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Abstract. This article considers continuous trajectories of the vector fields induced by primal-
dual potential-reduction algorithms for solving linear programming problems. It is known that these
trajectories converge to the analytic center of the primal-dual optimal face. We establish that this
convergence may be tangential to the central path, tangential to the optimal face, or in between,
depending on the value of the potential function parameter.
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1. Introduction. During the past two decades, interior-point methods (IPMs)
emerged as one of the most efficient and reliable techniques for the solution of linear
programming problems. The development of IPMs and their theoretical convergence
analyses often rely on certain continuous trajectories associated with the given linear
program. The best known examples of such trajectories are the central path and the
weighted centers–the sets of minimizers of the parametrized standard and weighted
logarithmic barrier functions in the interior of the feasible region.

Primal-dual variants of IPMs, which have been very successful in practical im-
plementations, not only solve the given linear program but also its dual. If both the
given LP and its dual have strictly feasible solutions the primal-dual central path
starts from the analytic center of the primal-dual feasible set and converges to the
analytic center of the optimal solution set. Similarly, weighted centers converge to
weighted analytic centers. This property of the central trajectories led to the devel-
opment of path following IPMs: algorithms that try to reach an optimal solution by
generating a sequence of points that are “close” to a corresponding sequence of points
on the central path (or the weighted central path) that converge to its limit point.

An alternative characterization of the central path and weighted centers can be
obtained by representing them as solutions of certain differential equations. Using this
perspective, Adler and Monteiro analyzed the limiting behavior of continuous trajec-
tories associated with primal-only affine-scaling and projective-scaling algorithms as
well as a primal-only potential-reduction method [1, 11, 12]. Kojima et al. studied
similar trajectories for primal-dual potential-reduction methods [7].

Potential-reduction algorithms use the following strategy: First, one defines a
potential function that measures the quality (or potential) of any trial solution of
the given problem combining measures of proximity to the set of optimal solutions,
proximity to the feasible set in the case of infeasible-interior-points, and a measure
of centrality within the feasible region. Potential functions are chosen such that one
approaches an optimal solution of the underlying problem by reducing the potential
function. Then, the search for an optimal solution can be performed by progressive
reduction of the potential function, leading to a potential-reduction algorithm. We
refer the reader to two excellent surveys for further details on potential-reduction
algorithms [2, 15].
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Often, implementations of potential-reduction interior-point algorithms exhibit
behavior that is similar to that of path-following algorithms. For example, they take
about the same number of iterations as path-following algorithms and they tend to
converge to the analytic center of the optimal face, just like most path-following
variants. Since potential-reduction methods do not generally make an effort to follow
the central path, this behavior is surprising. In an effort to better understand the
limiting behavior of primal-dual potential-reduction algorithms for linear programs
this paper studies continuous trajectories associated with the algorithm proposed by
Kojima, Mizuno, and Yoshise (KMY) [8], which uses scaled and projected steepest
descent directions for the Tanabe-Todd-Ye (TTY) primal-dual potential function [14,
16].

Using earlier results [9, 10, 7], we show that all trajectories of the vector field
induced by the KMY search directions converge to the analytic center of the primal-
dual optimal face. Our main results are on the direction of convergence for these
trajectories. We demonstrate that their asymptotic behavior depends on the poten-
tial function parameter. There is a threshold value of this parameter–the value that
makes the TTY potential function homogeneous. When the parameter is below this
threshold, the centering is too strong and the trajectories converge tangentially to
the central path. When the parameter is above the threshold, trajectories converge
tangentially to the optimal face. However, the direction of convergence of these tra-
jectories depends on the initial point. At the threshold value, the behavior of the
trajectories is in between these two extremes and depends on the initial point.

