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Abstract. This paper discusses computational experiments with linear optimization problems
involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems
of this type are solved using a new release of SDPT3, a MATLAB implementation of infeasible
primal-dual path-following algorithms. The software developed by the authors uses Mehrotra-
type predictor-corrector variants of interior-point methods and two types of search directions:
the HKM and NT directions. A discussion of implementation details is provided and computa-
tional results on problems from the SDPLIB and DIMACS Challenge collections are reported.

1. Introduction

Conic linear optimization problems can be expressed in the following standard
form:

min (¢, x)
st. (ag, x) =bx, k=1,...,m, (1)
re K

where K is a closed, convex pointed cone in a finite dimensional inner product
space endowed with an inner product (-, -). By choosing K to be the semidefinite,
quadratic (second-order), and linear cones respectively, one obtains the well-
known special cases of semidefinite, second-order cone, and linear programming
problems. Recent years have seen a dramatic increase in the number of subclasses
of conic optimization problems that can be solved efficiently by interior-point
methods. In addition to the ongoing theoretical work that derived convergence
guarantees and convergence rates for such algorithms, many groups of researchers

R. H. Titinci: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh,
PA 15213, USA. e-mail: reha@andrew.cmu.edu. Research supported in part by NSF through
grant CCR-9875559.

K. C. Toh: Department of Mathematics, National University of Singapore, 10 Kent Ridge
Crescent, Singapore 119260. e-mail: mattohkc@math.nus.edu.sg. Research supported in part
by the Singapore-MIT Alliance.

M. J. Todd: School of Operations Research and Industrial Engineering, Cornell University,
Ithaca, New York 14853, USA. e-mail: miketodd@cs.cornell.edu. Research supported in part
by NSF through grant DMS-9805602 and ONR through grant N00014-96-1-0050.

Mathematics Subject Classification (1991): 90C05, 90C22

* Copyright (C) by Springer-Verlag. Mathematical Programming 95 (2003), 189-217.



2 R. H. Tiitiincii, K. C. Toh,, M. J. Todd

have also implemented these algorithms and developed public domain software
packages that are capable of solving conic optimization problems of ever increas-
ing size and diversity. This paper discusses the authors’ contribution to this effort
through the development of the software SDPT3. Our earlier work on SDPT3 is
presented in [22,25].

The current version of SDPT3, version 3.0, can solve conic linear optimization
problems with inclusion constraints for the cone of positive semidefinite matrices,
the second-order cone, and/or the polyhedral cone of nonnegative vectors. In
other words, we allow K in (1) to be a Cartesian product of cones of positive
semidefinite matrices, second-order cones, and the nonnegative orthant. We use
the following standard form of such problems, henceforth called SQLP problems:

(P) min Sreiles ) + (e, )+ (d ah)
s.t. Z?;l(Aj)Tsvec(xﬁ) + 3 (AD 2! + (AYTal = b,
xs e Kg7 vy, i e K@ vi, a'e K"

Here, ¢}, x} are symmetric matrices of dimension s; and K3’ is the cone of
positive semidefinite symmetric matrices of the same dimension. Similarly, ¢f,
xj are vectors in IR and K is the second-order cone defined by K& :=
{z € R : 21 > |22} Finally, ¢!, 2! are vectors of dimension n; and
K" is the cone IR"'. In the notation above, Aj» denotes the 5; x m matrix
with 5; = s;(s; + 1)/2 whose columns are obtained using the svec opera-
tor from m symmetric s; x s; constraint matrices corresponding to the jth
semidefinite block z3. (Here, for a symmetric matrix = of order s, svec(x) :=

(711, V2219, T22, V2713, V2293, 233, . . )T e IR‘S‘(“"'*'I)Q7 where the v/2 is to make
the operation an isometry.) The matrices A?’s are ¢; x m dimensional constraint
matrices corresponding to the ith quadratic block z?, and Al is the I x m di-
mensional constraint matrix corresponding to the linear block z!. The notation
(p, q) denotes the standard inner product in the appropriate space.

The software also solves the dual problem associated with the problem above:

(D) max bTy
st. Aly+2zi=cj, j=1...,ns,
Aly+ 2zl =¢l, i=1...,n,
Aly + 2t = ¢,

23 € K Vj, 2l e Kivi, 2eK"
This package is written in MATLAB version 5.3 and is compatible with MAT-

LAB version 6.0. It is available from the internet sites:

http://www.math.nus.edu.sg/ “mattohkc/index.html
http://www.math.cmu.edu/ "reha/sdpt3.html

This software package was originally developed to provide researchers in
semidefinite programming with a collection of reasonably efficient and robust
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algorithms that can solve general SDPs with matrices of dimensions of the order
of a hundred. The current release, version 3.0, expands the family of problems
solvable by the software in two dimensions. First, this version is much faster
than the previous release [25], especially on large sparse problems, and conse-
quently can solve much larger problems. Second, the current release can also
directly solve problems that have second-order cone constraints — with the pre-
vious version it was necessary to convert such constraints to semidefinite cone
constraints.

In this paper, the vector 2-norm and Frobenius norm are denoted by || - ||
and || - || 7, respectively. In the next section, we discuss the algorithm used in the
software and several computational details. Section 3 describes the initial iterates
generated by our software while Section 4 briefly describes its options, some
implementation details, and its data storage scheme. In Section 5, we present
and comment on the results of our computational experiments with our software
on problems from the SDPLIB and DIMACS libraries. Section 6 contains a short
conclusion.

2. A primal-dual infeasible-interior-point algorithm

The algorithm implemented in SDPT3 is a primal-dual interior-point algorithm
that uses the path-following paradigm. In each iteration, we first compute a pre-
dictor search direction aimed at decreasing the duality gap as much as possible.
After that, the algorithm generates a Mehrotra-type corrector step [14] with
the intention of keeping the iterates close to the central path. However, we do
not impose any neighborhood restrictions on our iterates.! Initial iterates need
not be feasible — the algorithm tries to achieve feasibility and optimality of its
iterates simultaneously.

It should be noted that our implementation allows the user to switch to a
primal-dual path-following algorithm that does not use corrector steps and sets a
centering parameter to be used in such a framework. The choices we make on the
parameters used by the algorithm are based on minimizing either the number of
iterations or the CPU time of the linear algebra involved in computing the Schur
complement matrix and its Cholesky factorization. What follows is a pseudo-code
for the algorithm we implemented. Note that this description makes references
to later parts of this section where many details related to the algorithm are
explained.

Algorithm IPC. Suppose we are given an initial iterate (z9,9°,29) with 20,20 strictly

satisfying all the conic constraints. Decide on the type of search direction to use. Set v0 = 0.9.
Choose a value for the parameter expon used in e.

For k=0,1,...

I This strategy works well on most problems we tested. However, it should be noted that
the occasional failure of the software on problems with poorly chosen initial iterates is likely
due to the lack of a neighborhood enforcement in the algorithm.
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(Let the current and the next iterate be (x,vy,2) and (xt,yt,2T) respectively. Also, let the
current and the next step-length parameter be denoted by v and vt respectively.)

— Set p=(z, 2)/n, and

(e, 2 (el IRl
Sl ¢ () @

Stop the iteration if the infeasibility measure ¢ and the relative duality gap (relgap) are
sufficiently small.

— (Predictor step)
Solve the linear system (10), with o = 0 in the right-side vector (12). Denote the solution
of (4) by (dz,dy,8z). Let o and By be the step-lengths defined as in (83) and (34) with
Az, Az replaced by dx,dz, respectively.

— Take o to be
s = min (1 [<z+ap5:v,z+6p6z>r>
’ (z, 2) ’

relgap =

where the exponent e is chosen as follows:

{ max[ezpon, 3 min(ay, Bp)?] if u > 1079,
e =

expon if p <1076,

— (Corrector step)
Solve the linear system (10) with R. in the the right-hand side vector (12) replaced by

RS = svec [oul — Hp(smat(z*)smat(2°)) — Hp(smat(dz*)smat(52°))]

R?

ope? —Ta(z?,29) — T (629, 0629)
RL = oue! — diag(a!)2! — diag(6x')52".

Denote the solution of (4) by (Ax, Ay, Az).
- Update (mv Y, Z) to (x+7y+72 ) by

2t =zx4+alAr, yT =y+8Ay, zT =24+3Az

where a and (3 are computed as in (38) and (34) with vy chosen to be v = 0.94-0.09 min(ayp, Bp)-
— Update the step-length parameter by

v+t = 0.9 4 0.09 min(a, 3).

