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Abstract

We present a new approach to estimate the risk-neutral probability
density function (pdf) of the future prices of an underlying asset from
the prices of options written on the asset. The estimation is carried
out in the space of cubic spline functions, yielding appropriate smooth-
ness. The resulting optimization problem, used to invert the data and
determine the corresponding density function, is a convex quadratic
or semidefinite programming problem, depending on the formulation.
Both of these problems can be efficiently solved by numerical optimiza-
tion software.

In the quadratic programming formulation the positivity of the
risk-neutral pdf is heuristically handled by posing linear inequality
constraints at the spline nodes. In the other approach, this property
of the risk-neutral pdf is rigorously ensured by using a semidefinite pro-
gramming characterization of nonnegativity for polynomial functions.

We tested our approach using data simulated from Black-Scholes
option prices and using market data for options on the S&P 500 Index.
The numerical results we present show the effectiveness of our method-
ology for estimating the risk-neutral probability density function.
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1 Introduction

The risk-neutral probability measure is a fundamental concept in arbitrage
pricing theory. By definition, a risk-neutral probability measure (RNPM)
is a measure under which the current price of each security in the economy
is equal to the present value of the discounted expected value of its future
payoffs given a risk-free interest rate. Fundamental theorems of asset pricing
indicate that RNPMs are guaranteed to exist under an assumption of no
arbitrage.

If a unique RNPM on the space of future states of an economy is given,
we can price any security for which we can determine the future payoffs for
each state in the state space. Therefore, a fundamental problem in asset
pricing is the identification of a risk neutral probability measure. While the
dynamics of an economy and the parameters for its stochastic models are not
directly observable, one can infer some information about these dynamics
from the current prices of the securities in this economy. In particular, one
can extract one or more implied risk-neutral densities of the future price
of a security that are consistent with the prices of options written on that
security. When there are multiple RNPMs consistent with the observed
prices, one may try to choose the “best” one, according to some criterion.
We address this problem in this article using optimization models.

For a stock or index, the set of possible future states can be represented
as an interval or ray, discretized if appropriate or necessary. In most cases
the number of states in this state space is much larger than the number
of observed prices, resulting in a problem with many more variables than
equations. This underdetermined problem has many potential solutions and
we can not obtain an unique or sensible solution without imposing some
additional structure into the risk neutral probability measure we are looking
for.

The type of additional structure imposed has been the differentiating
feature of the existing approaches to the problem of identifying implied
RNPMs. These approaches can be broadly classified as parametric and non-
parametric techniques and are reviewed by Jackwerth [13], see also Section 2
below. Parametric methods choose a distribution family (or a mixture of
distributions) and then try to identify the parameters for these distributions
that are consistent with the observed prices [3, 16]. In non-parametric tech-
niques, one achieves more flexibility by allowing general functional forms
and structure is introduced either using prior distributions or smoothness
restrictions. Our approach fits into this last category and we ensure the
desired smoothness of the RNPM using spline functions.
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Spline functions are piecewise polynomial functions that assume a pre-
determined value at certain points (knots) and satisfy certain smoothness
properties. Other authors have also used spline fitting techniques in the
context of risk-neutral density estimation, see [1, 8]. In contrast to existing
techniques, we allow the displacement of spline knots in a superset of the set
of points corresponding to option strikes. The additional set of knots makes
our model flexible and we use this flexibility to optimize the fit of the spline
function to the observed prices. The basic formulation, without requiring
the nonnegativity of the risk-neutral probability density function (pdf), is a
convex quadratic programming (QP) problem.

Two strategies to impose the nonnegativity of the RNPM are presented
and discussed in this paper. The first and the simpler strategy is to require
the estimated pdf to remain nonnegative at the spline nodes. This scheme
keeps the structure of the problem since it brings only linear inequality
constraints to the basic formulation. However, there is no guarantee of
nonnegativity between the spline nodes. Our second approach replaces the
basic QP formulation with a semidefinite programming (SDP) formulation
but rigorously ensures the nonnegativity of the estimated pdf in its entire
domain. It is based on an SDP characterization of nonnegative polynomial
functions due to Bertsimas and Popescu [2] and requires additional variables
and linear equality constraints as well as semidefiniteness constraints on
some matrix variables. To our knowledge, this is the first spline function
approach to risk-neutral density estimation with a positivity guarantee.

The rest of this paper is organized as follows: In Section 2, we provide
the definition of RNPMs and briefly discuss some of the existing approaches.
In Section 3, we discuss our spline approximation approach to RNPMs and
develop our basic QP optimization model. The treatment of nonnegativity is
given in Section 4. Section 5 is devoted to a numerical study of our approach
both with simulated and market data. We provide a brief conclusion in
Section 6.