Following this introduction, Section 2 discusses continuous trajectories associated
with the KMY methods and proves their convergence. Section 3 is devoted to the
analysis of the limiting behavior of these trajectories. Our notation is fairly standard:
For an n-dimensional vector x, the corresponding capital letter X denotes the n× n
diagonal matrix with Xii ≡ xi. We will use the letter e to denote a column vector
with all entries equal to 1 and its dimension will be apparent from the context. We
also denote the base of the natural logarithm with e and sometimes the vector e and
the scalar e appear in the same expression, but no confusion should arise. For a given
matrix A, we use R(A) and N (A) to denote its range(column) and null space. For a
vector-valued differentiable function x(t) of a scalar variable t, we use the notation ẋ
or ẋ(t) to denote the vector of the derivatives of its components with respect to t. For
n dimensional vectors x and s, we write xs to denote their Hadamard (component-
wise) product. Also, for an n dimensional vector x, we write xp to denote the vector
Xpe, where p can be fractional if x > 0.

2. Primal-Dual Potential-Reduction Trajectories. We consider linear pro-
grams in the following standard form:

(LP ) minx cT x
Ax = b

x ≥ 0,
(2.1)

where A ∈ <m×n, b ∈ <m, c ∈ <n are given, and x ∈ <n. Without loss of generality
we assume that the constraints are linearly independent. Then, the matrix A has full
row rank. Further, we assume that 0 < m < n; m = 0 and m = n correspond to
trivial problems.
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The linear programming dual of this (primal) problem is:

(LD) maxy,s bT y
AT y + s = c

s ≥ 0,
(2.2)

where y ∈ <m and s ∈ <n. We can rewrite the dual problem by eliminating the y
variables in (2.2). This is achieved by considering GT , a null-space basis matrix for
A, that is, G is an (n − m) × n matrix with rank n − m and it satisfies AGT = 0,
GAT = 0. Note also that, AT is a null-space basis matrix for G. Further, let d ∈ <n

be a vector satisfying Ad = b. Then, (2.2) is equivalent to the following problem
which has a high degree of symmetry with (2.1):

(LD′) mins dT s
Gs = Gc

s ≥ 0.
(2.3)

Let F and F0 denote the primal-dual feasible region and its relative interior:

F := {(x, s) : Ax = b, Gs = Gc, (x, s) ≥ 0},
F0 := {(x, s) : Ax = b, Gs = Gc, (x, s) > 0}.

We assume that F0 is non-empty. This assumption has the important consequence
that the primal-dual optimal solution set Ω defined below is nonempty and bounded:

Ω := {(x, s) ∈ F : xT s = 0}.(2.4)

We also define the optimal partition B ∪N = {1, . . . , n} for future reference:

B := {j : xj > 0 for some (x, s) ∈ Ω},
N := {j : sj > 0 for some (x, s) ∈ Ω}.

The fact that B and N is a partition of {1, . . . , n} is a classical result of Goldman
and Tucker. The analytic center of Ω is the point (x∗, s∗) = ((x∗B, 0), (0, s∗N )) where
x∗B and s∗N are unique maximizers of the following problems:

max
∑

j∈B lnxj

ABxB = b
xB > 0,

and
max

∑
j∈N ln sj

GN sN = Gc
sN > 0.

(2.5)

The central path C of the primal-dual feasible set F is the set of points on which
the component-wise product of the primal and dual variables is constant:

C := {(x(µ), s(µ)) ∈ F0 : x(µ)s(µ) = µe, for some µ > 0}.(2.6)

The points on the central path are obtained as unique minimizers of certain barrier
problems associated with the primal and dual LPs and they converge to the analytic
center of the primal-dual optimal face; see, e.g., [18].

While the central path is the main theoretical tool in the construction of path-
following algorithms, primal-dual potential-reduction algorithms for linear program-
ming are derived using potential functions, i.e., functions that measure the quality
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(or potential) of trial solutions for the primal-dual pair of problems. The most fre-
quently used primal-dual potential function for linear programming problems is the
Tanabe-Todd-Ye (TTY) potential function [14, 16]:

Φρ(x, s) := ρ ln(xT s)−
n∑

i=1

ln(xisi), for every (x, s) > 0.(2.7)

When ρ > n, the TTY potential function diverges to −∞ along a feasible sequence
{(xk, sk)} only if this sequence is converging to a primal-dual optimal pair of solutions.
Therefore, the primal-dual pair of LP problems can be solved by minimizing the TTY
potential function.

