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Abstract

For risky financial securities with given expected return vector and covariance
matrix, we propose the concept of a robust profit opportunity in single and multiple
period settings. We show that the problem of finding the “most robust” profit oppor-
tunity can be solved as a convex quadratic programming problem, and investigate
its relation to the Sharpe ratio.
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1 Introduction and Background

Existence and exclusion issue of arbitrage in financial markets is a well studied area of
mathematical finance treated at different levels of detail in several research monographs
and textbooks; see e.g., [5, 10, 13].

The purpose of the present paper is (1) to introduce a novel concept related to arbitrage
which we call a robust profit opportunity for risky financial contracts (or, securities for
short) when the investor has access to the expected return and standard deviation data
(or, perhaps an estimate thereof) of the securities, (2) to develop simple optimization
models that compute the most robust profit opportunities in single period and multi-
period investment environments, and, (3) to relate these ideas to the maximum Sharpe
ratio problem.

The main finance contribution of the paper is to propose a new investment concept
strongly related to arbitrage using partial probabilistic information, and to show that the
proposed model is computationally tractable as it involves the solution of convex quadratic
programs that are routinely and efficiently solved by polynomial-time interior point meth-
ods. In this sense, although we introduce a more general model than the classical discrete
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arbitrage model, computationally, the new model is, in theory and practice, no more dif-
ficult than the classical theory which involves the use of linear programming duality.

Consider a single-period decision environment with a set of n risky financial securities.
Let vi denote the period-end value of $1 invested in security i at the beginning of the
period. Let v = (v1, . . . , vn) ∈ Rn denote the vector of end-of-period values. Treating
v as a random vector, let us denote its expected value by v̄ and its n × n (symmetric,
positive semidefinite) matrix of variance/covariances by Q. We assume that v̄ is not a
positive multiple of e, the n-dimensional vector of ones to avoid degenerate cases. We
define r = v − e to be the vector of returns and r̄ = v̄ − e denotes its expected value.
Next, we let x ∈ Rn represent a portfolio of the n securities where xi corresponds to the
amount (in dollars) invested in security i. Then, for a given x the total investment in this
portfolio will be eT x =

∑
i xi and the value of the portfolio at the end of the period is a

random variable, namely, vTx.
Let ṽ be a particular realization of the random variable v revealed to the investor at

the end of the period. If the investor knew ṽ at the beginning of the period, she could
make money if there exists a portfolio x such that ṽT x ≥ 0, eT x < 0. In other words,
if there is a portfolio that can be formed with a negative investment and that achieves a
nonnegative value at the end of the period, the investor can make money. Of course, since
the first inequality depends on random quantities, such a portfolio does not represent an
arbitrage opportunity.

In contrast, a portfolio x that satisfies

v̄Tx ≥ 0, xT Qx = 0, eT x < 0, (1)

corresponds to an arbitrage opportunity since the condition Var(x) = xT Qx = 0 indicates
that the final portfolio value is actually non-random and equal to its nonnegative expected
value. If we assume that arbitrage opportunities do not exist, we conclude that the system
(1) must be inconsistent. Now, let us act as a conservative investor who recognizes that
a sure profit as in (1) is not possible but is seeking a highly likely profit opportunity at
the end of a single investment period. Further assume that the investor believes that a
random number is “rarely” less than its mean minus a positive scalar θ times its standard
deviation. In the absence of arbitrage, such an investor may be satisfied if the following
condition is satisfied:

There exists a portfolio x such that

v̄Tx − θ
√

xT Qx ≥ 0, eT x < 0. (2)

The quantity v̄Tx−θ
√

xT Qx is related to the notion of risk-adjusted return for the portfolio
x where θ corresponds to a measure of risk-aversion of the investor. It is also reminiscent
of the 2-sigma or 3-sigma engineering approach–these would correspond to choices of θ = 2
or θ = 3. As we argue below, the system (2) is related to the robust optimization approach
of Ben-Tal and Nemirovski [3, 2], and with this motivation we call portfolios satisfying
(2) robust profit opportunities with θ representing the level of robustness, and we call the
problem (3) below the maximum-θ robust profit opportunity problem.

We note that a weaker version of (2) is obtained by relaxing the strict inequality:
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There exists a portfolio x such that v̄T x − θ
√

xT Qx ≥ 0, eT x ≤ 0.

This relaxation is meaningful only with additional constraints since x = 0 is a feasible
vector for these inequalities for all values of θ .