2 Risk-neutral probability measures and existing

approaches

We consider the following one-period economy: There are n securities whose
current prices are given by si

0 for i = 1, . . . , n. At the end of the current
period, the economy will be in one of the states from the state space Ω. If
the economy reaches state ω ∈ Ω at the end of the current period, security
i will have the payoff si

1(ω). We assume that we know all si
0’s and si

1(ω)’s
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but do not know the particular terminal state ω, which will be determined
randomly.

As an example of the set-up explained in the previous paragraph, we
consider a particular security (stock, index, etc.) and let the n securities
be financial options written on this stock. Here, Ω denotes the state space
for the terminal price of the underlying stock and si

1(ω) denotes the payoff
of the option i when the underlying stock price is ω at termination. For
example, if option i is a European call with strike price Ki to be exercised
at the end of the current period, we would have si

1(ω) = (ω − Ki)
+.

Next, we give a definition of RNPMs:

Definition 1 Consider the economy described above. Let r denote the one-
period (risk-free) interest rate. A risk neutral probability measure in the

• discrete case and on the state space Ω = {ω1, ω2, . . . , ωm} is a vector
of positive numbers p1, p2, . . . , pm such that

1.
∑m

j=1 pj = 1,

2. si
0 = 1

1+r

∑m
j=1 pjs

i
1(ωj), i = 1, . . . , n;

• continuous case and on the state space Ω = (a, b) is a density func-
tion p : Ω → IR+ such that

1.
∫ b
a p(ω)dω = 1,

2. si
0 = 1

1+r

∫ b
a p(ω)si

1(ω)dω, i = 1, . . . , n.

It is well known that the existence of a risk-neutral probability measure
is strongly related to the absence of arbitrage opportunities as expressed in
the First Fundamental Theorem of Asset Pricing (see [10]). We first give an
informal definition of arbitrage and then state this theorem:

Definition 2 An arbitrage is a trading strategy

• that has a positive initial cash flow and has no risk of a loss later, or

• that requires no initial cash input, has no risk of a loss, and a positive
probability of making profits in the future.

Theorem 1 A risk-neutral probability measure exists if and only if there
are no arbitrage opportunities.
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As we argued in the Introduction, since the payoffs of the derivatives
depend on the future values of the underlying asset, we can use the prices
of these derivatives to get information about the probability distribution of
the future values of the underlying. We can say that the prices of option
contracts contain some information about the market expectations, namely
a possible correspondence between the price of the underlying and its strike.

There are several approaches, reported in the literature, to derive risk-
neutral probabilities from options prices (see the surveys in [1], [3], [5], [13],
and [19]).

Among the methods developed to estimate the risk-neutral probability
measure we can specify: approximation function methods applied to the
probability density function, stochastic process methods for the underlying
asset, finite difference methods, approximating function methods applied
to the volatility smile, and implied binomial tree methods. In the next
paragraphs we provide a brief description of these methods. As we will see,
some of them assume a specific parametrized form for the density function on
the underlying asset and then try to identify the optimal parameters. Others
try to fit the data by a risk-neutral probability density function (pdf) with
unprescribed shape. Parametric methods derive the risk-neutral pdf’s from
a set of statistical distributions and the set of observational data. Non-
parametric methods infer those densities solely from the set of observational
data.

Approximating function methods applied to the probability density func-
tions assume that the risk-neutral density function has a predefined form,
such as a mixture of lognormals (see Bahra [3] and Mellick and Thomas [16]).
These methods use the option pricing formula (see Cox and Ross [9]), which
shows that the price of a call option is the discounted risk-neutral expected
value of the payoffs

C (t, T,K) = e−r(T−t)
∫ ∞

K
p(ω) (ω − K) dω. (1)

For put options we have

P (t, T,K) = e−r(T−t)
∫ K

−∞
p(ω) (K − ω) dω. (2)

Here, C (t, T,K) and P (t, T,K) are the prices of European calls and puts
at time t, respectively, with striking price K and expiring time T , r is the
risk-free interest rate, and p (ω) is the risk-neutral pdf for the value ω of the
underlying asset at time T . After replacing p (ω) by some predefined form,
the risk-neutral pdf can be estimated by minimizing the distance between
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the observed option prices and the prices produced by the formulas (1) and
(2).

