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Abstract

We study multi-period nonlinear optimization problems whose parameters are un-
certain. We assume that uncertain parameters are revealed in stages and model them
using the adjustable robust optimization approach. For problems with polytopic un-
certainty, we show that quasi-convexity of the optimal value function of certain sub-
problems is sufficient for the reducibility of the resulting robust optimization problem
to a single-level deterministic problem. We relate this sufficient condition to the quasi
cone-convexity of the feasible set mapping for adjustable variables and present several
examples and applications satisfying these conditions.

1 Introduction

Uncertainty is an inevitable feature of many decision-making environments. On a regular
basis engineers, economists, investment professionals, and others need to make decisions
to optimize a system with incomplete information and considerable uncertainty. Robust
optimization (RO) is a term that is used to describe both modeling strategies and solution
methods for optimization problems that are defined by uncertain inputs [3, 4]. The objective
of robust optimization models and algorithms is to obtain solutions that are guaranteed to
perform well (in terms of feasibility and near-optimality) for all, or at least most, possible
realizations of the uncertain input parameters.

Standard robust optimization formulations assume that the uncertain parameters will
not be observed until all the decision variables are determined and therefore do not allow
for recourse actions that may be based on realized values of some of these parameters.
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This is not always the case for uncertain optimization problems. In particular, multi-
period decision models involve uncertain parameters some of which are revealed during
the decision process. Therefore, a subset of the decision variables can be chosen after
these parameters are observed in a way to correct the sub-optimality of the decisions made
with less information in earlier stages. Adjustable robust optimization (ARO) formulations
model these decision environments, allowing recourse action. These models are related to
the two-stage (or multi-stage) stochastic programming formulations with recourse.

ARO models were recently introduced in [6, 11] for uncertain linear programming prob-
lems. Consider, for example, the two-stage linear optimization problem given below whose
first-stage decision variables (x1) need to be determined now, while the second-stage deci-
sion variables (x2) can be chosen after the uncertain parameters of the problem (A1, A2,
and b) are realized:

min
x1,x2

{c>x1 : A1x1 + A2x2 ≤ b}. (1)

Note that the second stage variables x2 do not appear in the objective function–this is
what Ben-Tal et al. [6] call the “normalized” form of the problem. We can consider this
simpler and convenient form without loss of generality, as discussed in [6, 11]. Let U denote
the uncertainty set for parameters A1, A2, and b, i.e., the set of all potentially realizable
values of these uncertain parameters. The standard robust optimization formulation for
this problem seeks to find vectors x1 and x2 that optimize the objective function and satisfy
the constraints of the problem for all possible realizations of the constraint coefficients. In
this formulation, both sets of variables must be chosen before the uncertain parameters can
be observed and therefore cannot depend on these parameters. Consequently, the standard
robust counterpart of this problem can be written as follows:

min
x1

{c>x1 : ∃x2 ∀(A1, A2, b) ∈ U : A1x1 + A2x2 ≤ b}. (2)

In contrast, the adjustable robust optimization formulation allows the choice of the
second-period variables x2 to depend on the realized values of the uncertain parameters.
As a result, the adjustable robust counterpart problem is given as follows:

min
x1

{c>x1 : ∀(A1, A2, b) ∈ U , ∃x2 = x2(A1, A2, b) : A1x1 + A2x2 ≤ b}. (3)

Clearly, the feasible set of the second problem is larger than that of the first problem in
general and therefore the model is more flexible. ARO models can be especially useful when
robust counterparts are unnecessarily conservative. The price to pay for this additional
modeling flexibility appears to be the increased difficulty of the resulting ARO formulations.
Even for problems where the robust counterpart is tractable, it can happen that the ARO
formulation leads to an NP-hard problem; see, for example, Theorem 3.5 in [11]. One of the
factors that contribute to the added difficulty in ARO models is the fact that the feasible set
of the recourse actions (second-period decisions) depends on both the first-period decisions
and the realization of the uncertain parameters. Consequently, the pioneering study of
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Ben-Tal et al. [6] on this subject considers several simplifying assumptions either on the
uncertainty set, or on the dependence structure of recourse actions to uncertain parameters.

Adjustable robust optimization models result from natural formulations of multi-stage
decision problems with uncertain parameters and the development of efficient solution
techniques for such problems represents the next frontier in robust optimization research.
In this article, we contribute to this research by developing tractable ARO formulations
for a class of multi-period optimization problems with nonlinear constraints and objective
functions. After considering the simple case of finite uncertainty sets, we focus on polytopic
uncertainty sets defined as a convex hull of a finite set of points. We investigate sufficient
conditions under which the ARO problem reduces to a single deterministic optimization
problem. In particular, we show that when the feasible sets of the second-period problem
satisfy a certain quasi-convexity property such a reduction is possible. We provide examples
exhibiting this property.

The rest of this article is organized as follows. In Section 2 we discuss adjustable
robust optimization models for two-period optimization problems with finite and polytopic
uncertainty sets and derive a sufficient condition for the tractability of these problems.
In Section 3 we relate the quasi cone-convexity of the mapping that defines feasible sets
for adjustable variables to the sufficient condition introduced in the previous section. In
Section 4 we provide several low-dimensional examples of feasible set mappings that satisfy
the quasi cone-convexity property. We discuss the application of the results we developed
to problems in financial mathematics in Section 5.