Kojima, Mizuno, and Yoshise (KMY) developed a primal-dual algorithm that
monotonically reduces the TTY potential function using a scaled and projected steepest-
descent search direction using a primal-dual scaling matrix [8]. In the remainder of
this article, we will study continuous trajectories that are naturally associated with
their algorithm. Given an iterate (x, s) ∈ F0, the search direction used by the KMY
method is the solution of the following system:

A∆x = 0
G∆s = 0

S∆x + X∆s =
xT s

ρ
e− xs,

(2.8)

where X = diag(x), S = diag(s), and e is a vector of ones of appropriate dimension.
When we discuss the search direction given by (2.8) and associated trajectories, we
will assume that ρ > n.

For any given (x0, s0) ∈ F0, one can associate a trajectory {(x(t), s(t)) : t ≥ 0}
starting from (x0, s0) with the property that the tangent direction to the trajectory
at any of its points coincides with the KMY direction. In other words, we consider
trajectories that solve the following system of ordinary differential equations:

 A 0
0 G
S X

[
ẋ
ṡ

]
=


0
0

xT s

ρ
e− xs

 ,(2.9)

with the initial condition (x(0), s(0)) = (x0, s0). In [7, Section 4.3], Kojima et al.
study these trajectories and establish that their solution curves satisfy the following
system of equations:

Ax(t) = b, Gs(t) = Gc, x(t)s(t) = w(t), t ≥ 0,(2.10)

where

w(t) = e−tw0 + h(t)e, with w0 = x0s0, and,(2.11)

h(t) =
eT w0

n

(
exp {− (1− β) t} − e−t

)
with β =

n

ρ
.(2.12)

Since w(0) = w0, we will use these two expressions interchangeably. Kojima et al.
do not address the existence and uniqueness of the solutions to (2.9) rigorously, but
these results follow easily from standard theory of ordinary differential equations; see,
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e.g., Theorem 1 on p. 162 and Lemma on p. 171 of the textbook by Hirsch and
Smale [6]. We also note that Monteiro [12] studies trajectories based on primal-only
potential-reduction algorithms and obtains similar but less explicit descriptions of
these trajectories.

The characterization of the potential-reduction trajectories using the system (2.10)
leads to the following observations:

Theorem 2.1. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9)
with the initial condition (x(0), s(0)) = (x0, s0). Then, the following statements hold:

(i) For ρ > n, Φρ (x(t), s(t)) is a decreasing function of t.
(ii) When w0 = x0s0 = µe for some µ > 0 (i.e., when (x0, s0) is on the central

path) then {(x(t), s(t)) : t ≥ 0} is a subset of the central path C.
(iii) (x(t), s(t)) converges to the analytic center of the primal-dual optimal face Ω

as t →∞.
Proof. Lemma 4.14 in [7] proves (i). Observing that w0 = µe implies w(t) =

µe−(1−β)te with β = n
ρ , (ii) follows immediately from (2.6) and (2.10). For (iii), first

observe that w(t)
‖w(t)‖ →

e√
n

as t →∞. Now, the proof of Theorem 9 in [9] (or, Corollary
2 of Theorem 5 in [10]) immediately leads to (iii).

So, these trajectories converge to a unique point regardless of their starting point
as they monotonically decrease the potential function. Further, they include the
central path as a special case giving a theoretical basis for the observation that central
path-following search directions are often very good potential-reduction directions as
well. Another related result is by Nesterov [13] who observes that the neighborhood of
the central path is the region of fastest decrease for a homogeneous potential function.

A direct proof of (iii) in Theorem 2.1 can be obtained using the following result,
which will also be useful in the next section:

Lemma 2.2. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9) with
the initial condition (x(0), s(0)) = (x0, s0). Then xB(t) and sN (t) solve the following
pair of problems:

max
∑

j∈B wj(t) lnxj

ABxB = b−ANxN (t)
xB > 0,

and
max

∑
j∈N wj(t) ln sj

GN sN = Gc−GBsB(t)
sN > 0.

(2.13)

Proof. We prove the optimality of xB(t) for the first problem in (2.13)–the cor-
responding result for sN (t) can be proven similarly. xB(t) is clearly feasible for the
given problem. It is optimal if and only if there exists y ∈ <m such that

wB(t)x−1
B (t) = AT

By.