Rather than assuming a parametric form for the risk-neutral pdf one
can consider a particular stochastic process for the prices of the underlying
asset. The analytical formula of the risk-neutral pdf is then derived from the
parameters of the stochastic process. The canonical example is the Black-
Scholes model [4] in which the geometric Brownian motion followed by the
underlying asset price implies a lognormal risk-neutral pdf.

It is shown in [6] that if one could obtain prices of puts and calls, with
the same expiration but different strike prices varying in IR, then one can de-
termine the risk-neutral distribution uniquely, since the second derivative of
the call function (1) with respect to the strike K is related to the probability
density function by:

∂2C (t, T,K)

∂K2
= e−r(T−t)p (K) . (3)

Breeden and Litzenberger [6] applied finite difference methods to approxi-
mate the second derivative in the left hand side, as a way to approximate
the risk-neutral pdf that appears in the right hand side.

Approximating function methods applied to the volatility smile try to fit
the implied volatility curves. This method was developed by Shimko [18].
First, the author used the Black-Scholes option pricing formula to obtain
implied volatilities from a set of observed option prices. Then a continuous
implied volatility function is fitted. The implied volatility function, given
by the Black-Scholes model, is used to derive a continuous option pric-
ing function. Finally, using (3) a probability density function is obtained.
Shimko [18] used a polynomial smoothing function for fitting the implied
volatility curves. Brunner and Hafner [7] first fit a curve to the smile be-
tween available strikes to obtain the corresponding portion of the pdf and
then extrapolate the tails of the pdf using mixtures of two log-normal dis-
tributions. Other authors like Campa et al. [8] or Anagnou et al. [1] have
used splines. Despite the use of the Black-Scholes model these methods do
not explicitly assume a lognormal risk-neutral pdf.

Implied binomial tree methods were used by Rubinstein [17]. First a
prior guess of the risk-neutral pdf for all possible states j = 1, ...,m is
established using binomial trees. These prior guesses p`

j are set according
to a lognormal distribution. The prices calculated by this process must fit
correctly the observed option prices. Rubinstein [17] achieved this goal by
minimizing the sum of the squared deviations between the probabilities pj
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that are being sought, and the priors p`
j :

min
m
∑

j=1

(

pj − p`
j

)2
(least squares fitting).

Jackwerth and Rubinstein [14] proposed different objective functions, such
as:

m
∑

j=1

(

pj − p`
j

)2

p`
j

(goodness of fit),

m
∑

j=1

∣

∣

∣pj − p`
j

∣

∣

∣ (`1 fitting),

−
m
∑

j=1

pj log

(

pj

p`
j

)

(maximum entropy),

and
m−1
∑

j=2

(pj−1 − 2pj + pj+1)
2 .

It was observed by Jackwerth and Rubinstein [14] that these criteria, as the
number of strikes increases, lead to similar risk-neutral pdf’s independently
of the values of the priors p`

j . Note also that the last criterion does not
assume a prior but instead it searches for a discrete approximation of a risk-
neutral pdf by minimizing an approximation to its second-order derivative
with respect to the underlying asset level (see the details in [14]).

3 The basic formulation using splines

As discussed in the Introduction, one of the desired structural properties
of a RNPM estimate is smoothness. The strategy developed in this section
guarantees appropriate smoothness of the risk-neutral pdf by estimating it
using cubic splines. The estimation is carried out by the solution of an
optimization problem where the optimization variables are the parameters
of the spline functions.

3.1 Splines

In this subsection, we recall the definition of spline functions. Consider a
function f : [a, b] → IR to be estimated by using its values f(xs) given on a
set of points xs, s = 1, . . . , ns + 1. It is assumed that x1 = a and xns+1 = b.
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Definition 3 A spline function, or spline, is a piecewise polynomial ap-
proximation S(x) to the function f such that the approximation agrees with
f on each node xs, i.e., S(xs) = f(xs), s = 1, . . . , ns + 1.

The graph of a spline function S contains the data points (xs, f(xs))
(called knots) and is continuous on [a, b]. A spline on [a, b] is of order q if (i)
its first q − 1 derivatives exist on each interior knot, (ii) the highest degree
for the polynomials defining the spline function is q.