2 Adjustable Robust Optimization Models

In this section we consider a two-period decision-making environment. We let u and v

represent the first and second-period decision variables, respectively, and U and V represent
their feasible sets. We let p denote a vector of parameters for the problem. The objective
is to choose feasible vectors u ∈ U and v ∈ V such that the objective function, denoted by
f(u,v,p) is minimized:

inf
u∈U

inf
v∈V

f(u,v,p). (4)

When the vector p is known and the feasible set V for the second-period decision
variables is independent of u, the first-period decisions, this problem can be solved as a
deterministic, single-period problem. We consider an environment where the parameter
vector p is uncertain but is known to belong to an uncertainty set P . Throughout the
paper, we will make the reasonable assumption that the uncertainty set P is closed and
bounded. We assume that these parameters, possibly determined by events that take place
between two periods, will be realized and observed after the first-period decision are made
but before the second-period decisions need to be made. Furthermore, we assume that the
feasible set V for the second-period decisions depends on the choice of u as well as the
observed values of the parameters p and therefore, is denoted by V (u,p), or equivalently,
by Vu (p) in the remainder of the article.
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As we mentioned in the Introduction, an example of this framework with a linear
objective function and linear constraints as in (1) is considered in [6, 11]. Problem (1)
corresponds to the choices of f(u,v,p) = c>u, U = R

n for a vector u of dimension n, and
V (u,p) = {v : A1(p)u + A2(p)v ≤ b(p)}. For this problem, in addition to the standard
robust counterpart (RC) problem (2), Ben-Tal et al. [6] introduce and study the so-called
adjustable robust counterpart (ARC) problem given in (3). It is easy to see that the ARC
is more flexible (has a larger feasible set) than the RC. Ben-Tal et al. argue that the ARC
is also more difficult in general than the corresponding RC and give examples of problems
whose robust counterparts are tractable while their ARC formulations are NP-hard. They
also note two special cases: one where the ARC is equivalent to the RC, and therefore is
easy when the RC is, and another where the ARC is a simple linear program. The first case
arises when the uncertainty is assumed to be constraint-wise. The assumption of constraint-
wise uncertainty is discussed in detail in [6, 11] and indicates that uncertain parameters
appearing in a particular constraint of the problem do not appear in any of the remaining
constraints. In fact, under the assumption of constraint-wise uncertainty, Guslitser shows
that the ARC and RC are equivalent even for nonlinear convex programming problems [11].
The second case, namely the case where the ARC is a linear program arises if the matrix
A2 in (1) is certain and the uncertainty set for the matrix vector pair (A1, b) is given as the
convex hull of a finite set. We will explore similar uncertainty sets below, but for nonlinear
optimization problems.

2.1 Min-max-min Representation of the ARC Problem

For problem (4) with V = V (u,p), the adjustable robust counterpart problem is obtained
as follows:

inf
u∈U,t

{t : ∀p ∈ P ∃v ∈ V (u,p) : f (u,v,p) ≤ t} . (5)

We sometimes find it more convenient to work with the following representation of the
ARC problem:

inf
u∈U

sup
p∈P

inf
v∈V (u,p)

f(u,v,p). (6)

Using the convention that inf
v∈V (u,p)

f(u,v,p) = ∞ when V (u,p) = ∅ for some u ∈ U and

p ∈ P , the equivalence of problems (5) and (6) is shown in the following proposition:

Proposition 1. The adjustable robust counterpart problem (5) and the min-max-min prob-
lem (6) are equivalent.

Proof: As we discussed above, the ARC problem (5) was proposed in [6] where u is
called a non-adjustable vector variable and v is called an adjustable vector variable. One
of the following two cases must hold:

(a) there exists u ∈ U such that V (u,p) 6= ∅ for all p ∈ P ,

(b) for all u ∈ U , there exists p ∈ P such that V (u,p) = ∅.
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We’ll show that problems (5) and (6) have identical optimal values in both cases.

For (a) we assume that there exists u ∈ U such that V (u,p) 6= ∅ for all p ∈ P . Define
the subset U (a) of U as

U (a) ≡ {u ∈ U : V (u,p) 6= ∅, ∀p ∈ P}.

By our assumption, U (a) is nonempty. Next we show that (6) is equivalent to

inf
u∈U(a)

sup
p∈P

inf
v∈V (u,p)

f(u,v,p). (7)

It is obvious that the optimal value of (6) is less than or equal to that of (7) because of
U (a) ⊆ U , so it is enough to show that the optimal solution u∗ ∈ U of (6) must lie in U (a)

for the equivalence of (6) and (7). Indeed, if we suppose that u∗ 6∈ U (a), there must exist
p ∈ P such that V (u∗,p) = ∅ and optimal value (6) must be ∞. Recalling our assumption
on the compactness of P , this contradicts the fact that supp∈P infv∈V (u,p) f(u,v,p) is

bounded above when u ∈ U (a). Therefore u∗ ∈ U (a) and the equivalence of (6) and (7) is
shown.
Next we show that (7) is equivalent to (5). To “normalize” the problem–this is the term
used by Ben-Tal et al. [6] for problems with linear objective functions with no uncertainty–
we introduce an artificial variable t to represent the objective function of (7) and impose
the constraint t ≥ inf

v(p)∈V (u,p)
f (u,v(p),p) , ∀p ∈ P,∀u ∈ U (a). Then,

inf
u∈U(a)

sup
p∈P

inf
v∈V (u,p)

f(u,v,p)

⇐⇒

∣∣∣∣∣∣

inf
u∈U(a)

t

s.t. inf
v(p)∈V (u,p)

f (u,v(p),p) ≤ t, ∀p ∈ P

⇐⇒ inf
u∈U(a),t

{t : ∀p ∈ P ∃v ∈ V (u,p) : f (u,v,p) ≤ t} ,

⇐⇒ inf
u∈U,t

{t : ∀p ∈ P ∃v ∈ V (u,p) : f (u,v,p) ≤ t} ,

and we find that (5) and (6) are equivalent.

In case (b), the ARC problem (5) has no feasible solutions and therefore the opti-
mal value of (5) is ∞. Similarly, we observe that for all u ∈ U , the optimal value of
supp∈P infv∈V (u,p) f(u,v,p) is also ∞. Therefore, both problems (5) and (6) attain the
same optimal value ∞.

In the next two subsections, we explore ARC problems for the cases of a finite uncer-
tainty set and of a polytopic uncertainty set, i.e., a set given as the convex hull of a finite
number of points.
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2.2 Adjustable Robust Counterpart with Finite Uncertainty Sets

We first consider the case that P consists of a finite number of elements: P = {p1, . . . ,pk}.
From problem (5), we see that for every p ∈ P , there is a corresponding variable v sat-
isfying constraints of (5). We introduce new variables vi to represent the second-period
decision variables corresponding to each element pi, i ∈ {1, . . . , k} of the uncertainty set
and transform (5) into an equivalent single-level optimization problem.

inf
u,v1,...,vk,t

t

s.t. f (u,vi,pi) ≤ t, (i = 1, . . . , k)
u ∈ U,
vi ∈ V (u,pi) , (i = 1, . . . , k).

