequence of dense
rectangular frontal matrices. The frontal matrices are related to each other by a supernodal column
elimination tree, in which each node in the tree represents one frontal matrix. This analysis phase
also determines upper bounds on the memory usage, the floating-point operation count, and the
number of nonzeros in the LU factors.

UMFPACK factorizes each chain of frontal matrices in a single working array, similar to how
the unifrontal method [14] factorizes the whole matrix. A chain of frontal matrices is a sequence of
fronts where the parent of front � is � +1 in the supernodal column elimination tree. UMFPACK is an
outer-product based, right-looking method. At the � -th step of Gaussian elimination, it represents
the updated submatrix ��� as an implicit summation of a set of dense submatrices (referred to as
elements, borrowing a phrase from finite-element methods) that arise when the frontal matrices are
factorized and their pivot rows and columns eliminated.

Each frontal matrix represents the elimination of one or more columns; each column of � will
be eliminated in a specific frontal matrix, and which frontal matrix will be used for each column is
determined by the pre-analysis phase. The pre-analysis phase also determines the worst-case size
of each frontal matrix so that they can hold any candidate pivot column and any candidate pivot
row. From the perspective of the analysis phase, any candidate pivot column in the frontal matrix
is identical (in terms of nonzero pattern), and so is any row. However, the numerical factorization
phase has more information than the analysis phase. It uses this information to reorder the columns
within each frontal matrix to reduce fill-in. Similarly, since the number of nonzeros in each row
and column are maintained (more precisely, COLMMD-style approximate degrees [18]), a pivot
row can be selected based on sparsity-preserving criteria (low degree) as well as numerical con-
siderations (relaxed threshold partial pivoting). This information about row and column degrees is
not available to left-looking methods such as SuperLU [10] or MATLAB’s LU [18, 21].

More details of the method, including experimental results, are described in [2, 3], available at
www.cise.ufl.edu/tech-reports.

4

Table 1: Using UMFPACK’s MATLAB interface

Function Using UMFPACK MATLAB 6.0 equivalent

Solve ������� . x = umfpack (A,’\’,b) ; x = A \ b ;

Solve ��� � � using
a different column pre-
ordering.

S = spones (A) ;
Q = symamd (S+S’) ;
x = umfpack (A,Q,’\’,b) ;

spparms (’autommd’,0) ;
S = spones (A) ;
Q = symamd (S+S’) ;
x = A (:,Q) \ b ;
x (Q) = x ;
spparms (’autommd’,1) ;

Solve ���	�
������� . x = umfpack (b,’/’,A) ; x = b / A ;

Factorize � , then solve
���
��� . [L,U,P,Q] = umfpack (A) ;

x = U \ (L \ (b (P))) ;
x (Q) = x ;

Q = colamd (A) ;
[L,U,P] = lu (A (:,Q)) ;
x = U \ (L \ (P*b)) ;
x (Q) = x ;

2 Availability

UMFPACK Version 4.0 is available at www.cise.ufl.edu/research/sparse. An earlier version (3.2)
has been submitted as a collected algorithm of the ACM [2, 3]. Version 3.2 handles only real,
square, non-singular matrices. Version 3.0 and following make use of a modified version of
COLAMD V2.0 by Timothy A. Davis, Stefan Larimore, John Gilbert, and Esmond Ng. The
original COLAMD V2.1 is available in as a built-in routine in MATLAB V6.0 (or later), and at
www.cise.ufl.edu/research/sparse. These codes are also available in Netlib [12] at www.netlib.org.
UMFPACK Versions 2.2.1 and earlier, co-authored with Iain Duff, are available at
www.cise.ufl.edu/research/sparse and as MA38 (functionally equivalent to Version 2.2.1) in the
Harwell Subroutine Library.

3 Using UMFPACK in MATLAB

The easiest way to use UMFPACK is within MATLAB. This discussion assumes that you have
MATLAB Version 6.0 or later (which includes the BLAS, and the colamd ordering routine). To
compile the UMFPACK mexFunction, just type make umfpack in the Unix system shell. You
can also type umfpack make in MATLAB (which should work on any system, including Win-
dows). See Section 7 for more details on how to install UMFPACK. Once installed, the UMFPACK
mexFunction can analyze, factor, and solve linear systems. Table 1 summarizes some of the more
common uses of UMFPACK within MATLAB.

UMFPACK requires b to be a dense vector (real or complex) of the appropriate dimension.
This is more restrictive than what you can do with MATLAB’s backslash or forward slash. Future

5

releases of UMFPACK may allow for b to be sparse, or allow it to be a matrix rather than just a
vector.

MATLAB’s [L,U,P] = lu(A) returns a lower triangular L, an upper triangular U, and a
permutation matrix P such that P*A is equal to L*U. UMFPACK behaves differently; it returns P
and Q such that A(P,Q) is equal to L*U, where P and Q are permutation vectors. If you prefer
permutation matrices, use the following MATLAB code:

[L,U,P,Q] = umfpack (A) ;
[m n] = size (A) ;
I = speye (m) ; P = I (P,:) ;
I = speye (n) ; Q = I (:,Q) ;

Now P*A*Q is equal to L*U. Note that x = umfpack(A,’
�
’,b) requires that b be a

dense column vector. If you wish to use the LU factors from UMFPACK to solve a linear system,
������� where � is a either a dense or sparse matrix with more than one column, do this:

[L,U,P,Q] = umfpack (A) ;
x = U \ (L \ (b (P,:))) ;
x (Q,:) = x ;

The above example does not make use of the iterative refinement that is built into x =
umfpack (A,’

�
’,b) however.

There are more options; you can provide your own column pre-ordering (in which case UMF-
PACK does not call COLAMD), you can modify other control settings (similar to the spparms
in MATLAB), and you can get various statistics on the analysis, factorization, and solution of the
linear system. Type help umfpack details and help umfpack report in MATLAB
for more information. Two demo m-files are provided. Just type umfpack simple and umf-
pack demo to run them. They roughly correspond to the C programs umfpack simple.c and
umfpack di demo.c. You may want to type more on before running umfpack demo since
it generates lots of output. The output of these two programs should be about the same as the files
umfpack simple.m.out and umfpack demo.m.out that are provided.

Factorizing A’ (or A.’) and using the transposed factors can sometimes be faster than fac-
torizing A. It can also be preferable to factorize A’ if A is rectangular. UMFPACK preorders the
columns to maintain sparsity; the row ordering is not determined until the matrix is factorized.
Thus, if A is m by n with rank m and m � n, then umfpack might not find a factor U with a zero-
free diagonal. Unless the matrix ill-conditioned or poorly scaled, factorizing A’ in this case will
guarantee that both factors will have zero-free diagonals. Here’s how you can factorize A’ and get
the factors of A instead:

[l,u,p,q] = umfpack (A’) ;
L = u’ ;
U = l’ ;
P = q ;
Q = p ;
clear l u p q

This is an alternative to [L,U,P,Q]=umfpack(A). The above code is an excerpt from the
umfpack factorize function. It orders and analyzes both A and A’, and then computes the
numerical factorization that has a lower bound on the number of floating-point operations required.

6

A simple M-file (umfpack btf) is provided that first permutes the matrix to upper block
triangular form, using MATLAB’s dmperm routine, and then solves each block. The LU factors
are not returned. Its usage is simple: x = umfpack btf(A,b). Type help umfpack btf
for more options. An estimate of the 1-norm of L*U-A(P,Q) can be computed in MATLAB as
lu normest(A(P,Q),L,U), using the lu normest.mM-file by Hager and Davis [8] that is
included with the UMFPACK V4.0 distribution.

One issue you may encounter is how UMFPACK allocates its memory when being used in
a mexFunction. One part of its working space is of variable size. The symbolic analysis phase
determines an upper bound on the size of this memory, but not all of this memory will typically be
used in the numerical factorization. UMFPACK tries to allocate a decent amount of working space
(70% of the upper bound, by default). If this fails, it reduces its request and uses less memory. If
the space is not large enough during factorization, it is increased via realloc.

However, mxMalloc aborts the umfpack mexFunction if it fails, so this strategy doesn’t
work in MATLAB. The strategy works fine when malloc is used instead. If you run out of
memory in MATLAB, try reducing Control(7) to be less than 0.70, and try again. Alter-
natively, set Control(7) to 1.0 or 1.05 to avoid all reallocations of memory. Type help
umfpack details and umfpack report for more information, and refer to the Control
[UMFPACK ALLOC INIT] parameter described in umfpack * numeric in Section 10, below.

There is a solution to this problem, but it relies on undocumented internal MATLAB routines
(utMalloc, utFree, and utRealloc). See the -DMATHWORKS option in the file
umf config.h for details.

4 Using UMFPACK in a C program

The C-callable UMFPACK library consists of 24 user-callable routines and one include file. Twenty-
three of the routines come in four versions, with different sizes of integers and for real or complex
floating-point numbers:

1. umfpack di *: real double precision, int integers.

2. umfpack dl *: real double precision, long integers.

3. umfpack zi *: complex double precision, int integers.

4. umfpack zl *: complex double precision, long integers.

where * denotes the specific name of one of the 23 routines. Routine names beginning with umf
are internal to the package, and should not be called by the user. The include file umfpack.h
must be included in any C program that uses UMFPACK.

Use only one version for any one problem; do not attempt to use one version to analyze the
matrix and another version to factorize the matrix, for example.

The notation umfpack di * refers to all 23 user-callable routines for the real double precision
and int integer case. The notation umfpack * numeric, for example, refers all four versions
(real/complex, int/long) of a single operation (in this case numerical factorization).

7

4.1 The size of an integer

The umfpack di * and umfpack zi * routines use int integer arguments; those starting with
umfpack dl or umfpack zl use long integer arguments. If you compile UMFPACK in the
standard ILP32 mode (32-bit int’s, long’s, and pointers) then the versions are essentially identi-
cal. You will be able to solve problems using up to 2GB of memory. If you compile UMFPACK in
the standard LP64 mode, the size of an int remains 32-bits, but the size of a long and a pointer
both get promoted to 64-bits. In the LP64 mode, the umfpack dl * and umfpack zl * rou-
tines can solve huge problems (not limited to 2GB), limited of course by the amount of available
memory. The only drawback to the 64-bit mode is that few BLAS libraries support 64-bit integers.
This limits the performance you will obtain.

4.2 Real and complex floating-point

The umfpack di * and umfpack dl * routines take (real) double precision arguments, and
return double precision arguments. In the umfpack zi * and umfpack zl * routines, these
same arguments hold the real part of the matrices; and second double precision array holds the
imaginary part of the input and output matrices. Internally, complex numbers are stored in arrays
with their real and imaginary parts interleaved, as required by the BLAS.

4.3 Primary routines, and a simple example

Five primary UMFPACK routines are required to factorize � or solve ��� � � . They are fully
described in Section 10:

� umfpack * symbolic:

Pre-orders the columns of � to reduce fill-in, based on its sparsity pattern only, finds the
supernodal column elimination tree, and post-orders the tree. Returns an opaque Symbolic
object as a void * pointer. The object contains the symbolic analysis and is needed for the
numerical factorization. This routine requires only

� ��� ��� � space, where � ��� is the number
of nonzero entries in the matrix. It computes upper bounds on the nonzeros in � and � ,
the floating-point operations required, and the memory usage of umfpack * numeric.
The Symbolic object is small; it contains just the column pre-ordering, the supernodal
column elimination tree, and information about each frontal matrix, and is no larger than
about ���	��
 integers (where � is � -by-
).

� umfpack * numeric:

Numerically factorizes a sparse matrix into � ��	 � �
� . Requires the symbolic ordering
and analysis computed by umfpack * symbolic or umfpack * qsymbolic. Returns
an opaque Numeric object as a void * pointer. The object contains the numerical factor-
ization and is used by umfpack * solve. You can factorize a new matrix with a different
values (but identical pattern) as the matrix analyzed by umfpack * symbolic or umf-
pack * qsymbolic by re-using the Symbolic object (this feature is available when

8

using UMFPACK in a C program, but not in MATLAB). The matrix � is unit lower triangu-
lar. The matrix � will have zeros on the diagonal if � is singular; this produces a warning,
but the factorization is still valid.

� umfpack * solve:

Solves a sparse linear system (��� � � , � � � � � , or systems involving just � or �), using
the numeric factorization computed by umfpack * numeric. Iterative refinement with
sparse backward error [1] is used by default. The matrix � must be square. If it is singular,
then a divide-by-zero will occur, and your solution with contain IEEE Inf’s or NaN’s.

� umfpack * free symbolic:

Frees the Symbolic object created by umfpack * symbolic or
umfpack * qsymbolic.

� umfpack * free numeric:

Frees the Numeric object created by umfpack * numeric.

Be careful not to free a Symbolic object with umfpack * free numeric. Nor should
you attempt to free a Numeric object with umfpack * free symbolic. Failure to free these
objects will lead to memory leaks.

The matrix � is represented in compressed column form, which is identical to the sparse matrix
representation used by MATLAB. It consists of three or four arrays, where the matrix is m-by-n,
with nz entries. For the int version of UMFPACK:

int Ap [n+1] ;
int Ai [nz] ;
double Ax [nz] ;

For the long version of UMFPACK:

long Ap [n+1] ;
long Ai [nz] ;
double Ax [nz] ;

The complex versions add a second array for the imaginary part:

double Az [nz] ;

All nonzeros are entries, but an entry may be numerically zero. The row indices of entries in
column j are stored in Ai[Ap[j] ... Ap[j+1]-1]. The corresponding numerical values are
stored in Ax[Ap[j] ... Ap[j+1]-1]. The imaginary part, for the complex versions, is stored in
Az[Ap[j] ... Ap[j+1]-1].

No duplicate row indices may be present, and the row indices in any given column must be
sorted in ascending order. The first entry Ap[0] must be zero. The total number of entries in the
matrix is thus nz = Ap[n]. Except for the fact that extra zero entries can be included, there is
thus a unique compressed column representation of any given matrix � .

Here is a simple main program, umfpack simple.c, that illustrates the basic usage of
UMFPACK.

9

#include <stdio.h>
#include "umfpack.h"

int n = 5 ;
int Ap [] = {0, 2, 5, 9, 10, 12} ;
int Ai [] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ;
double Ax [] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ;
double b [] = {8., 45., -3., 3., 19.} ;
double x [5] ;

int main (void)
{

double *Control = (double *) NULL, *Info = (double *) NULL ;
int i ;
void *Symbolic, *Numeric ;
(void) umfpack_di_symbolic (n, n, Ap, Ai, &Symbolic, Control, Info) ;
(void) umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
umfpack_di_free_symbolic (&Symbolic) ;
(void) umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric,

Control, Info) ;
umfpack_di_free_numeric (&Numeric) ;
for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, x [i]) ;
return (0) ;

}

It solves the same linear system as the umfpack simple.m MATLAB m-file. The Ap, Ai,
and Ax arrays represent the matrix

� �

�������
�

� � � � �� � � � �� �
	 ��� � �� � 	 � �� � � � 	

��

���

and the solution is � ��� 	���������� � . The program uses default control settings and does not re-
turn any statistics about the ordering, factorization, or solution (Control and Info are both
(double *) NULL).

4.4 A note about zero-sized arrays

UMFPACK uses many user-provided arrays of size n row or n col (the order of the matrix), and
of size nz (the number of nonzeros in a matrix). UMFPACK does not handle zero-dimensioned
arrays; it returns an error code if n row or n col are zero. However, nz can be zero, since
all singular matrices are handled correctly. If you attempt to malloc an array of size nz = 0,
however, malloc will return a null pointer which UMFPACK will report as a missing argument.
If you malloc an array of size nz to pass to UMFPACK, make sure that you handle the nz = 0
case correctly (use a size equal to the maximum of nz and 1, or use a size of nz+1).

10

4.5 Alternative routines

Three alternative routines are provided that modify UMFPACK’s default behavior. They are fully
described in Section 11:

� umfpack * defaults:

Sets the default control parameters in the Control array. These can then be modified as
desired before passing the array to the other UMFPACK routines. Control parameters are
summarized in Section 4.10. One particular parameter deserves special notice. UMFPACK
uses relaxed partial pivoting, where a candidate pivot entry is numerically acceptable if its
magnitude is greater than or equal to a tolerance parameter times the magnitude of the largest
entry in the same column. The parameter Info[UMFPACK PIVOT TOLERANCE] has a
default value of 0.1. This may be too small for some matrices, particularly for ill-conditioned
or poorly scaled ones. With the default pivot tolerance and default iterative refinement,
x = umfpack (A,’

�
’,b) is just as accurate as (or more accurate) than x = A

�
b in

MATLAB for nearly all matrices. For complex matrices, a cheap approximation of the
absolute value is used for the threshold pivoting test (��� ��� ��� real � � ��� imag �).

� umfpack * qsymbolic:

An alternative to umfpack * symbolic. Allows the user to specify his or her own col-
umn pre-ordering, rather than using the default COLAMD pre-ordering.

� umfpack * wsolve:

An alternative to umfpack * solve which does not dynamically allocate any memory.
Requires the user to pass two additional work arrays.

4.6 Matrix manipulation routines

The compressed column data structure is compact, and simplifies the UMFPACK routines that
operate on the sparse matrix � . However, it can be inconvenient for the user to generate. Section 12
presents the details of routines for manipulating sparse matrices in triplet form, compressed column
form, and compressed row form (the transpose of the compressed column form). The triplet form
of a matrix consists of three or four arrays. For the int version of UMFPACK:

int Ti [nz] ;
int Tj [nz] ;
double Tx [nz] ;

For the long version:

long Ti [nz] ;
long Tj [nz] ;
double Tx [nz] ;

The complex versions use a second array to hold the imaginary part:

double Tz [nz] ;

11

The k-th triplet is ����� � � ����� � , where �
� Ti[k],
� � Tj[k], and ����� � Tx[k]. For the com-

plex versions, Tx[k] is the real part of ����� and Tz[k] is the imaginary part. The triplets can be
in any order in the Ti, Tj, and Tx arrays (and Tz for the complex versions), and duplicate entries
may exist. Any duplicate entries are summed when the triplet form is converted to compressed
column form. This is a convenient way to create a matrix arising in finite-element methods, for
example.

Three routines are provided for manipulating sparse matrices:

� umfpack * triplet to col:

Converts a triplet form of a matrix to compressed column form (ready for input to umf-
pack * symbolic, umfpack * qsymbolic, and umfpack * numeric). Identical
to A = spconvert(i,j,x) in MATLAB, except that zero entries are not removed, so
that the pattern of entries in the compressed column form of � are fully under user control.
This is important if you want to factorize a new matrix with the Symbolic object from a
prior matrix with the same pattern as the new one. MATLAB never stores explicitly zero
entries, and does not support the reuse of the Symbolic object.