A cubic (third order) spline uses cubic polynomials of the form fs(x) =
αsx

3 + βsx
2 + γsx + δs to estimate the function in each interval [xs, xs+1]

for s = 1, . . . , ns. A cubic spline can be constructed in such a way that it
has second-order derivatives at each node. For ns + 1 knots (x1, . . . , xns+1)
there are ns intervals and, therefore, 4ns unknown constants to evaluate. To
determine these 4ns constants we use the following conditions:

fs(xs) = f(xs), s = 1, . . . , ns, and fns(xns+1) = f(xns+1), (4)

fs−1(xs) = fs(xs), s = 2, . . . , ns, (5)

f ′
s−1(xs) = f ′

s(xs), s = 2, . . . , ns, (6)

f ′′
s−1(xs) = f ′′

s (xs), s = 2, . . . , ns, (7)

f ′′
1 (x1) = 0 and f ′′

ns
(xns+1) = 0. (8)

The last condition leads to a so-called natural spline.

3.2 The Quadratic Programing Formulation

We now formulate an optimization problem with the objective of finding a
risk-neutral pdf described by cubic splines for future values of an underlying
security that provides a best fit with the observed option prices on this
security.

For the security under consideration, we fix an exercise date, a range
[a, b] for possible terminal values of the price of the underlying security at
the exercise date of the options, and an interest rate r for the period between
now and the exercise date. The other inputs to our optimization problem
are market prices CK of call options and PK for put options on the chosen
underlying security, with strike price K and the chosen expiration date. Let
C and P, respectively, denote the set of strike prices K for which reliable
market prices CK and PK are available. For example, C may denote the
strike prices of call options that were traded on the day that the problem is
formulated.
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Next, we consider a super-structure for the spline approximation to the
risk-neutral pdf, meaning that we choose how many knots to use, where
to place the knots and what kind of polynomial (quadratic, cubic, etc.)
functions to use. For example, one may decide to use cubic splines as we
do in this paper and ns + 1 equally spaced knots. The parameters of the
polynomial functions that comprise the spline function will be the variables
of the optimization problem we are formulating. For cubic splines with
ns + 1 knots, we will have 4ns variables (αs, βs, γs, δs) for s = 1, . . . , ns.
Collectively, we will represent these variables by y ∈ IR4ns . For all y chosen
so that the corresponding polynomial functions fs satisfy the systems (5)-(8)
of the previous section, we will have a particular (natural) spline function
defined on the interval [a, b]. Let py(ω) denote this function. Note that we
do not impose the constraints given in (4) because the values of the pdf we
are approximating are unknown and will be the result of the solution of the
optimization problem.

By imposing the following additional restrictions we make sure that py

is a probability density function:

py(ω) ≥ 0, ∀ω ∈ [a, b], (9)
∫ b

a
py(ω)dω = 1. (10)

In practice the requirement (10) is easily imposed by including the following
constraint in the optimization problem:

ns
∑

s=1

∫ xs+1

xs

fs(ω)dω = 1. (11)

One can easily see that this is a linear constraint in the components (αs, βs,
γs, δs) of the optimization variable y. The treatment of (9) is postponed to
the next section and is ignored until the end of this section.

Next, we define the discounted expected value of the terminal value of
each option using py as the risk-neutral probability density function:

CK(y) =
1

1 + r

∫ b

a
py(ω)(ω − K)+dω, (12)

PK(y) =
1

1 + r

∫ b

a
py(ω)(K − ω)+dω. (13)

If py was the actual risk-neutral probability density function, the quantities
CK(y) and PK(y) would be the fair values of the call and put options with
strikes K. The quantity

(CK − CK(y))2
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measures the squared difference between the observed value and discounted
expected value considering py as the risk-neutral pdf. Now consider the
overall residual least squares function for a given y:

E(y) =
∑

K∈C

(CK − CK(y))2 +
∑

K∈P

(PK − PK(y))2. (14)

The objective now is to choose y such that E(y) is minimized subject
to the constraints already mentioned. The resulting optimization problem
is a convex quadratic programming problem corresponding to the following
formulation:

min
y

E(y) s.t. (5), (6), (7), (8), (11). (15)

3.3 Functions CK(y) and PK(y)

We now look at the structure of problem (15) in more detail. In particu-
lar, we evaluate the function CK(y). Consider a call option with strike K
such that x` ≤ K < x`+1. Recall that y denotes a collection of variables
(αs, βs, γs, δs) for s = 1, . . . , ns and that x1 = a, x2, . . . , xns , xns+1 = b rep-
resent the locations of the knots. The formula for CK(y) can be derived as
follows:

(1 + r)CK(y)

=

∫ b

a
py(ω)(ω − K)+dω

=
ns
∑

s=`

∫ xs+1

xs

py(ω)(ω − K)+dω

=

∫ x`+1

K
py(ω)(ω − K)dω +

ns
∑

s=`+1

∫ xs+1

xs

py(ω)(ω − K)dω

=

∫ x`+1

K

(

α`ω
3 + β`ω

2 + γ`ω + δ`

)

(ω − K)dω

+
ns
∑

s=`+1

∫ xs+1

xs

(αsω
3 + βsω

2 + γsω + δs)(ω − K)dω.