From (2.10) we obtain wB(t)x−1
B (t) = sB(t). Note that, for any s feasible for (LD’)

we have that c − s ∈ R(AT ) and therefore, cB − sB ∈ R(AT
B). Furthermore, since

s∗ = (0, s∗N ) is also feasible for (LD’) we must have that cB ∈ R(AT
B) and that

sB(t) ∈ R(AT
B). This is exactly what we needed.

3. Asymptotic Analysis of the Trajectories. In the previous section, we
saw that all primal-dual potential-reduction trajectories (x(t), s(t)) that solve the
differential equation (2.9) converge to the analytic center (x∗, s∗) of the primal-dual
optimal face Ω regardless of the initial point of the trajectory. In this section, we
investigate the direction of convergence for these trajectories. That is, we want to
analyze the limiting behavior of the normalized vectors

(
ẋ(t)
‖ẋ(t)‖ ,

ṡ(t)
‖ṡ(t)‖

)
. Inevitably,

this analysis is quite technical.
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Our strategy for this analysis is as follows. Using the optimal partition B and N
we express the “basic” components of the convergence directions of the trajectories
in terms of the “nonbasic” ones in Lemma 3.1. Then, we establish a bound on the
convergence speed of the “nonbasic” components in Lemma 3.3. The dependence of
the convergence direction on ρ, the potential function parameter, becomes apparent at
this point and a case analysis is required. Lemma 3.4, Theorems 3.5 and 3.6 consider
the case ρ ≤ 2n while Theorem 3.8 addresses the case ρ > 2n.

Let β = n
ρ and note that β ∈ (0, 1). We now introduce some notation:

ŵB(t) = wB(t)e(1−β)t, ŵN (t) = wN (t)e(1−β)t,

dB(t) = ŵ
1
2
B (t)x−1

B (t), dN (t) = ŵ
1
2
N (t)s−1

N (t),
DB(t) = diag (dB(t)) , DN (t) = diag (dN (t)) ,
d−1
B (t) = D−1

B (t)e, d−1
N (t) = D−1

N (t)e,
ÃB(t) = ABD−1

B (t), G̃N (t) = GND−1
N (t),

x̃B(t) = DB(t)ẋB(t) = dB(t)ẋB(t), s̃N (t) = DN (t)ṡN (t) = dN (t)ṡN (t),

uB(t) = ŵ
− 1

2
B (t)wB(0), uN (t) = ŵ

− 1
2

N (t)wN (0).

For our asymptotic analysis, we express “basic” components of the vectors ẋ(t) and
ṡ(t) in terms of the “nonbasic”ones in the next lemma which forms the backbone of
our analysis.

Lemma 3.1. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9) with
the initial condition (x(0), s(0)) = (x0, s0). Then, the following equalities hold:

DB(t)ẋB(t) = −Ã+
B (t)AN ẋN (t)− n · e−βt

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)

uB(t),(3.1)

DN (t)ṡN (t) = −G̃+
N (t)GBṡB(t)− n · e−βt

ρ (1− e−βt)

(
I − G̃+

N (t)G̃N (t)
)

uN (t).(3.2)

Here, Ã+
B (t) and G̃+

N (t) denote the pseudo-inverse of ÃB(t) and G̃N (t), respectively.
Proof. We only prove the first identity; the second one follows similarly. Recall

from Lemma 2.2 that xB(t) solves the first problem in (2.13). Therefore, as in the
proof of Lemma 2.2, we must have that

wB(t)x−1
B (t) ∈ R(AT

B).(3.3)

Differentiating with respect to t we obtain:

wB(t)x−2
B (t)ẋB(t)− ẇB(t)x−1

B (t) ∈ R(AT
B), or,

wB(t)x−1
B (t)ẋB(t)− ẇB(t) ∈ R(XB(t)AT

B).

Observe that

ẇB(t) = −wB(0)e−t + ḣ(t)eB = −wB(t) +
eT w0

ρ
e−(1−β)teB.