To motivate the development of system (2) as in [3] let us assume that the future
values v1, v2, . . . , vn fall within the uncertainty intervals ∆i = [v̄i − σi, v̄i + σi]. Assume,
furthermore, that vi ’s are mutually independent and symmetrically distributed in ∆i with
respect to the mean value v̄i . For a fixed choice of portfolio holdings x, the end-of-period
portfolio value can be expressed as P =

∑n
i=1 v̄ixi + ς, where ς =

∑n
i=1 xi(vi − v̄i) has zero

mean and variance Var(ς) =
∑n

i=1 x2
i E{(vi − v̄i)

2} . Since the variance of vi is bounded
above by σ2

i one has Var(ς) ≤ V (x) ≡ ∑n
i=1 x2

i σ
2
i . Therefore, one can say that typically

the value of P will differ from the mean value of v̄T x by a quantity proportional to√
Var(ς) ≤

√
V (x), variations on both sides being equally probable. Therefore, choosing

a reliability coefficient θ and ignoring all events where the random future value is less

than v̄Tx − θ
√

V (x), one arrives at the robust profit opportunity definitions introduced
above. Notice that by ignoring the events where the future portfolio value is less than

v̄T x − θ
√

V (x), one accepts the fact that Prob(ς < −θ
√

V (x)) < e−θ2/2 as shown in

[4]. The right-hand side is getting already quite small (in the order of 10−7 for θ = 6)
quickly with increasing values of θ . Therefore, the larger the scalar θ , the smaller the risk.
Therefore, in Section 2 we will be looking for portfolios x that satisfy (2) for the largest
possible θ :

sup
θ,x

θ, s.t. v̄Tx − θ
√

xT Qx ≥ 0, eT x < 0. (3)

Notice that, in addition to being nonlinear and not differentiable everywhere, the first
constraint in (3) is non-convex in θ and x when θ is a variable and therefore (3) is a
non-convex optimization problem. Consequently, at first glance it appears that our model
is intractable. Exploiting the homogeneity of the constraints, we show below that this
problem can in fact be reduced to a convex quadratic programming problem and obtain a
closed form solution. We also derive extensions of our results to multi-period settings.

The rest of this paper is organized as follows. In the next few paragraphs, we present
some connections of our robust profit opportunity (RPO) model to existing literature.
In Section 2, we formulate the maximum-θ RPO problem, establish a convex quadratic
programming equivalent of this problem and demonstrate its solution. In Section 3, we
relate the maximum-θ RPO problem to the maximum Sharpe ratio problem. In Section 4
we develop a two-period RPO model without a riskless asset. Finally, a two-period model
including a riskless asset is studied in Section 5.

1.1 Connections to Previous Work

The current paper is built on an earlier work of the first author [12]. While this earlier
paper focused on the feasibility problem (2) for a fixed θ and analyzed the existence of
its solutions using conic duality, our focus here is on the optimization problem (3) and its
reduction to a convex quadratic programming problem.

An interesting connection exists between the concepts we introduced above and the
following well-known concepts, the Value-at-Risk formula [6, 7], chance constrained op-
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timization [15], and robust optimization paradigm of Ben-Tal and Nemirovski [3, 2]. In
fact, the present paper is motivated by the contributions of Ben-Tal and Nemirovski. Let
us begin by briefly reviewing the robust optimization approach. Our treatment in this
section closely follows Section 2.6 of [11].

We want to find a vector x ∈ Rn that satisfies vTx ≥ 0. This, of course, is an easy
task for any given v ∈ Rn . We consider a decision environment where v is not known
exactly, but is known to belong to an uncertainty set E . In this case, a “robust” version
of the inequality vT x ≥ 0 is the following system

vT x ≥ 0, for all v ∈ E . (4)

When E is an ellipsoidal uncertainty set, e.g., E = {v̄ + L̄u : ‖u‖2 ≤ 1} with v̄ ∈ Rn and
L̄ an n × k matrix, we have that (4) is equivalent to minv∈E vT x ≥ 0 = minu:‖u‖2≤1 v̄T x +

uT L̄T x ≥ 0. It is easy to see that the optimal u is given by u∗ = − L̄T x
‖L̄T x‖ . Letting

Q = 1
θ2 L̄L̄T , we see that the above inequality is identical to the first inequality in (2).