One can easily see that this expression for CK(y) is linear in the compo-
nents (αs, βs, γs, δs) of the optimization variable y. A similar formula can
be derived for PK(y). Another relevant aspect that should be pointed out is
that the formula for CK(y) will involve coefficients of the type x5

s which can,
and in fact does, make the Hessian matrix of the QP problem (15) severely
ill-conditioned.
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4 Guaranteeing nonnegativity

The simplest way to deal with the requirement of nonnegativity of the risk-
neutral pdf is to weaken condition (9), requiring the cubic spline approxi-
mation to be nonnegative only at the knots:

fs(xs) ≥ 0, s = 1, . . . , ns and fns(xns+1) ≥ 0. (16)

Then, the basic QP formulation changes to:

min
y

E(y) s.t. (5), (6), (7), (8), (11), (16). (17)

One can easily see that problem (17) is still a convex quadratic programming
problem, since (16) are linear inequalities in the optimization variables. The
drawback of this strategy is the lack of guarantee of nonnegativity of the
spline functions between the spline knots. This heuristic strategy proved
sufficient to obtain nonnegative pdf estimates in most of our experiments
some of which are reported in Section 5. However, in some instances pdf
estimates assumed negative values between knots. Since our aim is to esti-
mate a probability density function, estimates with negative values are not
acceptable.

In what follows, we develop an alternative optimization model where
the nonnegativity of the resulting risk-neutral pdf estimate is rigorously
guaranteed. The cost we must pay for this guarantee is an increase in the
complexity of the optimization problem. Indeed, the new model involves
semidefiniteness restrictions on some matrices related to new optimization
variables. While the resulting problem is still a convex optimization prob-
lem and can be solved with standard conic and semidefinite optimization
software (see, e.g., [20]), it is also more expensive to solve than a convex
QP.

The model we consider is based on necessary and sufficient conditions
for ensuring the nonnegativity of a single variable polynomial in intervals,
as well as on rays and on the whole real line. This characterization is due
to Bertsimas and Popescu [2] and is stated in the next proposition.

Proposition 1 (Proposition 1 (d),[2]) The polynomial g(x) =
∑k

r=0 yrx
r

satisfies g(x) ≥ 0 for all x ∈ [a, b] if and only if there exists a positive
semidefinite matrix X = [xij ]i,j=0,...,k such that

∑

i,j:i+j=2`−1

xij = 0, ` = 1, . . . , k, (18)
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∑

i,j:i+j=2`

xij =
∑̀

m=0

k+m−`
∑

r=m

yr

(

r
m

)(

k − r
` − m

)

ar−mbm, (19)

` = 0, . . . , k, (20)

X � 0. (21)

In the statement of the proposition above, the notation

(

r
m

)

stands for

r!
m!(r−m)! and X � 0 indicates that the matrix X is symmetric and positive

semidefinite. For the cubic polynomial fs(x) = αsx
3 + βsx

2 + γsx + δs we
have the following corollary:

Corollary 1 The polynomial fs(x) = αsx
3+βsx

2+γsx+δs satisfies fs(x) ≥
0 for all x ∈ [xs, xs+1] if and only if there exists a 4 × 4 matrix Xs =
[xs

ij]i,j=0,...,3 such that

xs
ij = 0, if i + j is 1 or 5,

xs
03 + xs

12 + xs
21 + xs

30 = 0,
xs

00 = αsx
3
s + βsx

2
s + γsxs + δs,

xs
02 + xs

11 + xs
20 = 3αsx

2
sxs+1 + βs(2xsxs+1 + x2

s)
+ γs(xs+1 + 2xs) + 3δs,

xs
13 + xs

22 + xs
31 = 3αsxsx

2
s+1 + βs(2xsxs+1 + x2

s+1)
+ γs(xs + 2xs+1) + 3δs,

xs
33 = αsx

3
s+1 + βsx

2
s+1 + γsxs+1 + δs,

Xs � 0.