� umfpack * col to triplet:

The opposite of umfpack * triplet to col. Identical to [i,j,x] = find(A) in
MATLAB, except that numerically zero entries may be included.

� umfpack * transpose:

Transposes and optionally permutes a column form matrix [22]. Identical to R = A(P,Q)’
(linear algebraic transpose, using the complex conjugate) or R = A(P,Q).’ (the array
transpose) in MATLAB, except for the presence of numerically zero entries.

Factorizing � � and then solving ��� � � with the transposed factors can sometimes be
much faster or much slower than factorizing � . It is highly dependent on your particular
matrix, however. See the umfpack factorize MATLAB function for an example.

It is quite easy to add matrices in triplet form, subtract them, transpose them, permute them, and
construct a submatrix. Refer to the discussion of umfpack * triplet to col in Section 12
for more details. The only primary matrix operation not provided by UMFPACK is sparse matrix
multiplication [22].

4.7 Getting the contents of opaque objects

There are cases where you may wish to do more with the LU factorization of a matrix than solve a
linear system. The opaque Symbolic and Numeric objects are just that - opaque. In addition,
the LU factors are stored in the Numeric object in a compact way that does not store all of the
row and column indices [15]. These objects may not be dereferenced by the user, and even if
they were, it would be difficult for a typical user to understand how the LU factors are stored.
Three routines are provided for copying their contents into user-provided arrays using simpler data
structures. They are fully described in Section 13:

12

� umfpack * get lunz:

Returns the number of nonzeros in � and � .

� umfpack * get numeric:

Copies � , � , � , and 	 from the Numeric object into arrays provided by the user. The
matrix � is returned in compressed row form (with the column indices in each row sorted
in ascending order). The matrix � is returned in compressed column form (with sorted
columns). There are no explicit zero entries in � and � , but such entries may exist in the
Numeric object. The permutations � and 	 are represented as permutation vectors, where
P[k] = i means that row i of the original matrix is the the k-th row of � ��	 , and where
Q[k] = j means that column j of the original matrix is the k-th column of ���
	 . This is
identical to how MATLAB uses permutation vectors.

� umfpack * get symbolic:

Copies the contents of the Symbolic object (the initial row and column preordering, su-
pernodal column elimination tree, and information about each frontal matrix) into arrays
provided by the user.

UMFPACK itself does not make use of the output of the umfpack * get * routines; they
are provided solely for returning the contents of the opaque Symbolic and Numeric objects to
the user.

4.8 Reporting routines

None of the UMFPACK routines discussed so far prints anything, even when an error occurs.
UMFPACK provides you with nine routines for printing the input and output arguments (including
the Control settings and Info statistics) of UMFPACK routines discussed above. They are
fully described in Section 14:

� umfpack * report status:

Prints the status (return value) of other umfpack * routines.

� umfpack * report info:

Prints the statistics returned in the Info array by umfpack * *symbolic,
umfpack * numeric, and umfpack * *solve.

� umfpack * report control:

Prints the Control settings.

� umfpack * report matrix:

Verifies and prints a compressed column-form or compressed row-form sparse matrix.

� umfpack * report triplet:

Verifies and prints a matrix in triplet form.

13

� umfpack * report symbolic:

Verifies and prints a Symbolic object.

� umfpack * report numeric:

Verifies and prints a Numeric object.

� umfpack * report perm:

Verifies and prints a permutation vector.

� umfpack * report vector:

Verifies and prints a real or complex vector.

The umfpack * report * routines behave slightly differently when compiled into the C-
callable UMFPACK library than when used in the MATLAB mexFunction. MATLAB stores its
sparse matrices using the same compressed column data structure discussed above, where row and
column indices of an � -by-
 matrix are in the range 0 to � � 	

or
 � 	
, respectively. It prints

them as if they are in the range 1 to � or
 . The UMFPACK mexFunction behaves the same way.
You can control how much the umfpack * report * routines print by modifying the Con-

trol [UMFPACK PRL] parameter. Its default value is UMFPACK DEFAULT PRL which is
equal to 1. Here is a summary of how the routines use this print level parameter:
� umfpack * report status:

No output if the print level is 0 or less, even when an error occurs. If 1, then error messages
are printed, and nothing is printed if the status is UMFPACK OK. If 2 or more, then the status
is always printed. If 4 or more, then the UMFPACK Copyright is printed. If 6 or more,
then the UMFPACK License is printed. See also the first page of this User Guide for the
Copyright and License.

� umfpack * report control:

No output if the print level is 1 or less. If 2 or more, all of Control is printed.

� umfpack * report info:

No output if the print level is 1 or less. If 2 or more, all of Info is printed.

� all other umfpack * report * routines:

If the print level is 2 or less, then these routines return silently without checking their inputs.
If 3 or more, the inputs are fully verified and a short status summary is printed. If 4, then the
first few entries of the input arguments are printed. If 5, then all of the input arguments are
printed.

4.9 Utility routines

UMFPACK includes a routine that returns the time used by the process, umfpack timer. The
routine uses either getrusage (which is preferred), or the ANSI C clock routine if that is not
available. It is fully described in Section 15. It is the only routine that is identical in all four
int/long, real/complex versions (there is no umfpack di timer routine, for example).

14

Table 2: UMFPACK Control parameters
MATLAB ANSI C default description
Used by reporting routines:
Control(1) Control[UMFPACK PRL] 1 printing level
Used by umfpack * symbolic and umfpack * qsymbolic:
Control(2) Control[UMFPACK DENSE ROW] 0.2 dense row threshold
Control(3) Control[UMFPACK DENSE COL] 0.2 dense column threshold
Used by umfpack * numeric:
Control(4) Control[UMFPACK PIVOT TOLERANCE] 0.1 partial pivoting tolerance
Control(5) Control[UMFPACK BLOCK SIZE] 24 BLAS block size
Control(6) Control[UMFPACK RELAXED AMALGAMATION] 0.25 amalgamation
Control(7) Control[UMFPACK ALLOC INIT] 0.7 initial memory allocation
Control(14) Control[UMFPACK RELAXED2 AMALGAMATION] 0.1 amalgamation
Control(15) Control[UMFPACK RELAXED3 AMALGAMATION] 0.125 amalgamation
Used by umfpack * solve and umfpack * wsolve:
Control(8) Control[UMFPACK IRSTEP] 2 max iter. refinement steps
Can only be changed at compile time:
Control(9) Control[UMFPACK COMPILED WITH BLAS] - true if BLAS is used
Control(10) Control[UMFPACK COMPILED FOR MATLAB] - true for mexFunction
Control(11) Control[UMFPACK COMPILED WITH GETRUSAGE] - true if getrusage used
Control(12) Control[UMFPACK COMPILED IN DEBUG MODE] - true if debug mode enabled

4.10 Control parameters

UMFPACK uses an optional double array of size 20, Control, to modify its control param-
eters. These may be modified by the user (see umfpack * defaults). Each user-callable
routine includes a complete description of how each control setting modifies its behavior. Ta-
ble 2 summarizes the entire contents of the Control array. Future versions may make use of
additional entries in the Control array. Note that ANSI C uses 0-based indexing, while MAT-
LAB user’s 1-based indexing. Thus, Control(1) in MATLAB is the same as Control[0] or
Control[UMFPACK PRL] in ANSI C.

4.11 Larger examples

Full examples of all user-callable UMFPACK routines are available in four C main programs,
umfpack * demo.c. Another example is the UMFPACK mexFunction, umfpackmex.c. The
mexFunction accesses only the user-callable C interface to UMFPACK. The only features that
it does not use are the support for the triplet form (MATLAB’s sparse arrays are already in the
compressed column form) and the ability to reuse the Symbolic object to numerically factorize
a matrix whose pattern is the same as a prior matrix analyzed by umfpack * symbolic or
umfpack * qsymbolic. The latter is an important feature, but the mexFunction does not return
its opaque Symbolic and Numeric objects to MATLAB. Instead, it gets the contents of these
objects after extracting them via the umfpack * get * routines, and returns them as MATLAB
sparse matrices.

15

5 Synopsis of C-callable routines

Each subsection, below, summarizes the input variables, output variables, return values, and calling
sequences of the routines in one category. Variables with the same name as those already listed in
a prior category have the same size and type.

The real, long integer umfpack dl * routines are identical to the real, int routines, except
that di is replaced with dl in the name, and all int arguments become long. Similarly,
the complex, long integer umfpack zl * routines are identical to the complex, int routines,
except that zi is replaced with zl in the name, and all int arguments become long. Only
the real and complex int versions are listed in the synopsis below.

The matrix � is n row-by-n col with nz entries. If it is square then n = n row = n col.

5.1 Primary routines: real/int
#include "umfpack.h"
int status, sys, n, n_row, n_col, nz, Ap [n_col+1], Ai [nz] ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;
void *Symbolic, *Numeric ;

status = umfpack_di_symbolic (n_row, n_col, Ap, Ai, &Symbolic, Control, Info) ;
status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;
umfpack_di_free_symbolic (&Symbolic) ;
umfpack_di_free_numeric (&Numeric) ;

5.2 Alternative routines: real/int
int Qinit [n_col], Wi [n] ;
double W [5*n] ;

umfpack_di_defaults (Control) ;
status = umfpack_di_qsymbolic (n_row, n_col, Ap, Ai, Qinit, &Symbolic,

Control, Info) ;
status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric,

Control, Info, Wi, W) ;

5.3 Matrix manipulation routines: real/int
int Ti [nz], Tj [nz], P [n_row], Q [n_col], Rp [n_row+1], Ri [nz], Map [nz] ;
double Tx [nz], Rx [nz] ;

status = umfpack_di_col_to_triplet (n_col, Ap, Tj) ;
status = umfpack_di_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Ap, Ai, Ax,

Map) ;
status = umfpack_di_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;

5.4 Getting the contents of opaque objects: real/int
int lnz, unz, Lp [n_row+1], Lj [lnz], Up [n_col+1], Ui [unz] ;

16

double Lx [lnz], Ux [unz], D [min (n_row,n_col)] ;
int nfr, nchains, Ptree [n_row], Qtree [n_col], Front_npivcol [n_col+1],

Front_parent [n_col+1], Front_1strow [n_col+1],
Front_leftmostdesc [n_col+1], Chain_start [n_col+1],
Chain_maxrows [n_col+1], Chain_maxcols [n_col+1] ;

status = umfpack_di_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag, Numeric) ;
status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, D, Numeric) ;
status = umfpack_di_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

Ptree, Qtree, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,
Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;

5.5 Reporting routines: real/int

umfpack_di_report_status (Control, status) ;
umfpack_di_report_control (Control) ;
umfpack_di_report_info (Control, Info) ;
status = umfpack_di_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ;
status = umfpack_di_report_matrix (n_row, n_col, Rp, Ri, Rx, 0, Control) ;
status = umfpack_di_report_numeric (Numeric, Control) ;
status = umfpack_di_report_perm (n_row, P, Control) ;
status = umfpack_di_report_perm (n_col, Q, Control) ;
status = umfpack_di_report_symbolic (Symbolic, Control) ;
status = umfpack_di_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Control) ;
status = umfpack_di_report_vector (n, X, Control) ;

5.6 Primary routines: complex/int
double Az [nz], Xx [n], Xz [n], Bx [n], Bz [n] ;

status = umfpack_zi_symbolic (n_row, n_col, Ap, Ai, &Symbolic, Control, Info) ;
status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric,

Control, Info) ;
status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info) ;
umfpack_zi_free_symbolic (&Symbolic) ;
umfpack_zi_free_numeric (&Numeric) ;

5.7 Alternative routines: complex/int
double Wz [10*n] ;

umfpack_zi_defaults (Control) ;
status = umfpack_zi_qsymbolic (n_row, n_col, Ap, Ai, Qinit, &Symbolic,

Control, Info) ;
status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info, Wi, Wz) ;

17

5.8 Matrix manipulation routines: complex/int
double Tz [nz], Rz [nz] ;

status = umfpack_zi_col_to_triplet (n_col, Ap, Tj) ;
status = umfpack_zi_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Ap, Ai, Ax, Az, Map) ;
status = umfpack_zi_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,

Rp, Ri, Rx, Rz, 1) ;
status = umfpack_zi_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,

Rp, Ri, Rx, Rz, 0) ;

5.9 Getting the contents of opaque objects: complex/int
double Lz [lnz], Uz [unz], Dx [min (n_row,n_col)], Dz [min (n_row,n_col)] ;

status = umfpack_zi_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag, Numeric) ;
status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q,

Dx, Dz, Numeric) ;
status = umfpack_zi_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,
Ptree, Qtree, Front_npivcol, Front_parent, Front_1strow,

Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;

5.10 Reporting routines: complex/int

umfpack_zi_report_status (Control, status) ;
umfpack_zi_report_control (Control) ;
umfpack_zi_report_info (Control, Info) ;
status = umfpack_zi_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1, Control) ;
status = umfpack_zi_report_matrix (n_row, n_col, Rp, Ri, Rx, Rz, 0, Control) ;
status = umfpack_zi_report_numeric (Numeric, Control) ;
status = umfpack_zi_report_perm (n_row, P, Control) ;
status = umfpack_zi_report_perm (n_col, Q, Control) ;
status = umfpack_zi_report_symbolic (Symbolic, Control) ;
status = umfpack_zi_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Tz, Control) ;
status = umfpack_zi_report_vector (n, Xx, Xz, Control) ;

6 Synopsis of utility routines

This routine is the same in all four versions of UMFPACK.

double t ;

t = umfpack_timer () ;

18

7 Installation

UMFPACK comes with a Makefile and a GNUmakefile for compiling the C-callable umf-
pack.a library and the umfpack mexFunction on Unix. System-dependent configurations are
controlled by the Makefile (or GNUmakefile), and defined in the umf config.h file. You
should not have to modify umf config.h.

To compile umfpack.a on most Unix systems, all you need to do is to type make. This will
use the generic configuration, in Make.generic. The five demo programs will be executed, and
their output will be compared with output files in the distribution. Expect to see a few differences,
such as residual norms, compile-time control settings, and perhaps memory usage differences.
The BLAS [9, 11, 24] will not be used, so the performance of UMFPACK will not be as high as
possible. It will also attempt to compile the umfpackmexFunction, but this will fail if you do not
have MATLAB V6.0 or later. For better performance, edit the Makefile (or GNUmakefile
if you use the GNU version of make) and un-comment the include Make.* statement that is
specific to your computer. If you don’t know if you have GNU make or not, then simply edit both
Makefile and GNUmakefile; otherwise, you might get the wrong file when you type make.
For example,

include Make.generic
include Make.linux
include Make.sgi
include Make.solaris
include Make.alpha
include Make.rs6000

will include the Solaris-specific configurations, which uses the Sun Performance Library BLAS
(sunperf), and compiler optimizations that are different than the generic settings. If you change
the Makefile, GNUmakefile, or your system-specific Make.* file, be sure to type make
purge before recompiling. A draft Make.windows file is provided; it has not been tested. The
http://www.cise.ufl.edu/research/sparse/umfpack web page provides more sample make files for
Windows. Here are the various parameters that you can control in your Make.* file; many more
details are in umf config.h:

� CC = your C compiler, usually, cc. If you don’t modify this string at all in your Make.*,
then the make program will use your default C compiler (if make is installed properly).

� RANLIB = your system’s ranlib program, if needed.

� CFLAGS = optimization flags, such as -O.

� CONFIG = configuration settings.

� LIB = your libraries, such as -lm or -lblas.

You can control these options in your Make.* file if you are using the GNUmakefile only:

� OBJEXT = the filename extension for object files (defaults to .o for Unix). Set this to
.obj for Windows.

� OUTPUT = your compiler’s -o option. At least one Windows compiler requires this to be
/Fo.

19

The CONFIG string can include combinations of the following; most deal with how the BLAS
are called:

� -DNBLAS if you do not have any BLAS at all.

� -DNCBLAS if you do not have the C-BLAS [24].

� -DNSUNPERF if you are on Solaris but do not have the Sun Performance Library.

� -DNSCSL if you on SGI IRIX but do not have the SCSL library.

� -DLONGBLAS if your BLAS can take long integer input arguments. If not defined, then
the umfpack *l * versions of UMFPACK that use long integers do not call the BLAS.
This flag is set internally when using the Sun Performance BLAS or SGI’s SCSL BLAS
(both have 64-bit versions of the BLAS).

� Options for controlling how C calls the Fortran BLAS: -DBLAS BY VALUE,
-DBLAS NO UNDERSCORE, and -DBLAS CHAR ARG. These are set automatically for Win-
dows, Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and AIX (the IBM RS 6000).

� -DGETRUSAGE if you have the getrusage function.

� -DLP64 if you are compiling in the LP64 model (32 bit int’s, 64 bit long’s, and 64 bit
pointers).

If you use the gcc compiler and call a Fortran BLAS package or the Sun Performance BLAS
you may see compiler warnings. The BLAS routines dgemm, dgemv, dger, zgemm, zgemv, and
zgeru may be implicitly declared. Header files are not provided for the Fortran BLAS. The Sun
Performance BLAS header (sunperf.h) is not used because it is incorrect for zgemm, zgemv,
and zgeru, and causes a failure when compiling in the LP64 mode. You may also see warnings
about arguments to the C-BLAS on older SGI computers. Ignore all of these warnings.

To compile the umfpack mexFunction on Unix, you must first modify the Makefile to se-
lect your architecture. Then type make. The MATLAB mex command will select the appropriate
compiler and compiler flags for your system, and the BLAS internal to MATLAB will be used. If
you compare the performance of UMFPACK with other packages that use the BLAS, be sure to use
the same BLAS library for your comparisons; MATLAB’s BLAS is slightly slower than the Sun
Performance BLAS, for example. The mexopts.sh file in your UMFPACK directory has been
modified from the MATLAB default; the unmodified version is in mexopts.sh.orig for com-
parison, in case The MathWorks makes changes to its default mexopts.sh file at a subsequent
date. You may wish to modify mexopts.sh to increase the optimization level (COPTIMFLAGS).
This has been done for Solaris only.