2.1. The search direction

To simplify discussion, we introduce the following notation, which is also consis-
tent with the internal data representation in SDPT3:

A Af
A= |, A=
Ag Al
s q
Similarly, we define
svec(z$) xd
z° = : , x1= (3)

svec(z;, ) xy
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The vectors ¢*, z°, ¢4, and z? are defined analogously. We will use corresponding
notation for the search directions as well. Finally, let

AS s c? z
AT = A9 | o= |29, c=|ct|, z2=|29],
Al x! ct 2!

and

Ns
n= E S$; + ng + ny.

j=1

With the notations introduced above, the primal and dual equality constraints
can be represented respectively as

Az =b, ATy+z=c

In this paper, we assume that A has full row rank. However, the preprocess
option, when it is turned on, will correctly detect and remove dependent con-
straints.

The main step at each iteration of our algorithms is the computation of
the search direction (Az, Ay, Az) from the symmetrized Newton equation with
respect to an invertible block diagonal scaling matrix P for the semidefinite block
and a block scaling matrix G for the quadratic block. The matrices P and G are
usually chosen as a function of the current iterate x, z and we will elaborate on
specific choices below. The search direction (Ax, Ay, Az) is obtained from the
following system of equations:

AT Ay + Az =Ry =c—2z— ATy

AAzx =rp :=b— Az

% Ax® + F5Az° = R := svec (oul — Hp (smat(z®)smat(z°))) (4)
E91 Az + FiA29 = RY = oped — Tg(x,29)

&l Azl + FlAZ = Rl = ouel — ELFleL,

where u = (x, z)/n and o is the centering parameter. The notation smat denotes
the inverse map of svec and both are to be interpreted as blockwise operators if
the argument consists of blocks. Here Hp is the symmetrization operator whose
action on the jth semidefinite block is defined by

Hp, : R** — [R**

Hp,(U) = § [PUP; "+ P;"UTPT], (5)

with P; the jth block of the block diagonal matrix P and £° and F* are sym-
metric block diagonal matrices whose jth blocks are given by

& = Pj®P;Tz;?, F o= ij;@P]fT, (6)
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where R &) T is the symmetrized Kronecker product operation described in [22].
In the quadratic block, e? denotes the blockwise identity vector, i.e.,

ef
el = . ,
en
where ej. is the first unit vector in IR%. Let the arrow operator defined in [3] be
denoted by Arw (-). Thus Arw (z) is a block diagonal matrix whose ith block

is
i i T
; x xH X
Arw (x’) =Arw | 9 ) =79 1 .
i x5 xoln,

Then the operator T (2%, 27) is defined as follows:
Arw (Gyxd) (GT120)

Te(z?,27) =

: , (7)
Arw (Gnq x%q) (GR1=2 )

where G is a symmetric block diagonal matrix that depends on x,z and G; is
the ¢th block of G. The matrices £¢ and F? are block diagonal matrices whose
the ith blocks are given by
& = Arw (G;'2)) G, FP = Arw (Gad) Gl (8)

In the linear block, e! denotes the n;-dimensional vector of ones, and &' =
diag(2!), F! = diag(z!).

For future reference, we partition the vectors Ry, Az, and Az in a manner
analogous to ¢, z, and z as follows:

R Ax? Az®
Ry= |RY |, Az = | Az |, Az = | Az9|. (9)
R, A Az

Assuming that m = O(n), we compute the search direction via a Schur
complement equation as follows (the reader is referred to [2] and [22] for details).
First compute Ay from the Schur complement equation

MAy = h, (10)
where
M = (A*)1(&*) T FPA® + (AT (&) T FAT+ (AT (EH T A AL (1)

h=r, = (47 (€) (R - FURY)
— (AT (£7)"N(RI — FIRY) — (A)T(€")(BL- F'RY.  (12)
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Then compute Az and Az from the equations

Az =Ry — AT Ay (13)
Azt = (E5)7IRS — (£5) 71 Fo AL® (14)
27 = (EV)TIRY — (£9) 71 F1A1 (15)
Art = (E)7'R, — (&) F AL (16)

2.2. Two choices of search directions

We start by introducing some notation that we will use in the remainder of this
paper. For a given ¢;-dimensional vector z}, we let 2¥ denote its first component
and z} denote its subvector consisting of the remaining entries, i.e.,

7} («9);
- : 17
[l‘}] [($3)2:q11 ( )

We will use the same convention for 27, Az{, etc. Also, we define the following
function from K% to IR;:

Al = (@) — (al, ah). (18)

Finally, we use X and Z for smat(z®) and smat(2®), where the operation is
applied blockwise to form a block diagonal symmetric matrix of order Y " 2185

In the current release of this package, the user has two choices of scaling
operators parametrized by P and G, resulting in two different search directions:
the HKM direction [10,12,16], and the NT direction [17]. See also Tsuchiya [26,
27] for the second-order case.

(1) The HKM direction. This choice uses the scaling matrix P = Z/2 for the
semidefinite blocks and a symmetric block diagonal scaling matrix G for the
quadratic blocks where the ith block G; is given by the following equation:

z ()"
Gi = . (19)
2} y(2f Z( )

(2) The NT direction. This choice uses the scaling matrix P = N~! for
the semidefinite blocks, where N is a matrix such that D := NTZN =
N=1XN-T is a diagonal matrix [22], and G is a symmetric block diagonal
matrix whose ith block G; is defined as follows. Let

D & [aA +wad
W; = 7(33;1)7 574 [gz ; zl — wlzl

(20)




8 R. H. Tiitiincii, K. C. Toh,, M. J. Todd

Then
" 40 1 0
G; = w; AT |, where | ' | = ‘. 21
t31+% [t}] (&) l }1 2
1+t

2.8. Computation of the search directions

The size and the density of the Schur complement matrix M defined in (10) is
the main determinant of the cost of each iteration in our algorithm. The density
of this matrix depends on two factors: (i) The density of the constraint coefficient
matrices A%, A%, and A, and (ii) any additional fill-in introduced because of the
terms (£%)71F*, (£9)71F9, and (€Y1 F! in (10).

2.3.1. Semidefinite blocks For problems with semidefinite blocks, it appears
that there is not much one can do about additional fill-in, since (£%)71F* is
dense and structure-less for most problems. One can take advantage of sparsity
in A° in related computations, however, and we discussed some of these issues,
such as blockwise computations, in our earlier papers [22,25].

The way we exploit sparsity of A% in the computation of M? := (A;)T (5;)‘1.7:; A3
basically follows the approach in [7]. We will not go into the details here but just
briefly highlight one issue that is often critical in cutting down the computation
time in forming M;. Let Aj(:, k) be the kth column of AJ. In computing the kth
column of M, typically a matrix product of the form x5 smat(A3(:, k)) (25) " or

wj smat(A;(:, k)) w; is required for the HKM direction or NT direction, ;espec—
tively. In many large SDP problems, the matrix smat(A3(:, k)) is usually very
sparse, and it is important to store this matrix as a sparse matrix in MATLAB
and perform sparse-dense matrix-matrix multiplication in the matrix products
just mentioned whenever possible. Also, entries of this product only need to
be computed if they contribute to an entry of M, i.e., if they correspond to a

nonzero entry of Aj(:, k') for some £'.

2.8.2. Quadratic and linear blocks For linear blocks, (£')~!F! is a diagonal
matrix and it does not introduce any additional fill-in. This matrix does, however,
affect the conditioning of the Schur complement matrix and is a popular subject
of research in implementations of interior-point methods for linear programming.

From equation (11), it is easily shown that the contribution of the quadratic
blocks to the matrix M is given by

MY = (ANT(ENTFIAT = 3 (AT (€N EIAL (22)

i=1

M?

i
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For the HKM direction, (£9)~*F? is a block diagonal matrix whose ith block
(€)1 F] = G7lArw (Gar]) G

is given by
T
1 —-10 29 20 20 29
_ a4 4 ¢ ' : . (23
= | Z”lo z]* ] l—zg ] a] )

(Note that Arw (G '2J) = I.) Thus, we see that matrix (7)1 F7 in M is the
sum of a diagonal matrix and a rank-two symmetric matrix. Hence

T
+

q (f, 20) ot 7 4a a(,,a\T q(, a\T
where
-10 z) 1 29
Ji = [ 0 11 ,ul = (A" xl] ool =AD" <M —z-1]> - (25)

The appearance of the outer-product terms in the equation above is poten-
tially alarming. If the vectors u!, v{ are dense, then even if A} is sparse, the
corresponding matrix M/, and hence the Schur complement matrix M, will be
dense. A direct factorization of the resulting dense matrix will be very expensive
for even moderately high m.

The observed behavior of the density of the Schur complement matrix on
test problems depends largely on the particular problem structure. When the
problem has many small quadratic blocks, it is often the case that each block
appears in only a small fraction of the constraints. In this case, all AY matrices
are sparse and the vectors u] and v} turn out to be sparse vectors for each i.
Consequently, the Schur complement matrix remains relatively sparse for these
problems and it can be factorized directly and cheaply. In Figure 1, the density
structures of the Schur complement matrices in the first and later iterations of
our algorithm applied to the the problem nql30 depict the situation and are
typical for all nql and gssp problems. Since we initially choose multiples of
unit vectors for our variables, all the nonzero elements of the Schur complement
matrix in the first iteration come from the nonzero elements of the constraint
matrices. Later iterations introduce fewer than 3% new nonzero elements.