Alternatively, we can consider the assumption that the uncertain vector v is actually a
Gaussian random vector, with mean v̄ and covariance Q. We may require as in [15] that
the inequality vTx ≥ 0 should hold with a confidence level exceeding η , for some given

η ≥ 0.5, i.e., Prob(vTx ≥ 0) ≥ η. Defining u = vT x, ū = v̄T x, and σ =
√

xT Qx one can
normalize both sides of the inequality as follows:

Prob(
u − ū

σ
≥ −ū

σ
) ≥ η. (5)

Since u−ū
σ

is a zero mean, unit variance Gaussian random variable the above proba-
bility constraint is simply equivalent to −ū

σ
≤ Φ−1(1 − η) = −Φ−1(η) where Φ(z) =

1√
2π

∫ z
−∞ e−t2/2dt is the CDF of a zero mean, unit variance Gaussian random variable.

Now, the constraint (5) is nothing other than v̄T x−Φ−1(η)
√

xT Qx ≥ 0. Since we assumed

that η ≥ 0.5, Φ−1(η) is a non-negative scalar. The close resemblance to the first inequal-
ity of (2) is now obvious. The above tail probability concepts are also reminiscent of the
Value-at-Risk methodology used to limit the risk exposure of financial institutions [6]. A
recent study on portfolio optimization with the worst-case Value-at-Risk criterion using
conic programming is [7].

We can go one step further and ask that the inequality vT x ≥ 0 should hold with the
largest possible confidence level η , i.e., ask that the lower bound on Prob(vT x ≥ 0) is
maximized. Since the function Φ−1(η) is monotone increasing between 0 and 1, we obtain
a problem analogous to (3).

We note that there has been an intensive study of robust optimization formulations
for asset allocation problems in recent years, see, e.g., [11, 3, 7, 8]. While our approach
shares the intuitive notion of robustness with the models in these papers and is related
to Value-at-Risk and Sharpe-ratio maximization (see Section 3), our model differs signif-
icantly from these approaches. Unlike the robust optimization models mentioned above,
we do not consider the expected return and covariance information to be uncertain. We
take these values as given and certain and seek portfolios that provide a next best alter-
native to arbitrage opportunities. Our contributions lie in the conversion of the resulting
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seemingly intractable problems into convex quadratic programs whose analytic solutions
can be readily derived and, perhaps more importantly, in the extension of these results to
multi-period settings.

2 Minimum Risk Robust Profit Opportunities

Recall the maximum-θ RPO problem we formulated in the previous section:

supθ,x θ

v̄T x − θ
√

xT Qx ≥ 0

eT x < 0.

(6)

Now, we will transform this non-convex optimization problem into a convex quadratic
programming problem. For the remainder of this section, we assume that the matrix Q is
nonsingular, and hence is positive definite. This is essentially equivalent to assuming that
there are no redundant assets (those that can be perfectly replicated by the remaining
assets) or risk-free assets in the collection of securities we consider.

Since Q is positive definite, xT Qx > 0 for all nonzero x and therefore, v̄Tx −
θ
√

xT Qx ≥ 0 if and only if v̄T x√
xT Qx

≥ θ for all nonzero x. Therefore, the problem (6)

is equivalent to the following problem:

supx
v̄T x√
xT Qx

eT x < 0.
(7)

This is an optimization problem with a nonlinear, and possibly non-concave, objective
function. We note that if x is feasible for (7), then so is κx for any κ > 0, and the
objective function value is constant along such feasible rays. Since the objective function
and the constraint are homogeneous in x introducing a constraint that normalizes the
x variables will not affect the optimal value as long as the hyperplane defined by this
constraint intersects the cone of optimal solutions. This is similar to the technique used
by Goldfarb and Iyengar in solving the robust maximum Sharpe ratio problem [8].

Let us introduce the normalizing constraint v̄T x = 1. Since we assumed that v̄ is not
a positive multiple of e, there exists vectors x such that v̄T x > 0 and eT x < 0 and we can
conclude that the optimal objective value of (7) is positive. There are three possibilities:
(i) the optimal value is positive, bounded, and is achieved on the feasible set, (ii) the
optimal value is positive and bounded but is achieved only on the boundary of the (open)
feasible set, (iii) the objective function is unbounded above. In all three cases, adding the
constraint v̄T x = 1 does not alter the behavior of the solutions, i.e., either there exists an
optimal x∗ such that v̄Tx∗ = 1 in the feasible set or its closure, or there exists a sequence
of points xk such that v̄T xk = 1 and the objective function grows indefinitely as k → ∞ .
Consequently, the problem (7) is equivalent to

supx
v̄T x√
xT Qx

eT x < 0
v̄Tx = 1
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or
supx

1√
xT Qx

eT x < 0
v̄Tx = 1

or
infx

1
2
xT Qx

eT x < 0
v̄T x = 1

(8)

where we introduced the factor 1
2

for convenience. We formally state this equivalence in
the next proposition:

Proposition 1 The maximum-θ RPO problem (6) is equivalent to the convex quadratic
optimization problem (8). When optimal solutions exist, for any optimal solution (x∗, θ∗)
of (6) we have that 1

v̄T x∗x
∗ is optimal for (8), and for any optimal solution x∗ of (8) and

for any κ > 0 we have that (κx∗, v̄T x∗√
(x∗)T Qx∗ ) is optimal for (6).

Relaxing the strict inequality eT x < 0 in (8) to eT x ≤ 0, we obtain a standard convex
quadratic programming problem:

minx
1
2
xT Qx

eT x ≤ 0
v̄Tx = 1

(9)

Note that we are able to replace inf with min, since the continuous objective function
which tends to ∞ as ‖x‖ → ∞ will necessarily achieve its minimal value over the closed
feasible set. The optimality conditions of this problem are given next: x∗ is an optimal
solution for the relaxed problem (9) if and only if there exists scalars λ ≥ 0 and γ such
that

Qx∗ + λe − γv̄ = 0,
eT x∗ ≤ 0,

λ(eT x∗) = 0,
v̄T x∗ = 1.

(10)

Since Q is positive definite, the objective function is strictly convex and the optimal
solution is unique. Since we converted the strict inequality eT x < 0 in (8) to a loose
inequality, we are interested in characterizing the cases where the optimal solution to (9)
actually satisfy this inequality strictly. We have the following simple result:

Proposition 2 The unique optimal solution x∗ to (9) satisfies eT x∗ < 0 if and only if
eT Q−1v̄ < 0.

Proof: If eT Q−1v̄ < 0, we easily see that optimality conditions (10) are satisfied when
x∗ = 1

v̄T Q−1v̄
Q−1v̄ , λ = 0, and γ = 1

v̄T Q−1v̄
. Therefore, x∗ is the unique optimal solution

and eT x∗ = eT Q−1v̄
v̄T Q−1v̄

< 0.

Conversely, if eT x∗ < 0, from the complementarity equation in (10) we see that λ must
equal zero. Therefore, from the first equation we obtain x∗ = γQ−1v̄ , and substituting this
into the last equation in (10), we obtain γ = 1

v̄T Q−1v̄
. Then, eT x∗ = eT Q−1v̄

v̄T Q−1v̄
< 0 implies

that eT Q−1v̄ < 0.
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In the alternative case, i.e., when eT Q−1v̄ ≥ 0, we must have eT x∗ = 0. Using this
equation, we solve the optimality system (10) and obtain:

x∗ = γQ−1v̄ − λQ−1e, (11)

γ =
eT Q−1e

∆
, (12)

λ =
eT Q−1v̄

∆
, where (13)

∆ = (eT Q−1e)(v̄T Q−1v̄) − (eT Q−1v̄)2 > 0. (14)

The positivity of ∆ follows from the Cauchy-Schwartz inequality and the assumption that
e and v̄ are not collinear. Since ∆ is positive, both γ and λ are nonnegative.

In the case when eT Q−1v̄ ≥ 0, the optimal value of (6) is

v̄T x∗

(x∗)T Qx∗ =
1√
γ

=

√
v̄T Q−1v̄ − (eT Q−1v̄)2

eT Q−1e
. (15)

While this optimal value cannot be achieved in (6) we can get a feasible solution to (6)
whose objective value is arbitrarily close to the expression in (15). Similar statements hold
for problem (8); its optimal value, which is the same as that of (9) is not achieved but
we can get arbitrarily close to it. In fact, consider a vector δ that satisfies eT δ < 0 and
v̄T δ = 0. Then, the vector x(ε) = x∗ + εδ is feasible for (8) for all ε > 0 and its objective
value is Θ(ε) = εδT Qx∗ + 1

2
ε2δT Qδ away from the optimal objective value obtained in (9).

We summarize our results in this section in the following proposition:

Proposition 3 Consider the maximum-θ RPO problem given in (6). Assuming that Q
is positive definite and v̄ is not a multiple of e, the optimal value of this problem is given
as follows:

θ∗ =




√
v̄T Q−1v̄ if eT Q−1v̄ < 0,√
v̄T Q−1v̄ − (eT Q−1v̄)2

eT Q−1e
if eT Q−1v̄ ≥ 0.