(8)

Despite the increase in the number of variables through duplication, this single-level,
deterministic optimization problem is a tractable problem for many classes of functions f
and sets V (u,p). As an example, we consider the following set up:

f (u,vi,pi) ≡ f0 (u,vi,pi)
U ≡ {u : g`(u) ≤ 0, ` = 1, . . . ,m1},

V (u,pi) ≡ {vi : f` (u,vi,pi) ≤ 0, ` = 1, . . . ,m2}
(9)

where

f` (u,vi,pi) = f` (wi,pi) = w>
i Q`(pi)wi + q`(pi)

>wi + b`(pi), ` = 0, . . . ,m2

g` (u) = u>R`u + r>
` u + d`, ` = 1, . . . ,m1

wi = (u,vi)
>, i = 1, . . . , k.

Above, we can use arbitrary functions Q`(p), q`(p) and b`(p) of the uncertain parameter
vector p ∈ P as long as the images of these functions are in the appropriate spaces. Using
(9) and defining Qi` ≡ Q`(pi), qi` ≡ q`(pi), and bi` ≡ b`(pi) for all i, we rewrite problem
(8) as follows:

min
u,v1,...,vk,t

t

s.t. w>
i Qi0wi + q>

i0wi + bi0 ≤ t, (i = 1, . . . , k)
u>R`u + r>

` u + d` ≤ 0, (` = 1, . . . ,m1)
w>

i Qi`wi + q>
i`wi + bi` ≤ 0, (i = 1, . . . , k, ` = 1, . . . ,m2).

(10)

This is a quadratically constrained optimization problem. If all the matrices Qi` as well as
R` are positive-semi definite, then the feasible set is convex, the problem can be reformu-
lated as a second-order cone programming problem as [5] shows, and can be solved easily
using existing methods and software.

2.3 Adjustable Robust Counterpart with Polytopic Uncertainty
Sets

In this subsection we consider uncertainty sets of the form conv(P ) where P = {p1, . . . ,pk}
and conv(P ) denotes the convex hull of P . Using this uncertainty set we consider the
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following adjustable robust optimization problem:

inf
u∈U

sup
p∈conv(P )

inf
v∈V (u,p)

f(u,v,p). (11)

We are interested in characterizing tractable instances of this problem. In particular,
we would like to identify conditions under which

sup
p∈conv(P )

inf
v∈V (u,p)

f(u,v,p) = max
p∈P

inf
v∈V (u,p)

f(u,v,p), (12)

so that the ARC problem can be reduced to a single-level deterministic optimization prob-
lem as in the previous subsection. For this purpose, we first focus on the inner max-min
problem in (11). Let us first define:

gu(p) ≡ inf
v∈Vu(p)

f(u,v,p). (13)

Recall that Vu(p) = V (u,p) with given u ∈ U . Then, the inner max-min problem is:

sup
p∈conv(P )

inf
v∈Vu(p)

f(u,v,p) = sup
p∈conv(P )

gu(p).

A sufficient condition for (12) to hold is that with the given u ∈ U , gu(p) is a quasi-convex
function in p ∈ conv(P ), that is,

gu(λp1 + (1 − λ)p2) ≤ max{gu(p1), gu(p2)}

holds for any p1,p2 ∈ conv(P ) and λ ∈ (0, 1). Equivalently, gu(p) is quasi-convex if all its
level sets are convex sets. We state the following simple result without proof, which can be
shown in, e.g., Corollary 2.14 of [17].

Proposition 2. If gu(p) defined in (13) is a quasi-convex function in p ∈ conv(P ), then

max
p∈conv(P )

gu(p) = max
p∈P

gu(p).

Therefore, when gu(p) is quasi-convex, conv(P ) can be replaced by P = {p1, . . . ,pk}
in (11), and the problem reduces to the single-level optimization problem (8) with finitely
many constraints. In the next section, we will identify necessary and sufficient conditions
on the sets Vu(p) that lead to quasi-convex gu(p).

Remark 1. In the remainder of the paper we consider a “normalized” version of problem
(11), and assume that the objective function of the inner-most minimization problem is lin-
ear in v and is independent of the first period decision variables u and the uncertain param-
eters p. This assumption can be made without loss of generality as indicated by the following
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simple transformation: For given u ∈ U and p ∈ conv(P ), gu(p) = inf
v∈Vu(p)

f(u,v,p) is

equivalent to:
inf
v,v0

v0

s.t. f(u,v,p) ≤ v0

v ∈ Vu(p).

Defining Ṽu(p) = {ṽ = (v, v0) : v ∈ Vu(p), f(u,v,p) ≤ v0} we observe that

gu(p) ≡ inf
ṽ∈Ṽu(p)

c>ṽ, (14)

with c = [0 . . . 0 1]>. The normalized form of gu(p) is useful in the succeeding discussion.

3 Quasi-convex Maps and Functions

We argued in the previous section that the quasi-convexity of the function gu(p) =
infv∈Vu(p) c>v is a sufficient condition for the reducibility of the ARC problem (11) to
a single-period optimization problem. Clearly, convexity properties of this function are re-
lated to the structure of the sets Vu(p) for u ∈ U and p ∈ P . In what follows, we describe
a necessary and sufficient condition on the set-valued mapping Vu(p) for gu(p) to be a
quasi-convex function in p. We also consider explicit descriptions of the sets Vu(p) through
constraints and investigate conditions on these constraint functions so that the sets Vu(p)
satisfy the necessary and sufficient condition mentioned in the previous sentence.

3.1 Quasi-convex Maps Vu(p)

For a given real topological vector space W , let 2W denote its power set. Given u ∈ U and
an appropriate choice of W , Vu(p) can be considered as a set-valued map Vu : conv(P ) →
2W . We also write Vu : conv(P )  W . Let Q be a closed convex cone in W and define a
relation ≤Q in W by the closed convex cone Q: for v1,v2 ∈ W , v1 ≤Q v2 ⇔ v2 − v1 ∈ Q.