You may also compile the mexFunction from within MATLAB, on any system, by typing
umfpack make in MATLAB. If you’re running Windows and are using the lcc compiler bun-
dled with MATLAB, then you must first copy the umfpack

�
lcc lib

�
libmwlapack.lib file into the

<matlab>
�
extern

�
lib

�
win32

�
lcc

�
directory. Next, type mex -setup at the MATLAB prompt,

and ask MATLAB to select the lcc compiler. MATLAB has built-in BLAS, but it cannot be ac-
cessed by a program compiled by lcc without first copying this file.

20

8 Known Issues

The Microsoft C or C++ compilers on a Pentium badly break the IEEE 754 standard, and do not
treat NaN’s properly. According to IEEE 754, the expression x != x is supposed to be true if
and only if x is NaN. For non-compliant compilers in Windows that expression is always false, and
another test must be used: ((x < x) is true if and only if x is NaN. For compliant compilers, x
< x is always false, for any value of xx (including NaN). To cover both cases, UMFPACK when
running under Microsoft Windows defines the following macro, which is true if and only if x is
NaN, regardless of whether your compiler is compliant or not:

#define SCALAR_IS_NAN(x) (((x) != (x)) || ((x) < (x)))

If your compiler breaks this test, then UMFPACK will fail catastrophically if it encounters
a NaN. In that case, you might try to see if the common (but non-ANSI C) routine isnan is
available, and modify the macro SCALAR IS NAN in umf version.h accordingly. The simpler
(and IEEE 754-compliant) test x != x is always true with Linux on a PC, and on every Unix
compiler I’ve tested.

9 Future work

Here are a few features that are not in UMFPACK Version 4.0, in no particular order. They may
appear in a future release of UMFPACK. If you are interested, let me know and I could consider
including them:

1. Future versions may have different default Control parameters. Future versions may re-
turn more statistics in the Info array, and they may use more entries in the Control array.

2. A simple C function could be written that orders and analyzes both � and � � and per-
forms the numerical factorization on the one with the smaller upper bound on floating-point
operations or memory usage. See umfpack factorize.m for a MATLAB version.

3. Forward/back solvers for the conventional row or column-form data structure for � and � .
This would enable a seperate solver that could be used to write a MATLAB mexFunction
x = lu refine (A, b, L, U, P, Q) that gives MATLAB access to the iterative
refinement algorithm with sparse backward error analysis. It would also be easier to handle
sparse right-hand-sides in this data structure, and end up with good asymptotic run-time in
this case (particularly for � � � � ; see [21]).

4. Complex absolute value computations could be based on FDLIBM (see http://www.netlib.org/fdlibm),
using the hypot(x,y) routine.

5. When using iterative refinement, the residual ��� � � could be returned by umfpack solve
(umfpack wsolve already does so, but this is not documented).

6. The solve routines could handle multiple right-hand sides, and sparse right-hand sides.

21

7. An option to redirect the error and diagnostic output to something other than standard output.

8. Permutation to block-triangular-form [13] for the C-callable interface.

9. The ability to use user-provided malloc, free, and realloc memory allocation rou-
tines. Note that UMFPACK makes very few calls to these routines. You can do this at
compile-time by modifying the definitions of ALLOCATE, FREE, and REALLOCATE in the
file umf config.h.

10. The ability to use user-provided work arrays, so that malloc, free, and realloc realloc
are not called. The umfpack * wsolve routine is one example.

11. Use a method that takes time proportional to the number of nonzeros in � to analyze � when
Qinit is provided (or when Qinit is not provided and umf colamd ignores “dense”
rows) [20]. The current method in umf analyze.c takes time proportional to the number
of nonzeros in the upper bound of � .

12. The complex versions could use ANSI C99 double Complex arguments, and support
the use of interleaved real/imaginary parts as input and output arguments. The
umfpack * report vector routine is one example.

13. Other basic sparse matrix operations, such as sparse matrix multiplication.

14. A Fortran interface. This is easy, but highly non-portable. See the ChangeLog for some
hints.

15. A C++ interface.

16. A parallel version using MPI.

22

10 The primary UMFPACK routines

The include files are the same for all four versions of UMFPACK. The generic integer type is Int,
which is an int or long, depending on which version of UMFPACK you are using.

10.1 umfpack * symbolic

int umfpack_di_symbolic
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_dl_symbolic
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int umfpack_zi_symbolic
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_zl_symbolic
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

23

double int Syntax:

#include "umfpack.h"
void *Symbolic ;
int n_row, n_col, *Ap, *Ai, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_di_symbolic (n_row, n_col, Ap, Ai, &Symbolic, Control,

Info) ;

double long Syntax:

#include "umfpack.h"
void *Symbolic ;
long n_row, n_col, *Ap, *Ai, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_dl_symbolic (n_row, n_col, Ap, Ai, &Symbolic, Control,

Info) ;

complex int Syntax:

#include "umfpack.h"
void *Symbolic ;
int n_row, n_col, *Ap, *Ai, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_zi_symbolic (n_row, n_col, Ap, Ai, &Symbolic, Control,

Info) ;

complex long Syntax:

#include "umfpack.h"
void *Symbolic ;
long n_row, n_col, *Ap, *Ai, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_zl_symbolic (n_row, n_col, Ap, Ai, &Symbolic, Control,

Info) ;

Purpose:

Given nonzero pattern of a sparse matrix A in column-oriented form,
umfpack_*_symbolic performs a column pre-ordering to reduce fill-in
(using UMF_colamd, modified from colamd V2.0 for UMFPACK), and a symbolic
factorization. This is required before the matrix can be numerically
factorized with umfpack_*_numeric. If you wish to bypass the UMF_colamd
pre-ordering and provide your own ordering, use umfpack_*_qsymbolic instead.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int n_row ; Input argument, not modified.

24

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.

Int Ap [n_col+1] ; Input argument, not modified.

Ap is an integer array of size n_col+1. On input, it holds the
"pointers" for the column form of the sparse matrix A. Column j of
the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first
entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold for all
j in the range 0 to n_col-1. The value nz = Ap [n_col] is thus the
total number of entries in the pattern of the matrix A. nz must be
greater than or equal to zero.

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j
must be in ascending order, and no duplicate row indices may be present.
Row indices must be in the range 0 to n_row-1 (the matrix is 0-based).
See umfpack_*_triplet_to_col for how to sort the columns of a matrix
and sum up the duplicate entries. See umfpack_*_report_matrix for how
to print the matrix A.

void **Symbolic ; Output argument.

**Symbolic is the address of a (void *) pointer variable in the user’s
calling routine (see Syntax, above). On input, the contents of this
variable are not defined. On output, this variable holds a (void *)
pointer to the Symbolic object (if successful), or (void *) NULL if
a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_DENSE_COL]: columns with more than
max (16, Control [UMFPACK_DENSE_COL] * 16 * sqrt (n_row))
entries are placed placed last in the column pre-ordering by
UMF_colamd. Default: 0.2.

Control [UMFPACK_DENSE_ROW]: rows with more than
max (16, Control [UMFPACK_DENSE_ROW] * 16 * sqrt (n_col))
entries (after "dense" columns are removed) are ignored in the
column pre-ordering, UMF_colamd. Default: 0.2.

Control [UMFPACK_BLOCK_SIZE]: the block size to use for Level-3 BLAS
in the subsequent numerical factorization (umfpack_*_numeric).
A value less than 1 is treated as 1. Default: 24. Modifying this

25

parameter affects when updates are applied to the working frontal
matrix, and can indirectly affect fill-in and operation count.
As long as the block size is large enough (8 or so), this parameter
has modest effect on performance. In Version 3.0, this parameter
was an input to umfpack_*_numeric, and had a default value of 16.
On a Sun UltraSparc, a block size of 24 is better for larger
matrices (16 is better for smaller ones, but not by much). In the
current version, it is required in the symbolic analysis phase, and
is thus an input to this phase.

double Info [UMFPACK_INFO] ; Output argument, not defined on input.

Contains statistics about the symbolic analysis. If a (double *) NULL
pointer is passed, then no statistics are returned in Info (this is not
an error condition). The entire Info array is cleared (all entries set
to -1) and then the following statistics are computed:

Info [UMFPACK_STATUS]: status code. This is also the return value,
whether or not Info is present.

UMFPACK_OK

Each column of the input matrix contained row indices
in increasing order, with no duplicates. Only in this case
does umfpack_*_symbolic compute a valid symbolic factorization.
For the other cases below, no Symbolic object is created
(*Symbolic is (void *) NULL).

UMFPACK_ERROR_jumbled_matrix

Columns of input matrix were jumbled (unsorted columns or
duplicate entries).

UMFPACK_ERROR_n_nonpositive

n is less than or equal to zero.

UMFPACK_ERROR_nz_negative

Number of entries in the matrix is negative.

UMFPACK_ERROR_Ap0_nonzero

Ap [0] is nonzero.

UMFPACK_ERROR_col_length_negative

A column has a negative number of entries.

UMFPACK_ERROR_row_index_out_of_bounds

A row index is out of bounds.

26

UMFPACK_ERROR_out_of_memory

Insufficient memory to perform the symbolic analysis.

UMFPACK_ERROR_argument_missing

One or more required arguments is missing.

UMFPACK_ERROR_problem_too_large

Problem is too large; memory usage estimate causes an integer
overlow. If you are using umfpack_*i_symbolic, try using
the long versions instead, umfpack_*l_symbolic.

UMFPACK_ERROR_internal_error

Something very serious went wrong. This is a bug.
Please contact the author (davis@cise.ufl.edu).

Info [UMFPACK_NROW]: the value of the input argument n_row.

Info [UMFPACK_NCOL]: the value of the input argument n_col.

Info [UMFPACK_NZ]: the number of entries in the input matrix
(Ap [n_col]).

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit,
for memory usage statistics below.

Info [UMFPACK_SIZE_OF_INT]: the number of bytes in an int.

Info [UMFPACK_SIZE_OF_LONG]: the number of bytes in a long.

Info [UMFPACK_SIZE_OF_POINTER]: the number of bytes in a void *
pointer.

Info [UMFPACK_SIZE_OF_ENTRY]: the number of bytes in a numerical entry.

Info [UMFPACK_NDENSE_ROW]: number of "dense" rows in A. These rows are
ignored when the column pre-ordering is computed in UMF_colamd.
If > 0, then the matrix had to be re-analyzed by UMF_analyze, which
does not ignore these rows.

Info [UMFPACK_NEMPTY_ROW]: number of "empty" rows in A. These are
rows that either have no entries, or whose entries are all in
"dense" columns. Any given row is classified as either "dense"
or "empty" or "sparse".

Info [UMFPACK_NDENSE_COL]: number of "dense" columns in A. These
columns are ordered last in the factorization, but before "empty"
columns. Any given column is classified as either "dense" or
"empty" or "sparse".

27

Info [UMFPACK_NEMPTY_COL]: number of "empty" columns in A. These are
columns that either have no entries, or whose entries are all in
"dense" rows. These columns are ordered last in the factorization,
to the right of "dense" columns.

Info [UMFPACK_SYMBOLIC_DEFRAG]: number of garbage collections
performed in UMF_colamd, the column pre-ordering routine, and in
UMF_analyze, which is called if UMF_colamd isn’t, or if UMF_colamd
ignores one or more "dense" rows.

Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]: the amount of memory (in Units)
required for umfpack_*_symbolic to complete. This is roughly
2.2*nz + (26 to 31)*n integers for a square matrix, depending on the
matrix. This count includes the size of the Symbolic object itself,
which is reported in Info [UMFPACK_SYMBOLIC_SIZE].

Info [UMFPACK_SYMBOLIC_SIZE]: the final size of the Symbolic object (in
Units). This is fairly small, roughly 2*n to 9*n integers,
depending on the matrix.

Info [UMFPACK_VARIABLE_INIT_ESTIMATE]: the Numeric object contains two
parts. The first is fixed in size (O (n_row+n_col)). The
second part holds the sparse LU factors and the contribution blocks
from factorized frontal matrices. This part changes in size during
factorization. Info [UMFPACK_VARIABLE_INIT_ESTIMATE] is the exact
size (in Units) required for this second variable-sized part in
order for the numerical factorization to start.

Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]: the estimated peak size (in
Units) of the variable-sized part of the Numeric object. This is
usually an upper bound, but that is not guaranteed.

Info [UMFPACK_VARIABLE_FINAL_ESTIMATE]: the estimated final size (in
Units) of the variable-sized part of the Numeric object. This is
usually an upper bound, but that is not guaranteed. It holds just
the sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]: an estimate of the final size (in
Units) of the entire Numeric object (both fixed-size and variable-
sized parts), which holds the LU factorization (including the L, U,
P and Q matrices).

Info [UMFPACK_PEAK_MEMORY_ESTIMATE]: an estimate of the total amount of
memory (in Units) required by umfpack_*_symbolic and
umfpack_*_numeric to perform both the symbolic and numeric
factorization. This is the larger of the amount of memory needed
in umfpack_*_numeric itself, and the amount of memory needed in
umfpack_*_symbolic (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]). The count
includes the size of both the Symbolic and Numeric objects
themselves.

Info [UMFPACK_FLOPS_ESTIMATE]: an estimate of the total floating-point
operations required to factorize the matrix. This is a "true"

28

theoretical estimate of the number of flops that would be performed
by a flop-parsimonious sparse LU algorithm. It assumes that no
extra flops are performed except for what is strictly required to
compute the LU factorization. It ignores, for example, the flops
performed by umfpack_*_numeric to add contribution blocks of frontal
matrices together. If L and U are the upper bound on the pattern
of the factors, then this flop count estimate can be represented in
MATLAB (for real matrices, not complex) as:

Lnz = full (sum (spones (L))) - 1 ; % nz in each col of L
Unz = full (sum (spones (U’)))’ - 1 ; % nz in each row of U
flops = 2*Lnz*Unz + sum (Lnz) ;

The actual "true flop" count found by umfpack_*_numeric will be less
than this estimate.

For the real version, only (+ - * /) are counted. For the complex
version, the following counts are used:

operation flops
c = 1/b 6
c = a*b 6
c -= a*b 8

Info [UMFPACK_LNZ_ESTIMATE]: an estimate of the number of nonzeros in
L, including the diagonal. Since L is unit-diagonal, the diagonal
of L is not stored. This estimate is a strict upper bound on the
actual nonzeros in L to be computed by umfpack_*_numeric.

Info [UMFPACK_UNZ_ESTIMATE]: an estimate of the number of nonzeros in
U, including the diagonal. This estimate is a strict upper bound on
the actual nonzeros in U to be computed by umfpack_*_numeric.

Info [UMFPACK_SYMBOLIC_TIME]: The time taken by umfpack_*_symbolic, in
seconds. In the ANSI C version, this may be invalid if the time
taken is more than about 36 minutes, because of wrap-around in the
ANSI C clock function. Compile UMFPACK with -DGETRUSAGE if you have
the more accurate getrusage function.

At the start of umfpack_*_symbolic, all of Info is set of -1, and then
after that only the above listed Info [...] entries are accessed.
Future versions might modify different parts of Info.

29

10.2 umfpack * numeric

int umfpack_di_numeric
(

const int Ap [],
const int Ai [],
const double Ax [],
void *Symbolic,
void **Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_dl_numeric
(

const long Ap [],
const long Ai [],
const double Ax [],
void *Symbolic,
void **Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int umfpack_zi_numeric
(

const int Ap [],
const int Ai [],
const double Ax [], const double Az [],
void *Symbolic,
void **Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_zl_numeric
(

const long Ap [],
const long Ai [],
const double Ax [], const double Az [],
void *Symbolic,
void **Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

double int Syntax:

#include "umfpack.h"
void *Symbolic, *Numeric ;
int *Ap, *Ai, status ;

30

double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric,

Control, Info) ;

double long Syntax:

#include "umfpack.h"
void *Symbolic, *Numeric ;
long *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric,

Control, Info) ;

complex int Syntax:

#include "umfpack.h"
void *Symbolic, *Numeric ;
int *Ap, *Ai, status ;
double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric,

Control, Info) ;

complex long Syntax:

#include "umfpack.h"
void *Symbolic, *Numeric ;
long *Ap, *Ai, status ;
double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_zl_numeric (Ap, Ai, Ax, Symbolic, &Numeric,

Control, Info) ;

Purpose:

Given a sparse matrix A in column-oriented form, and a symbolic analysis
computed by umfpack_*_*symbolic, the umfpack_*_numeric routine performs the
numerical factorization, PAQ=LU, where P and Q are permutation matrices
(represented as permutation vectors), L is unit-lower triangular, and U
is upper triangular. This is required before the system Ax=b (or other
related linear systems) can be solved. umfpack_*_numeric can be called
multiple times for each call to umfpack_*_symbolic, to factorize a sequence
of matrices with identical nonzero pattern. Simply compute the Symbolic
object once, with umfpack_*_*symbolic, and reuse it for subsequent matrices.
umfpack_*_numeric safely detects if the pattern changes, and sets an
appropriate error code.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int Ap [n_col+1] ; Input argument, not modified.

31

This must be identical to the Ap array passed to umfpack_*_*symbolic.
The value of n_col is what was passed to umfpack_*_*symbolic (this is
held in the Symbolic object).

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

This must be identical to the Ai array passed to umfpack_*_*symbolic.

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The numerical values of the sparse matrix A. The nonzero pattern (row
indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and
the corresponding numerical values are stored in
Ax [(Ap [j]) ... (Ap [j+1]-1)].

double Az [nz] ; Input argument, not modified, for complex versions.

For the complex versions, this holds the imaginary part of A. The
imaginary part of column j is held in Az [(Ap [j]) ... (Ap [j+1]-1)].

Future complex version: if Ax is present and Az is NULL, then both real
and imaginary parts will be contained in Ax[0..2*nz-1], with Ax[2*k]
and Ax[2*k+1] being the real and imaginary part of the kth entry.

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by
umfpack_*_*symbolic. The Symbolic object is not modified by
umfpack_*_numeric.

void **Numeric ; Output argument.

**Numeric is the address of a (void *) pointer variable in the user’s
calling routine (see Syntax, above). On input, the contents of this
variable are not defined. On output, this variable holds a (void *)
pointer to the Numeric object (if successful), or (void *) NULL if
a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PIVOT_TOLERANCE]: relative pivot tolerance for
threshold partial pivoting with row interchanges. In any given
column, an entry is numerically acceptable if its absolute value is
greater than or equal to Control [UMFPACK_PIVOT_TOLERANCE] times
the largest absolute value in the column. A value of 1.0 gives true
partial pivoting. A value of zero is treated as 1.0. Default: 0.1.
Smaller values tend to lead to sparser LU factors, but the solution

32

to the linear system can become inaccurate. Larger values can lead
to a more accurate solution (but not always), and usually an
increase in the total work.