In the first case, this optimal value is achieved for any positive multiple of x∗ = Q−1v̄ . In
the second case, the optimal value is not achieved but feasible perturbations of x∗ given in
(11) come arbitrarily close to this value.

3 Relation to the Sharpe Ratio

In this section we treat the case where there is a riskless security with return rf > 0
available for investment in addition to the n risky securities we considered above. Let
vf = 1 + rf denote the end-of-period value of $1 invested in the riskless security at the
beginning of the period. Since we are considering a riskless security, the full correlation
matrix is no longer positive definite but we still assume that the submatrix corresponding
to the risky securities is positive definite.
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Let us assume that the current price of the riskless security is $1. Then, zero-investment
portfolios can be constructed by purchasing the portfolio x after borrowing eT x dollars
at the riskless rate rf (or lending −eT x dollars if eT x < 0). We can represent such zero-
investment portfolios as (x,−eT x). Recalling that r̄ = v̄ − e denotes the expected return
vector for the risky securities, we observe that the expected return of this zero-investment
portfolio is r̄T x − rf(e

T x). A classical problem in finance is to find the zero-investment
portfolio with the highest expected return to standard deviation ratio (a scale invariant
quantity)–the so-called Sharpe ratio:

max
x

r̄T x − rf(e
T x)√

xT Qx
(16)

Let us call (16) the maximum Sharpe ratio problem. Since the objective function of this
problem is scale invariant, the canonical representation of the problem uses the normalizing
constraint eT x = 1 and has:

maxx
r̄T x−rf√

xT Qx
=

(r̄−rf e)T x√
xT Qx

eT x = 1.

Equivalently, this second representation can be obtained by letting xi denote the “propor-
tion of the portfolio invested in security i” rather than “dollars invested in security i”.
The vector (r̄ − rfe) represents the “risk premium” vector for the risky securities.

Now we relate the maximum-θ (RPO) problem to the maximum Sharpe-ratio problem.
Consider the maximum-θ RPO problem in this case. We have the variable vector x̃ =

(x, xf ), with expected value vector ṽ = [v̄; vf ] and covariance matrix Q̃ =

[
Q 0
0 0

]
. The

maximum-θ RPO problem is:

supx
ṽT x̃√
x̃T Q̃x̃

=
v̄T x+vf xf√

xT Qx

eT x̃ = eT x + xf < 0,

which, after relaxing the strict inequality, can be rewritten as:

maxx
v̄T x+vfxf√

xT Qx

eT x + xf ≤ 0.
(17)

Since Q is positive definite, we do not need to worry about division by zero in (17).
The problematic case of xT Qx = 0 occurs only when x = 0–all feasible solutions with
x = 0 have nonpositive objective values and can not be optimum and therefore can be
ignored. Note also that, for a fixed x the objective function is maximized by maximizing
xf . Therefore, for an optimal solution vector x̃ = (x, xf ) the constraint eT x+xf ≤ 0 will
always be tight and we can replace this inequality with an equality. Now, substituting
xf = −eT x, we obtain v̄Tx + vfxf = v̄T x − vf(e

T x) = (r̄ + e)T x − (1 + rf )(e
T x) =

r̄T x − rf(e
T x). Thus, (17) is equivalent to:

max
x

r̄T x − rf (e
T x)√

xT Qx

8



which is identical to (16). In other words, when the universe of investment options includes
a risk-free security, portfolios that are maximum-θ RPOs coincide with maximum Sharpe-
ratio portfolios. With this interpretation, we also conclude that when there are no risk-free
investment options, our characterization of “minimum risk” robust profit opportunities
represent a generalization of the maximum Sharpe-ratio portfolios.

4 A Two-Period Model

Our discussion on RPOs in the preceding sections focused on single-period models. Here
we extend the notion of RPOs to a two-period investment model. For ease of exposition
further extension of the ideas below in a setting with more than two periods is not included
here.

We consider the following setting. The investor will form a portfolio at time 0 that
she will hold until time 1 at which point she will be able to rebalance her portfolio in a
self-financing manner possibly incurring transaction costs and hold this new portfolio until
time 2. We use the following notation: Let v1

i denote the (random) time 1 value of $1
invested in security i at time 0. Similarly, let v2

i denote the (random) time 2 value of $1
invested in security i at time 1. Let x0

i and x1
i denote the dollars invested in security i

at times 0 and 1, respectively. Let v1 = [v1
1 , . . . , v1

n]T , define v2 , x0 , x1 similarly. Then,
the initial (time 0) value of the portfolio formed at time 0 is eT x0 . This portfolio has
value (v1)T x0 at time 1, before it is rebalanced. In the absence of transaction costs, the
self-financing constraint can be posed as

eT x1 = (v1)T x0.