Definition 1. A set-valued map Vu : conv(P )  W is said to be quasi Q-convex (see
[2, 12]) if

∀p1,∀p2 ∈ conv(P ),∀v1 ∈ Vu(p1),∀v2 ∈ Vu(p2),∀α ∈ (0, 1),
if w ∈ W satisfies v1 ≤Q w,v2 ≤Q w,
then ∃v′ ∈ Vu(αp1 + (1 − α)p2) s.t. v′ ≤Q w.

(15)

Consider Q = {q : c>q ≥ 0} defined using the coefficient vector c of the objective function.

Proposition 3. Assume that Vu(p) is closed, bounded, and nonempty for any u ∈ U and
p ∈ P . Then, gu(p) is a quasi-convex function in p if and only if the set-valued map Vu(p)
is quasi Q-convex with Q = {q : c>q ≥ 0}.
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Proof: We observe that for every u ∈ U the quasi Q-convexity of the map Vu(p) is
sufficient to guarantee that the function gu(p) is quasi-convex function in p. Indeed, for
any p1,p2 ∈ conv(P ), choose

v1 ∈ Vu(p1) s.t. gu(p1) = c>v1

v2 ∈ Vu(p2) s.t. gu(p2) = c>v2.

Such v1 and v2 exist since Vu(pi) are assumed to be closed and bounded. Define

w̄ =

{
v1 if c>v1 > c>v2

v2 else,

which indicates that v1 ≤Q w̄ and v2 ≤Q w̄. When Vu is quasi Q-convex, from (15), we
have that for any α ∈ (0, 1), there exists v′ ∈ Vu(αp1 + (1 − α)p2) such that v′ ≤Q w̄.
Then, using the above v′ and w̄, we obtain

gu(αp1 + (1 − α)p2) = inf
v∈Vu(αp1+(1−α)p2)

c>v

≤ c>v′

≤ c>w̄

= max{c>v1, c
>v2}

= max{gu(p1), gu(p2)}.

The second inequality follows from

v′ ≤Q w̄ ⇒ w̄ − v′ ∈ Q ⇒ c>(w̄ − v′) ≥ 0.

Therefore, gu(p) is a quasi-convex function in p.
Next, we show that (15) is also necessary for gu(p) to be a quasi-convex function in p.

We suppose that (15) is not satisfied, and then show that gu(p) cannot be a quasi-convex
function in p.

If (15) is not satisfied, there must exist p̄1, p̄2 ∈ conv(P ), v̄1 ∈ Vu(p̄1), v̄2 ∈ Vu(p̄2), ᾱ ∈
(0, 1) such that

for some w̄ ∈ W s.t. v̄1 ≤Q w̄, v̄2 ≤Q w̄,
v′ >Q w̄,∀v′ ∈ Vu(ᾱp̄1 + (1 − ᾱ)p̄2).

From the definition (14) of gu(p),

gu(p̄1) ≤ c>v̄1 ≤ c>w̄

gu(p̄2) ≤ c>v̄2 ≤ c>w̄.
(16)

Since ∀v′ ∈ Vu(ᾱp̄1 + (1 − ᾱ)p̄2) satisfies v′ >Q w̄ and Vu(ᾱp̄1 + (1 − ᾱ)p̄2) is compact,

gu(ᾱp̄1 + (1 − ᾱ)p̄2) > c>w̄. (17)
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The above inequalities (16) and (17) show that

max{gu(p̄1), gu(p̄2)} < gu(ᾱp̄1 + (1 − ᾱ)p̄2)

and we see that the condition of quasi-convex function:

gu(αp1 + (1 − α)p2) ≤ max{gu(p1), gu(p2)}, ∀p1,p2 ∈ conv(P ),∀α ∈ (0, 1)

is violated at p̄1, p̄2 ∈ conv(P ) and ᾱ. Thus, if gu(p) is a quasi-convex function in p,
Vu(p) satisfies the condition of quasi Q-convex set-valued map (15).

3.2 Functional Description of Vu(p)

In this subsection, we focus on the case where the sets Vu(p) are described explicitly using
constraints and obtain sufficient conditions for quasi Q-convexity of the mapping Vu in
Propositions 4 and 5.

For an arbitrary closed convex cone K, we consider a vector-valued function Fu(v,p)
that satisfies

Vu(p) = {v | Fu(v,p) ≤K 0}.

We now investigate conditions on functions Fu(v,p) that guarantee Vu(p) to be a quasi
Q-convex set-valued map. Not surprisingly, we observe that quasi K-convexity of Fu(v,p)
is sufficient for this purpose. We first define this property [16]:

Definition 2. F : D → W is a quasi K-convex vector-valued function in d if ∀d1,d2 ∈ D
and ∀α ∈ [0, 1],

F (αd1 + (1 − α)d2) ≤K z holds
for any z satisfying F (d1) ≤K z, F (d2) ≤K z.

Proposition 4. Consider vector-valued functions Fu(v,p) : V × conv(P ) → W such that
Vu(p) = {v | Fu(v,p) ≤K 0} for a given cone K. If Fu(v,p) is quasi K-convex in (v,p)
for all u ∈ U , then Vu(p) = {v | Fu(v,p) ≤K 0} is a quasi Q-convex set-valued map for
any closed convex cone Q.

Proof: By definition, for any v1 ∈ Vu(p1) and v2 ∈ Vu(p2),

Fu(v1,p1) ≤K 0, and Fu(v2,p2) ≤K 0

holds, and under the assumption that Fu(v,p) is quasi K-convex, we obtain

Fu(αv1 + (1 − α)v2, αp1 + (1 − α)p2) ≤K 0, ∀α ∈ [0, 1],

which implies αv1 + (1 − α)v2 ∈ Vu(αp1 + (1 − α)p2), ∀α ∈ [0, 1].
Now, if w ∈ V satisfies v1 ≤Q w and v2 ≤Q w, αv1 + (1 − α)v2 ≤Q w holds for

every α ∈ [0, 1], since w − v1 ∈ Q, w − v2 ∈ Q, and the convexity of Q indicates

10



α(w− v1) + (1−α)(w− v2) = w−{αv1 + (1−α)v2} ∈ Q. Therefore, Vu(p) satisfies the
condition (15) of quasi Q-convexity.