For complex matrices, a cheap approximate of the absolute value
is used for the threshold partial pivoting test (|a_real| + |a_imag|
instead of the more expensive-to-compute exact absolute value
sqrt (a_realˆ2 + a_imagˆ2)).

Control [UMFPACK_RELAXED_AMALGAMATION]: This controls the creation of
"elements" (small dense submatrices) that are formed when a frontal
matrix is factorized. A new element is created if the current one,
plus the new pivot, contains "too many" explicitly zero numerical
entries. The two elements are merged if the number of extra zero
entries is < Control [UMFPACK_RELAXED_AMALGAMATION] times the
size of the merged element. A lower setting decreases fill-in, but
run-time and memory usage can increase. A larger setting increases
fill-in (because the extra zeros are treated as normal entries
during pivot selection), but this can lead to an increase in
run-time but (paradoxically) a decrease in memory usage (one merged
elements can take less space than two separate elements). Except
for the initial column ordering, this parameter has the most impact
on the run-time, fill-in, operation count, and memory usage.
Default: 0.25, which is fine for nearly all matrices.
(For nearly all matrices that I’ve tested, different values of this
parameter can decrease the run-time by at most 5%, but can also
dramatically increase the run time for some matrices).

Control [UMFPACK_RELAXED2_AMALGAMATION]: This, along with the block
size (Control [UMFPACK_BLOCK_SIZE]), controls how often the
pending updates are applied when the next pivot entry resides in
the current frontal matrix. If the number of zero entries in the
LU part of the current frontal matrix would exceed this parameter
times the size of the LU part, then the pending updates are applied
before the next pivot is included in the frontal matrix.
Default: 0.20 (that is, more than 20% zero entries causes the
pending updates to be applied). This input parameter is new
since Version 3.1.

Control [UMFPACK_RELAXED3_AMALGAMATION]: This, along with the block
size (Control [UMFPACK_BLOCK_SIZE]), controls how often the pending
updates are applied when the next pivot entry does NOT reside
in the current frontal matrix. If the number of zero entries in the
LU part of the current frontal matrix would exceed this parameter
times the size of the LU part, then the pending updates are applied
before the next pivot is included in the frontal matrix.
Default: 0.10 (that is, more than 10% zero entries causes the
pending updates to be applied). This input parameter is new
since Version 3.1.

Control [UMFPACK_ALLOC_INIT]: When umfpack_*_numeric starts, it
allocates memory for the Numeric object. Part of this is of fixed
size (approximately n double’s + 12*n integers). The remainder is

33

of variable size, which grows to hold the LU factors and the frontal
matrices created during factorization. A estimate of the upper
bound is computed by umfpack_*_*symbolic, and returned by
umfpack_*_*symbolic in Info [UMFPACK_VARIABLE_PEAK_ESTIMATE].
umfpack_*_numeric initially allocates space for the variable-sized
part equal to this estimate times Control [UMFPACK_ALLOC_INIT].
Typically, umfpack_*_numeric needs only about half the estimated
memory space, so a setting of 0.5 or 0.6 often provides enough
memory for umfpack_*_numeric to factorize the matrix with no
subsequent increases in the size of this block. A value less than
zero is treated as zero (in which case, just the bare minimum
amount of memory needed to start the factorization is initially
allocated). The bare initial memory required is returned by
umfpack_*_*symbolic in Info [UMFPACK_VARIABLE_INIT_ESTIMATE] (which
in fact not an estimate, but exact). If the variable-size part of
the Numeric object is found to be too small sometime after numerical
factorization has started, the memory is increased in size by a
factor of 1.2. If this fails, the request is reduced by a factor
of 0.95 until it succeeds, or until it determines that no increase
in size is possible. Garbage collection then occurs. These two
factors (1.2 and 0.95) are fixed control parameters defined in
umf_internal.h and cannot be changed at run-time. You would need
to edit umf_internal.h to modify them. If you do this, be sure that
the two factors are greater than 1 and less than 1, respectively.

The strategy of attempting to malloc a working space, and re-trying
with a smaller space, may not work under MATLAB, since mxMalloc
aborts the mexFunction if it fails. The built-in umfpack routine
uses utMalloc instead, which does cause this problem. If you are
using the umfpack mexFunction, decrease Control [UMFPACK_ALLOC_INIT]
if you run out of memory in MATLAB.

Default initial allocation size: 0.7. Thus, with the default
control settings, the upper-bound is reached after two reallocations
(0.7 * 1.2 * 1.2 = 1.008).

Changing this parameter has no effect on fill-in or operation count.
It has a small impact on run-time (the extra time required to do
the garbage collection and memory reallocation).

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the numeric factorization. If a
(double *) NULL pointer is passed, then no statistics are returned in
Info (this is not an error condition). The following statistics are
computed in umfpack_*_numeric:

Info [UMFPACK_STATUS]: status code. This is also the return value,
whether or not Info is present.

UMFPACK_OK

Numeric factorization was successful. umfpack_*_numeric

34

computed a valid numeric factorization.

UMFPACK_WARNING_singular_matrix

Numeric factorization was successful, but the matrix is
singular. umfpack_*_numeric computed a valid numeric
factorization, but you will get a divide by zero in
umfpack_*_*solve. For the other cases below, no Numeric object
is created (*Numeric is (void *) NULL).

UMFPACK_ERROR_out_of_memory

Insufficient memory to complete the numeric factorization.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing.

UMFPACK_ERROR_invalid_Symbolic_object

Symbolic object provided as input is invalid.

UMFPACK_ERROR_different_pattern

The pattern (Ap and/or Ai) has changed since the call to
umfpack_*_*symbolic which produced the Symbolic object.

Info [UMFPACK_NROW]: the value of n_row stored in the Symbolic object.

Info [UMFPACK_NCOL]: the value of n_col stored in the Symbolic object.

Info [UMFPACK_NZ]: the number of entries in the input matrix.
This value is obtained from the Symbolic object.

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit, for memory
usage statistics below.

Info [UMFPACK_VARIABLE_INIT]: the initial size (in Units) of the
variable-sized part of the Numeric object. If this differs from
Info [UMFPACK_VARIABLE_INIT_ESTIMATE], then the pattern (Ap and/or
Ai) has changed since the last call to umfpack_*_*symbolic, which is
an error condition.

Info [UMFPACK_VARIABLE_PEAK]: the peak size (in Units) of the
variable-sized part of the Numeric object. This size is the amount
of space actually used inside the block of memory, not the space
allocated via UMF_malloc. You can reduce UMFPACK’s memory
requirements by setting Control [UMFPACK_ALLOC_INIT] to the ratio
Info [UMFPACK_VARIABLE_PEAK] / Info[UMFPACK_VARIABLE_PEAK_ESTIMATE].
This will ensure that no memory reallocations occur (you may want to
add 0.001 to make sure that integer roundoff does not lead to a
memory size that is 1 Unit too small; otherwise, garbage collection
and reallocation will occur).

35

Info [UMFPACK_VARIABLE_FINAL]: the final size (in Units) of the
variable-sized part of the Numeric object. It holds just the
sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE]: the actual final size (in Units) of the
entire Numeric object, including the final size of the variable
part of the object. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE],
an estimate, was computed by umfpack_*_*symbolic. The estimate is
normally an upper bound on the actual final size, but this is not
guaranteed.

Info [UMFPACK_PEAK_MEMORY]: the actual peak memory usage (in Units) of
both umfpack_*_*symbolic and umfpack_*_numeric. An estimate,
Info [UMFPACK_PEAK_MEMORY_ESTIMATE], was computed by
umfpack_*_*symbolic. The estimate is normally an upper bound on the
actual peak usage, but this is not guaranteed. With testing on
hundreds of matrix arising in real applications, I have never
observed a matrix where this estimate or the Numeric size estimate
was less than the actual result, but this is theoretically possible.
Please send me one if you find such a matrix.

Info [UMFPACK_FLOPS]: the actual count of the (useful) floating-point
operations performed. An estimate, Info [UMFPACK_FLOPS_ESTIMATE],
was computed by umfpack_*_*symbolic. The estimate is guaranteed to
be an upper bound on this flop count. The flop count excludes
"useless" flops on zero values, flops performed during the pivot
search (for tentative updates and assembly of candidate columns),
and flops performed to add frontal matrices together.

For the real version, only (+ - * /) are counted. For the complex
version, the following counts are used:

operation flops
c = 1/b 6
c = a*b 6
c -= a*b 8

Info [UMFPACK_LNZ]: the actual nonzero entries in final factor L,
including the diagonal. This excludes any zero entries in L,
although some of these are stored in the Numeric object. The
Info [UMFPACK_LU_ENTRIES] statistic does account for all
explicitly stored zeros, however. Info [UMFPACK_LNZ_ESTIMATE],
an estimate, was computed by umfpack_*_*symbolic. The estimate is
guaranteed to be an upper bound on Info [UMFPACK_LNZ].

Info [UMFPACK_UNZ]: the actual nonzero entries in final factor U,
including the diagonal. This excludes any zero entries in U,
although some of these are stored in the Numeric object. The
Info [UMFPACK_LU_ENTRIES] statistic does account for all
explicitly stored zeros, however. Info [UMFPACK_UNZ_ESTIMATE],
an estimate, was computed by umfpack_*_*symbolic. The estimate is
guaranteed to be an upper bound on Info [UMFPACK_UNZ].

36

Info [UMFPACK_NUMERIC_DEFRAG]: The number of garbage collections
performed during umfpack_*_numeric, to compact the contents of the
variable-sized workspace used by umfpack_*_numeric. No estimate was
computed by umfpack_*_*symbolic. In the current version of UMFPACK,
garbage collection is performed and then the memory is reallocated,
so this statistic is the same as Info [UMFPACK_NUMERIC_REALLOC],
below. It may differ in future releases.

Info [UMFPACK_NUMERIC_REALLOC]: The number of times that the Numeric
object was increased in size from its initial size. A rough upper
bound on the peak size of the Numeric object was computed by
umfpack_*_*symbolic, so reallocations should be rare. However, if
umfpack_*_numeric is unable to allocate that much storage, it
reduces its request until either the allocation succeeds, or until
it gets too small to do anything with. If the memory that it
finally got was small, but usable, then the reallocation count
could be high. No estimate of this count was computed by
umfpack_*_*symbolic.

Info [UMFPACK_NUMERIC_COSTLY_REALLOC]: The number of times that the
system realloc library routine (or mxRealloc for the mexFunction)
had to move the workspace. Realloc can sometimes increase the size
of a block of memory without moving it, which is much faster. This
statistic will always be <= Info [UMFPACK_NUMERIC_REALLOC]. If your
memory space is fragmented, then the number of "costly" realloc’s
will be equal to Info [UMFPACK_NUMERIC_REALLOC].

Info [UMFPACK_COMPRESSED_PATTERN]: The number of integers used to
represent the pattern of L and U.

Info [UMFPACK_LU_ENTRIES]: The total number of numerical values that
are stored for the LU factors. Some of the values may be explicitly
zero in order to save space (allowing for a smaller compressed
pattern).

Info [UMFPACK_NUMERIC_TIME]: The time taken by umfpack_*_numeric, in
seconds. In the ANSI C version, this may be invalid if the time
taken is more than about 36 minutes, because of wrap-around in the
ANSI C clock function. Compile UMFPACK with -DGETRUSAGE if you have
the more accurate getrusage function.

Info [UMFPACK_RCOND]: A rough estimate of the condition number, equal
to min (abs (diag (U))) / max (abs (diag (U))), or zero if the
diagonal of U is all zero.

Info [UMFPACK_UDIAG_NZ]: The number of numerically nonzero values on
the diagonal of U.

Only the above listed Info [...] entries are accessed. The remaining
entries of Info are not accessed or modified by umfpack_*_numeric.
Future versions might modify different parts of Info.

37

10.3 umfpack * solve

int umfpack_di_solve
(

int sys,
const int Ap [],
const int Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_dl_solve
(

long sys,
const long Ap [],
const long Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int umfpack_zi_solve
(

int sys,
const int Ap [],
const int Ai [],
const double Ax [], const double Az [],
double Xx [], double Xz [],
const double Bx [], const double Bz [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_zl_solve
(

long sys,
const long Ap [],
const long Ai [],
const double Ax [], const double Az [],
double Xx [], double Xz [],
const double Bx [], const double Bz [],
void *Numeric,
const double Control [UMFPACK_CONTROL],

38

double Info [UMFPACK_INFO]
) ;

double int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai, sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

double long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, *Ap, *Ai, sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_dl_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

complex int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai, sys ;
double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],

Control [UMFPACK_CONTROL] ;
status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info) ;

complex long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, *Ap, *Ai, sys ;
double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],

Control [UMFPACK_CONTROL] ;
status = umfpack_zl_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info) ;

Purpose:

Given LU factors computed by umfpack_*_numeric (PAQ=LU) and the
right-hand-side, B, solve a linear system for the solution X. Iterative
refinement is optionally performed. This routine dynamically allocates
workspace of size O(n). Only square systems are handled. Singular matrices
result in a divide-by-zero for all systems except those involving just the
matrix L. Iterative refinement is not performed for singular matrices.

In the discussion below, n is equal to n_row and n_col, because only
square systems are handled.

Returns:

39

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int sys ; Input argument, not modified.

Defines which system to solve. (’) is the linear algebraic transpose
(complex conjugate if A is complex), and (.’) is the array transpose.

sys value system solved

UMFPACK_A Ax=b
UMFPACK_At A’x=b
UMFPACK_Aat A.’x=b
UMFPACK_Pt_L P’Lx=b
UMFPACK_L Lx=b
UMFPACK_Lt_P L’Px=b
UMFPACK_Lat_P L.’Px=b
UMFPACK_Lt L’x=b
UMFPACK_U_Qt UQ’x=b
UMFPACK_U Ux=b
UMFPACK_Q_Ut QU’x=b
UMFPACK_Q_Uat QU.’x=b
UMFPACK_Ut U’x=b
UMFPACK_Uat U.’x=b

Iterative refinement can be optionally performed when sys is any of
the following:

UMFPACK_A Ax=b
UMFPACK_At A’x=b
UMFPACK_Aat A.’x=b

For the other values of the sys argument, iterative refinement is not
performed (Control [UMFPACK_IRSTEP], Ap, Ai, Ax, and Az are ignored).

Earlier versions used a string argument for sys. It was changed to an
integer to make it easier for a Fortran code to call UMFPACK.

Int Ap [n+1] ; Input argument, not modified.
Int Ai [nz] ; Input argument, not modified.
double Ax [nz] ; Input argument, not modified.
double Az [nz] ; Input argument, not modified, for complex versions.

If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1,
Ax=b, A’x=b, or A.’x=b is being solved, and A is nonsingular), then
these arrays must be identical to the same ones passed to
umfpack_*_numeric. The umfpack_*_solve routine does not check the
contents of these arguments, so the results are undefined if Ap, Ai, Ax,
and/or Az are modified between the calls the umfpack_*_numeric and
umfpack_*_solve. These three arrays do not need to be present (NULL
pointers can be passed) if Control [UMFPACK_IRSTEP] is zero, or if a
system other than Ax=b, A’x=b, or A.’x=b is being solved, or if A is

40

singular, since in each of these cases A is not accessed.

Future complex version: if Ax is present and Az is NULL, then both real
and imaginary parts will be contained in Ax[0..2*nz-1], with Ax[2*k]
and Ax[2*k+1] being the real and imaginary part of the kth entry.

double X [n] ; Output argument.
or:
double Xx [n] ; Output argument, real part.
double Xz [n] ; Output argument, imaginary part.

The solution to the linear system, where n = n_row = n_col is the
dimension of the matrices A, L, and U.

Future complex version: if Xx is present and Xz is NULL, then both real
and imaginary parts will be returned in Xx[0..2*n-1], with Xx[2*k] and
Xx[2*k+1] being the real and imaginary part of the kth entry.

double B [n] ; Input argument, not modified.
or:
double Bx [n] ; Input argument, not modified, real part.
double Bz [n] ; Input argument, not modified, imaginary part.

The right-hand side vector, b, stored as a conventional array of size n
(or two arrays of size n for complex versions). This routine does not
solve for multiple right-hand-sides, nor does it allow b to be stored in
a sparse-column form.

Future complex version: if Bx is present and Bz is NULL, then both real
and imaginary parts will be contained in Bx[0..2*n-1], with Bx[2*k]
and Bx[2*k+1] being the real and imaginary part of the kth entry.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by
umfpack_*_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement
steps to attempt. A value less than zero is treated as zero. If
less than 1, or if Ax=b, A’x=b, or A.’x=b is not being solved, or
if A is singular, then the Ap, Ai, Ax, and Az arguments are not
accessed. Default: 2.

double Info [UMFPACK_INFO] ; Output argument.

41

Contains statistics about the solution factorization. If a
(double *) NULL pointer is passed, then no statistics are returned in
Info (this is not an error condition). The following statistics are
computed in umfpack_*_solve:

Info [UMFPACK_STATUS]: status code. This is also the return value,
whether or not Info is present.

UMFPACK_OK

The linear system was successfully solved.

UMFPACK_WARNING_singular_matrix

A divide-by-zero occured. Your solution will contain Inf’s
and/or NaN’s. Some parts of the solution may be valid. For
example, solving Ax=b with

A = [2 0] b = [1] returns x = [0.5]
[0 0] [0] [Inf]

UMFPACK_ERROR_out_of_memory

Insufficient memory to solve the linear system.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing. The B, X, (or
Bx, Bz, Xx and Xz for the complex versions) arguments
are always required. Info and Control are not required. Ap,
Ai, Ax (and Az for complex versions) are required if Ax=b,
A’x=b, A.’x=b is to be solved, the (default) iterative
refinement is requested, and the matrix A is nonsingular.

UMFPACK_ERROR_invalid_system

The sys argument is not valid, or the matrix A is not square.

UMFPACK_ERROR_invalid_Numeric_object

The Numeric object is not valid.

Info [UMFPACK_NROW], Info [UMFPACK_NCOL]:
The dimensions of the matrix A (L is n_row-by-n_inner and
U is n_inner-by-n_col, with n_inner = min(n_row,n_col)).

Info [UMFPACK_NZ]: the number of entries in the input matrix, Ap [n],
if iterative refinement is requested (Ax=b, A’x=b, or A.’x=b is
being solved, Control [UMFPACK_IRSTEP] >= 1, and A is nonsingular).