(22)

Observe that the positive semidefiniteness of the matrix Xs implies that
the first diagonal entry xs

00 is nonnegative, which corresponds to our earlier
requirement fs(xs) ≥ 0. In light of Corollary 1, we see that introducing the
additional variables Xs and the constraints (22), for s = 1, . . . , ns, into the
earlier quadratic programming problem (15), we obtain a new optimization
problem which necessarily leads to a risk-neutral pdf that is nonnegative in
its entire domain. The new formulation has the following form:

min
y,X1,...,Xns

E(y) s.t. (5), (6), (7), (8), (11), [(22), s = 1, . . . , ns]. (23)

All constraints in (23), with the exception of the positive semidefiniteness
constraints Xs � 0, s = 1, . . . , ns, are linear in the optimization variables
(αs, βs, γs, δs) and Xs, s = 1, . . . , ns. The positive semidefiniteness con-
straints are convex constraints and thus the resulting problem can be refor-
mulated as a (convex) semidefinite programming problem with a quadratic
objective function.
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For appropriate choices of the vectors c, fi, gs
k, and matrices Q and Hs

k ,
we can rewrite problem (23) in the following equivalent form:

miny,X1,...,Xns c>y + 1
2y>Qy

s.t. f>
i y = bi, i = 1, . . . , 3ns,

Hs
k • Xs = 0, k = 1, 2, s = 1, . . . , ns,

(gs
k)

>y + Hs
k • Xs = 0, k = 3, 4, 5, 6, s = 1, . . . , ns,

Xs � 0, s = 1, . . . , ns,

(24)

where • denotes the trace matrix inner product.
We should note that standard semidefinite optimization software such as

SDPT3 [20] can solve only problems with linear objective functions. Since
the objective function of (24) is quadratic in y a reformulation is necessary
to solve this problem using SDPT3 or other SDP solvers. We replace the
objective function with min t where t is a new artificial variable and impose
the constraint t ≥ c>y + 1

2y>Qy. This new constraint can be expressed as
a second-order cone constraint after a simple change of variables; see, e.g.,
[15]. This final formulation is a standard form conic optimization problem
— a class of problems that contain semidefinite programming and second-
order cone programming as special classes. Since SDPT3 can solve standard
form conic optimization problems we used this formulation in our numerical
experiments.

5 Numerical experiments

In this section, we report some numerical experiments obtained with the
methodologies introduced in this paper to estimate the risk-neutral pdf,
namely the approaches that led to the formulation of problems (17) and (23).
We have applied the active set method provided by Matlab to solve the con-
vex QP problem (17) and the Matlab-based interior-point code SDPT3 [20]
to solve the SDP problem (23) (more precisely its reformulation described
at the end of the last section). The performance of these two approaches is
illustrated with two different data sets, one generated from a Black-Scholes
model and the other extracted from the S&P 500 Index.

In the problem formulations, we chose the number of knots not much
bigger than the number of strikes. The first knot a is smaller than the first
strike and the last knot b is bigger than the last strike. This assignment
guarantees that the range of the possible terminal values for the underlying
asset at maturity includes all strikes.
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Numerically, we solved scaled versions of both the QP problem (17) and
the SDP problem (24). The need for scaling the data of these problems
results from the fact that the Hessian matrix in (15), which appears in both
problems, is highly ill-conditioned, as we have already pointed out in Sec-
tion 3.3. Since the magnitude of ω plays a relevant role in the size of the
entries of this Hessian matrix, we used as our reference scaling factor the
average value of the components of the vector of the knots. Let us call this
average value xavg. Then each knot xs, s = 1, . . . , ns + 1, is scaled by xavg

and replaced by x′
s = xs/xavg. Such a scaling amounts at the end to scale

the variables αs, βs, γs, δs corresponding to the spline coefficients by, respec-
tively, a, b, c, d, whose values depend on xavg as well as on the expressions
for the integrations given in Section 3.3. The problem is then solved in the
scaled variables α′

s, β
′
s, γ

′
s, δ

′
s, s = 1, . . . , ns. We also multiply each term of

the objective function in (15) by 1/x2
avg. The unscaled solution is recovered

by the formulas (αs, βs, γs, δs) = (aα′
s, bβ

′
s, cγ

′
s, dδ′s), s = 1, . . . , ns.

5.1 Black-Scholes data

The first example corresponds to Black-Scholes options data generated using
the function blsprice provided by the Financial Toolbox of Matlab. This
function computes the value of the call or put option in agreement with the
Black-Scholes formula. To generate the data we must supply the current
value of the underlying asset, the exercise price, the risk-free interest rate,
the time to maturity of the option, the volatility, and the dividend rate.