We stress that the cones K and Q in the proposition above need not coincide. Next, we
consider an even more specific form for Vu(p) by defining Fu(v,p) = (f 1

u(v,p), . . . , fm
u(v,p))>

where each f i
u(v,p) is a real-valued function and K = Rm

+ . If f i
u(v,p), i = 1, . . . ,m, are

quasi-convex functions in (v,p), then Fu(v,p) is a quasi Rm
+ -convex vector-valued function.

Indeed, for any p1,p2,v1,v2, and arbitrary z = (z1, . . . , zm)> such that f i
u(v1,p1) ≤ zi

and f i
u(v2,p2) ≤ zi (i = 1, . . . ,m), we have

f i
u(αv1 + (1 − α)v2, αp1 + (1 − α)p2) ≤ max{f i

u(v1,p1), f
i
u(v2,p2)} ≤ zi

∀α ∈ [0, 1], i = 1, . . . ,m,

which shows the quasi Rm
+ -convexity of Fu(v,p). Therefore, Vu(p) is a quasi Q-convex

set-valued map by the proposition.
In fact, when Vu(p) = {v | f i

u(v,p) ≤ 0, i = 1, . . . ,m} with quasi-convex functions
f i
u(v,p), i = 1, . . . ,m, the mapping Vu(p) satisfies the stronger Q-convexity property. The

Q-convex set valued map is defined in [2, 12]:

∀p1,∀p2 ∈ conv(P ),∀v1 ∈ Vu(p1),∀v2 ∈ Vu(p2), and α ∈ (0, 1),
∃w ∈ Vu(αp1 + (1 − α)p2) s.t. w ≤Q αv1 + (1 − α)v2.

(18)

We end this section by presenting the following proposition.

Proposition 5. Consider the problem:

gu(p) = inf
v∈Vu(p)

fu(v,p),

If the objective function fu(v,p) is quasi-convex in (v,p) and Fu(v,p) is a quasi K-convex
vector-valued function for some convex cone K, then gu(p) is a quasi-convex function in
p.

Proof: We consider the problem

gu(p) = inf
v∈Vu(p)

fu(v,p) = inf
(v,v0)∈

�
Vu(p)

v0,

where
Ṽu(p) ≡ {(v, v0) : fu(v,p) ≤ v0, v ∈ Vu(p)}

= {(v, v0) : fu(v,p) ≤ v0, Fu(v,p) ≤K 0}.

For any p1,p2 ∈ conv(P ), (v1, v01) ∈ Ṽu(p1) and (v2, v02) ∈ Ṽu(p2),

fu(v1,p1) ≤ v01, fu(v2,p2) ≤ v02

Fu(v1,p1) ≤K 0, Fu(v2,p2) ≤K 0

hold and the quasi K-convexity of Fu(v,p) shows that Fu(v′,p′) ≤K 0, where v′ =
αv1+(1−α)v2 and p′ = αp1+(1−α)p2, for any α ∈ (0, 1). Also, from the quasi-convexity
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of fu(v,p), we see that fu(v′,p′) ≤ max{fu(v1,p1), fu(v2,p2)} ≤ max{v01, v02} ≡ v′
0.

Therefore, (v′, v′
0) = α(v1, v

′
0) + (1 − α)(v2, v

′
0) is in Ṽu(p′), and if (w, w0) satisfies

(v1, v01) ≤Q (w, w0) and (v2, v02) ≤Q (w, w0) with Q = {(q, q0) : q0 ≥ 0}, then

(v′, v′
0) ≤Q (w, w0) holds. We have shown that Ṽu(p) is a quasi Q-convex set-valued

map, and from Proposition 3, gu(p) is a quasi-convex function in p.

4 Examples with Quasi-convex Mappings

We investigate the condition (15) for quasi Q-convexity of set-valued mappings and two
stronger (more restrictive) variants of this condition by studying three examples. The first
one is an example of a Q-convex mapping, the second one is that of a naturally quasi Q-
convex mapping, and the last one is that of a quasi Q-convex mapping. The Q-convexity
condition was described above in (18). Before we present the examples, we define the
naturally quasi Q-convexity condition [2, 12]:

Definition 3. A set valued mapping M : D  W is said to be naturally quasi Q-convex if
∀d1,d2 ∈ D,

∀α ∈ (0, 1),∀m1 ∈ M(d1),∀m2 ∈ M(d2)
∃w ∈ M(αd1 + (1 − α)d2) and ∃β ∈ [0, 1] s.t.
w ≤Q βm1 + (1 − β)m2.

(19)

It is known that every convex set-valued map is also naturally quasi-convex, and every
naturally quasi-convex set-valued map is also quasi-convex.

In the examples we describe below, the optimal solution of sup
p∈conv(P )

inf
v∈Vu(p)

c>v is ob-

tained for pi ∈ P for some i and we can ignore the constraints induced from the interior
points of conv(P ). However, Examples 2 and 3 do not satisfy the sufficient conditions of
Propositions 4 and 5 for quasi Q-convex set valued maps Vu(p). Thus, these examples indi-
cate that conditions given in Propositions 4 and 5 are not necessary for quasi Q-convexity of
the mapping Vu and more general problems can be reduced to the single-level optimization
problem (8).

Example 1 (Q-convex Vu(p)) : Consider the ARC problem described below:

min
u∈U

max
p∈conv(P )

min
v=(v1,v2)∈V (p)

(−v1 − uv2) (20)

with P = {e1, e2} and

V (p) = {(v1, v2)| (v1 − p1)
2 + (v2 − p2)

2 ≤ 1, v ≥ 0}.