The situation is drastically different for problems where one of the quadratic
blocks, say the ith block, is large. For such problems the vectors u?, v{ are typ-
ically dense, and therefore, M is likely be a dense matrix even if the data A?
is sparse. However, observe that M/ is a rank-two perturbation of a sparse ma-
trix when A is sparse. In such a situation, it may be advantageous to use the
Sherman-Morrison-Woodbury update formula [9] when solving the Schur com-
plement equation (10). This is a standard strategy used in linear programming
when there are dense columns in the constraint matrix and this is the approach
we used in our implementation of SDPT3. This approach helps tremendously
on the scheduling problems from the DIMACS Challenge set. Figure 2 depicts
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Sparsity structure of the Schur complement Sparsity structure of the Schur complement matrix
matrix for nqgl problems in Iteration 1 does not change much in Iterations 2,3,...
0 T T T T T T T 0 T T T T T T T
5001 b 500 1
10001 1 1000+ 1
15001 1 1500+ 1
20001 4 2000F 1
25001 1 25001 X
30001 1 30001 1
3500¢ L L L L I L n N 3500¢ L L L L I L n N
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
nz = 60629 nz = 62429

Fig. 1. The output of the spy function in MATLAB on the Schur complement matrix for nq130.
Later iterations introduce less than 3% new nonzero elements.

Sparsity structure of the Schur complement matrix Sparse part of the completely dense Schur complement
in iteration 1 for problem "sched-50-50-orig" matrix does not change much after Iteration 1

500 1000 1500 2000 2500 500 1000 1500 2000 2500
nz = 69421 nz = 69427
Fig. 2. The output of the spy function in MATLAB for problem sched-50-50-orig on (i) the
complete Schur complement matrix in the first iteration, (ii) the sparse portion of the Schur
complement matrix in the following iterations.

the Schur complement matrix M in the first iteration and its sparse portion in
the following iterations. While these two matrices have almost identical spar-
sity patterns, the complete Schur complement matrix becomes completely dense
after the first iteration.

To apply the Sherman-Morrison-Woodbury formula, we need to modify the
sparse portion of the matrix M slightly. Since the diagonal matrix .J; has a neg-
ative component, the matrix (A7)7J; A? need not be a positive definite matrix,
and therefore the Cholesky factorization of the sparse portion of M need not
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exist. To overcome this problem, we use the following identity:

q q q q
MO = ELED gyt ya ey eyt - ol ) T (9
1 72(qu) Z) (3 K3 1 1 K3 72(23)

where u! and v} are as in (25) and
ki = ()" el (27)

Note that if A? is a large sparse matrix with a few dense rows, we also use the

Sherman-Morrison-Woodbury formula to handle the matrix (A?)” A? in (26).
We end our discussion on the computation of the HKM direction with the

following formula that is needed in the computation of the right-hand-side vector

(12):

(ENTHRD: = — [] — al. (28)

Just as for the HKM direction, we can obtain a very simple formula for
(EH~'FY for the NT direction. By noting that Gz? = G;'2Y, it is easy to

see that the ith block (£7)~'F! = G; 2, and a rather straightforward algebraic
manipulation gives the following identity:

a1 L 1 -10 t9 t9 T
€ FH =6 = S, 2l ] ] (29)

3

For the NT direction, the formula in (28) also holds and we have:

1 t9
—~ 1] . (30)

MI = = (ADTJA? 4+ 202 (w)T), with uf = (A9)"

i

We note that the identity (30) describing the NT direction was observed by
other authors — see, e.g., [8]. The identities (23) and (24), however, appear to be
new in the literature. It is straightforward, if a bit tedious, to verify these formu-
las. In addition to simplifying the search direction computation, these identities
can be used to provide a simple proof of the scale-invariance of the HKM search
direction in second-order cone programming. In [27], Tsuchiya proves this result
and the scale-invariance of the NT direction using two-page arguments for each
proof. We refer the reader to [22] for a description of scale-invariance and provide
the following simple and instructive proof:

Proposition 1. Consider a pure second-order cone programming problem (ns =
0 and ny=0). The HKM and NT directions for this problem are scale-invariant.
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Proof. The scaled problem is constructed as follows: Let F; € G; denote a
scaling matrix for block 7 where G; is the automorphism group of the cone K.
For future reference, note that we have

FI'LF =J;, FrJ,=JF™, JF=F"1J, JF'=F'J, (31
where J; = —J;, and J; is as in (25). Let F = diag[F}, .. ., Fy,] and define the
scaled quantities as follows:

AT =F7T49, b=b, I =FT', =FT21 g=y, 29=F129

Note that 7, = r, and Rd = Fled. First, we consider the HKM direction.
We observe that v2(27) = (20)7J;20 = ()T F; T JF7 2] = 42(27). Now, from
equation (24) and (31) it follows that each M, and therefore MY, is invariant

with respect to this automorphic scaling. Using (28), we see that h in (12)
is also invariant. Now, if we denote the HKM search direction for the scaled
problem by (A\xq, ﬁ\y, qu) and the corresponding direction for the unscaled
problem by (Az?, Ay, Az?) we immediately obtain &J = Ay from equation
(10), Az" = F~1Az¢ from (13) and Az’ = FT Az9 from (15) and (28). Thus,
the HKM direction for SOCP is scale-invariant.

To prove the result for the NT direction, we first observe that v(&]) = ~(z)
and that w; defined in (20) remains unchanged after scaling. The scaled equiva-
lent of &; defined in (20) is & = L 27 + w; id? = Fy (12! + wiJial) = F ¢,
Thus, with the scaled quantities, we obtain

o[ Y
ti = [f] ZF[l [ 21.
t; t;
Now, from equation (30) and (31) it follows that each M/, and therefore M4,

is invariant with respect to this automorphic scaling. Continuing as above, we
conclude that the NT direction for SOCP must be scale-invariant as well. 0O

2.4. Step-length computation

Once a direction Az is computed, a full step will not be allowed if x4+ Ax violates
the conic constraints. Thus, the next iterate must take the form x + aAz for an
appropriate choice of the step-length a. In this subsection, we discuss an efficient
strategy to compute the step-length a.

For semidefinite blocks, it is straightforward to verify that, for the jth block,
the maximum allowed step-length that can be taken without violating the posi-
tive semidefiniteness of the matrix z + aj Az} is given as follows:

-1
ad = )\min((gc‘;)—le‘;)’
00 otherwise.

if the minimum eigenvalue A, is negative

(32)
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If the computation of eigenvalues necessary in o above becomes expensive, then
we resort to finding an approximation of o by estimating extreme eigenvalues
using Lanczos iterations [24]. This approach is quite accurate in general and
represents a good trade-off between the effort versus quality of the resulting
stepsizes.

For quadratic blocks, the largest step-length af that keeps the next iterate
feasible with respect to the kth quadratic cone can be computed as follows. Let

a; =7*(Az]), b = (Aaf, —Jizf), i ="(z]),
where J; is the matrix defined in (25) and let
di = b22 — a;C;.

We want the largest o with a;a? + 2b;a + ¢; > 0 for all smaller positive values.
This is given by

b VT,
a;

o = ;bCZ ifa; =0,b; <0

00 otherwise.

if a; <0orb; <0,a; <b?/c;

For the linear block, the maximum allowed step-length a! for the hth com-
ponent is given by

l
-,

aﬁl = q Az’
00 otherwise.

if Azl <0

Finally, an appropriate step-length « that can be taken in order for  + a Az to
satisfy all the conic constraints takes the form

. . . . 1
a = min |1 min of min o min « 33
( i, N TG, Y A, ) (33)

where v (known as the step-length parameter) is typically chosen to be a number
slightly less than 1, for example as in the adaptive scheme shown in Algorithm
IPC, to ensure that the next iterate x + aAz stays strictly in the interior of all
the cones.

For the dual direction Az, we let the analog of a7, al and aéL be 37, B
and 3}, respectively. Similar to the primal direction, the step-length that can be
taken by the dual direction Az is given by

3 = min (1, vy min (5, v min G}, v min ﬁfl) (34)

1<j<n, 1<i<n, 1<h<n
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2.5. Sherman-Morrison- Woodbury formula and iterative refinement

In this subsection, we discuss how we solve the Schur complement equation when

M is a low rank perturbation of a sparse matrix. As discussed in Section 2.3 such

situations arise when the SQLP does not have a semidefinite block, but has large
q

quadratic blocks or the constraint matrices A/, Al have a small number of dense

rows. In such a case, the Schur complement matrix M can be written in the form
M = H+UVT (35)

where H is a sparse symmetric matrix and U,V have only few columns. If H is
non-singular, then by the Sherman-Morrison-Woodbury formula, the solution of
the Schur complement equation is given by

Ay = h—H'UIT+V H'U) " VTh, (36)

where h = H™1h.