Info [UMFPACK_IR_TAKEN]: The number of iterative refinement steps
effectively taken. The number of steps attempted may be one more
than this; the refinement algorithm backtracks if the last

42

refinement step worsens the solution.

Info [UMFPACK_IR_ATTEMPTED]: The number of iterative refinement steps
attempted. The number of times a linear system was solved is one
more than this (once for the initial Ax=b, and once for each Ay=r
solved for each iterative refinement step attempted).

Info [UMFPACK_OMEGA1]: sparse backward error estimate, omega1, if
iterative refinement was performed, or -1 if iterative refinement
not performed.

Info [UMFPACK_OMEGA2]: sparse backward error estimate, omega2, if
iterative refinement was performed, or -1 if iterative refinement
not performed.

Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations
performed to solve the linear system. This includes the work
taken for all iterative refinement steps, including the backtrack
(if any).

Info [UMFPACK_SOLVE_TIME]: The time taken by umfpack_*_solve, in
seconds. In the ANSI C version, this may be invalid if the time
taken is more than about 36 minutes, because of wrap-around in the
ANSI C clock function. Compile UMFPACK with -DGETRUSAGE if you have
the more accurate getrusage function.

Only the above listed Info [...] entries are accessed. The remaining
entries of Info are not accessed or modified by umfpack_*_solve.
Future versions might modify different parts of Info.

43

10.4 umfpack * free symbolic

void umfpack_di_free_symbolic
(

void **Symbolic
) ;

void umfpack_dl_free_symbolic
(

void **Symbolic
) ;

void umfpack_zi_free_symbolic
(

void **Symbolic
) ;

void umfpack_zl_free_symbolic
(

void **Symbolic
) ;

double int Syntax:

#include "umfpack.h"
void *Symbolic ;
umfpack_di_free_symbolic (&Symbolic) ;

double long Syntax:

#include "umfpack.h"
void *Symbolic ;
umfpack_dl_free_symbolic (&Symbolic) ;

complex int Syntax:

#include "umfpack.h"
void *Symbolic ;
umfpack_zi_free_symbolic (&Symbolic) ;

complex long Syntax:

#include "umfpack.h"
void *Symbolic ;
umfpack_zl_free_symbolic (&Symbolic) ;

Purpose:

Deallocates the Symbolic object and sets the Symbolic handle to NULL.
This routine is the only valid way of destroying the Symbolic object;
any other action (such as using "free (Symbolic) ;" or not freeing Symbolic

44

at all) will lead to memory leaks.

Arguments:

void **Symbolic ; Input argument, deallocated and Symbolic is
set to (void *) NULL on output.

Symbolic must point to a valid Symbolic object, computed by
umfpack_*_symbolic. No action is taken if Symbolic is a (void *) NULL
pointer.

45

10.5 umfpack * free numeric

void umfpack_di_free_numeric
(

void **Numeric
) ;

void umfpack_dl_free_numeric
(

void **Numeric
) ;

void umfpack_zi_free_numeric
(

void **Numeric
) ;

void umfpack_zl_free_numeric
(

void **Numeric
) ;

double int Syntax:

#include "umfpack.h"
void *Numeric ;
umfpack_di_free_numeric (&Numeric) ;

double long Syntax:

#include "umfpack.h"
void *Numeric ;
umfpack_dl_free_numeric (&Numeric) ;

complex int Syntax:

#include "umfpack.h"
void *Numeric ;
umfpack_zi_free_numeric (&Numeric) ;

complex long Syntax:

#include "umfpack.h"
void *Numeric ;
umfpack_zl_free_numeric (&Numeric) ;

Purpose:

Deallocates the Numeric object and sets the Numeric handle to NULL.
This routine is the only valid way of destroying the Numeric object;
any other action (such as using "free (Numeric) ;" or not freeing Numeric

46

at all) will lead to memory leaks.

Arguments:

void **Numeric ; Input argument, deallocated and Numeric is
set to (void *) NULL on output.

Numeric must point to a valid Numeric object, computed by
umfpack_*_numeric. No action is taken if Numeric is a (void *) NULL
pointer.

47

11 Alternatives routines

11.1 umfpack * defaults

void umfpack_di_defaults
(

double Control [UMFPACK_CONTROL]
) ;

void umfpack_dl_defaults
(

double Control [UMFPACK_CONTROL]
) ;

void umfpack_zi_defaults
(

double Control [UMFPACK_CONTROL]
) ;

void umfpack_zl_defaults
(

double Control [UMFPACK_CONTROL]
) ;

double int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_di_defaults (Control) ;

double long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_dl_defaults (Control) ;

complex int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_zi_defaults (Control) ;

complex long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_zl_defaults (Control) ;

Purpose:

Sets the default control parameter settings.

48

Arguments:

double Control [UMFPACK_CONTROL] ; Output argument.

Control is set to the default control parameter settings. You can
then modify individual settings by changing specific entries in the
Control array. If Control is a (double *) NULL pointer, then
umfpack_*_defaults returns silently (no error is generated, since
passing a NULL pointer for Control to any UMFPACK routine is valid).

49

11.2 umfpack * qsymbolic

int umfpack_di_qsymbolic
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
const int Qinit [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_dl_qsymbolic
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],
const long Qinit [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int umfpack_zi_qsymbolic
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
const int Qinit [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_zl_qsymbolic
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],
const long Qinit [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

double int Syntax:

50

#include "umfpack.h"
void *Symbolic ;
int n_row, n_col, *Ap, *Ai, *Qinit, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_di_qsymbolic (n_row, n_col, Ap, Ai, Qinit, &Symbolic,

Control, Info) ;

double long Syntax:

#include "umfpack.h"
void *Symbolic ;
long n_row, n_col, *Ap, *Ai, *Qinit, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_dl_qsymbolic (n_row, n_col, Ap, Ai, Qinit, &Symbolic,

Control, Info) ;

complex int Syntax:

#include "umfpack.h"
void *Symbolic ;
int n_row, n_col, *Ap, *Ai, *Qinit, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_zi_qsymbolic (n_row, n_col, Ap, Ai, Qinit, &Symbolic,

Control, Info) ;

complex long Syntax:

#include "umfpack.h"
void *Symbolic ;
long n_row, n_col, *Ap, *Ai, *Qinit, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_zl_qsymbolic (n_row, n_col, Ap, Ai, Qinit, &Symbolic,

Control, Info) ;

Purpose:

Given the nonzero pattern of a sparse matrix A in column-oriented form, and
a sparsity preserving column preordering Qinit, umfpack_*_qsymbolic performs
the symbolic factorization of A*Qinit (or A (:,Qinit) in MATLAB notation).
It also computes the column elimination tree post-ordering. This is
identical to umfpack_*_symbolic, except that colamd is not called and the
user input column order Qinit is used instead. Note that in general, the
Qinit passed to umfpack_*_qsymbolic will differ from the final Q found in
umfpack_*_numeric, because of the column etree postordering done in
umfpack_*_qsymbolic and sparsity-preserving modifications made within each
frontal matrix during umfpack_*_numeric.

*** WARNING *** A poor choice of Qinit can easily cause umfpack_*_numeric
to use a huge amount of memory and do a lot of work. The "default" symbolic
analysis method is umfpack_*_symbolic, not this routine. If you use this
routine, the performance of UMFPACK is your responsibility; UMFPACK will
not try to second-guess a poor choice of Qinit. If you are unsure about

51

the quality of your Qinit, then call both umfpack_*_symbolic and
umfpack_*_qsymbolic, and pick the one with lower estimates of work and
memory usage (Info [UMFPACK_FLOPS_ESTIMATE] and
Info [UMFPACK_PEAK_MEMORY_ESTIMATE]). Don’t forget to call
umfpack_*_free_symbolic to free the Symbolic object that you don’t need.

Returns:

The value of Info [UMFPACK_STATUS]; see below.

Arguments:

All arguments are the same as umfpack_*_symbolic, except for the following:

Int Qinit [n_col] ; Input argument, not modified.

The user’s fill-reducing initial column preordering. This must be a
permutation of 0..n_col-1. If Qinit [k] = j, then column j is the kth
column of the matrix A (:,Qinit) to be factorized. If Qinit is an
(Int *) NULL pointer, then colamd is called instead. In fact,

Symbolic = umfpack_*_symbolic (n_row, n_col, Ap, Ai, Control, Info) ;

is identical to

Symbolic = umfpack_*_qsymbolic (n_row, n_col, Ap, Ai, (Int *) NULL,
Control, Info) ;

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

Identical to umfpack_*_symbolic if Qinit is (Int *) NULL. Otherwise,
if Qinit is present, it is identical to umfpack_*_symbolic except for
the following:

Control [UMFPACK_DENSE_ROW]: ignored.

Control [UMFPACK_DENSE_COL]: ignored.

double Info [UMFPACK_INFO] ; Output argument, not defined on input.

Identical to umfpack_*_symbolic if Qinit is (Int *) NULL. Otherwise,
if Qinit is present, it is identical to umfpack_*_symbolic except for
the following:

Info [UMFPACK_NDENSE_ROW]: zero
Info [UMFPACK_NEMPTY_ROW]: number of empty rows.
Info [UMFPACK_NDENSE_COL]: zero
Info [UMFPACK_NEMPTY_COL]: number of empty columns.

52

11.3 umfpack * wsolve

int umfpack_di_wsolve
(

int sys,
const int Ap [],
const int Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO],
int Wi [],
double W []

) ;

long umfpack_dl_wsolve
(

long sys,
const long Ap [],
const long Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO],
long Wi [],
double W []

) ;

int umfpack_zi_wsolve
(

int sys,
const int Ap [],
const int Ai [],
const double Ax [], const double Az [],
double Xx [], double Xz [],
const double Bx [], const double Bz [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO],
int Wi [],
double W []

) ;

long umfpack_zl_wsolve
(

long sys,
const long Ap [],

53

const long Ai [],
const double Ax [], const double Az [],
double Xx [], double Xz [],
const double Bx [], const double Bz [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO],
long Wi [],
double W []

) ;

double int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai, *Wi, sys ;
double *B, *X, *Ax, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric,

Control, Info, Wi, W) ;

double long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, *Ap, *Ai, *Wi, sys ;
double *B, *X, *Ax, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_dl_wsolve (sys, Ap, Ai, Ax, X, B, Numeric,

Control, Info, Wi, W) ;

complex int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai, *Wi, sys ;
double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, *W,

Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info, Wi, W) ;

complex long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, *Ap, *Ai, *Wi, sys ;
double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, *W,

Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_zl_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info, Wi, W) ;

Purpose:

Given LU factors computed by umfpack_*_numeric (PAQ=LU) and the
right-hand-side, B, solve a linear system for the solution X. Iterative

54

refinement is optionally performed. This routine is identical to
umfpack_*_solve, except that it does not dynamically allocate any workspace.
When you have many linear systems to solve, this routine is faster than
umfpack_*_solve, since the workspace (Wi, W) needs to be allocated only
once, prior to calling umfpack_*_wsolve.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int sys ; Input argument, not modified.
Int Ap [n+1] ; Input argument, not modified.
Int Ai [nz] ; Input argument, not modified.
double Ax [nz] ; Input argument, not modified.
double X [n] ; Output argument.
double B [n] ; Input argument, not modified.
void *Numeric ; Input argument, not modified.
double Control [UMFPACK_CONTROL] ; Input argument, not modified.
double Info [UMFPACK_INFO] ; Output argument.

for complex versions:
double Az [nz] ; Input argument, not modified, imaginary part
double Xx [n] ; Output argument, real part.
double Xz [n] ; Output argument, imaginary part
double Bx [n] ; Input argument, not modified, real part
double Bz [n] ; Input argument, not modified, imaginary part

The above arguments are identical to umfpack_*_solve, except that the
error code UMFPACK_ERROR_out_of_memory will not be returned in
Info [UMFPACK_STATUS], since umfpack_*_wsolve does not allocate any
memory.

Int Wi [n] ; Workspace.
double W [c*n] ; Workspace, where c is defined below.

The Wi and W arguments are workspace used by umfpack_*_wsolve. They
need not be initialized on input, and their contents are undefined on
output. The size of W depends on whether or not iterative refinement is
used, and which version (real or complex) is called. Iterative
refinement is performed if Ax=b, A’x=b, or A.’x=b is being solved,
Control [UMFPACK_IRSTEP] > 0, and A is nonsingular. The size of W is
given below:

no iter. with iter.
refinement refinement

umfpack_di_wsolve n 5*n
umfpack_dl_wsolve n 5*n
umfpack_zi_wsolve 4*n 10*n
umfpack_zl_wsolve 4*n 10*n

55

12 Matrix manipulation routines

12.1 umfpack * col to triplet

int umfpack_di_col_to_triplet
(

int n_col,
const int Ap [],
int Tj []

) ;

long umfpack_dl_col_to_triplet
(

long n_col,
const long Ap [],
long Tj []

) ;

int umfpack_zi_col_to_triplet
(

int n_col,
const int Ap [],
int Tj []

) ;

long umfpack_zl_col_to_triplet
(

long n_col,
const long Ap [],
long Tj []

) ;

double int Syntax:

#include "umfpack.h"
int n_col, *Tj, *Ap, status ;
status = umfpack_di_col_to_triplet (n_col, Ap, Tj) ;

double long Syntax:

#include "umfpack.h"
long n_col, *Tj, *Ap, status ;
status = umfpack_dl_col_to_triplet (n_col, Ap, Tj) ;

complex int Syntax:

#include "umfpack.h"
int n_col, *Tj, *Ap, status ;
status = umfpack_zi_col_to_triplet (n_col, Ap, Tj) ;

complex long Syntax:

56

#include "umfpack.h"
long n_col, *Tj, *Ap, status ;
status = umfpack_zl_col_to_triplet (n_col, Ap, Tj) ;

Purpose:

Converts a column-oriented matrix to a triplet form. Only the column
pointers, Ap, are required, and only the column indices of the triplet form
are constructed. This routine is the opposite of umfpack_*_triplet_to_col.
The matrix may be singular and/or rectangular. Analogous to [i, Tj, x] =
find (A) in MATLAB, except that zero entries present in the column-form of
A are present in the output, and i and x are not created (those are just Ai
and Ax+Az*1i, respectively, for a column-form matrix A).

Returns:

UMFPACK_OK if successful
UMFPACK_ERROR_argument_missing if Ap or Tj is missing
UMFPACK_ERROR_n_nonpositive if n_col <= 0
UMFPACK_ERROR_Ap0_nonzero if Ap [0] != 0
UMFPACK_ERROR_nz_negative if Ap [n_col] < 0
UMFPACK_ERROR_col_length_negative if Ap [j] > Ap [j+1] for any j in the

range 0 to n-1.
Unsorted columns and duplicate entries do not cause an error (these would
only be evident by examining Ai). Empty rows and columns are OK.

Arguments:

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_col > 0.
(n_row is not required)

Int Ap [n_col+1] ; Input argument, not modified.

The column pointers of the column-oriented form of the matrix. See
umfpack_*_*symbolic for a description. The number of entries in
the matrix is nz = Ap [n_col]. Restrictions on Ap are the same as those
for umfpack_*_transpose. Ap [0] must be zero, nz must be >= 0, and
Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n_col] must be true for all j in
the range 0 to n_col-1. Empty columns are OK (that is, Ap [j] may equal
Ap [j+1] for any j in the range 0 to n_col-1).

Int Tj [nz] ; Output argument.

Tj is an integer array of size nz on input, where nz = Ap [n_col].
Suppose the column-form of the matrix is held in Ap, Ai, Ax, and Az
(see umfpack_*_*symbolic for a description). Then on output, the
triplet form of the same matrix is held in Ai (row indices), Tj (column
indices), and Ax (numerical values). Note, however, that this routine
does not require Ai and Ax (or Az for the complex version) in order to
do the conversion.

57

12.2 umfpack * triplet to col

int umfpack_di_triplet_to_col
(

int n_row,
int n_col,
int nz,
const int Ti [],
const int Tj [],
const double Tx [],
int Ap [],
int Ai [],
double Ax [],
int Map []

) ;

long umfpack_dl_triplet_to_col
(

long n_row,
long n_col,
long nz,
const long Ti [],
const long Tj [],
const double Tx [],
long Ap [],
long Ai [],
double Ax [],
long Map []

) ;

int umfpack_zi_triplet_to_col
(

int n_row,
int n_col,
int nz,
const int Ti [],
const int Tj [],
const double Tx [], const double Tz [],
int Ap [],
int Ai [],
double Ax [], double Az [],
int Map []

) ;

long umfpack_zl_triplet_to_col
(

long n_row,
long n_col,
long nz,
const long Ti [],
const long Tj [],

58

const double Tx [], const double Tz [],
long Ap [],
long Ai [],
double Ax [], double Az [],
long Map []

) ;

double int Syntax:

#include "umfpack.h"
int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
double *Tx, *Ax ;
status = umfpack_di_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx,

Ap, Ai, Ax, Map) ;

double long Syntax:

#include "umfpack.h"
long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
double *Tx, *Ax ;
status = umfpack_dl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx,

Ap, Ai, Ax, Map) ;

complex int Syntax:

#include "umfpack.h"
int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
double *Tx, *Tz, *Ax, *Az ;
status = umfpack_zi_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Ap, Ai, Ax, Az, Map) ;

long Syntax:

#include "umfpack.h"
long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
double *Tx, *Tz, *Ax, *Az ;
status = umfpack_zl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Ap, Ai, Ax, Az, Map) ;

Purpose:

Converts a sparse matrix from "triplet" form to compressed-column form.
Analogous to A = spconvert (Ti, Tj, Tx + Tx*1i) in MATLAB, except that
zero entries present in the triplet form are present in A.

The triplet form of a matrix is a very simple data structure for basic
sparse matrix operations. For example, suppose you wish to factorize a
matrix A coming from a finite element method, in which A is a sum of
dense submatrices, A = E1 + E2 + E3 + The entries in each element
matrix Ei can be concatenated together in the three triplet arrays, and
any overlap between the elements will be correctly summed by
umfpack_*_triplet_to_col.

59

Transposing a matrix in triplet form is simple; just interchange the
use of Ti and Tj. You can construct the complex conjugate transpose by
negating Tz, for the complex versions.