Let v̄2 and Q2 denote the expected value vector and the covariance matrix for the
random vector v2 . Then, a two-period analog of the maximum-θ robust profit opportunity
problem can be posed as follows:

sup
θ,x0,x1

θ, s.t. eT x0 < 0, eT x1 = (v1)T x0, (v̄2)T x1 − θ
√

(x1)T Q2x1 ≥ 0. (18)

Unlike (6) in Section 2, this problem is not a deterministic optimization problem because of
the random v1 term in the equality constraint. However, at the time we need to choose x1 ,
we will have already observed this random quantity and therefore, the decision problem at
time 1 is a deterministic problem. This two-step decision process with a random constraint
was addressed in the adjustable robust optimization (ARO) models of Ben-Tal et al. [1, 9].
These models intend to choose the decision variables in such a way that the performance of
the system under the worst-case realization of the uncertain input parameters is optimized.
They are called “adjustable” since some of the variables can be chosen after the uncertain
parameters are observed.

Let U denote the set of all possible realizations of the random vector v1 . Then, the
ARO model for problem (18) can be written as follows:

sup
x0:eT x0<0

inf
v1∈U

sup
θ,x1

θ s.t. eT x1 = (v1)T x0, (v̄2)T x1 − θ
√

(x1)T Q2x1 ≥ 0. (19)
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To be able to solve this problem, let us first focus on the inner maximization problem.
Given α = (v1)T x0 , we want to solve

sup
θ,x1

θ s.t. eT x1 = α, (v̄2)T x1 − θ
√

(x1)T Q2x1 ≥ 0.

Let us assume as before that Q2 is positive definite. This assumption precludes the
availability of a risk-free security and will be removed in the next section. Given this
assumption, we can rewrite the above problem as

supx1
(v̄2)T x1√
(x1)T Q2x1

P (α) eT x1 = α.
(20)

Unlike (6), the constraint of (20) is not homogeneous in general. However, since the
objective function is a homogeneous function of x we still can use the approach outlined
in Section 2.

Let V (α) denote the optimal value of problem P (α). Consider an optimal solution
x∗(α) of P (α), assuming that it exists, for a fixed value of α . Now consider P (α̂) with
constraint right-hand-side α̂ = κα for any κ > 0. Since all feasible solutions for P (α) can
be scaled to obtain feasible solutions for P (α̂) and since these (positively) scaled solutions
will have identical objective values as the corresponding solutions to P (α), we immediately
conclude that κx∗(α) is an optimal solution for P (α̂). Furthermore, optimal values V (α)
and V (α̂) of these two problems coincide and therefore V (α) depends only on the sign of
α , not its magnitude. These statements continue to hold even when V (α) is not achieved.

Let us first consider the case when α < 0. From the argument in the previous paragraph
we conclude that if we are given an α < 0, problem (20) is equivalent to (7). Therefore,
using the results of Section 2, we conclude that for α < 0

V (α) =




√
(v̄2)T Q−1

2 v̄2 if eT Q−1
2 v̄2 < 0,√

(v̄2)T Q−1
2 v̄2 − (eT Q−1

2 v̄2)2

eT Q−1
2 e

if eT Q−1
2 v̄2 ≥ 0.

If α < 0 and eT Q−1
2 v̄2 < 0, the optimal solution to (20) is x∗ = α

eT Q−1
2 v̄2 Q

−1
2 v̄2 . If α < 0

but eT Q−1
2 v̄2 ≥ 0, the optimal value is not achieved but we can get arbitrarily close to this

value by considering solutions of the form x̂ + βx1 where eT x̂ = α , x1 is as in (11)–(14)
and with β tending to +∞ . To see this, one has to evaluate the limit limβ→∞ h(β) where

h(β) =
(v̄2)T (x̂ + β(γQ−1

2 v̄2 − λQ−1
2 e))√

(x̂ + β(γQ−1
2 v̄2 − λQ−1

2 e))T Q2(x̂ + β(γQ−1
2 v̄2 − λQ−1

2 e))

After substituting the expressions for γ and λ and some algebraic manipulation the above
limit simplifies to the following:

lim
β→∞

(v̄2)T x̂ + β√
x̂T Q2x̂(eT Q−1

2 e (v̄2)T Q−1
2 v̄2−((v̄2)T Q−1

2 e)2)+β(eT Q−1
2 e (v̄2)T x̂−2(v̄2)T Q−1

2 eα)+β2eT Q−1
2 e

eT Q−1
2 e (v̄2)T Q−1

2 v̄2−((v̄2)T Q−1
2 e)2

10



from which the desired conclusion easily follows.
Next, we consider the case when α > 0. In this case, problem (20) is equivalent to the

following problem obtained by flipping the direction of the constraint in (7):

supx
v̄T x√
xT Qx

eT x > 0.