The call and put option prices were generated considering 50 as the
current price for the underlying asset, 0.1 as the risk-free interest rate, a time
to maturity of 0.5, a volatility of 0.2, and no dividend rate. We considered
129 call options and 129 put options with strikes varying from 1 to 129
with increment 1. The number of knots was set to 131 and the knots were
equally spaced between 0.01 and 130. The risk-neutral pdf corresponding to
the prices generated from this data is known to be the following lognormal
density function

p(ω) =
1

ωσ
√

2π (T − t)
e
−

(ln(ω/S0)−(r−σ2/2)(T−t))
2

2σ2(T−t) ,

where r = 0.1, σ = 0.2, T − t = 0.5, and S0 = 50. This function is depicted
in solid lines in all the four plots of Figure 1.

We solved the scaled instances of problems (17) and (24) defined by the
Black-Scholes data and scaling reported above. The plots of the recovered
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probability density functions are depicted in Figure 1 (left) for both prob-
lems.

In our formulations, the Hessian matrix is known to be positive semi-
definite. However, it is also highly rank-deficient and, due to round-off
errors, it exhibits small negative eigenvalues, around −10−18. These nega-
tive eigenvalues proved to be troublesome for Matlab’s active set QP. The
scaling reduced significantly the ill-conditioning of this matrix, allowing a
relatively accurate eigenvalue computation. We have modified the Hessian
matrix, by adding a multiple ξ of the identity to the scaled Hessian matrix,
using as coefficient ξ = (3/5)|λmin|104. Under this modification, the modi-
fied scaled Hessian becomes numerically positive definite. This choice for ξ
approximately provided the best fit to the lognormal shape.

In both QP and SDP cases, the recovered pdf obtained with Hessian
modification approximately exhibited the desired lognormality property. It
can be seen from both plots that the pdf computed is slightly less positively
skewed than the lognormal one. We also observe at the ends that the recov-
ered pdf’s started deviating from the lognormal flatness. Finally, we point
out that the expected prices of the call options computed using the recov-
ered risk-neutral pdf adjusted relatively well to the Black-Scholes prices (see
right plots of Figure 1).

5.2 S&P 500 data

The other data was obtained from publicly available market data. We col-
lected information related to European call and put options on S&P 500
Index traded in the Chicago Board of Options Exchange (CBOE) on April
29, 2003 with maturity on May 17 (data set 1), on March 24, 2004 with
maturity on April 17 (data set 2), and on March 24, 2004 with maturity on
June 17 (data set 3). We chose this market because it is one of the most
dynamic and liquid options markets in the world.

The interest rate was obtained from the Federal Reserve Bank of New
York. We considered a Treasury Bill with time to expiration as closest as
possible to the time of expiration of the options.

5.2.1 Preprocessing the data

As indicated in Section 2, a risk-neutral probability measure exists if and
only if there are no arbitrage opportunities. It is possible, however, to ob-
serve arbitrage opportunities in the prices of illiquid derivative securities.
These prices do not reflect true arbitrage opportunities — once these secu-
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Figure 1: Recovered probability density functions from data generated by
a Black-Scholes model using QP and SDP approaches (left plots). Fitted
recovered expected prices for both approaches (right plots).

rities start trading, their prices will be corrected and arbitrage will not be
realized.

Still, in order to have meaningful solutions for the optimization problems
that we formulated in the previous sections, it is necessary to use prices in
these optimization models which contain no arbitrage opportunities. Thus,
before solving these problems we need to eliminate prices with arbitrage vi-
olations such as absence of monotonicity. The following theorem establishes
necessary and sufficient conditions for the absence of arbitrage in the prices
of European call options with concurrent expiration dates:

Theorem 2 (Herzel [12]) Let K1 < K2 < · · · < Kn denote the strike
prices of European call options written on the same underlying security with
the same maturity, and let Ci denote the current prices of these options.
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These securities do not contain any arbitrage opportunities if and only if
the prices Ci satisfy the following conditions:

1. Ci > 0, i = 1, . . . , n.

2. Ci > Ci+1, i = 1, . . . , n − 1.

3. The piecewise linear function C(K) with break-points at Ki’s and sat-
isfying C(Ki) = Ci, i = 1, . . . , n, is strictly convex in [K1,Kn].

Theorem 2 provides us with a simple mechanism to eliminate “artificial”
arbitrage opportunities from the prices we use. In our numerical experi-
ments, after gathering price data for call and put options from the S&P
500 Index, we first eliminated options whose prices were outside the ask-bid
interval, and then we generated call option prices from each one of the put
option prices using the put-call parity. In cases where there was already a
call option with a matching strike price, in the event that the price of the
traded call option did not coincide with the price obtained from the put
option price using put-call parity, we used the price corresponding to the
option with the higher trading volume. After obtaining a fairly large set
of call option prices in this manner, we tested for monotonicity and strict
convexity in these call prices as indicated by Theorem 2. After the prices
that violated these conditions had been removed, we formulated and solved
the optimization problems as outlined in Section 4.