Computing Ay via the Sherman-Morrison-Woodbury update formula above
is not always stable, and the computed solution for Ay can be highly inaccu-
rate when H is ill-conditioned. To overcome such a difficulty, we combine the
Sherman-Morrison-Woodbury update with iterative refinement [11]. It is noted
in [11] that iterative refinement is beneficial even if the residuals are computed
only at the working precision. Our numerical experience with the SQLP prob-
lems from the DIMACS Challenge set confirmed that iterative refinement very
often does greatly improve the accuracy of the computed solution for Ay via the
Sherman-Morrison-Woodbury formula. However, we must mention that iterative
refinement can occasionally fail to provide any significant improvement. We have
not yet incorporated a stable and efficient method for computing Ay when M
has the form (35), but note that Goldfarb and Scheinberg [8] discuss a stable
product-form Cholesky factorization approach to this problem.

3. Initial iterates

Our algorithms can start with an infeasible starting point. However, the perfor-
mance of these algorithms is quite sensitive to the choice of the initial iterate.
As observed in [7], it is desirable to choose an initial iterate that at least has
the same order of magnitude as an optimal solution of the SQLP. If a feasible
starting point is not known, we recommend that the following initial iterate be
used:

(x;)o :§;ISJ7 (Z;)O :n;ISJ’ j:17"'7n37

(xH)0 = ¢lel, (2D =nlel, i=1,...,n,
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where I, is the identity matrix of order s;, and

1+ bk 1 [
s — g — P = — |1 AS(LR)Y, lles ,
€ = smeacken TG = S 1 mesemI45G I 151
1+ [bg| q

¢ = = Vi [1+ max(max{[|A7C;, )1}, 1)),

VO T A e
1 L+ b 1_ 1. !

& = B TrAGel T 1+maX(m§X{HA GRS NelDs

where A%(:, k) denotes the kth column of A%, and A (:, k) and AL(:, k) are defined
similarly.

By multiplying the identity matrix I, by the factors & and n; for the
semidefinite blocks, and similarly for the quadratic and linear blocks, the initial
iterate has a better chance of having the appropriate order of magnitude.

The above iterate is the default in SDPT3, but other options are also avail-

able.

4. Some implementation details

SDPTS3 version 3.0 (henceforth denoted SDPT3-3.0) implements the infeasible
path-following algorithms described in Section 2. It is designed to be fairly flex-
ible in the strategies used, allowing either the HKM or the NT search direction,
switching on or off scaling of the problem and/or the predictor-corrector scheme,
giving a choice of step-length determination, etc. (However, as we describe in
the next section, the still available version 2.3 (denoted SDPT3-2.3) is more
flexible, allowing two more search directions as well as homogeneous self-dual
algorithms: we discuss below why these possibilities have been removed from
the current version.) Details of these options can be found in the user’s guide
[28], available from the web sites named in the introduction. The computational
results given in the next section were all obtained with default settings, except
that we tested both search directions.

The output of SDPT3 is also flexible. Generally the output variables (X,y,Z)
provide approximately optimal solutions, but if the output variable info (1) is
1 the problem is suspected to be primal infeasible and (y,Z) is an approximate
certificate of infeasibility, with b’y = 1, Z in the appropriate cone, and ATy + Z
small, while if info (1) is 2 the problem is suspected to be dual infeasible and X is
an approximate certificate of infeasibility, with (C, X) = —1, X in the appropriate
cone, and A X small. In the case that an indication of infeasibility is given, the
final iterates are still available to the user.

C Mex files used.

Our software uses a number of Mex routines generated from C programs written
to carry out certain operations for which MATLAB is not efficient. In particu-
lar, operations such as extracting selected elements of a matrix, and performing
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arithmetic operations on these selected elements, are all done in C. As an exam-
ple, the vectorization operation svec is coded in the C program mexsvec.c.

We also use a number of Mex routines generated from the Fortran programs
for sparse Cholesky factorization discussed in Section 5.1.

Cell array representation for problem data.

Our implementation SDPT3 exploits the block structure of the given SQLP
problem. In the internal representation of the problem data, we classify each
semidefinite block into one of the following two types:

1. a dense or sparse matrix of dimension greater than or equal to 30;
2. a sparse block-diagonal matrix consisting of numerous sub-blocks each of
dimension less than 30.

The reason for using the sparse matrix representation to handle the case when we
have numerous small diagonal blocks is that it is less efficient for MATLAB to work
with a large number of cell array elements compared to working with a single cell
array element consisting of a large sparse block-diagonal matrix. Technically, no
problem will arise if one chooses to store the small blocks individually instead
of grouping them together as a sparse block-diagonal matrix.

For the quadratic part, we typically group all quadratic blocks (small or
large) into a single block, though it is not mandatory to do so. If there are a
large number of small blocks, it is advisable to group them all together as a
single large block consisting of numerous small sub-blocks for the same reason
we mentioned before.

Let L = ns + ngy + 1. For each SQLP problem, the block structure of the
problem data is described by an L x 2 cell array named blk, The content of
each of the elements of the cell arrays is given as follows. If the jth block is a
semidefinite block consisting of a single block of size s;, then

blk{j,l} =’g’ blk{j,Q}z[sj}
A{j} = [§jxm sparse]
c{j}, X{j}, Z{j} = [sj; xs; double or sparse],
where §; = s;(s; +1)/2.
If the jth block is a semidefinite block consisting of numerous small sub-

blocks, say p of them, of dimensions sji,sj2,...,8;jp such that 2221 Sjk = Sy,
then

blk{_] ,1} =g’ blk{J,Q} = [Sjl sz e Sjp]
A{j} = [s;xm sparse]
C{j}a X{j}, Z{J} == [SjXSj sparse] s

where §; =Y P _, sju(sjx +1)/2.

The above storage scheme for the data matrix Aj associated with the semidef-
inite blocks of the SQLP problem represents a departure from earlier versions of
our implementation, such as the one described in [25] and SDPT3-2.3. Previously,
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the semidefinite part of A was represented by an ns x m cell array, where A{j,k}
corresponds to the kth constraint matrix associated with the jth semidefinite
block, and it was stored as an individual matrix in either dense or sparse format.
Now, we store all the constraint matrices associated with the jth semidefinite
block in vectorized form as a single 5; x m matrix where the kth column of this
matrix corresponds to the kth constraint matrix. The data format we used in
earlier versions of SDPT3 was more natural but, for the sake of computational
efficiency, we adopted our current data representation. The reason for such a
change is again due to the fact that it is less efficient for MATLAB to work with
a single cell array with many cells. We also avoid explicit loops over the index k.
In the next section, we will discuss the consequence of this modification in our
storage scheme.

If the ith block is a quadratic block consisting of numerous sub-blocks, say
p of them, of dimensions q;1, Qi2,. .., qip such that ZZ:1 Qix = 9i, then

bIK(i,1} = g bIK{1,2} = [qu 2 - g
A{i} = [q; xm sparse]
c{i}, X{i}, z{i} = [qix1 double or sparse|.
If the ith block is the linear block, then
blk{i,1} = ’1’ blk{i,2} =n
A{i} = [n; xm sparse]

c{i}, x{i}, Z{i} = [n1x1 double or sparse].

Caveats.

We should mention that “solving” SQLPs is more subtle than linear program-
ming. For example, it is possible that both primal and dual problems are feasible,
but their optimal values are not equal. Also, either problem may be infeasible
without there being a certificate of that fact (so-called weak infeasibility). In
such cases, our software package is likely to terminate after some iterations with
an indication of short step-length or lack of progress. Also, even if there is a
certificate of infeasibility, our infeasible-interior-point methods may not find it.
(However, in our limited testing on randomly generated strongly infeasible prob-
lems, our algorithms have been quite successful in detecting infeasibility.)