Permuting a matrix in triplet form is also simple. If you want the matrix
PAQ, or A (P,Q) in MATLAB notation, where P [k] = i means that row i of
A is the kth row of PAQ and Q [k] = j means that column j of A is the kth
column of PAQ, then do the following. First, create inverse permutations
Pinv and Qinv such that Pinv [i] = k if P [k] = i and Qinv [j] = k if
Q [k] = j. Next, for the mth triplet (Ti [m], Tj [m], Tx [m], Tz [m]),
replace Ti [m] with Pinv [Ti [m]] and replace Tj [m] with Qinv [Tj [m]].

If you have a column-form matrix with duplicate entries or unsorted
columns, you can sort it and sum up the duplicates by first converting it
to triplet form with umfpack_*_col_to_triplet, and then coverting it back
with umfpack_*_triplet_to_col.

Constructing a submatrix is also easy. Just scan the triplets and remove
those entries outside the desired subset of 0...n_row-1 and 0...n_col-1,
and renumber the indices according to their position in the subset.

You can do all these operations on a column-form matrix by first
converting it to triplet form with umfpack_*_col_to_triplet, doing the
operation on the triplet form, and then converting it back with
umfpack_*_triplet_to_col.

The only operation not supported easily in the triplet form is the
multiplication of two sparse matrices (UMFPACK does not provide this
operation).

You can print the input triplet form with umfpack_*_report_triplet, and
the output matrix with umfpack_*_report_matrix.

The matrix may be singular (nz can be zero, and empty rows and/or columns
may exist). It may also be rectangular and/or complex.

Returns:

UMFPACK_OK if successful.
UMFPACK_ERROR_argument_missing if Ap, Ai, Ti, and/or Tj are missing.
UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0.
UMFPACK_ERROR_nz_negative if nz < 0.
UMFPACK_ERROR_invalid_triplet if for any k, Ti [k] and/or Tj [k] are not in

the range 0 to n_row-1 or 0 to n_col-1, respectively.
UMFPACK_ERROR_out_of_memory if unable to allocate sufficient workspace.

Arguments:

Int n_row ; Input argument, not modified.
Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.
All row and column indices in the triplet form must be in the range

60

0 to n_row-1 and 0 to n_col-1, respectively.

Int nz ; Input argument, not modified.

The number of entries in the triplet form of the matrix. Restriction:
nz >= 0.

Int Ti [nz] ; Input argument, not modified.
Int Tj [nz] ; Input argument, not modified.
double Tx [nz] ; Input argument, not modified.
double Tz [nz] ; Input argument, not modified, for complex versions.

Ti, Tj, Tx, and Tz hold the "triplet" form of a sparse matrix. The kth
nonzero entry is in row i = Ti [k], column j = Tj [k], and the real part
of a_ij is Tx [k]. The imaginary part of a_ij is Tz [k], for complex
versions. The row and column indices i and j must be in the range 0 to
n_row-1 and 0 to n_col-1, respectively. Duplicate entries may be
present; they are summed in the output matrix. This is not an error
condition. The "triplets" may be in any order. Tx, Tz, Ax, and Az
are optional. For the real version, Ax is computed only if both Ax
and Tx are present (not (double *) NULL). For the complex version, Ax
and Az are computed only if Tx, Tz, Ax, and Az are all present. These
are not error conditions; the routine can create just the pattern of
the output matrix from the pattern of the triplets.

Future complex version: if Tx is present and Tz is NULL, then both real
and imaginary parts will be contained in Tx[0..2*nz-1], with Tx[2*k]
and Tx[2*k+1] being the real and imaginary part of the kth entry.

Int Ap [n_col+1] ; Output argument.

Ap is an integer array of size n_col+1 on input. On output, Ap holds
the "pointers" for the column form of the sparse matrix A. Column j of
the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first
entry, Ap [0], is zero, and Ap [j] <= Ap [j+1] holds for all j in the
range 0 to n_col-1. The value nz2 = Ap [n_col] is thus the total
number of entries in the pattern of the matrix A. Equivalently, the
number of duplicate triplets is nz - Ap [n_col].

Int Ai [nz] ; Output argument.

Ai is an integer array of size nz on input. Note that only the first
Ap [n_col] entries are used.

The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j
are in ascending order, and no duplicate row indices are present.
Row indices are in the range 0 to n_col-1 (the matrix is 0-based).

double Ax [nz] ; Output argument.
double Az [nz] ; Output argument for complex versions.

Ax and Az (for the complex versions) are double arrays of size nz on

61

input. Note that only the first Ap [n_col] entries are used
in both arrays.

Ax is optional; if Tx and/or Ax are not present (a (double *) NULL
pointer), then Ax is not computed. Az is also optional; if Tz and/or
Az are not present, then Az is not computed. If present, Ax holds the
numerical values of the the real part of the sparse matrix A and Az
holds the imaginary parts. The nonzero pattern (row indices) for
column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the
corresponding numerical values are stored in
Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary parts are stored in
Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions.

Future complex version: if Ax is present and Az is NULL, then both real
and imaginary parts will be returned in Ax[0..2*nz2-1], with Ax[2*k]
and Ax[2*k+1] being the real and imaginary part of the kth entry.

int Map [nz] ; Optional output argument.

If Map is present (a non-NULL pointer to an Int array of size nz), then
on output it holds the position of the triplets in the column-form
matrix. That is, suppose p = Map [k], and the k-th triplet is i=Ti[k],
j=Tj[k], and aij=Tx[k]. Then i=Ai[p], and aij will have been summed
into Ax[p] (or simply aij=Ax[p] if there were no duplicate entries also
in row i and column j). Also, Ap[j] <= p < Ap[j+1]. The Map array is
not computed if it is (Int *) NULL. The Map array is useful for
converting a subsequent triplet form matrix with the same pattern as the
first one, without calling this routine. If Ti and Tj do not change,
then Ap, and Ai can be reused from the prior call to
umfpack_*_triplet_to_col. You only need to recompute Ax (and Az for the
complex version). This code excerpt properly sums up all duplicate
values (for the real version):

for (p = 0 ; p < Ap [n_col] ; p++) Ax [p] = 0 ;
for (k = 0 ; k < nz ; k++) Ax [Map [k]] += Tx [k] ;

This feature is useful (along with the reuse of the Symbolic object) if
you need to factorize a sequence of triplet matrices with identical
nonzero pattern (the order of the triplets in the Ti,Tj,Tx arrays must
also remain unchanged). It is faster than calling this routine for
each matrix, and requires no workspace.

62

12.3 umfpack * transpose

int umfpack_di_transpose
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
const double Ax [],
const int P [],
const int Q [],
int Rp [],
int Ri [],
double Rx []

) ;

long umfpack_dl_transpose
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],
const double Ax [],
const long P [],
const long Q [],
long Rp [],
long Ri [],
double Rx []

) ;

int umfpack_zi_transpose
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
const double Ax [], const double Az [],
const int P [],
const int Q [],
int Rp [],
int Ri [],
double Rx [], double Rz [],
int do_conjugate

) ;

long umfpack_zl_transpose
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],

63

const double Ax [], const double Az [],
const long P [],
const long Q [],
long Rp [],
long Ri [],
double Rx [], double Rz [],
long do_conjugate

) ;

double int Syntax:

#include "umfpack.h"
int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ;
double *Ax, *Rx ;
status = umfpack_di_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;

double long Syntax:

#include "umfpack.h"
long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ;
double *Ax, *Rx ;
status = umfpack_dl_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;

complex int Syntax:

#include "umfpack.h"
int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ;
double *Ax, *Az, *Rx, *Rz ;
status = umfpack_zi_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,

Rp, Ri, Rx, Rz, do_conjugate) ;

complex long Syntax:

#include "umfpack.h"
long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ;
double *Ax, *Az, *Rx, *Rz ;
status = umfpack_zl_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,

Rp, Ri, Rx, Rz, do_conjugate) ;

Purpose:

Transposes and optionally permutes a sparse matrix in row or column-form,
R = (PAQ)’. In MATLAB notation, R = (A (P,Q))’ or R = (A (P,Q)).’ doing
either the linear algebraic transpose or the array transpose. Alternatively,
this routine can be viewed as converting A (P,Q) from column-form to
row-form, or visa versa (for the array transpose). Empty rows and columns
may exist. The matrix A may be singular and/or rectangular.

umfpack_*_transpose is useful if you want to factorize A’ or A.’ instead of
A. Factorizing A’ or A.’ instead of A can be much better, particularly if
AA’ is much sparser than A’A. You can still solve Ax=b if you factorize
A’ or A.’, by solving with the sys argument UMFPACK_At or UMFPACK_Aat,
respectively, in umfpack_*_*solve. The umfpack mexFunction (umfpackmex.c)

64

is one example. To compute x = A/b, it computes x = (A.’\b.’).’ instead,
by factorizing A.’. It then uses the regular solve, since b.’ and x.’ are
stored identically as b and x, respectively (both b.’ and b are dense
vectors). If b and x were arrays, the umfpack mexFunction would need to
first compute b.’ and then transpose the resulting solution.

Returns:

UMFPACK_OK if successful.
UMFPACK_ERROR_out_of_memory if umfpack_*_transpose fails to allocate a

size-max (n_row,n_col) workspace.
UMFPACK_ERROR_argument_missing if Ai, Ap, Ri, and/or Rp are missing.
UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0
UMFPACK_ERROR_invalid_permutation if P and/or Q are invalid.
UMFPACK_ERROR_nz_negative if Ap [n_col] < 0.
UMFPACK_ERROR_Ap0_nonzero if Ap [0] != 0.
UMFPACK_ERROR_col_length_negative if Ap [j] > Ap [j+1] for any j in the

range 0 to n_col-1.
UMFPACK_ERROR_row_index_out_of_bounds if any row index i is < 0 or >= n_row.
UMFPACK_ERROR_jumbled_matrix if the row indices in any column are not in

ascending order.

Arguments:

Int n_row ; Input argument, not modified.
Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.

Int Ap [n_col+1] ; Input argument, not modified.

The column pointers of the column-oriented form of the matrix A. See
umfpack_*_symbolic for a description. The number of entries in
the matrix is nz = Ap [n_col]. Ap [0] must be zero, Ap [n_col] must be
=> 0, and Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n_col] must be true for
all j in the range 0 to n_col-1. Empty columns are OK (that is, Ap [j]
may equal Ap [j+1] for any j in the range 0 to n_col-1).

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j
must be in ascending order, and no duplicate row indices may be present.
Row indices must be in the range 0 to n_row-1 (the matrix is 0-based).

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col].
double Az [nz] ; Input argument, not modified, for complex versions.

If present, these are the numerical values of the sparse matrix A.
The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding real numerical
values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary
values are stored in Az [(Ap [j]) ... (Ap [j+1]-1)]. The values are

65

transposed only if Ax and Rx are present (for the real version), and
only if all four (Ax, Az, Rx, and Rz) are present for the complex
version. These are not an error conditions; you are able to transpose
and permute just the pattern of a matrix.

Future complex version: if Ax is present and Az is NULL, then both real
and imaginary parts will be contained in Ax[0..2*nz-1], with Ax[2*k]
and Ax[2*k+1] being the real and imaginary part of the kth entry.

Int P [n_row] ; Input argument, not modified.

The permutation vector P is defined as P [k] = i, where the original
row i of A is the kth row of PAQ. If you want to use the identity
permutation for P, simply pass (Int *) NULL for P. This is not an error
condition. P is a complete permutation of all the rows of A; this
routine does not support the creation of a transposed submatrix of A
(R = A (1:3,:)’ where A has more than 3 rows, for example, cannot be
done; a future version might support this operation).

Int Q [n_col] ; Input argument, not modified.

The permutation vector Q is defined as Q [k] = j, where the original
column j of A is the kth column of PAQ. If you want to use the identity
permutation for Q, simply pass (Int *) NULL for Q. This is not an error
condition. Q is a complete permutation of all the columns of A; this
routine does not support the creation of a transposed submatrix of A.

Int Rp [n_row+1] ; Output argument.

The column pointers of the matrix R = (A (P,Q))’ or (A (P,Q)).’, in the
same form as the column pointers Ap for the matrix A.

Int Ri [nz] ; Output argument.

The row indices of the matrix R = (A (P,Q))’ or (A (P,Q)).’ , in the
same form as the row indices Ai for the matrix A.

double Rx [nz] ; Output argument.
double Rz [nz] ; Output argument, imaginary part for complex versions.

If present, these are the numerical values of the sparse matrix R,
in the same form as the values Ax and Az of the matrix A.

Future complex version: if Rx is present and Rz is NULL, then both real
and imaginary parts will be contained in Rx[0..2*nz-1], with Rx[2*k]
and Rx[2*k+1] being the real and imaginary part of the kth entry.

Int do_conjugate ; Input argument for complex versions only.

If true, and if Ax, Az, Rx, and Rz are all present, then the linear
algebraic transpose is computed (complex conjugate). If false, the
array transpose is computed instead.

66

13 Getting the contents of opaque objects

13.1 umfpack * get lunz

int umfpack_di_get_lunz
(

int *lnz,
int *unz,
int *n_row,
int *n_col,
int *nz_udiag,
void *Numeric

) ;

long umfpack_dl_get_lunz
(

long *lnz,
long *unz,
long *n_row,
long *n_col,
long *nz_udiag,
void *Numeric

) ;

int umfpack_zi_get_lunz
(

int *lnz,
int *unz,
int *n_row,
int *n_col,
int *nz_udiag,
void *Numeric

) ;

long umfpack_zl_get_lunz
(

long *lnz,
long *unz,
long *n_row,
long *n_col,
long *nz_udiag,
void *Numeric

) ;

double int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, lnz, unz, n_row, n_col ;
status = umfpack_di_get_lunz (&lnz, &unz, &n_row, &n_col, Numeric) ;

67

double long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, lnz, unz, n_row, n_col ;
status = umfpack_dl_get_lunz (&lnz, &unz, &n_row, &n_col, Numeric) ;

complex int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, lnz, unz, n_row, n_col ;
status = umfpack_zi_get_lunz (&lnz, &unz, &n_row, &n_col, Numeric) ;

complex long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, lnz, unz, n_row, n_col ;
status = umfpack_zl_get_lunz (&lnz, &unz, &n_row, &n_col, Numeric) ;

Purpose:

Determines the size and number of nonzeros in the LU factors held by the
Numeric object. These are also the sizes of the output arrays required
by umfpack_*_get_numeric.

The matrix L is n_row -by- min(n_row,n_col), with lnz nonzeros, including
the entries on the unit diagonal of L.

The matrix U is min(n_row,n_col) -by- n_col, with unz nonzeros, including
nonzeros on the diagonal of U.

Returns:

UMFPACK_OK if successful.
UMFPACK_ERROR_invalid_Numeric_object if Numeric is not a valid object.
UMFPACK_ERROR_argument_missing if any other argument is (Int *) NULL.

Arguments:

Int *lnz ; Output argument.

The number of nonzeros in L, including the diagonal (which is all
one’s). This value is the required size of the Lj and Lx arrays as
computed by umfpack_*_get_numeric. The value of lnz is identical to
Info [UMFPACK_LNZ], if that value was returned by umfpack_*_numeric.

Int *unz ; Output argument.

The number of nonzeros in U, including the diagonal. This value is the
required size of the Ui and Ux arrays as computed by
umfpack_*_get_numeric. The value of unz is identical to

68

Info [UMFPACK_UNZ], if that value was returned by umfpack_*_numeric.

Int *n_row ; Output argument.
Int *n_col ; Output argument.

The order of the L and U matrices. L is n_row -by- min(n_row,n_col)
and U is min(n_row,n_col) -by- n_col.

Int *nz_udiag ; Output argument.

The number of numerically nonzero values on the diagonal of U. The
matrix is singular if nz_diag < min(n_row,n_col). A divide-by-zero
will occur if nz_diag < n_row == n_col when solving a sparse system
involving the matrix U in umfpack_*_*solve. The value of nz_udiag is
identical to Info [UMFPACK_UDIAG_NZ] if that value was returned by
umfpack_*_numeric.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by
umfpack_*_numeric.

69

13.2 umfpack * get numeric

int umfpack_di_get_numeric
(

int Lp [],
int Lj [],
double Lx [],
int Up [],
int Ui [],
double Ux [],
int P [],
int Q [],
double Dx [],
void *Numeric

) ;

long umfpack_dl_get_numeric
(

long Lp [],
long Lj [],
double Lx [],
long Up [],
long Ui [],
double Ux [],
long P [],
long Q [],
double Dx [],
void *Numeric

) ;

int umfpack_zi_get_numeric
(

int Lp [],
int Lj [],
double Lx [], double Lz [],
int Up [],
int Ui [],
double Ux [], double Uz [],
int P [],
int Q [],
double Dx [], double Dz [],
void *Numeric

) ;

long umfpack_zl_get_numeric
(

long Lp [],
long Lj [],
double Lx [], double Lz [],
long Up [],
long Ui [],

70

double Ux [], double Uz [],
long P [],
long Q [],
double Dx [], double Dz [],
void *Numeric

) ;

double int Syntax:

#include "umfpack.h"
void *Numeric ;
int *Lp, *Lj, *Up, *Ui, *P, *Q, status ;
double *Lx, *Ux, *Dx ;
status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, Numeric);

double long Syntax:

#include "umfpack.h"
void *Numeric ;
long *Lp, *Lj, *Up, *Ui, *P, *Q, status ;
double *Lx, *Ux, *Dx ;
status = umfpack_dl_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, Numeric);

complex int Syntax:

#include "umfpack.h"
void *Numeric ;
int *Lp, *Lj, *Up, *Ui, *P, *Q, status ;
double *Lx, *Lz, *Ux, *Uz, *Dx, *Dz ;
status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q,

Dx, Dz, Numeric) ;

complex long Syntax:

#include "umfpack.h"
void *Numeric ;
long *Lp, *Lj, *Up, *Ui, *P, *Q, status ;
double *Lx, *Lz, *Ux, *Uz, *Dx, *Dz ;
status = umfpack_zl_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q,

Dx, Dz, Numeric) ;

Purpose:

This routine copies the LU factors and permutation vectors from the Numeric
object into user-accessible arrays. This routine is not needed to solve a
linear system. Note that the output arrays Lp, Lj, Lx, Up, Ui, Ux, P, Q,
and Dx are not allocated by umfpack_*_get_numeric; they must exist on input.
Similarly, Lz, Uz and Dz must exist on input for the complex versions.

Returns:

Returns UMFPACK_OK if successful. Returns UMFPACK_ERROR_out_of_memory
if insufficient memory is available for the 2*max(n_row,n_col) integer

71

workspace that umfpack_*_get_numeric allocates to construct L and/or U.
Returns UMFPACK_ERROR_invalid_Numeric_object if the Numeric object provided
as input is invalid.