Note that conv(P ) = {p =

[
p1

p2

]
| p ≥ 0, p1 + p2 = 1}. We dropped the subscript u from

Vu(p) since this set does not depend on u. The inner max-min problem in (20) is equivalent

12



to:

min
u∈U,v0



v0| ∀p ∈ conv(P ) ∃v :

v0 ≥ −v1 − uv2,
(v1 − p1)

2 + (v2 − p2)
2 ≤ 1

v ≥ 0.





v2

p
2

= (0, 1)

w = 1

2
v̄1 + 1

2
v̄2

V (p
1
)

v̄2

v̄1

V (p
2
)

V ( 1

2
p

1
+ 1

2
p

2
) v1

p
1

= (1, 0)

Figure 1: Feasible sets and optimal solutions (with u = 1) in Example 1

We observe that the mapping V (p) is Q-convex for every cone Q containing zero. In-
deed, for any p1,p2 ∈ conv(P ), α ∈ (0, 1), v̄1 ∈ V (p1) and v̄2 ∈ V (p2), we can construct
the inner point between v̄1 and v̄2: αv̄1+(1−α)v̄2 which lies in the set V (αp1+(1−α)p2),
since αV (p1) + (1 − α)V (p2) = V (αp1 + (1 − α)p2). Now, the set-valued map V satis-
fies the condition of Q-convexity (18) with w chosen as w = αv̄1 + (1 − α)v̄2, since
αv̄1 + (1 − α)v̄2 − w = 0 ∈ Q.

Since every convex set-valued map is also quasi-convex [12], the set-valued map V is
quasi Q-convex and therefore, gu(p) becomes a quasi-convex function in p, conv(P ) in (20)
can be replaced by P and this problem reduces to the single-level optimization problem with
finitely many constraints.

Indeed, Figure 1 shows that it is sufficient to focus on the extreme cases V (p1) and
V (p2), since the objective function is linear and an optimal solution is attained in some
scenario V (p1) or V (p2).

Remark 2. Note that this example contains a constraint in which the coefficients of ad-
justable vector variable v are affected by uncertainty:

(v1 − p1)
2 + (v2 − p2)

2 ≤ 1 ⇔ v2
1 + v2

2 − 2p1v1 − 2p2v2 + p2
1 + p2

2 ≤ 1.

But gu(p) is quasi-convex and conv(P ) can be replaced by the finite set P in the ARC
formulation. It is noted in [6] that when the constraint coefficients of the adjustable variables
v are affected by uncertainty, the resulting ARC can be computationally intractable. For
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example, this case is excluded in Theorem 2.2 of [6]. The example above shows a special
case where the resulting ARC problem is still tractable.

Example 2 (Naturally quasi Q-convex Vu(p)) : We focus on the inner problem gu(p) =
min

v∈Vu(p)
c>v with a fixed u ∈ U , where

Vu(p) = {(v1, v2)| u ≤ pv1 ≤ 2u, u ≤ pv2 ≤ 2u},
P = {1

2
, 1}, conv(P ) = [1

2
, 1].

We’ll show that the set-valued map Vu(p) satisfies the condition of naturally quasi Q-
convexity defined above. Indeed, for any p1, p2 ∈ conv(P ), α ∈ (0, 1), v̄1 ∈ Vu(p1) and
v̄2 ∈ Vu(p2), we can construct w = βv̄1 + (1 − β)v̄2 ∈ V (αp1 + (1 − α)p2) by computing
β ∈ [0, 1] from

1

αp1 + (1 − α)p2

=
β

p1

+
1 − β

p2

.

Therefore, the set-valued map Vu of this example satisfies the condition (19) of naturally
quasi Q-convexity1 whenever we take any Q which includes 0. Assuming u = 1, Figure 2
shows, in the case of α = 1/2, the inner point of v̄1 and v̄2: w = βv̄1 + (1 − β)v̄2 ∈
Vu(αp1 + (1 − α)p2) with β = 1/3.

v̄2

1 2 3 4

p1 = 1

2

p2 = 1

1

2

3

4
Vu(p1)

Vu( 1

2
p1 + 1

2
p2)

Vu(p2)

v̄1

v1

v2

w = 1

3
v̄1 + 2

3
v̄2

Figure 2: Feasible sets and optimal solutions (with u = 1) in Example 2

It is shown in [12] that every naturally quasi-convex set-valued map is also quasi-convex,
and we find that the set-valued map V of this example is quasi Q-convex. However, we note
that some constraint functions defining Vu(p) are not quasi-convex in (v,p), and Fu(v,p)
do not satisfy the sufficient conditions for the quasi Q-convexity of set-valued map Vu.

1If an appropriate objective function c̄>v is given (for example, c̄ = v̄1 − v̄2 and therefore, Q′ = {q :
(v̄1 − v̄2)

>q ≥ 0}), the set-valued map Vu might be Q′-convex.
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min

Vu(p
1
)

Vu(p
2
)

v̄1

v̄2

w

contour

Vu( 1

2
p

1
+ 1

2
p

2
)

c
>

v

min

Vu(p
1
)

Vu(p
2
)

v̄1

v
′

v̄2

contour

Vu( 1

2
p

1
+ 1

2
p

2
)

w

c
>

v

Figure 3: Vu(p) of the right figure is quasi Q-convex, but that of left figure is not.

Example 3 (Quasi Q-convex Vu(p)) : We now give a geometric example of a mapping
Vu(p) that is quasi Q-convex for some convex cones Q but not for others. We define the
convex cone Q depending on the linear objective function c>v as follows: Q = {q : c>q ≥
0}. In our previous examples and discussion, the cone Q in the definition of quasi Q-convex
functions and mappings was largely irrelevant. Note however that while the mapping on
the left in Figure 3 does not satisfy the condition (15), the mapping on the right satisfies
this condition. In these figures, each horizontal cross-section of the hourglass shaped three-
dimensional set corresponds to the image of the mapping Vu(p) with different values of
p. The figure on the left violates (15) with the points v̄1, v̄2, w and α = 1

2
forming the

counter-example. In the figure on the right, we keep the mapping constant. By changing c

and the orientation of the plane defining the cone Q, we see that the mapping is quasi Q-
convex with respect to the tilted cone Q. For the example on the right, gu(p) ≡ min

v∈Vu(p)
c>v

is quasi-convex in p. Therefore, we can focus on the extreme scenario-cases Vu(p1) and
Vu(p2), and conv(P ) in (ARC) can be replaced as the set of finite points P .

Although in this example Fu(v,p) of Vu(p) = {v | Fu(v,p) ≤K 0} is not a quasi K-
convex vector-valued function (if quasi K-convex, αv1 + (1 − α)v2 ∈ Vu(αp1 + (1 − α)p2)
holds for v1 ∈ Vu(p1), v2 ∈ Vu(p2) and ∀α ∈ [0, 1], which is clearly not the case), the
set-valued map Vu(p) of the right figure satisfies the condition of quasi Q-convexity and
Vu(p) is shown as a quasi Q-convex set-valued map.