Using analogous arguments to those in Section 2, we easily conclude that the optimal value
of this problem as well as of (20) is given as follows:

V (α) =




√
(v̄2)T Q−1

2 v̄2 if eT Q−1
2 v̄2 > 0,√

(v̄2)T Q−1
2 v̄2 − (eT Q−1

2 v̄2)2

eT Q−1
2 e

if eT Q−1
2 v̄2 ≤ 0.

(21)

So, when α > 0 the situation is reversed. If eT Q−1
2 v̄2 > 0, a positive multiple of Q−1

2 v̄2–
the optimal solution to the unconstrained version of (20)–is feasible for (20), and therefore
is optimal. If eT Q−1

2 v̄2 ≤ 0, then the optimal value is approached by solutions of the form
x̂ + βx1 where eT x̂ = α , x1 is as in (11)–(14) and with β tending to +∞ .

Finally, we note that when α = 0, the optimal solution is given by equations (11)–(14)

and the optimal value is

√
(v̄2)T Q−1

2 v̄2 − (eT Q−1
2 v̄2)2

eT Q−1
2 e

regardless of the sign of eT Q−1
2 v̄2 .

To summarize, we have that the optimal value of (20) is either
√

(v̄2)T Q−1
2 v̄2 (when the

sign of α and eT Q−1
2 v̄2 coincide) or

√
(v̄2)T Q−1

2 v̄2 − (eT Q−1
2 v̄2)2

eT Q−1
2 e

(otherwise). As mentioned

above, other than determining which “regime” we are in through its sign, the value of
α has no bearing on this optimal value. This counter-intuitive conclusion appears to be
an artifact of our assumption that Q is positive definite and hence risk-free securities are
not available. We remove this assumption in the next section and obtain more intuitive
conclusions.

Now, let us go back to the two-period problem in (19). From the discussion above, we
conclude that this problem is equivalent to the following problem:

sup
x0:eT x0<0

inf
v1∈U

v(x0, v1) (22)

where

v(x0, v1) =




√
(v̄2)T Q−1

2 v̄2 if (v1)T x0

eT Q−1
2 v̄2 > 0,√

(v̄2)T Q−1
2 v̄2 − (eT Q−1

2 v̄2)2

eT Q−1
2 e

otherwise.

Since the value function v(x0, v1) depends on x0 and v1 only through the sign of the
expression (v1)T x0 , we have the following conclusions:

• If eT Q−1
2 v̄2 > 0, then the optimal value of (22) is

√
(v̄2)T Q−1

2 v̄2 if there exists an x0

such that
eT x0 < 0 and (v1)T x0 > 0, ∀v1 ∈ U . (23)

11



Otherwise, the choice of x0 is immaterial and the optimal value is

√√√√(v̄2)T Q−1
2 v̄2 − (eT Q−1

2 v̄2)2

eT Q−1
2 e

.

The tractability of the feasibility system (23) depends on the uncertainty set U for
v1 . If we have an ellipsoidal uncertainty set U = {v̄1 + Lu : ‖u‖2 ≤ 1} , then (23)

is equivalent to eT x0 < 0 and (v̄1)T x0 −
√

(x0)T LLT x0 > 0. See equation (4) and
the paragraph following it in Section 1.1. This convex system can be easily resolved.
Note that a feasible solution for (23) indicates a period 1 arbitrage opportunity and
therefore is unlikely to exist.

• If eT Q−1
2 v̄2 < 0, then the optimal value of (22) is

√
(v̄2)T Q−1

2 v̄2 if there exists an x0

such that
eT x0 < 0 and (v1)T x0 < 0, ∀v1 ∈ U . (24)

If we have U = {v̄1 + Lu : ‖u‖2 ≤ 1} as above, then (24) is equivalent to eT x0 <

0 and (v̄1)T x0+
√

(x0)T LLT x0 < 0. This, again, is a convex system and can be solved
easily.