In order to guarantee the quality of the data we collected another piece
of information related to the market options: the trading volume (see [11]).
It is known that end-of-day settlement prices can contain options that are
not very liquid and these prices may not reflect the true market prices.
Inaccurate prices are usually related to less traded options. In contrast,
options with higher volume represent better the “market sentiment” and
the investors expectations. We experimented to incorporate the trading
volume in our problem formulation by modifying the objective function of
problems (17) and (24) in the following way:

∑

K∈C

θK [(CK − CK(y))]2 +
∑

K∈P

µK [(PK − PK(y))]2.

Here θK is the ratio between the trading volume for the option CK and the
trading volume for all options:

θK =
trading volume for CK

trading volume for all call options
.
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The weight µK is defined similarly for put options. Note that options with
zero volume have a weight equal to zero. However, we observed that the
effect of incorporating this type of weighting after eliminating arbitrage was
relatively minor.

5.2.2 Results

The results are presented for the three data sets mentioned before, in a
manner similar to the Black-Scholes case. In the first data set (Figure 2) the
original number of calls and puts was 40 each. After eliminating arbitrage
opportunities we reduced the problem dimension to 24 calls for which we
considered 36 knots. In the second data set (Figure 3) the original number
of calls and puts was 38 each. After eliminating arbitrage opportunities
we reduced the problem dimension to 24 calls for which we considered 32
knots. Finally, in the third data set (Figure 4) the original number of calls
and puts was 29 each. After eliminating arbitrage opportunities we reduced
the problem dimension to 14 calls for which we considered 23 knots.

The upper plots of Figures 2, 3, and 4 correspond to the QP approach
whereas the lower ones were obtained by SDP. The Hessian modification has
been done by adding ξI to the scaled Hessian matrix, choosing the reference
value ξ = (3/5)|λmin|104 adjusted for the Black-Scholes data.

The recovered probability density functions are slightly negatively skewed,
as opposed to what happened in the Black-Scholes case. This behavior is ex-
pected according to some authors and to what is known about the behavior
of the risk-neutral pdf after the crash of 1987 (see [14]).

We have observed that the pdf estimated using the QP model and the
Hessian modification assumes small negative values at the higher tail of
the distribution, roughly between 1050 and 1100 (Figure 2), between 890
and 925 (Figure 3), and between 1380 and 1480 (Figure 4). As prescribed,
the semidefinite optimization model corrects this behavior and obtains a
nonnegative pdf estimate.

Finally, we point out that the expected prices of the call options com-
puted using the recovered risk-neutral pdf adjusted relatively well to the
S&P 500 prices (see right plots of Figures 2, 3, and 4).

6 Concluding remarks

We have developed and tested a new way of recovering the risk-neutral prob-
ability density function (pdf) of an underlying asset from its corresponding
option prices. Our approach is nonparametric and uses cubic splines. The
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Figure 2: Recovered probability density functions from S&P 500 Index data
using QP and SDP approaches (left plots). Fitted recovered expected prices
for both approaches (right plots). Data set 1.

core inversion problem is a quadratic programming (QP) problem with a
convex objective function and linear equality constraints.

To guarantee the nonnegativity of the inverted risk-neutral pdf we fol-
lowed two alternatives. In the first one we kept the QP structure of the
core problem, adding linear inequalities that reflect only the nonnegativity
of this pdf at the spline nodes. The second one extends the nonnegativity
requirement to the entire domain of the recovered pdf by imposing appro-
priate semidefinite constraints. In the examples tested, we observed that
the QP approach is less sensitive to scaling than the semidefinite program-
ming (SDP) approach. While the simpler QP approach is generally sufficient
to recover an appropriate risk-neutral pdf both with simulated and market
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Figure 3: Recovered probability density functions from S&P 500 Index data
using QP and SDP approaches (left plots). Fitted recovered expected prices
for both approaches (right plots). Data set 2.

data, there are instances where the solution of the more difficult SDP model
is necessary to obtain a nonnegative pdf estimate.

We plan to investigate the numerical estimation of the volatility based on
the knowledge of the previously estimated risk-neutral pdf. Another topic
of future research is to consider uncertainty in the data and to study the
robust solution of the corresponding uncertain QP and SDP problems.
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