5 Applications

While the quasi cone-convexity conditions we considered above may be difficult to ver-
ify in general settings, there are several application problems where one encounters these
structures. Most natural examples come from the two-period formulation of optimization
problems with quasi-convex objective functions where the feasible sets of the second-period
variables depend “nicely” on the first period variables.

Quasi-convex (or quasi-concave) objective functions are quite common in applications.
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A canonical example from economics is the utility maximization problem where the quasi-
concavity of the utility function is a typical requirement. Since uncertainty and multi-period
planning/decision making are natural occurrences and extensions for utility maximization,
resulting problems can be addressed through the adjustable robust optimization approach
we outlined in the previous sections.

Another rich class of quasi-convex objective functions appear in fractional programming
problems [8, 15]. It is easy to verify that the fractional objective function f(x) ≡ p(x)/q(x)
is quasi-convex on a convex domain S if p is convex and q is concave and positive on that
domain [7]. Such functions arise frequently in the measurement of the efficiency of a
system, e.g., with output to input ratios or reward to risk ratios. In what follows, we
discuss applications that can be seen as particular instances of the fractional programming
framework.

5.1 Robust Profit Opportunities

We consider an investment environment with n risky securities. Let v1
i denote the (random)

time 1 value of $1 invested in security i at time 0 and let x0
i denote the dollars invested in

security i at time 0. We also define r1
i = v1

i − 1 to be the return on a dollar for security
i. Letting e denote the vector of ones of appropriate size, we see that the initial value of
the portfolio formed at time 0 is e>x0 where x0 = [x0

1, . . . , x0
n]>. At time 1 which is the

end of the initial investment period this portfolio will have value (v1)>x0. One can treat
v1 = [v1

1, . . . , v1
n]> as a random vector, and denote its expected value by v̄1 and its n × n

(symmetric, positive semidefinite) matrix of variance/covariances by Q1. Similarly define
r1 and r̄1, its expected value vector.

The return from this investment is (r1)>x0 and the expected return is (r̄1)>x0 with
variance (x0)>Q1x0. For a given risk tolerance parameter θ ≥ 0, the quantity

fθ(x
0) ≡ (r̄1)>x0 − θ

√
(x0)>Q1x0

is the risk-adjusted expected return from portfolio x0. In essence, fθ is a utility function
and the returns are penalized based on the risk taken to achieve them and the penalty
rises with θ, the risk tolerance parameter. If we let X 0 denote the feasible set of values for
portfolio x0, the problem of maximizing fθ(x

0) subject to x0 ∈ X 0 is one of the variants
of the classical Markowitz mean-variance optimization problem.

Here, we consider an alternative problem. Instead of fixing the parameter θ, we make
it a variable and look for the largest possible θ for which the risk-adjusted expected return
is above a threshold value t, typically zero. The formulation we consider is:

sup
θ,x0

θ, s.t. (r̄1)>x0 − θ
√

(x0)>Q1x0 ≥ t, x0 ∈ X 0. (21)

The motivation for this alternative formulation comes from the models for robust profit
opportunities (RPOs) developed in [14]. A RPO is defined as a portfolio that has a nega-
tive initial investment (i.e., positive initial cash-flow) and nonnegative future risk-adjusted

16



value. A nonnegative risk-adjusted value makes future negative cash-flows unlikely. For-
mally, a portfolio vector x0 is an RPO if it satisfies

(v̄1)>x0 − θ
√

(x0)>Q1x0 ≥ 0, e>x0 < 0, (22)

for a positive constant θ. It is argued in [14] that RPOs represent next-best alternatives to
arbitrage opportunities, which are often assumed not to exist or persist in financial markets.
Solving a problem similar to (21) with constraints (22), one finds maximum-θ RPOs.

While satisfying the inequality of the problem (21) (or the problem with constraints
(22)) does not guarantee that the actual return will be above the threshold t (non-negative
for (22)), maximization of θ is intended to maximize the likelihood of that event. It is
easy to see that maximizing θ is actually equivalent to maximizing the probability that
the random return vector r1 will satisfy the inequality (r1)>x0 ≥ t when the joint return
distributions are normal. This argument is also related to the 3σ concepts in engineering–if
the mean minus three standard deviations of a random variable is above a threshold, the
random variable will “almost always” be above that threshold.

Next, we consider problem (21) in a two-period investment setting. For this purpose, let
v2

i denote the (random) time 2 value of $1 invested in security i at time 1, and let x1
i denote

the dollars invested in security i at time 1. Let r2, r̄2, Q2, etc. be defined analogously
to the earlier definitions. In this two-period investment setting, the investor will form a
portfolio at time 0 that she will hold until time 1. At time 1 she will be able to rebalance
her portfolio in a self-financing manner and hold this new portfolio until time 2. In the
absence of transaction costs, the self-financing constraint is represented as follows:

e>x1 = (v1)>x0, (23)

i.e., the initial value of the portfolio constructed at time 1 must equal to value of the time
0 portfolio at time 1. Proportional transaction costs can be handled easily using additional
linear variables. Fixed transaction costs however would require the use of binary variables.
For simplicity, we do not consider either possibility here.

Since we do not know v1 beforehand, (23) is an uncertain (random) constraint. Let
X 1(x0,v1) denote the feasible set of portfolios for time 1 defined by additional constraints
that may or may not depend on x0 and v1. We focus on the self-financing constraint and
treat it separately from the others. Given a particular value for v1 and the choice x0 for
the time 0 portfolio, the problem we want to solve at time 1 is an analogue of (21) with
the additional self-financing constraint:

sup
θ,x1

θ, s.t. (r̄2)>x1 − θ
√

(x1)>Q2x1 ≥ t, e>x1 = (v1)>x0, x1 ∈ X 1(x0,v1). (24)

For the two-period problem, one must decide how to approach the uncertain constraint
e>x1 = (v1)>x0. Here, we use the ARO approach and define an uncertainty set U that
contains all possible values of the uncertain vector v1. We further assume that U is a
polytopic set and is given as U = conv{v1

1, . . . ,v
1
k}. Note that ellipsoidal uncertainty
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sets commonly seen in robust modeling of financial problems [10] can be approximated by
uniform sampling from the boundary of the ellipsoid and using the corresponding inscribed
polytope.