5. Computational experiments

Here we describe the results of our computational testing of SDPT3, on problems
from the SDPLIB collection of Borchers [4] as well as the DIMACS Challenge
test problems [19]. In both, we solve a selection of the problems; in the DIMACS
problems, these are selected as the more tractable problems, while our subset of
the SDPLIB problems is more representative (but we cannot solve the largest
two maxG problems). Since our algorithm is a primal-dual method storing the
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[ Problem m SD SO L | opt. obj. value ||
bml 883 882 - - 23.43982
copol4d 1275 [14 x 14] — 364 0
copo23 5820 [23 x 23] - 1771 0
filter48-socp 969 48 49 931 1.41612901
filtinfl 983 49 49 945 primal inf.
hamming-7-5-6 1793 128 - - 422
hamming-9-8 2305 512 — — 224
hinf12 43 24 - - -0.0231 (7)
hinf13 57 30 - - -44.38 (7)
minphase 48 48 - - 5.98
nb 123 - [793 x 3] 4 -0.05070309
nb-L1 915 - [793 x 3] 797 -13.01227
nb-L2 123 - [1637, 838 x 3] 4 -1.628972
nb-L2-bessel 123 - [123, 838 x 3] 4 -0.102571
nql30 3680 - [900 x 3] 3602 -0.9460
nql60 14560 - [3600 x 3] 14402 -0.935423
nql180 130080 - [32400 x 3] 129602 -0.927717
nql30old 3601 — [900 x 3] 5560 -0.9460
nql60old 14401 - [3600 x 3] 21920 -0.935423
nql180old 129601 - [32400 x 3] 195360 -0.927717
qssp30 3691 - [1891 x 4] 2 -6.496675
qssp60 14581 - [7381 x 4] 2 -6.562696
qsspl80 130141 - (65341 x 4] 2 -6.639527
gssp30old 5674 - [1891 x 4] 3600 -6.496675
qssp60old 22144 - [7381 x 4] 14400 -6.562696
gssp180old 196024 - (65341 x 4] 129600 -6.639527
sched-50-50-orig 2527 - (2474, 3] 2502 26,673
sched-50-50-scaled 2526 - 2475 2502 7.852038
sched-100-50-orig 4844 — [4741, 3] 5002 181,889
sched-100-50-scaled 4843 - 4742 5002 67.166281
sched-100-100-orig 8338 - (8235, 3] 10002 717,367
sched-100-100-scaled 8337 - 8236 10002 27.331457
sched-200-100-orig 18087 - (17884, 3] 20002 141,360
sched-200-100-scaled 18086 - 17885 20002 51.812471
torusg3-8 512 512 - - 457.358179
toruspma3-8-50 512 512 - - 527.808663
trussb 208 (33 x 10, 1] - - 132.6356779
truss8 496 [33 x 19, 1] — — 133.1145891

Table 1. Selected DIMACS Challenge Problems. SD, SO, and L stand for semidefinite, second-
order, and linear blocks, respectively. Notation like [33 x 19] indicates that there were 33
semidefinite blocks, each a symmetric matrix of order 19, etc.

primal iterate X, it cannot exploit common sparsity in C and the constraint
matrix as well as dual methods or nonlinear-programming based methods. We
are therefore unable to solve the largest problems.

All results given below were obtained on a Pentium III PC (800MHz) with
1G of memory running Linux, using MATLAB 6.0. The test problems are listed
in Tables 1 and 2, along with their dimensions. We also list optimal objective
values of these problems that are reported in [19] and [4].
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[ Problem [ m [ semidefinite blocks [ linear block [ opt. obj. value ]|
arch8 174 161 174 7.05698
control7 666 (70, 35] — 20.6251
controll0 1326 [100, 50] - 38.533
controlll 1596 [110, 55] - 31.959
epp250-4 251 250 - 7473
epp500-4 501 500 - -1567.02
hinf15 91 37 — 25
mcp250-1 250 250 - 317.2643
mcp500-1 500 500 — 598.1485
qap9 748 82 - -1410f
qapl0 1021 101 - -1093t
ss30 132 294 132 20.2395
theta3 1106 150 — 42.16698
thetad 1949 200 — 50.32122
thetab 3028 250 - 57.23231
theta6 4375 300 - 63.47709
truss7 86 [150 x 2, 1] — -90.0001
truss8 496 [33 x 19, 1] — -133.1146
equalG11 801 801 - 629.1553
equalG51 1001 1001 - 4005.601
equalG32 2001 2001 - N/A
maxG11 800 800 - 629.1648
maxG51 1000 1000 — 4003.8091
maxG32 2000 2000 — 1567.640
qpG11 800 1600 - 2448.659
qpG112 800 800 800 2448.659
qpG51 1000 2000 - 1181.000F
qpG512 1000 1000 1000 1181.000F
thetaG11 2401 801 — 400.00
thetaG1lln 1600 800 - 400.00
thetaG51 6910 1001 - 349.00
thetaG51n 5910 1000 — 349.00

Table 2. Selected SDPLIB Problems. Note that qpG112 is identical to qpG1l1l except that
the structure of the semidefinite block is exposed as a sparse symmetric matrix of order 800
and a diagonal block of the same order, which can be viewed as a linear block, and similarly
for qpG512. Also, thetaGlln is a more compact formulation of thetaG1l1l, and similarly for
thetaG51n.

t For some problems, we obtained the following alternative objective values that we believe to
be more accurate: qap9: -1409.8, qap10: -1092.4, equalG32: 1567.627, maxG51: 4006.256, qpG51:
1181.800.

5.1. Cholesky factorization

Earlier versions of SDPT3 were intended for problems that always have semidef-
inite cone constraints. As we indicated above, for such problems, the Schur com-
plement matrix M in (11) is a dense matrix after the first iteration. To solve the
associated linear system (10), we first find a Cholesky factorization of M and
then solve two triangular systems. When M is dense, a reordering of the rows
and columns of M does not alter the efficiency of the Cholesky factorization
and specialized sparse Cholesky factorization routines are not useful. Therefore,
earlier versions of SDPT3 (up to version 1.3) simply used MATLAB’s chol rou-
tine for Cholesky factorizations. For versions 2.1 and 2.2, we introduced our own
Cholesky factorization routine mexchol that utilizes loop unrolling and provided
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2-fold speed-ups on some architectures compared to MATLAB’s chol routine.
However, in newer versions of MATLAB that use numerics libraries based on
LAPACK, MATLAB’s chol routine is more efficient than our Cholesky factoriza-
tion routine mexchol for dense matrices. Thus, in SDPT3-3.0, we use MATLAB’s
chol routine whenever M is dense. We also use MATLAB’s chol in the updated
version SDPT3-2.3 of our matrix-based code.

For the solution of most second-order cone programming problems in DI-
MACS test set, however, MATLAB’s chol routine is not competitive. This is
largely due to the fact that the Schur complement matrix M is often sparse for
SOCPs and LPs, and MATLAB cannot sufficiently take advantage of this spar-
sity. To solve such problems more efficiently we imported the sparse Cholesky
solver in Yin Zhang’s LIPSOL [31], an interior-point code for linear programming
problems. It should be noted that LIPSOL uses Fortran programs developed
by Esmond Ng and Barry Peyton for sparse Cholesky factorization [18]. When
SDPT3 uses LIPSOL’s Cholesky solver, it first generates a symbolic factoriza-
tion of the Schur complement matrix to determine the pivot order by examining
the sparsity structure of this matrix carefully. Then, this pivot order is re-used
in later iterations to compute the Cholesky factors. In contrast to the case of
linear programming, however, the sparsity structure of the Schur complement
matrix can change during the iterations for SOCP problems. If this happens, the
pivot order has to be recomputed. We detect changes in the sparsity structure
by monitoring the number of nonzero elements of the Schur complement matrix.
Since the default initial iterates we use for an SOCP problem are unit vectors
but subsequent iterates are not, there is always a change in the sparsity pattern
of M after the first iteration. After the second iteration, the sparsity pattern
remains unchanged for most problems, and only one more change occurs in a
small fraction of the test problems.

The effect of including a sparse Cholesky solver option for SOCP problems
was dramatic. We observed speed-ups up to two orders of magnitude. SDPT3-3.0
automatically makes a choice between MATLAB’s built-in chol routine and the
sparse Cholesky solver based on the density of the Schur complement matrix.