Therefore, from ŵB(t) = wB(t)e(1−β)t, we obtain

ŵB(t)x−1
B (t)ẋB(t) + ŵB(t)− eT w0

ρ
eB ∈ R(XB(t)AT

B).(3.4)
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From (3.3) it also follows that ŵB(t) ∈ R(XB(t)AT
B). Note also that,

eT w0

ρ
eB =

n

ρ (1− e−βt)
ŵB(t)− n · e−βt

ρ (1− e−βt)
wB(0).

Combining these observations with (3.4) we get

ŵB(t)x−1
B (t)ẋB(t) +

n · e−βt

ρ (1− e−βt)
wB(0) ∈ R(XB(t)AT

B).(3.5)

Next, observe that

ABẋB(t) = −AN ẋN (t).(3.6)

Using the notation introduced before the statement of the lemma, (3.5) and (3.6)
can be rewritten as follows:

x̃B(t) +
n · e−βt

ρ (1− e−βt)
uB(t) ∈ R(ÃT

B),(3.7)

ÃB(t)x̃B(t) = −AN ẋN (t).(3.8)

Let Ã+
B (t) denote the pseudo-inverse of ÃB(t) [3]. For example, if rank(ÃB(t))=m,

then Ã+
B (t) = ÃT

B(t)
(
ÃB(t)ÃT

B(t)
)−1

. Then, PR(ÃT
B) := Ã+

B (t)ÃB(t) is the orthogo-

nal projection matrix onto R(ÃT
B) and PN (ÃB) := I − Ã+

B (t)ÃB(t) is the orthogonal
projection matrix onto N (ÃB) [3]. From (3.8) we obtain

PR(ÃT
B)x̃B(t) = Ã+

B (t)ÃB(t)x̃B(t) = −Ã+
B (t)AN ẋN (t),

and from (3.7), using the fact that R(ÃT
B) and N (ÃB) are orthogonal to each other,

we get

PN (ÃB)x̃B(t) = − n · e−βt

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)

uB(t).

Combining, we have

x̃B(t) = PR(ÃT
B)x̃B(t) + PN (ÃB)x̃B(t)

= −Ã+
B (t)AN ẋN (t)− n · e−βt

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)

uB(t),

which gives (3.1).
To determine the convergence directions of the trajectories, we need to study the

relative convergence speeds of ẋB(t), ẋN (t), etc. Thus, we compute limits of some of
the expressions that appear in equations (3.1) and (3.2):

lim
t→∞

ŵB(t) =
eT w0

n
eB, lim

t→∞
ŵN (t) =

eT w0

n
eN ,(3.9)

lim
t→∞

DB(t) =

√
eT w0

n
(X∗

B)−1, lim
t→∞

DN (t) =

√
eT w0

n
(S∗N )−1,(3.10)

lim
t→∞

ÃB(t) =
√

n

eT w0
ABX∗

B, lim
t→∞

G̃N (t) =
√

n

eT w0
GNS∗N ,(3.11)

lim
t→∞

uB(t) =
√

n

eT w0
wB(0), lim

t→∞
uN (t) =

√
n

eT w0
wN (0).(3.12)
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Lemma 3.2.

lim
t→∞

Ã+
B (t) =

√
eT w0

n
(ABX∗

B)+(3.13)

lim
t→∞

G̃+
N (t) =

√
eT w0

n
(GNS∗N )+ .(3.14)

Proof. This result about the limiting properties of the pseudo-inverses is an
immediate consequence of Lemma 2.3 in [4] and equations (3.11).

Differentiating the identity

x(t)s(t) = w(t) = e−tw0 + h(t)e,

we obtain

x(t)ṡ(t) + ẋ(t)s(t) = −e−tw0 + ḣ(t)e

= −e−tw0 −
eT w0

n
(1− β) e−(1−β)te +

eT w0

n
e−te.(3.15)

Next, we will establish that ẋN (t) and ṡB(t) converge to zero no slower than exp{−(1−
β)t}. For this purpose, we consider the normalized direction vectors (x̂, ŝ) which are
defined as follows:

x̂(t) = exp {(1− β) t} ẋ(t), and ŝ(t) = exp {(1− β) t} ṡ(t).(3.16)

From (3.15) it follows that

x(t)ŝ(t) + x̂(t)s(t) = −eT w0

n
(1− β) e + e−βt

(
eT w0

n
e− w0

)
.(3.17)

The expression on the right-hand-side of (3.17) is clearly bounded. With some more
work, we have the following conclusion:

Lemma 3.3. Let (x̂(t), ŝ(t)) be as in (3.16) and assume that ρ > n. Then,
(x̂N (t), ŝB(t)) remains bounded as t tends to ∞.