Then, the two-period adjustable robust optimization model for this problem can be
written as

sup
x0:x0∈X 0

inf
v1∈U

sup
θ,x1∈X 1(x0,v1)

θ s.t. e>x1 = (v1)>x0, (r̄2)>x1 − θ
√

(x1)>Q2x1 ≥ t. (25)

It is reasonable to assume that Q2 is nonsingular (otherwise there are redundant or riskless
assets) and that 0 6∈ X 1 (not doing anything is not an option). Then, (x1)>Q2x1 is positive
for all x1 ∈ X 1 and we can rewrite the problem as

sup
x0:x0∈X 0

inf
v1∈U

sup
θ,x1∈X 1(x0,v1)

θ s.t. e>x1 = (v1)>x0, θ −
(r̄2)>x1 − t√
(x1)>Q2x1

≤ 0. (26)

Now we can eliminate the variable θ and obtain the following equivalent formulation:

sup
x0:x0∈X 0

inf
v1∈U

sup
x1∈X 1(x0,v1)

(r̄2)>x1 − t√
(x1)>Q2x1

s.t. e>x1 = (v1)>x0. (27)

This is an ARO formulation for a fractional programming problem. If X 1(x0,v1) is a quasi-
convex mapping (trivially satisfied when X 1 is a fixed convex set independent of x0 and
v1 and the only restriction on x1 from x0 and v1 is through the self-financing constraint)
the only condition we need to verify to apply Proposition 5 is the quasi-concavity of the
objective function in (27). Note that we need quasi-concavity rather than quasi-convexity
since the inner problem is a maximization problem.

A solution to (27) is meaningful in the sense of a robust profit opportunity only when
the optimal objective value of this problem is nonnegative. If we assume that this is
the case, it is sufficient to verify the quasi-concavity of the objective function on the set
S = {x : (r̄2)>x ≥ t} since points in the complement of this set yield negative and

therefore suboptimal objective values. To simplify the verification let h(x) ≡
√

x>Q2x

and g(x) ≡ (r̄2
)>x−t

h(x)
. Note that, since Q2 is positive definite, h defines a norm and

therefore is a convex function [7]. Given x1, x2, and λ ∈ [0, 1], define xλ = λx1 +(1−λ)x2.

Also, let λ̃ = λh(x1)
λh(x1)+(1−λ)h(x2)

which is a number between 0 and 1. Then,

g(xλ) =
(r̄2)>xλ − t

h(xλ)

≥
(r̄2)>xλ − t

λh(x1) + (1 − λ)h(x2)

= λ̃g(x1) + (1 − λ̃)g(x2)

≥ min{g(x1), g(x2)}
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establishing the quasi-concavity of g on S (recall that g is quasi-concave if and only if −g
is quasi-convex and −g is quasi-convex if and only if −g(xλ) ≤ max{−g(x1),−g(x2)} for
every x1, x2 and λ ∈ [0, 1]). The first inequality above follows from the convexity of h
and the second one holds since a convex combination of two numbers is no less than the
minimum of the two.

Note that g is not convex in general. Therefore, the problem (25) represents an interest-
ing application of the ARO models developed here but not available in earlier works. Using
Proposition 5 and the discussion in Section 2, we can write problem (27) as a single-level
deterministic problem:

sup
x0,x1

1,...,x1
k
,s

s

s.t.
(r̄2

)>x1
j−t�

(x1
j )>Q

2
x1

j

≥ s, j = 1, . . . , k

e>x1
j = (v1

j)
>x0, j = 1, . . . , k,

x0 ∈ X 0, x1
j ∈ X 1(x0,v1

j), j = 1, . . . , k

which is also transformed to

sup
x

inf
j=1,...,k

fj(x)

gj(x)
s.t. x ∈ X , (28)

where
x ≡ (x0,x1

1, . . . ,x
1
k),

fj(x) = (r̄2)>x1
j − t, gj(x) =

√
(x1

j)
>Q2x1

j ,

X ≡

{
x :

e>x1
j = (v1

j)
>x0, j = 1, . . . , k

x0 ∈ X 0, x1
j ∈ X 1(x0,v1

j), j = 1, . . . , k

}
.

Problem (28) is known as max-min fractional program, and there are several kinds of solu-
tion methods for solving this problem such as Dinkelbach’s algorithm [8] and the interior-
point algorithms proposed by Freund et al. [9] and Nemirovski [13].

In [14], the two-period maximum-θ RPO problem (25) is solved for the special case of
X1 ≡ R

n and X0 = {x : e>x < 0}. The techniques used in [14] rely on the homogeneity of
the objective function as well as the constraints defining sets X0 and X1. Since we do not
require such assumptions on the constraint sets, our approach here applies to more general
RPO problems.

5.2 Maximum Sharpe Ratio Problem

If the investment environment contains a riskless security in addition to the risky securities
we already considered above, it is possible to construct zero-investment portfolios by pur-
chasing the portfolio x after borrowing e>x dollars at the riskless rate rf . If e>x < 0, this
would correspond to lending −e>x dollars. A well-studied problem in portfolio selection is
that of finding a zero-investment portfolio that has the highest expected return to standard
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deviation ratio. This scale invariant quantity is called the Sharpe ratio and can be written
as

max
x

r̄>x − rf (e
>x)√

x>Qx
(29)

where we used the same notation as in the previous subsection (without time superscripts)
and rf represents the risk-free return rate. This function has the same structure as g(x)
in the previous subsection and hence is quasi-concave. Indeed, there is an equivalence be-
tween the maximum Sharpe ratio and the maximum-θ RPO problem provided that riskless
securities are available, see [14]. For the problem of maximizing the final period Sharpe
ratio in a two-period or multi-period framework, one can develop an analogous formulation
to (27). Therefore, the two-period formulation of the maximum Sharpe ratio problem is
another important example of the special nonlinear structures we considered in Sections 2
and 3 that lead to tractable formulations.
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