5.2. Vectorized matrices vs. sparse matrices

The current release, SDPT3-3.0, of the code stores the constraint matrix in
“vectorized” form as described in Sections 2 and 4. In the previous versions,
and in SDPT3-2.3, A is a doubly subscripted cell array of symmetric matrices
for the semidefinite blocks, as we outlined at the end of the previous section.
The result of the change is that much less storage is required for the constraint
matrix, and that we save a considerable amount of time in forming the Schur
complement matrix M in (11) by avoiding loops over the index k. Operations
relating to forming and factorizing the Schur complement and hence computing
the predictor search direction comprise much of the computational work for
most problem classes, ranging from 25% for qpG11l up to 99% for the larger
theta problems, the control problems, copol4, hamming-7-5-6, and the nb
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[ HRM NT

[ Problem TItn | erry [ errg [ errs [ errg | time || Ttn | erry | errs | errs | errg | time
bml 17 | 1-06 | 3-13 8-08 | 1-07 834 14 | 9-07 | 5-13 3-02 | 3-02 | 2891
copol4d 12 2-11 1-14 8-10 1-09 112 12 2-11 9-15 7-10 1-09 111
copo23 16 3-12 6-14 2-10 | 4-10 | 4375 16 2-12 6-14 2-10 | 3-10 | 4343
hamming-7-5-6 10 | 2-15 0 2-10 | 2-10 83 10 | 3-15 0 2-10 | 2-10 83
hamming-9-8 12 8-15 0 2-10 2-10 341 12 7-15 0 2-10 2-10 646
hinf12 42 2-08 5-10 | -2-01 1-08 6 39 3-08 | 3-10 | -2-01 5-08 7
hinf13 24 | 805 | 1-12 | -2-02 | 1-04 4 23 | 805 | 7-13 | -2-02 | 9-05 5
minphase 32 | 1-08 0 | -2-04 | 3-08 6 37 | 2-08 0 | -4-04 | 2-06 9
torusg3-8 15 2-11 8-16 1-09 1-09 112 14 | 2-10 7-16 2-09 2-09 484
toruspm3-8-50 13 | 2-11 | 6-16 3-09 | 3-09 93 14 | 5-11 | 6-16 2-10 | 2-10 470
trussb 19 | 5-07 | 6-15 3-08 | 2-07 34 19 | 5-07 | 1-14 | -9-08 | 3-08 37
truss8 22 | 3-06 | 815 | -2-06 | 2-07 306 21 | 2-06 | 1-14 | -8-09 | 2-06 299

Table 3. Computational results on SDP problems in the DIMACS Challenge test set using
SDPT3-2.3. These were performed on a Pentium III PC (800MHz) with 1G of memory.

problems. Other significant parts are computing the corrector search direction
(up to 75%) and computing step lengths (up to 60%).

While we now store the constraint matrix in vectorized form, the parts of the
iterates X and Z corresponding to semidefinite blocks are still stored as matrices,
since that is how the user wants to access them.

Results are given in Tables 3 through 6: Tables 3 and 4 give results on the
DIMACS problems for both SDPT3-3.0 and SDPT3-2.3, while Tables 5 and 6
give the comparable results for the SDPLIB problems. In all of these, the format
is the same. We give the number of iterations required, the time in seconds, and
four measures of the precision of the computed answer. These accuracy measures
are computed as follows:

ey Az =01
1 + max |bg|
erry = I Y+ 2= .
1+ max|c|
B (e, z) —bTy
ST T e @)+ BTyl
erTg = (z, 2)

1+ (e, )|+ [bTy|”

In errg the norm is subordinate to the inner product and the maximum is taken
over all components of ¢. These measures are almost identical to the measures
reported by Mittelmann in [15], except that he uses ||b||; instead of max |by| in
erry, and similarly ||c||; instead of max |¢| in errs. Mittelmann also reports cone
violation measures errs and erry which are always zero for our iterates.

In general, both versions of our codes solved all problems without second-
order cone constraints to reasonable accuracy (in terms of all measures) using
either of the search directions. SDPT3-3.0 had difficulty obtaining high accuracy
solutions to several DIMACS problems involving second-order cone constraints.
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Problem Itn | erry | errg [ errs | errg | time [| Ttn [ erry [ errg [ errs | errg | time
bml 18 | 4-07 | 8-12 1-07 | 1-07 811 16 | 1-08 | 5-13 1-05 | 1-05 | 2758
copol4d 15 | 1-10 | 6-15 | -1-09 | 8-10 40 13 | 6-11 | 6-15 9-09 | 7-09 36
copo23 17 2-09 1-14 8-08 5-10 1805 16 8-10 1-14 2-08 5-09 1695
hamming-7-5-6 10 2-15 9-15 9-11 9-11 66 10 2-15 9-15 9-11 9-11 68
hamming-9-8 11 5-15 9-14 4-09 | 4-09 212 11 5-15 8-14 4-09 | 4-09 418
hinf12 42 2-08 | 4-10 | -2-01 1-08 5 39 2-08 2-10 | -2-01 6-09 5
hinf13 23 | 9-05 | 813 | -2-02 | 3-05 4 22 | 1-04 | 9-13 | -2-02 | 6-06 4
minphase 32 | 809 | 3-12 | -2-04 | 1-08 5 37 | 2-08 | 7-13 | -5-04 | 3-06 7
torusg3-8 15 | 2-11 | 7-16 3-10 | 3-10 89 14 | 2-10 | 7-16 3-09 | 3-09 407
toruspm3-8-50 14 | 2-11 | 6-16 2-09 | 2-09 84 15 | 4-11 | 6-16 7-10 | 7-10 432
trussb 16 | 4-07 | 815 | -3-10 | 1-07 9 16 | 4-07 | 815 | -1-07 | 3-08 10
truss8 15 | 3-06 | 815 | -3-06 | 1-07 44 14 | 2-06 | 1-14 5-07 | 2-06 47
filterd8-socp 38 | 1-06 | 9-14 1-05 | 1-06 51 45 | 1-06 | 8-14 1-05 | 1-06 60
filtinfl 27 | 3-05 | 4-12 2-01 | 4-01 38 27 | 3-05 | 2-11 4-01 | 7-01 39
nb 15 1-05 2-09 2-04 2-04 42 14 1-05 1-08 2-04 2-04 31
nb-L1 16 | 7-05 | 4-09 2-05 | 1-05 73 16 | 2-04 | 9-11 1-06 | 9-07 59
nb-L2 12 2-09 1-11 6-09 6-09 57 11 4-09 1-08 5-07 | 5-07 45
nb-L2-bessel 13 | 806 | 4-12 9-07 | 5-08 39 11 | 3-07 | 2-09 6-07 | 7-07 26
nql30 13 | 6-08 | 5-09 2-05 | 4-05 11 16 | 2-06 | 3-11 | -5-06 | 1-06 12
nql60 13 | 4-07 1-08 4-05 1-04 63 15 3-06 2-10 | -2-05 9-06 57
nql180 15 | 1-05 | 3-08 7-05 | 1-03 5622 16 | 7-05 | 4-10 | -3-03 | 6-05 | 3235
nql30old 12 | 5-05 | 2-08 | -7-05 | 1-04 12 12 | 5-05 | 2-08 | -8-05 | 1-04 12
nql60old 13 | 1-04 | 7-09 | -8-04 | 1-04 87 13 | 9-05 | 5-08 | -4-04 | 5-04 75
nql180old 9 | 9-04 | 3-05 | -5-02 | 2-01 4015 10 | 1-03 | 806 | -3-01 | 8-02 | 2742
qgssp30 21 | 7-08 | 1-09 7-07 | 8-07 24 18 | 3-07 | 2-11 | -1-07 | 3-08 17
qssp60 21 | 5-05 | 2-09 6-05 | 2-05 154 20 | 3-06 | 1-11 3-06 | 1-07 108
qsspl80 24 | 3-04 | 1-08 8-04 | 2-04 | 17714 25 | 3-05 | 4-12 7-05 | 4-08 | 9790
gssp30old 11 3-04 | 4-05 5-02 6-02 58 12 5-04 6-05 3-02 4-02 60
qssp60old 11 4-04 2-04 1-01 2-01 397 12 4-04 | 4-04 1-01 2-01 382
sched-50-50-orig 28 | 7-04 | 3-09 | -9-05 | 6-06 21 29 | 2-04 | 3-07 | -1-05 | 7-06 20
sched-50-50-scaled 23 1-04 | 4-15 2-05 3-05 18 22 6-05 | 4-15 1-06 7-06 16
sched-100-50-orig 39 | 6-03 | 3-11 | -804 | 2-06 63 33 | 6-03 | 2-11 8-04 | 5-07 50
sched-100-50-scaled 26 | 8-04 | 9-13 1-04 | 1-04 44 22 | 7-04 | 1-09 3-04 | 3-04 35
sched-100-100-orig 33 | 5-02 | 1-10 | -2-02 | 4-07 102 50 | 5-01 | 3-10 1-00 | 1-07 136
sched-100-100-scaled 19 | 4-02 | 1-14 | -4-03 | 3-06 65 17 | 3-02 | 1-14 | -2-03 | 1-02 55
sched-200-100-orig 41 | 6-03 | 3-09 | -4-03 | 3-06 348 39 | 6-03 | 1-08 | -5-03 | 4-06 309
sched-200-100-scaled 27 | 3-03 | 6-09 | -8-04 | 7-04 247 25 | 3-03 | 7-10 | -1-03 | 3-04 216

Table 4. Computational results on DIMACS Challenge problems using SDPT3-3.0. These
were performed on a Pentium III PC (800MHz) with 1G of memory.

We comment on some of these problems in detail in Section 5.6. We note that
on two problems, our codes terminated with an indication that X and Z were not
both positive definite: qpG11 (version 2.3, NT only) and sched-100-100-orig
(version 3.0, NT only). However, this is a conservative test designed to stop if
numerical difficulties are imminent. Using SeDuMi’s eigK.m routine to check the
iterates, it was found that in both cases both variables were feasible in the conic
constraints.