Proof. We will prove that x(t)ŝ(t) and x̂(t)s(t) remain bounded as t →∞. Then,
since xB(t) and sN (t) converge to x∗B > 0 and s∗N > 0 respectively, and therefore, re-
main bounded away from zero, we can conclude that x̂N (t) and ŝB(t) remain bounded.

Since the right-hand-side of (3.17) is bounded as t tends to ∞, it is sufficient to
show that [x(t)ŝ(t)]T [x̂(t)s(t)] remains bounded below to conclude that both x(t)ŝ(t)
and x̂(t)s(t) have bounded norms as t →∞.

Let v(t) = x
1
2 (t)s

1
2 (t) = w

1
2 (t) and δ(t) = x

1
2 (t)s−

1
2 (t). Then,

x(t)ŝ(t) = v(t)δ(t)ŝ(t) and x̂(t)s(t) = v(t)δ−1(t)x̂(t).

Note that, [δ(t)ŝ(t)]T
[
δ−1(t)x̂(t)

]
= [δ(t)ṡ(t)]T

[
δ−1(t)ẋ(t)

]
= 0. Let V (t) = diag(v(t)),

∆(t) = diag(δ(t)), and W0 = diag(w0). Then, V 2(t) = X(t)S(t) = eT w0
n

(
e−(1−β)t − e−t

)
I+

e−tW0. Now,

[x(t)ŝ(t)]T [x̂(t)s(t)] = [v(t)δ(t)ŝ(t)]T
[
v(t)δ−1(t)x̂(t)

]
= [δ(t)ŝ(t)]T V 2(t)

[
δ−1(t)x̂(t)

]
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= e2(1−β)t [δ(t)ṡ(t)]T V 2(t)
[
δ−1(t)ẋ(t)

]
=

eT w0

n

(
e(1−β)t − e(1−2β)t

)
[δ(t)ṡ(t)]T

[
δ−1(t)ẋ(t)

]
+e(1−2β)t [δ(t)ṡ(t)]T W0

[
δ−1(t)ẋ(t)

]
= e−βt

[
e(1−β)t/2δ(t)ṡ(t)

]T

W0

[
e(1−β)t/2δ−1(t)ẋ(t)

]
.(3.18)

Recall from (3.9) that limt→∞ ŵj(t) = limt→∞ e(1−β)twj(t) = eT w0
n , ∀j. Therefore,

we have limt→∞
√

ŵj(t) = limt→∞ e(1−β)t/2vj(t) =
√

eT w0
n and defining

ṽ(t) = e(1−β)t/2

(
v(t)− v(t)T v(t)

ρ
v−1(t)

)
,

we have limt→∞ ṽj(t) = (1− β)
√

eT w0
n .

Now, recalling equation (2.8) we observe that the vectors e(1−β)t/2δ−1(t)ẋ(t) and
e(1−β)t/2δ(t)ṡ(t) are orthogonal projections of the vector −ṽ(t) into the null space of
A∆(t) and range space of [A∆(t)]T , respectively. Since we showed that the vector
ṽ(t) is convergent as t tends to ∞, both of these projections converge, and therefore,
the expression in (3.18) converges to zero. Thus, x(t)ŝ(t) and x̂(t)s(t) have bounded
norms as t →∞.

It is interesting that the conclusion of the lemma above holds for any ρ ≥ 0.
An alternative proof of Lemma 3.3 can be obtained using the proof technique in [5].
Combining equation (3.1), Lemmas 3.2 and 3.3 we obtain the following result:

Lemma 3.4. Let (x̂(t), ŝ(t)) be as in (3.16) and assume that n < ρ ≤ 2n. Then,
(x̂(t), ŝ(t)) remains bounded as t tends to ∞.