Arguments:

Int Lp [n_row+1] ; Output argument.
Int Lj [lnz] ; Output argument.
double Lx [lnz] ; Output argument.
double Lz [lnz] ; Output argument for complex versions.

The n_row-by-min(n_row,n_col) matrix L is returned in compressed-row
form. The column indices of row i and corresponding numerical values
are in:

Lj [Lp [i] ... Lp [i+1]-1]
Lx [Lp [i] ... Lp [i+1]-1] real part
Lz [Lp [i] ... Lp [i+1]-1] imaginary part (complex versions)

respectively. Each row is stored in sorted order, from low column
indices to higher. The last entry in each row is the diagonal, which
is numerically equal to one. The sizes of Lp, Lj, Lx, and Lz are
returned by umfpack_*_get_lunz. If Lp, Lj, or Ux (or Uz for the
complex version) are not present, then the matrix L is not returned.
This is not an error condition. The L matrix can be printed if n_row,
Lp, Lj, Lx (and Lz for the complex versions) are passed to
umfpack_*_report_matrix (using the "row" form).

Future complex version: if Lx is present and Lz is NULL, then both real
and imaginary parts will be returned in Lx[0..2*lnz-1], with Lx[2*k]
and Lx[2*k+1] being the real and imaginary part of the kth entry.

Int Up [n_col+1] ; Output argument.
Int Ui [unz] ; Output argument.
double Ux [unz] ; Output argument.
double Uz [unz] ; Output argument for complex versions.

The min(n_row,n_co)-by-n_col matrix U is returned in compressed-column
form. The row indices of column j and corresponding numerical values
are in

Ui [Up [j] ... Up [j+1]-1]
Ux [Up [j] ... Up [j+1]-1] real part
Uz [Up [j] ... Up [j+1]-1] imaginary part (complex versions)

respectively. Each column is stored in sorted order, from low row
indices to higher. The last entry in each column is the diagonal
(assuming that it is nonzero). The sizes of Up, Ui, Ux, and Uz are
returned by umfpack_*_get_lunz. If Up, Ui, or Ux (or Uz for the complex
version) are not present, then the matrix U is not returned. This is
not an error condition. The U matrix can be printed if n_col, Up, Ui,
Ux (and Uz for the complex versions) are passed to
umfpack_*_report_matrix (using the "column" form).

72

Future complex version: if Ux is present and Uz is NULL, then both real
and imaginary parts will be returned in Ux[0..2*unz-1], with Ux[2*k]
and Ux[2*k+1] being the real and imaginary part of the kth entry.

Int P [n_row] ; Output argument.

The permutation vector P is defined as P [k] = i, where the original
row i of A is the kth pivot row in PAQ. If you do not want the P vector
to be returned, simply pass (Int *) NULL for P. This is not an error
condition. You can print P and Q with umfpack_*_report_perm.

Int Q [n_col] ; Output argument.

The permutation vector Q is defined as Q [k] = j, where the original
column j of A is the kth pivot column in PAQ. If you not want the Q
vector to be returned, simply pass (Int *) NULL for Q. This is not
an error condition. Note that Q is not necessarily identical to
Qtree, the column preordering held in the Symbolic object. Refer to
the description of Qtree and Front_npivcol in umfpack_*_get_symbolic for
details.

double Dx [min(n_row,n_col)] ; Output argument.
double Dz [min(n_row,n_col)] ; Output argument for complex versions.

The diagonal of U is also returned in Dx and Dz. You can extract the
diagonal of U without getting all of U by passing a non-NULL Dx (and
Dz for the complex version) and passing Up, Ui, and Ux as NULL. Dx is
the real part of the diagonal, and Dz is the imaginary part.

Future complex version: if Dx is present and Dz is NULL, then both real
and imaginary parts will be returned in Dx[0..2*min(n_row,n_col)-1],
with Dx[2*k] and Dx[2*k+1] being the real and imaginary part of the kth
entry.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by
umfpack_*_numeric.

73

13.3 umfpack * get symbolic

int umfpack_di_get_symbolic
(

int *n_row,
int *n_col,
int *nz,
int *nfr,
int *nchains,
int Ptree [],
int Qtree [],
int Front_npivcol [],
int Front_parent [],
int Front_1strow [],
int Front_leftmostdesc [],
int Chain_start [],
int Chain_maxrows [],
int Chain_maxcols [],
void *Symbolic

) ;

long umfpack_dl_get_symbolic
(

long *n_row,
long *n_col,
long *nz,
long *nfr,
long *nchains,
long Ptree [],
long Qtree [],
long Front_npivcol [],
long Front_parent [],
long Front_1strow [],
long Front_leftmostdesc [],
long Chain_start [],
long Chain_maxrows [],
long Chain_maxcols [],
void *Symbolic

) ;

int umfpack_zi_get_symbolic
(

int *n_row,
int *n_col,
int *nz,
int *nfr,
int *nchains,
int Ptree [],
int Qtree [],
int Front_npivcol [],
int Front_parent [],

74

int Front_1strow [],
int Front_leftmostdesc [],
int Chain_start [],
int Chain_maxrows [],
int Chain_maxcols [],
void *Symbolic

) ;

long umfpack_zl_get_symbolic
(

long *n_row,
long *n_col,
long *nz,
long *nfr,
long *nchains,
long Ptree [],
long Qtree [],
long Front_npivcol [],
long Front_parent [],
long Front_1strow [],
long Front_leftmostdesc [],
long Chain_start [],
long Chain_maxrows [],
long Chain_maxcols [],
void *Symbolic

) ;

double int Syntax:

#include "umfpack.h"
int status, n_row, n_col, nz, nfr, nchains, *Ptree, *Qtree,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,
*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;
status = umfpack_di_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

Ptree, Qtree, Front_npivcol, Front_parent, Front_1strow,
Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,
Symbolic) ;

double long Syntax:

#include "umfpack.h"
long status, n_row, n_col, nz, nfr, nchains, *Ptree, *Qtree,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,
*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;
status = umfpack_dl_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

Ptree, Qtree, Front_npivcol, Front_parent, Front_1strow,
Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,
Symbolic) ;

complex int Syntax:

75

#include "umfpack.h"
int status, n_row, n_col, nz, nfr, nchains, *Ptree, *Qtree,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,
*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;
status = umfpack_zi_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

Ptree, Qtree, Front_npivcol, Front_parent, Front_1strow,
Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,
Symbolic) ;

complex long Syntax:

#include "umfpack.h"
long status, n_row, n_col, nz, nfr, nchains, *Ptree, *Qtree,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,
*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;
status = umfpack_zl_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

Ptree, Qtree, Front_npivcol, Front_parent, Front_1strow,
Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,
Symbolic) ;

Purpose:

Copies the contents of the Symbolic object into simple integer arrays
accessible to the user. This routine is not needed to factorize and/or
solve a sparse linear system using UMFPACK. Note that the output arrays
Ptree, Qtree, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,
Chain_start, Chain_maxrows, and Chain_maxcols are not allocated by
umfpack_*_get_symbolic; they must exist on input.

The Symbolic object is small. Its size for an n-by-n square matrix is about
(3*nchains + 2*n + 4*nfr + 30) integers plus 5 double’s, which is no greater
than about 9*n+40 int’s. The object holds the initial column permutation,
the supernodal column elimination tree, and information about each frontal
matrix. You can print it with umfpack_*_report_symbolic.

Returns:

Returns UMFPACK_OK if successful, UMFPACK_ERROR_invalid_Symbolic_object
if Symbolic is an invalid object.

Arguments:

Note that if any of the output arguments are (Int *) NULL pointers, then
that argument is not returned. This is not an error condition. Thus,
if you do not want a particular part of the Symbolic object to be
returned to you, simply pass a (Int *) NULL pointer for that particular
output argument.

Int *n_row ; Output argument.
Int *n_col ; Output argument.

76

The dimensions of the matrix A analyzed by the call to
umfpack_*_symbolic that generated the Symbolic object.

Int *nz ; Output argument.

The number of nonzeros in A.

Int *nfr ; Output argument.

The number of frontal matrices that will be used by umfpack_*_numeric
to factorize the matrix A. It is in the range 0 to n_col.

Int *nchains ; Output argument.

The frontal matrices are related to one another by the supernodal
column elimination tree. Each node in this tree is one frontal matrix.
The tree is partitioned into a set of disjoint paths, and a frontal
matrix chain is one path in this tree. Each chain is factorized using
a unifrontal technique, with a single working array that holds each
frontal matrix in the chain, one at a time. nchains is in the range
0 to nfr.

Int Ptree [n_row] ; Output argument.

The initial row permutation. If Ptree [k] = i, then this means that
row i is the kth row in the preordered matrix. Row i typically will
not be the kth pivot row, however. Ptree is the result of a sorting of
the rows according to the smallest column index of entries in the
matrix permuted by Qtree, below.

Int Qtree [n_col] ; Output argument.

The initial column permutation. If Qtree [k] = j, then this means that
column j is the kth pivot column in the preordered matrix. Qtree is
not necessarily the same as the final column permutation Q, computed by
umfpack_*_numeric. The numeric factorization may reorder the pivot
columns within each frontal matrix to reduce fill-in.

Int Front_npivcol [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee
that it will be large enough to hold the output. Only the first nfr+1
entries are used, however.

The kth frontal matrix holds Front_npivcol [k] pivot columns. Thus, the
first frontal matrix, front 0, is used to factorize the first
Front_npivcol [0] columns; these correspond to the original columns
Qtree [0] through Qtree [Front_npivcol [0]-1]. The next frontal matrix
is used to factorize the next Front_npivcol [1] columns, which are thus
the original columns Qtree [Front_npivcol [0]] through
Qtree [Front_npivcol [0] + Front_npivcol [1] - 1], and so on. Columns
with no entries at all are put in a placeholder "front",
Front_npivcol [nfr]. The sum of Front_npivcol [0..nfr] is equal to

77

n_col.

Any modifications that umfpack_*_numeric makes to the initial column
permutation are constrained to within each frontal matrix. Thus, for
the first frontal matrix, Q [0] through Q [Front_npivcol [0]-1] is some
permutation of the columns Qtree [0] through
Qtree [Front_npivcol [0]-1]. For second frontal matrix,
Q [Front_npivcol [0]] through Q [Front_npivcol [0] + Front_npivcol[1]-1]
is some permutation of the same portion of Qtree, and so on. All pivot
columns are numerically factorized within the frontal matrix originally
determined by the symbolic factorization; there is no delayed pivoting
across frontal matrices.

Int Front_parent [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee
that it will be large enough to hold the output. Only the first nfr+1
entries are used, however.

Front_parent [0..nfr] holds the supernodal column elimination tree
(including the placeholder front nfr, which may be empty). Each node in
the tree corresponds to a single frontal matrix. The parent of node f
is Front_parent [f].

Int Front_1strow [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee
that it will be large enough to hold the output. Only the first nfr+1
entries are used, however.

Front_1strow [k] is the row index of the first row in A (Ptree,Qtree)
whose leftmost entry is in a pivot column for the kth front. This is
necessary only to properly factorize singular matrices. It is new to
Version 4.0. Rows in the range Front_1strow [k] to
Front_1strow [k+1]-1 first become pivot row candidates at the kth front.
Any rows not eliminated in the kth front may be selected as pivot rows
in the parent of k (Front_parent [k]) and so on up the tree.

Int Front_leftmostdesc [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee
that it will be large enough to hold the output. Only the first nfr+1
entries are used, however.

Front_leftmostdesc [k] is the leftmost descendant of front k, or k
if the front has no children in the tree. Since the rows and columns
(Ptree and Qtree) have been post-ordered via a depth-first-search of
the tree, rows in the range Front_1strow [Front_leftmostdesc [k]] to
Front_1strow [k+1]-1 form the entire set of candidate pivot rows for
the kth front (some of these will typically have already been selected
by fronts in the range Front_leftmostdesc [k] to front k-1, before
the factorization reaches front k).

78

Chain_start [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee
that it will be large enough to hold the output. Only the first
nchains+1 entries are used, however.

The kth frontal matrix chain consists of frontal matrices Chain_start[k]
through Chain_start [k+1]-1. Thus, Chain_start [0] is always 0, and
Chain_start [nchains] is the total number of frontal matrices, nfr. For
two adjacent fronts f and f+1 within a single chain, f+1 is always the
parent of f (that is, Front_parent [f] = f+1).

Int Chain_maxrows [n_col+1] ; Output argument.
Int Chain_maxcols [n_col+1] ; Output argument.

These arrays should be of size at least n_col+1, in order to guarantee
that they will be large enough to hold the output. Only the first
nchains entries are used, however.

The kth frontal matrix chain requires a single working array of
dimension Chain_maxrows [k] by Chain_maxcols [k], for the unifrontal
technique that factorizes the frontal matrix chain. Since the symbolic
factorization only provides an upper bound on the size of each frontal
matrix, not all of the working array is necessarily used during the
numerical factorization.

Note that the upper bound on the number of rows and columns of each
frontal matrix is computed by umfpack_*_symbolic, but all that is
required by umfpack_*_numeric is the maximum of these two sets of
values for each frontal matrix chain. Thus, the size of each
individual frontal matrix is not preserved in the Symbolic object.

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by
umfpack_*_symbolic. The Symbolic object is not modified by
umfpack_*_get_symbolic.

79

14 Reporting routines

14.1 umfpack * report status

void umfpack_di_report_status
(

const double Control [UMFPACK_CONTROL],
int status

) ;

void umfpack_dl_report_status
(

const double Control [UMFPACK_CONTROL],
long status

) ;

void umfpack_zi_report_status
(

const double Control [UMFPACK_CONTROL],
int status

) ;

void umfpack_zl_report_status
(

const double Control [UMFPACK_CONTROL],
long status

) ;

double int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
int status ;
umfpack_di_report_status (Control, status) ;

double long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
long status ;
umfpack_dl_report_status (Control, status) ;

complex int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
int status ;
umfpack_zi_report_status (Control, status) ;

complex long Syntax:

80

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
long status ;
umfpack_zl_report_status (Control, status) ;

Purpose:

Prints the status (return value) of other umfpack_* routines.

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

0 or less: no output, even when an error occurs
1: error messages only
2 or more: print status, whether or not an error occured
4 or more: also print the UMFPACK Copyright
6 or more: also print the UMFPACK License
Default: 1

Int status ; Input argument, not modified.

The return value from another umfpack_* routine.

81

14.2 umfpack * report control

void umfpack_di_report_control
(

const double Control [UMFPACK_CONTROL]
) ;

void umfpack_dl_report_control
(

const double Control [UMFPACK_CONTROL]
) ;

void umfpack_zi_report_control
(

const double Control [UMFPACK_CONTROL]
) ;

void umfpack_zl_report_control
(

const double Control [UMFPACK_CONTROL]
) ;

double int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_di_report_control (Control) ;

double long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_dl_report_control (Control) ;

complex int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_zi_report_control (Control) ;

double long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_zl_report_control (Control) ;

Purpose:

Prints the current control settings. Note that with the default print
level, nothing is printed. Does nothing if Control is (double *) NULL.

82

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

1 or less: no output
2 or more: print all of Control
Default: 1

83

14.3 umfpack * report info

void umfpack_di_report_info
(

const double Control [UMFPACK_CONTROL],
const double Info [UMFPACK_INFO]

) ;

void umfpack_dl_report_info
(

const double Control [UMFPACK_CONTROL],
const double Info [UMFPACK_INFO]

) ;

void umfpack_zi_report_info
(

const double Control [UMFPACK_CONTROL],
const double Info [UMFPACK_INFO]

) ;

void umfpack_zl_report_info
(

const double Control [UMFPACK_CONTROL],
const double Info [UMFPACK_INFO]

) ;

double int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
umfpack_di_report_info (Control, Info) ;

double long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
umfpack_dl_report_info (Control, Info) ;

complex int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
umfpack_zi_report_info (Control, Info) ;

complex long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
umfpack_zl_report_info (Control, Info) ;

Purpose:

84

Reports statistics from the umfpack_*_*symbolic, umfpack_*_numeric, and
umfpack_*_*solve routines.

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

0 or less: no output, even when an error occurs
1: error messages only
2 or more: error messages, and print all of Info
Default: 1

double Info [UMFPACK_INFO] ; Input argument, not modified.

Info is an output argument of several UMFPACK routines.
The contents of Info are printed on standard output.

85

14.4 umfpack * report matrix

int umfpack_di_report_matrix
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
const double Ax [],
int col_form,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_dl_report_matrix
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],
const double Ax [],
long col_form,
const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_matrix
(

int n_row,
int n_col,
const int Ap [],
const int Ai [],
const double Ax [], const double Az [],
int col_form,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_zl_report_matrix
(

long n_row,
long n_col,
const long Ap [],
const long Ai [],
const double Ax [], const double Az [],
long col_form,
const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"
int n_row, n_col, *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL] ;

86

status = umfpack_di_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ;
or:

status = umfpack_di_report_matrix (n_row, n_col, Ap, Ai, Ax, 0, Control) ;

double long Syntax:

#include "umfpack.h"
long n_row, n_col, *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL] ;
status = umfpack_dl_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ;

or:
status = umfpack_dl_report_matrix (n_row, n_col, Ap, Ai, Ax, 0, Control) ;

complex int Syntax:

#include "umfpack.h"
int n_row, n_col, *Ap, *Ai, status ;
double *Ax, *Az, Control [UMFPACK_CONTROL] ;
status = umfpack_zi_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1,

Control) ;
or:

status = umfpack_zi_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 0,
Control) ;

complex long Syntax:

#include "umfpack.h"
long n_row, n_col, *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL] ;
status = umfpack_zl_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1,

Control) ;
or:

status = umfpack_zl_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 0,
Control) ;

Purpose:

Verifies and prints a row or column-oriented sparse matrix.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise (where n is n_col for the column form and n_row for row
and let ni be n_row for the column form and n_col for row):

UMFPACK_OK if the matrix is valid.

UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0.
UMFPACK_ERROR_argument_missing if Ap and/or Ai are missing.
UMFPACK_ERROR_nz_negative if Ap [n] < 0.
UMFPACK_ERROR_Ap0_nonzero if Ap [0] is not zero.
UMFPACK_ERROR_col_length_negative if Ap [j+1] < Ap [j] for any j in the

87

range 0 to n-1.
UMFPACK_ERROR_out_of_memory if out of memory.
UMFPACK_ERROR_row_index_out_of_bounds if any row index in Ai is not in

the range 0 to ni-1.
UMFPACK_ERROR_jumbled_matrix if the row indices in any column are not in

ascending order, or contain duplicates.