The objective values of the optimal solutions generated by our codes match
the optimal objective values listed in Tables 1 and 2 in most cases. Exceptions,
however, are not limited to the problems where our codes had accuracy prob-
lems. In particular, for problems bm1, torusg3-8, qap9, qapl0, maxG51, and
gpG51 SDPT3 generates accurate solutions whose optimal objective values dif-
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[ HKM NT
[ Problem Itn | erry | errg [ errs | errg | time [ Ttn [ erry [ errg [ errs [ errg | time
arch8 19 | 9-10 | 5-13 2-09 | 2-09 55 23 | 1-08 | 5-13 4-08 | 4-08 74
control7 23 | 7-07 | 2-09 1-07 | 8-07 149 22 | 4-07 | 2-09 1-06 | 2-06 156
controll0 24 | 6-07 | 5-09 1-06 3-06 709 24 1-06 6-09 | -1-06 | 8-07 802
controlll 24 | 1-06 | 6-09 | -3-06 | 4-07 1108 24 | 1-06 | 6-09 | -1-06 | 1-06 1245
gpp250-4 15 | 3-08 | 5-14 | -9-09 | 4-09 28 13 | 7-06 | 2-13 1-05 | 2-05 62
gpp500-4 15 3-08 2-14 4-09 5-09 169 13 7-08 3-14 2-05 2-05 501
hinfl5 24 | 9-05 2-12 | -4-02 2-05 7 23 1-04 1-12 | -4-02 2-04 8
mcp250-1 13 | 2-11 | 5-16 4-09 | 4-09 14 15 | 7-12 | 4-16 9-10 | 9-10 55
mcp500-1 14 | 1-11 | 5-16 8-10 | 8-10 79 15 | 2-11 | 5-16 4-09 | 4-09 416
qap9 15 | 4-08 | 3-13 | -2-05 | 1-08 19 15 | 5-08 | 3-13 | -3-05 | 1-08 20
qapl0 14 | 4-08 | 3-13 | -6-05 | 1-08 34 14 | 4-08 | 4-13 | -6-05 | 5-09 36
ss30 19 | 2-09 | 2-13 5-09 | 5-09 113 24 | 1-08 | 2-13 6-08 | 6-08 242
theta3 14 | 3-11 6-15 1-09 1-09 40 14 2-10 6-15 4-10 2-10 45
theta4 15 2-10 8-15 2-09 2-09 160 15 4-10 8-15 4-10 2-10 175
thetab 15 | 2-10 | 1-14 2-09 | 2-09 475 14 | 4-10 | 1-14 5-09 | 5-09 483
theta6 15 5-10 1-14 | -2-10 | 4-10 1224 15 5-10 1-14 1-10 7-10 1302
truss7 23 3-06 2-13 | -5-06 | 4-07 6 22 4-06 2-13 | -1-05 2-08 8
truss8 22 | 3-06 | 815 | -2-06 | 2-07 306 21 | 2-06 | 815 | -8-09 | 2-06 299
equalG11 18 | 4-11 | 3-16 4-10 | 4-10 776 16 | 1-08 | 3-16 2-06 | 2-06 2451
equalG51 20 | 809 | 4-16 | -8-11 2-10 1586 20 | 5-08 5-16 2-08 2-08 5648
equalG32 19 | 1-10 | 2-16 2-09 | 2-09 | 10170 15 | 4-07 | 2-16 9-05 | 9-05 | 33618
maxG11 14 | 2-11 | 8-16 2-09 | 2-09 292 14 | 4-11 | 7-16 1-09 | 1-09 1540
maxG51 16 1-11 4-16 2-09 2-09 951 16 9-11 3-16 3-10 | 3-10 4171
maxG32 15 | 1-10 | 1-15 2-09 | 2-09 3726 15 | 2-10 | 1-15 6-10 | 6-10 | 24957
qpG11 14 | 1-11 0 4-09 | 4-09 1429 15 | 2-11 0 4-09 | 4-09 6789
qpG112 15 2-11 0 4-10 | 4-10 337 15 6-11 0 4-10 | 4-10 1693
qpG51 21 | 6-11 0 4-09 | 4-09 4518 24 | 1-09 0 4-09 | 2-08 | 19817
qpG5H12 17 2-10 0 4-09 | 4-09 965 25 9-11 0 2-09 2-09 6677
thetaG11 20 | 3-09 | 814 | -5-10 | 2-10 1196 17 | 809 | 5-15 1-09 | 3-09 2699
thetaG1lln 15 | 4-12 0 2-09 | 2-09 786 15 | 4-12 0 1-09 | 1-09 2240
thetaG51 33 4-08 7-13 4-09 | 4-09 18992 30 7-09 8-14 2-08 2-08 23851
thetaG51n 19 | 2-09 | 2-14 | -1-09 | 1-08 5159 22 | 5-09 | 3-14 | -2-09 | 7-10 | 10415

Table 5. Computational results on SDPLIB problems using SDPT3-2.3. These were performed
on a Pentium III PC (800MHz) with 1G of memory.

fer from previously published optimal objective values which we believe to be
incorrect. We also provide an accurate optimal objective value for equalG32
which was previously unavailable. Finally, we note that some of the listed opti-
mal objective values in Table 1 contain sign errors, see the caption for Table 1
for details.

To compare the two codes in terms of time, we consider only the problems
that both codes could solve, and omit the simplest problems with times under
20 seconds (the hinf problems, minphase, and truss5 and truss7). For the
remaining problems, we compute the ratio of the times taken by the two codes,
take its logarithm to base 2, and then plot the results in decreasing order of
absolute values. The results are shown in Figures 1 and 2 for the HKM and NT
search directions. A bar of height 1 indicates that SDPT3-3.0 was 2 times faster
than SDPT3-2.3, of —1 the reverse, and of 3 that SDPT3-3.0 was 8 times faster.
Note that the new version using vectorized matrices is almost uniformly faster
and often at least 50% faster using either direction.
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[ HKM NT
[ Problem Itn | erry | errg [ errs | errg | time [[ Ttn [ erry [ errg [ errs [ errg | time
arch8 21 1-09 | 5-13 8-10 | 8-10 41 24 | 2-08 | 4-13 1-07 | 1-07 55
control7 22 | 5-07 | 2-09 8-07 | 1-06 111 22 | 7-07 | 2-09 | -1-07 | 6-07 129
controll0 24 1-06 6-09 | -1-06 3-07 508 24 1-06 6-09 | -1-06 7-07 610
controlll 24 | 2-06 | 6-09 | -3-06 | 3-07 760 23 | 9-07 | 6-09 | -4-07 | 2-06 891
gpp250-4 15 | 808 | 2-12 | -1-08 | 4-09 24 13 | 7-08 | 6-14 3-06 | 3-06 55
gpp500-4 15 5-08 1-12 1-09 3-09 152 18 3-08 1-12 5-09 7-09 601
hinfl5 23 | 9-05 2-12 | -4-02 3-06 6 22 1-04 2-12 | -5-02 2-05 7
mcp250-1 14 | 3-12 | 4-16 1-09 | 1-09 12 15 | 1-11 | 4-16 2-10 | 2-10 40
mcp500-1 15 | 1-11 | 5-16 6-10 | 6-10 60 16 | 3-11 | 5-16 2-10 | 2-10 327
qap9 15 | 4-08 | 3-13 | -2-05 | 1-08 17 15 | 5-08 | 3-13 | -3-05 | 1-08 18
qapl0 14 | 4-08 | 3-13 | -6-05 | 9-09 30 13 | 4-08 | 4-13 | -6-05 | 6-08 29
ss30 21 | 6-09 | 3-13 1-08 | 1-08 138 26 | 3-09 | 3-13 1-07 | 1-07 264
theta3 15 2-10 2-14 1-09 1-09 37 14 2-10 2-14 4-10 1-10 39
theta4 15 2-10 3-14 1-09 1-09 129 14 | 3-10 3-14 6-10 | 4-10 132
thetab 15 3-10 | 4-14 2-09 2-09 392 14 | 4-10 | 4-14 3-10 | 3-10 398
theta6 14 | 2-10 | 5-14 3-09 | 3-09 968 14 | 6-10 | 5-14 8-10 | 1-09 1028
truss7 23 3-06 2-13 | -4-06 3-07 4 21 2-06 1-13 | -2-06 7-08 5
truss8 15 | 3-06 | 815 | -3-06 | 1-07 44 14 | 2-06 | 1-14 5-07 | 2-06 47
equalG11 17 2-10 | 4-16 1-09 1-09 611 17 2-10 7-15 1-09 1-09 2210
equalG51 20 2-08 3-14 6-10 5-10 1338 20 | 9-09 5-16 1-07 1-07 5050
equalG32 19 | 3-10 | 2-16 2-09 | 2-09 8760 19 | 2-09 | 4-15 1-09 | 1-09 | 36683
maxG11 15 | 9-12 | 7-16 5-09 | 5-09 190 15 | 4-11 | 7-16 8-10 | 8-10 1357
maxG51 17 | 3-12 | 2-16 4-10 | 4-10 617 16 | 2-10 | 3-16 2-09 | 2-09 3077
maxG32 16 | 1-10 | 1-15 3-09 | 3-09 2417 16 | 2-10 | 1-15 6-10 | 6-10 | 23294
qpG11 16 | 2-11 0 2-10 | 2-10 1514 15 | 1-10 0 3-09 | 3-09 4528
qpG112 18 2-11 0 2-10 2-10 225 17 | 5-11 0 4-09 | 4-09 1532
qpG5H1 17 | 7-10 0 3-09 | 3-09 3168 25 | 8-10 0 4-09 | 4-09 | 15422
qpG512 19 | 4-10 0 5-10 5-10 632 29 6-10 0 4-09 | 4-09 5664
thetaG11 19 | 4-09 1-13 3-09 2-09 834 20 | 2-09 2-14 1-10 5-10 2334
thetaG1l1ln 15 1-12 2-13 4-10 | 4-10 456 15 1-12 2-13 4-10 | 4-10 1587
thetaG51 38 1-08 3-13 9-10 1-09 17692 30 | 2-08 1-12 3-08 | 3-08 18572
thetaG51n 19 | 2-09 | 5-13 | -2-09 | 9-09 3921 23 | 3-09 | 5-13 | -1-08 | 7-10 8457