Proof. From (3.1) we have that

DB(t)x̂B(t) = −Ã+
B (t)AN x̂N (t)− n · e(1−2β)t

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)

uB(t).(3.19)

When, ρ ≤ 2n, the factor n·e(1−2β)t

ρ(1−e−βt)
is convergent as t tends to ∞. Now, using Lemma

3.2 and the equations (3.11)-(3.12), we conclude that the second term in the right-
hand-side of the equation above remains bounded. Combining this observation with
the the fact that x̂N (t) remains bounded as t tends to ∞, we obtain that DB(t)x̂B(t)
remains bounded. Using (3.10) we conclude that x̂B(t) is also bounded as t tends to
∞. The fact that ŝ(t) is bounded follows similarly.

Now, the following two results are easy to prove:
Theorem 3.5. Let (x̂(t), ŝ(t)) be as in (3.16). Then, we have that limt→∞ x̂N (t)

and limt→∞ ŝB(t) exist and satisfy the following equations:

lim
t→∞

x̂N (t) = −eT w0

n
(1− β) (s∗N )−1

,(3.20)

lim
t→∞

ŝB(t) = −eT w0

n
(1− β) (x∗B)−1

.(3.21)

Proof. From (3.17) we have that

xB(t)ŝB(t) + x̂B(t)sB(t) = −eT w0

n
(1− β) eB + e−βt

(
eT w0

n
eB − wB(0)

)
.
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Taking the limit on the right-hand-side as t → ∞ we obtain − eT w0
n (1 − β)eB. Since

sB(t) → 0 and x̂B(t) is bounded, we must then have that xB(t)ŝB(t) converges to
− eT w0

n (1 − β)eB. Since xB(t) → x∗B, it follows that limt→∞ ŝB(t) exists and satisfies
(3.21). The corresponding result for x̂N (t) follows identically.

Let

ξB = X∗
B (ABX∗

B)+ AN (s∗N )−1
, σN = S∗N (GNS∗N )+ GB (x∗B)−1

πB = X∗
B

(
I − (ABX∗

B)+ ABX∗
B

)
wB(0), πN = S∗N

(
I − (GNS∗N )+ GNS∗N

)
wN (0).

Observe that πB = 0 if and only if wB(0) ∈ R(X∗
BAT

B) which holds, for example,
when (x0, s0) is on the central path and w(0) = µe for some µ > 0–the observation
that e ∈ R(X∗

BAT
B) follows easily from the optimality of x∗B for the first problem in

(2.5). Similarly, πN = 0 if and only if wN (0) ∈ R(S∗NGT
N ).

Theorem 3.6. Let (x̂(t), ŝ(t)) be as in (3.16) and assume that ρ ≤ 2n. Then, we
have that limt→∞ x̂B(t) and limt→∞ ŝN (t) exist. When ρ < 2n we have the following
identities:

lim
t→∞

x̂B(t) =
eT w0

n
(1− β) ξB,(3.22)

lim
t→∞

ŝN (t) =
eT w0

n
(1− β)σN .(3.23)

When ρ = 2n, the following equations hold:

lim
t→∞

x̂B(t) =
eT w0

2n
ξB −

n

2(eT w0)
πB,(3.24)

lim
t→∞

ŝN (t) =
eT w0

2n
σN − n

2(eT w0)
πN .(3.25)

Proof. Recall equation (3.19). When ρ < 2n, the second term on the right-hand-
side converges to zero since e(1−2β)t tends to zero and everything else is bounded.
Thus, using (3.10) and (3.11) we have limt→∞ x̂B(t) = −X∗