Arguments:

Int n_row ; Input argument, not modified.
Int n_col ; Input argument, not modified.

A is an n_row-by-n_row matrix. Restriction: n_row > 0 and n_col > 0.

Int Ap [n+1] ; Input argument, not modified.

n is n_row for a row-form matrix, and n_col for a column-form matrix.

Ap is an integer array of size n+1. If col_form is true (nonzero),
then on input, it holds the "pointers" for the column form of the
sparse matrix A. The row indices of column j of the matrix A are held
in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Otherwise, Ap holds the
row pointers, and the column indices of row j of the matrix are held
in Ai [(Ap [j]) ... (Ap [j+1]-1)].

The first entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold
for all j in the range 0 to n-1. The value nz = Ap [n] is thus the
total number of entries in the pattern of the matrix A.

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n].

If col_form is true (nonzero), then the nonzero pattern (row indices)
for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Row indices
must be in the range 0 to n_row-1 (the matrix is 0-based).

Otherwise, the nonzero pattern (column indices) for row j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)]. Column indices must be in the range 0
to n_col-1 (the matrix is 0-based).

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n].

The numerical values of the sparse matrix A.

If col_form is true (nonzero), then the nonzero pattern (row indices)
for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the
corresponding (real) numerical values are stored in
Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary parts are stored in
Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions.

Otherwise, the nonzero pattern (column indices) for row j
is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding
(real) numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)].
The imaginary parts are stored in Az [(Ap [j]) ... (Ap [j+1]-1)],

88

for the complex versions.

No numerical values are printed if Ax or Az are (double *) NULL.

double Az [nz] ; Input argument, not modified, for complex versions.

The imaginary values of the sparse matrix A. See the description
of Ax, above. No numerical values are printed if Az is NULL.

Future complex version: if Ax is present and Az is NULL, then both real
and imaginary parts will be contained in Ax[0..2*nz-1], with Ax[2*k]
and Ax[2*k+1] being the real and imaginary part of the kth entry.

Int col_form ; Input argument, not modified.

The matrix is in row-oriented form if form is col_form is false (0).
Otherwise, the matrix is in column-oriented form.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

89

14.5 umfpack * report numeric

int umfpack_di_report_numeric
(

void *Numeric,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_dl_report_numeric
(

void *Numeric,
const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_numeric
(

void *Numeric,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_zl_report_numeric
(

void *Numeric,
const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"
void *Numeric ;
double Control [UMFPACK_CONTROL] ;
int status ;
status = umfpack_di_report_numeric (Numeric, Control) ;

double long Syntax:

#include "umfpack.h"
void *Numeric ;
double Control [UMFPACK_CONTROL] ;
long status ;
status = umfpack_dl_report_numeric (Numeric, Control) ;

complex int Syntax:

#include "umfpack.h"
void *Numeric ;
double Control [UMFPACK_CONTROL] ;
int status ;
status = umfpack_zi_report_numeric (Numeric, Control) ;

complex long Syntax:

90

#include "umfpack.h"
void *Numeric ;
double Control [UMFPACK_CONTROL] ;
long status ;
status = umfpack_zl_report_numeric (Numeric, Control) ;

Purpose:

Verifies and prints a Numeric object (the LU factorization, both its pattern
numerical values, and permutation vectors P and Q). This routine checks the
object more carefully than the computational routines. Normally, this check
is not required, since umfpack_*_numeric either returns (void *) NULL, or a
valid Numeric object. However, if you suspect that your own code has
corrupted the Numeric object (by overruning memory bounds, for example),
then this routine might be able to detect a corrupted Numeric object. Since
this is a complex object, not all such user-generated errors are guaranteed
to be caught by this routine.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the Numeric object is valid.
UMFPACK_ERROR_invalid_Numeric_object if the Numeric object is invalid.
UMFPACK_ERROR_out_of_memory if out of memory.

Arguments:

void *Numeric ; Input argument, not modified.

The Numeric object, which holds the numeric factorization computed by
umfpack_*_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

91

14.6 umfpack * report perm

int umfpack_di_report_perm
(

int np,
const int Perm [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_dl_report_perm
(

long np,
const long Perm [],
const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_perm
(

int np,
const int Perm [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_zl_report_perm
(

long np,
const long Perm [],
const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"
int np, *Perm, status ;
double Control [UMFPACK_CONTROL] ;
status = umfpack_di_report_perm (np, Perm, Control) ;

double long Syntax:

#include "umfpack.h"
long np, *Perm, status ;
double Control [UMFPACK_CONTROL] ;
status = umfpack_dl_report_perm (np, Perm, Control) ;

complex int Syntax:

#include "umfpack.h"
int np, *Perm, status ;
double Control [UMFPACK_CONTROL] ;
status = umfpack_zi_report_perm (np, Perm, Control) ;

92

complex long Syntax:

#include "umfpack.h"
long np, *Perm, status ;
double Control [UMFPACK_CONTROL] ;
status = umfpack_zl_report_perm (np, Perm, Control) ;

Purpose:

Verifies and prints a permutation vector.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:
UMFPACK_OK if the permutation vector is valid (this includes that case

when Perm is (Int *) NULL, which is not an error condition).
UMFPACK_ERROR_n_nonpositive if np <= 0.
UMFPACK_ERROR_out_of_memory if out of memory.
UMFPACK_ERROR_invalid_permutation if Perm is not a valid permutation vector.

Arguments:

Int np ; Input argument, not modified.

Perm is an integer vector of size np. Restriction: np > 0.

Int Perm [np] ; Input argument, not modified.

A permutation vector of size np. If Perm is not present (an (Int *)
NULL pointer), then it is assumed to be the identity permutation. This
is consistent with its use as an input argument to umfpack_*_qsymbolic,
and is not an error condition. If Perm is present, the entries in Perm
must range between 0 and np-1, and no duplicates may exist.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

93

14.7 umfpack * report symbolic

int umfpack_di_report_symbolic
(

void *Symbolic,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_dl_report_symbolic
(

void *Symbolic,
const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_symbolic
(

void *Symbolic,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_zl_report_symbolic
(

void *Symbolic,
const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"
void *Symbolic ;
double Control [UMFPACK_CONTROL] ;
int status ;
status = umfpack_di_report_symbolic (Symbolic, Control) ;

double long Syntax:

#include "umfpack.h"
void *Symbolic ;
double Control [UMFPACK_CONTROL] ;
long status ;
status = umfpack_dl_report_symbolic (Symbolic, Control) ;

complex int Syntax:

#include "umfpack.h"
void *Symbolic ;
double Control [UMFPACK_CONTROL] ;
int status ;
status = umfpack_zi_report_symbolic (Symbolic, Control) ;

complex long Syntax:

94

#include "umfpack.h"
void *Symbolic ;
double Control [UMFPACK_CONTROL] ;
long status ;
status = umfpack_zl_report_symbolic (Symbolic, Control) ;

Purpose:

Verifies and prints a Symbolic object. This routine checks the object more
carefully than the computational routines. Normally, this check is not
required, since umfpack_*_*symbolic either returns (void *) NULL, or a valid
Symbolic object. However, if you suspect that your own code has corrupted
the Symbolic object (by overruning memory bounds, for example), then this
routine might be able to detect a corrupted Symbolic object. Since this is
a complex object, not all such user-generated errors are guaranteed to be
caught by this routine.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] is <= 2 (no inputs are checked).

Otherwise:

UMFPACK_OK if the Symbolic object is valid.
UMFPACK_ERROR_invalid_Symbolic_object if the Symbolic object is invalid.
UMFPACK_ERROR_out_of_memory if out of memory.

Arguments:

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by
umfpack_*_*symbolic.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

95

14.8 umfpack * report triplet

int umfpack_di_report_triplet
(

int n_row,
int n_col,
int nz,
const int Ti [],
const int Tj [],
const double Tx [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_dl_report_triplet
(

long n_row,
long n_col,
long nz,
const long Ti [],
const long Tj [],
const double Tx [],
const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_triplet
(

int n_row,
int n_col,
int nz,
const int Ti [],
const int Tj [],
const double Tx [], const double Tz [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_zl_report_triplet
(

long n_row,
long n_col,
long nz,
const long Ti [],
const long Tj [],
const double Tx [], const double Tz [],
const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"
int n_row, n_col, nz, *Ti, *Tj, status ;
double *Tx, Control [UMFPACK_CONTROL] ;

96

status = umfpack_di_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Control) ;

double long Syntax:

#include "umfpack.h"
long n_row, n_col, nz, *Ti, *Tj, status ;
double *Tx, Control [UMFPACK_CONTROL] ;
status = umfpack_dl_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Control) ;

complex int Syntax:

#include "umfpack.h"
int n_row, n_col, nz, *Ti, *Tj, status ;
double *Tx, *Tz, Control [UMFPACK_CONTROL] ;
status = umfpack_zi_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Control) ;

complex long Syntax:

#include "umfpack.h"
long n_row, n_col, nz, *Ti, *Tj, status ;
double *Tx, *Tz, Control [UMFPACK_CONTROL] ;
status = umfpack_zl_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Control) ;

Purpose:

Verifies and prints a matrix in triplet form.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the Triplet matrix is OK.
UMFPACK_ERROR_argument_missing if Ti and/or Tj are missing.
UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0.
UMFPACK_ERROR_nz_negative if nz < 0.
UMFPACK_ERROR_invalid_triplet if any row or column index in Ti and/or Tj

is not in the range 0 to n_row-1 or 0 to n_col-1, respectively.

Arguments:

Int n_row ; Input argument, not modified.
Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix.

Int nz ; Input argument, not modified.

The number of entries in the triplet form of the matrix.

97

Int Ti [nz] ; Input argument, not modified.
Int Tj [nz] ; Input argument, not modified.
double Tx [nz] ; Input argument, not modified.
double Tz [nz] ; Input argument, not modified, for complex versions.

Ti, Tj, Tx (and Tz for complex versions) hold the "triplet" form of a
sparse matrix. The kth nonzero entry is in row i = Ti [k], column
j = Tj [k], the real numerical value of a_ij is Tx [k], and the
imaginary part of a_ij is Tz [k] (for complex versions). The row and
column indices i and j must be in the range 0 to n_row-1 or 0 to
n_col-1, respectively. Duplicate entries may be present. The
"triplets" may be in any order. Tx and Tz are optional; if Tx or Tz are
not present ((double *) NULL pointers), then the numerical values are
not printed.

Future complex version: if Tx is present and Tz is NULL, then both real
and imaginary parts will be contained in Tx[0..2*nz-1], with Tx[2*k]
and Tx[2*k+1] being the real and imaginary part of the kth entry.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

98

14.9 umfpack * report vector

int umfpack_di_report_vector
(

int n,
const double X [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_dl_report_vector
(

long n,
const double X [],
const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_vector
(

int n,
const double Xx [], const double Xz [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_zl_report_vector
(

long n,
const double Xx [], const double Xz [],
const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"
int n, status ;
double *X, Control [UMFPACK_CONTROL] ;
status = umfpack_di_report_vector (n, X, Control) ;

double long Syntax:

#include "umfpack.h"
long n, status ;
double *X, Control [UMFPACK_CONTROL] ;
status = umfpack_dl_report_vector (n, X, Control) ;

complex int Syntax:

#include "umfpack.h"
int n, status ;
double *Xx, *Xz, Control [UMFPACK_CONTROL] ;
status = umfpack_zi_report_vector (n, Xx, Xz, Control) ;

99

complex long Syntax:

#include "umfpack.h"
long n, status ;
double *Xx, *Xz, Control [UMFPACK_CONTROL] ;
status = umfpack_zl_report_vector (n, Xx, Xz, Control) ;

Purpose:

Verifies and prints a dense vector.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the vector is valid.
UMFPACK_ERROR_argument_missing if X or Xx is missing.
UMFPACK_ERROR_n_nonpositive if n <= 0.

Arguments:

Int n ; Input argument, not modified.

X is a real or complex vector of size n. Restriction: n > 0.

double X [n] ; Input argument, not modified. For real versions.

A real vector of size n. X must not be (double *) NULL.

double Xx [n or 2*n] ; Input argument, not modified. For complex versions.
double Xz [n or 0] ; Input argument, not modified. For complex versions.

A complex vector of size n, in one of two storage formats.
Xx must not be (double *) NULL.

If Xz is not (double *) NULL, then Xx [i] is the real part of X (i) and
Xz [i] is the imaginary part of X (i). Both vectors are of length n.
This is the "split" form of the complex vector X.

If Xz is (double *) NULL, then Xx holds both real and imaginary parts,
where Xx [2*i] is the real part of X (i) and Xx [2*i+1] is the imaginary
part of X (i). Xx is of length 2*n doubles. If you have an ANSI C99
compiler with the intrinsic double _Complex type, then Xx can be of
type double _Complex in the calling routine and typecast to (double *)
when passed to umfpack_*_report_vector (this is untested, however).
This is the "merged" form of the complex vector X.

Future work: all complex routines in UMFPACK could use this same
strategy for their complex arguments. The split format is useful for
MATLAB, which holds its real and imaginary parts in seperate arrays.
The merged format is compatible with the intrinsic double _Complex

100

type in ANSI C99, and is also compatible with SuperLU’s method of
storing complex matrices. In the current version, only
umfpack_*_report_vector supports both formats.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN’s, the
defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

101

15 Utility routines

15.1 umfpack timer

double umfpack_timer (void) ;

Syntax (for all versions: di, dl, zi, and zl):

#include "umfpack.h"
double t ;
t = umfpack_timer () ;

Purpose:

Returns the CPU time used by the process. Includes both "user" and "system"
time (the latter is time spent by the system on behalf of the process, and
is thus charged to the process). It does not return the wall clock time.

This routine uses the Unix getrusage routine, if available. It is less
subject to overflow than the ANSI C clock routine. If getrusage is not
available, the portable ANSI C clock routine is used instead.
Unfortunately, clock () overflows if the CPU time exceeds 2147 seconds
(about 36 minutes) when sizeof (clock_t) is 4 bytes. If you have getrusage,
be sure to compile UMFPACK with the -DGETRUSAGE flag set; see umf_config.h
and the User Guide for details. Even the getrusage routine can overlow.

Arguments:

None.

102

References

[1] M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward
error. SIAM J. Matrix Anal. Applic., 10:165–190, 1989.

[2] T. A. Davis. Algorithm 8xx: UMFPACK V3.2, an unsymmetric-pattern multifrontal method
with a column pre-ordering strategy. Technical Report TR-02-002, Univ. of Florida, CISE
Dept., Gainesville, FL, January 2002. (www.cise.ufl.edu/tech-reports. Submitted to ACM
Trans. Math. Softw.).

[3] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. Technical Report TR-02-001, Univ. of Florida, CISE Dept., Gainesville, FL, January
2002. (www.cise.ufl.edu/tech-reports. Submitted to ACM Trans. Math. Softw.).

[4] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU
factorization. SIAM J. Matrix Anal. Applic., 18(1):140–158, 1997.

[5] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Trans. Math. Softw., 25(1):1–19, 1999.

[6] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 8xx: COLAMD, a
column approximate minimum degree ordering algorithm. Technical Report TR-00-006,
Univ. of Florida, CISE Dept., Gainesville, FL, October 2000. (www.cise.ufl.edu/tech-reports.
Submitted to ACM Trans. Math. Softw.).

[7] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate minimum
degree ordering algorithm. Technical Report TR-00-005, Univ. of Florida, CISE Dept.,
Gainesville, FL, October 2000. (www.cise.ufl.edu/tech-reports. Submitted to ACM Trans.
Math. Softw.).

[8] T. A. Davis and W. W. Hager. Modifying a sparse Cholesky factorization. SIAM J. Matrix
Anal. Applic., 20(3):606–627, 1999.

[9] M. J. Daydé and I. S. Duff. The RISC BLAS: A blocked implementation of level 3 BLAS
for RISC processors. ACM Trans. Math. Softw., 25(3), Sept. 1999.

[10] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal
approach to sparse partial pivoting. SIAM J. Matrix Anal. Applic., 20(3):720–755, 1999.
www.netlib.org.

[11] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level-3 basic linear algebra
subprograms. ACM Trans. Math. Softw., 16(1):1–17, 1990.

[12] J. J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.
Comm. ACM, 30:403–407, 1987. www.netlib.org.

[13] I. S. Duff and J. K. Reid. An implementation of Tarjan’s algorithm for the block triangular-
ization of a matrix. ACM Trans. Math. Softw., 4(2):137–147, 1978.

103

[14] I. S. Duff and J. A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Trans. Math. Softw., 22(1):30–45, 1996.

[15] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

[16] A. George and E. G. Ng. An implementation of Gaussian elimination with partial pivoting
for sparse systems. SIAM J. Sci. Statist. Comput., 6(2):390–409, 1985.

[17] A. George and E. G. Ng. Symbolic factorization for sparse Gaussian elimination with partial
pivoting. SIAM J. Sci. Statist. Comput., 8(6):877–898, 1987.

[18] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and imple-
mentation. SIAM J. Matrix Anal. Applic., 13(1):333–356, 1992.

[19] J. R. Gilbert and E. G. Ng. Predicting structure in nonsymmetric sparse matrix factoriza-
tions. In A. George, J. R. Gilbert, and J. W.H. Liu, editors, Graph Theory and Sparse Matrix
Computation, Volume 56 of the IMA Volumes in Mathematics and its Applications, pages
107–139. Springer-Verlag, 1993.

[20] J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to compute row and column
counts for sparse Cholesky factorization. SIAM J. Matrix Anal. Applic., 15(4):1075–1091,
1994.

[21] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic opera-
tions. SIAM J. Sci. Statist. Comput., 9:862–874, 1988.

[22] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted trans-
position. ACM Trans. Math. Softw., 4(3):250–269, 1978.

[23] S. I. Larimore. An approximate minimum degree column ordering algorithm. Technical Re-
port TR-98-016, Univ. of Florida, CISE Dept., Gainesville, FL, 1998. www.cise.ufl.edu/tech-
reports.

[24] R. C Whaley, A. Petitet, and J. J. Dongarra. Automated emperical optimization of software
and the ATLAS project. Technical Report LAPACK Working Note 147, Computer Science
Department, The University of Tennessee, September 2000. www.netlib.org/atlas.

104