Table 6. Computational results on SDPLIB problems using SDPT3-3.0. These were performed
on a Pentium III PC (800MHz) with 1G of memory.

5.8. HKM vs. NT

The new version of the code allows only two search directions, HKM and NT.
Version 2.3 also allows the AHO direction of Alizadeh, Haeberly, and Overton [2]
and the GT (Gu-Toh) direction — see [23], but these are uncompetitive when the
problems are of large scale. We intend to keep version 2.3 of the code available
for those who wish to experiment with these other search directions, which tend
to give more accurate results on smaller problems.

To compare the two remaining search directions, we again use bar charts to
show their relative performance as in Figures 1 and 2. The behavior is signif-
icantly different depending on whether the problem has semidefinite blocks or
not, so we report our results on two charts after categorizing the problems in
this way. From Figure 3, it is clear that the HKM direction is almost universally
faster than the NT direction for problems with semidefinite blocks. NT offers
a slight advantage on only two problems, copol4 and copo23, both with many
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SDPT3-3.0 vs. SDPT3-2.3:HKM
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Figure 1. Comparing SDPT3-3.0 and SDPT3-2.3 using the HKM search direction. Bars
above the axis demonstrate a win for 3.0.

small blocks. The HKM direction is much faster on maxG32 and considerably
faster on the other maxG and the qpG problems.

Figure 4 shows a reversed pattern for problems with quadratic blocks and
no semidefinite blocks. The NT direction was faster on all but three of such
problems. The reason for this behavior is not hard to understand. By comparing
the formula in (23) for the HKM direction with (29) for the NT direction, it
is clear that more computation is required to assemble the Schur complement
matrix and more low-rank updating is necessary for the former direction, and
these computations can dominate the total work in each iteration. Because there
is a class of problems on which the NT direction is faster, we feel it is worthwhile
to keep both options.

5.4. Homogeneous vs infeasible interior-point methods

Version 2.3 also allows the user to employ homogeneous self-dual algorithms
instead of the usual infeasible interior-point methods. However, this option al-
most always took longer than the default choice, and so it has been omitted
from the current release. One theoretical advantage of the homogeneous self-
dual approach is that it is oriented towards either producing optimal primal and
dual solutions or generating a certificate of primal or dual infeasibility, while
the infeasible methods strive for optimal solutions only, but detect infeasibil-
ity if either the dual or primal iterates diverge. However, in our limited testing
on randomly generated infeasible problems, we have observed no advantage to
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SDPT3-3.0 vs. SDPT3-2.3:NT
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Figure 2. Comparing SDPT3-3.0 and SDPT3-2.3 using the NT search direction. Bars above
the axis demonstrate a win for 3.0.

the homogeneous methods in detecting infeasibity. We should mention, however,
that SDPT3-3.0 does not detect infeasibility in the problem filtinf1, but in-
stead stops with a primal near-feasible solution and a dual feasible solution when
it encounters numerical problems.

5.5. Presentation of problems

We note that qpG11 and qpG112, and similarly qpG51 and qpG512, are basically
the same problem, but in the second version the linear variables are explicitly
identified, rather than being part of a large sparse semidefinite block. The im-
provement in running time is dramatic: a factor of three to five. It is thus crucial
to present problems to the algorithms correctly. Unfortunately the versions of
gpG11 and gpG51 in SDPLIB do not show this structure explicitly. SDPT3-3.0
provides a preprocessor routine called detect_diag.m that can be executed to
detect such structures.

We also remark that the computation of the Lovasz theta function for a graph
can be expressed as a semidefinite programming problem in two ways, and one
of these is much more compact than the other, requiring a linear constraint
only for each edge of the graph rather than also for each node, and so the
problems thetaG11n and thetaG51n are much easier to solve than thetaG11 and
thetaG51, here by a factor up to three, although they are alternative semidefinite
formulations of the same graph-theoretic problem for the same graphs.
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HKM vs. NT: SDPT3-3.0 (problems with semidefinite blocks)
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Figure 3. Comparing the HKM and NT search directions in SDPT3-3.0 for problems that
have semidefinite blocks. Bars above the axis demonstrate a win for the HKM direction.

Finally, SDPT3-2.3 includes specialized routines to compute the Schur com-
plement matrices directly for certain classes of problem (e.g., maxcut problems).
In earlier versions of SDPT3, these specialized routines had produced dramatic
decreases in solution times, but for SDPT3-2.3, these gains are marginal, since
our general sparse matrix routines provide almost as much speedup. We have
therefore dropped these routines in SDPT3-3.0.

5.6. Accuracy problems

The accuracy of the solutions obtained by SDPT3-3.0 on several of the prob-
lems with second-order cone constraints is less than ideal. While our current
implementation may have inherent limitations to solve such problems with high
accuracy, the structure of some of these problems contribute to the accuracy
problems SDPT3-3.0 faced on them. Many of these problems, including the prob-
lems from the antenna set (nb, nb-L1, nb-L2, and nb-L2-bessel), from the
nql set (nq130, nql3001d, etc.) and the gssp set (qssp30, gssp300ld, etc.), are
reformulations of problems with variables that are unrestricted in sign. In these
problems, free variables are represented as the difference of two nonnegative vari-
ables to fit the problem into the standard form conic optimization framework.
This transformation has some well-known unpleasant consequences for interior-
point algorithms. The primal optimal face is unbounded (when nonempty), the
dual feasible set does not have an interior, and there is no central path. For most
of these problems, SDPT3-3.0 generates diverging iterates and this creates nu-
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HKM vs. NT: SDPT3-3.0 (no semidefinite block)
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Figure 4. Comparing the HKM and NT search directions in SDPT3-3.0 for problems with
quadratic blocks and no semidefinite blocks. Bars below the axis demonstrate a win for the
NT direction.

merical difficulties as the algorithm progresses. Preliminary experiments showed
that free-variable handling techniques that are commonly used in LP solvers can
alleviate many of the accuracy problems we observed and such techniques will
be included in future releases of our code.

6. Conclusion

Linear optimization problems involving cone constraints (e.g., positive semidef-
initeness of variable matrices) continue to arise in a wide array of applications
ranging from engineering and control to combinatorial optimization and schedul-
ing. This paper describes computational experiments with a new version of
SDPT3, a MATLAB implementation of infeasible-start primal-dual path follow-
ing algorithms for the solution of such problems. Our experiments indicate that
SDPT3 is a very robust code for solving medium-sized semidefinite optimization
problems accurately and efficiently. The new version of SDPT3 is significantly
faster than the previous versions 2.2 and 2.3. We also observe that, when us-
ing the HKM direction one can often obtain similar quality solutions for SDPs
two-to-three times faster than when one uses the NT direction.

For problems with second-order (quadratic) cone constraints, experiments
indicate that there is room for improvement in SDPT3 — especially with regards
to the accuracy of the generated solutions. The efficiency of the two types of
search directions we use is reversed for SOCPs: Similar quality solutions can
often be obtained faster using the NT direction rather than the HKM direction.
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Overall, SDPTS3 finds its niche as an efficient high-quality solver for medium

sized semidefinite optimization problems.
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