The second case we described above illustrates the anomaly caused by the lack of a riskless
asset for investment in the second period. If eT Q−1

2 v̄2 < 0, in order to maximize the θ for
period 2, we try to choose an x0 such that the value of this portfolio at the end of the first
period is guaranteed to be negative! This counter-intuitive situation does not arise when
we introduce riskless assets.

5 With a Riskless Asset

We use the earlier notation and now let x0
f and x1

f denote our holdings in the risk-free
asset at periods 0 and 1, and let v1

f ≥ 1 and v2
f ≥ 1 the (deterministic) time 1 and time

2 values of a $1 invested in the riskless asset at times 0 and 1, respectively. The analog of
problem (19) in this setting is:

sup
x0,x0

f
:eT x0+x0

f
<0

inf
v1∈U

sup
θ,x1,x1

f

θ (25)

s.t.
eT x1 + x1

f = (v1)T x0 + v1
fx

0
f , (v̄2)T x1 + v2

fx
1
f − θ

√
(x1)T Q2x1 ≥ 0.

As before, we focus on the inner maximization problem: Given α = (v1)T x0 + v1
fx

0
f , we

solve:
sup

θ,x1,x1
f

θ s.t. eT x1 + x1
f = α, (v̄2)T x1 + v2

fx
1
f − θ

√
(x1)T Q2x1 ≥ 0. (26)

If α > 0, i.e., if we have a positive-valued portfolio at the end of period 1, then, the inner
maximization problem is unbounded as we can choose x1 = 0, x1

f = α and all θ ’s will
be feasible for the problem. In other words, if our position (which had a negative value

12



initially) reaches a positive value, we can quit gambling and put all our money in the
riskless asset to guarantee that we make money at the end.

Now consider the case when α < 0. In this case, there is no feasible solution to (26)
with x1 = 0 and θ > 0, therefore, we do not need to worry about division by zero and
rewrite (26) as:

supx1,x1
f

(v̄2)T x1+v2
f x1

f√
(x1)T Q2x1

eT x1 + x1
f = α.

Using the constraint we eliminate x1
f and obtain the following unconstrained problem:

sup
x1

f(x1) :=
(v̄2 − v2

fe)
T x1 + αv2

f√
(x1)T Q2x1

. (27)

Observe that for any x1 and for any β > 1, f(βx1) = f(x1)− (1− 1
β
)

αv2
f√

(x1)T Q2x1
> f(x1).

So, for any solution x1 , we can always improve the solution by scaling it up, and therefore,

the supremum in (27) is never achieved. Note that limβ→∞ f(βx1) =
(v̄2−v2

f
e)T x1√

(x1)T Q2x1
. Thus,

the supremum value of (27) is the same as the supremum value of the following problem

with the homogeneous objective function: supx1

(v̄2−v2
f e)T x1√

(x1)T Q2x1
. We can solve this problem by

introducing a normalizing constraint as we did before and obtain that the optimal solution
ray is: x1 = βQ−1

2 (v̄2 − v2
fe), β > 0. Note that these are maximum-Sharpe ratio portfolios.

The optimal objective value along this ray is
√

r̂TQ−1
2 r̂ with r̂ = v̄2 − v2

fe.
Combining our conclusions, we have that (25) is equivalent to

sup
x0,x0

f
:eT x0+x0

f
<0

inf
v1∈U

v(x0, x0
f , v

1)

where

v(x0, x0
f , v

1) =

{
+∞ if (v1)T x0 + v1

fx
0
f > 0,√

r̂T Q−1
2 r̂ otherwise.

From this, we immediately obtain the optimal solution for the two-period problem: If
there is a period 1 arbitrage opportunity, i.e., if there exists x0, x0

f such that

eT x0 + x0
f < 0, and, (v1)T x0 + v1

fx
0
f > 0, ∀v1 ∈ U ,

then take this position at time 0 and move everything to the risk-free asset at time 1. If
not, then x0, x0

f do not matter for the two-period maximum-θ problem (but, of course,
one may choose these variables in order to maximize the probability that (v1)T x0 +v1

fx
0
f >

0, provided that we have a probability distribution for v1 ). Once we reach time 1, if
we observe that (v1)Tx0 + v1

fx
0
f > 0, we again move everything to the risk-free asset.

Otherwise, we can take a position that comes arbitrarily close to the maximum-θ value of√
r̂T Q−1

2 r̂ .
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