B (ABX∗
B)+ AN limt→∞ x̂N (t)

and (3.22) is obtained using Theorem 3.5. Similarly, one obtains (3.23).
When ρ = 2n, the factor in front of the second term in (3.19) converges to the

positive constant β = 1
2 . Therefore, using Theorem 3.5 and equations (3.9)–(3.12) we

get (3.24) and (3.25).
Limits of the normalized vectors

(
ẋ(t)
‖ẋ(t)‖ ,

ṡ(t)
‖ṡ(t)‖

)
are obtained immediately from

Theorems 3.5 and 3.6:
Corollary 3.7. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9)

with the initial condition (x(0), s(0)) = (x0, s0) with (x0, s0) ∈ F0 and assume that
ρ ≤ 2n. All trajectories of this form satisfy the following equations:

lim
t→∞

ẋ(t)
‖ẋ(t)‖

=
qP

‖qP ‖
, lim

t→∞

ṡ(t)
‖ṡ(t)‖

=
qD

‖qD‖
(3.26)

where

qP =
[

ξB
− (s∗N )−1

]
, and qD =

[
− (x∗B)−1

σN

]
, if ρ < 2n,(3.27)

qP =

[
ξB −

(
n

eT w0

)2

πB

− (s∗N )−1

]
, and qD =

[
− (x∗B)−1

σN −
(

n
eT w0

)2

πN

]
, if ρ = 2n.
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When ρ = 2n the TTY potential-function Φρ(x, y) is a homogeneous function and
exp{Φρ(x, y)} is a convex function for all ρ ≥ 2n [17]. The value 2n also represents a
threshold value for the convergence behavior of the KMY trajectories. When ρ = 2n
the direction of convergence depends on the initial point (x0, s0) ∈ F0 as indicated
by the appearance of the w0 = x0s0 terms in the formulas. We note that, when
ρ < 2n the asymptotic direction of convergence does not depend on the initial point
and is identical to that of the central path. Therefore, when ρ < 2n all trajectories of
the vector field given by the search direction of the Kojima-Mizuno-Yoshise’s primal-
dual potential-reduction algorithm converge to the analytic center of the optimal face
tangentially to the central path. We show below that the asymptotic behavior of the
trajectories is significantly different when ρ > 2n:

Theorem 3.8. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9)
with the initial condition (x(0), s(0)) = (x0, s0) and assume that ρ > 2n. Define

x̄(t) = eβtẋ(t), and s̄(t) = eβtṡ(t).(3.28)

If πB 6= 0 and πN 6= 0, then we have that limt→∞ x̄(t) and limt→∞ s̄(t) exist and
satisfy the following equations:

lim
t→∞

x̄(t)
‖x̄(t)‖

=
qP

‖qP ‖
, and lim

t→∞

s̄(t)
‖s̄(t)‖

=
qD

‖qD‖
,(3.29)

where

qP =
[
−πB
0N

]
, and qD =

[
0B
−πN

]
.

Proof. From (3.1) we have that

DB(t)x̄B(t) = −Ã+
B (t)AN x̄N (t)− n

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)

uB(t).(3.30)

Note that, x̄N (t) = e−(1−2β)tx̂N (t). Since x̂N (t) is bounded and −(1 − 2β) < 0,
we conclude that x̄N (t) → 0. Therefore, using equations (3.30) and (3.9)–(3.12) we
observe that x̄B(t) converges to a positive multiple of −πB 6= 0 and immediately
obtain the first equation in (3.29). The second identity in (3.29) is obtained similarly.

This final theorem indicates that when ρ > 2n, most trajectories associated with
the Kojima-Mizuno-Yoshise algorithm converge to the analytic center of the optimal
face tangentially to the optimal face and their direction of convergence depends on
the initial point. In the exceptional case of πB = 0 or πN = 0 (for example, when
(x0, s0) is on the central path), the last term in (3.30) no longer dominates the right-
hand-side and in such cases we conjecture that the trajectory converges tangentially
to the central path.

We conclude by noting the similarity of our asymptotic results to those of Mon-
teiro [12]. In his analysis of the trajectories based on primal-only potential-reduction
algorithms, Monteiro also finds that there is a threshold value of the potential func-
tion parameter that leads to different asymptotic behavior. In his case, this threshold
value is 2 |N | rather than 2n, where |N | denotes the cardinality of the set N from
the optimal partition of {1, . . . , n}. Just like our case, when the potential function



12 REHA H. TÜTÜNCÜ

parameter is above this value, his trajectories converge tangentially to the central
path and below the threshold the convergence is tangential to the optimal face.
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