
SDPT3 — a Matlab software package for
semidefinite-quadratic-linear programming,

version 3.0

R. H. Tütüncü ∗, K. C. Toh †, and M. J. Todd ‡.

August 21, 2001

Abstract

This document describes a new release, version 3.0, of the software SDPT3. This
code is designed to solve conic programming problems whose constraint cone is a
product of semidefinite cones, second-order cones, and/or nonnegative orthants. It
employs a predictor-corrector primal-dual path-following method, with either the
HKM or the NT search direction. The basic code is written in Matlab, but key
subroutines in Fortran and C are incorporated via Mex files. Routines are provided
to read in problems in either SeDuMi or SDPA format. Sparsity and block diagonal
structure are exploited, but the latter needs to be given explicitly.

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
(reha+@andrew.cmu.edu). Research supported in part by NSF through grant CCR-9875559.
†Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore

119260. (mattohkc@math.nus.edu.sg). Research supported in part by the Singapore-MIT Alliance.
‡School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853,

USA (miketodd@cs.cornell.edu). Research supported in part by NSF through grant DMS-9805602 and
ONR through grant N00014-96-1-0050.

1

1 Introduction

The current version of SDPT3, version 3.0, can solve conic linear optimization prob-
lems with inclusion constraints for the cone of positive semidefinite matrices, the
second-order cone, and/or the polyhedral cone of nonnegative vectors. It solves the
following standard form of such problems, henceforth called SQLP problems:

(P) min
∑ns
j=1〈csj , xsj〉 +

∑nq
i=1〈c

q
i , x

q
i 〉 + 〈cl, xl〉

s.t.
∑ns
j=1(Asj)

T svec(xsj) +
∑nq
i=1(Aqi)

Txqi + (Al)Txl = b,

xsj ∈ K
sj
s ∀j, xqi ∈ Kqi

q ∀i, xl ∈ Knl
l .

Here, csj , x
s
j are symmetric matrices of dimension sj and K

sj
s is the cone of positive

semidefinite symmetric matrices of the same dimension. Similarly, cqi , x
q
i are vectors

in IRqi and Kqi
q is the second-order cone defined by Kqi

q := {x ∈ IRqi : x1 ≥ ‖x2:qi‖}.
Finally, cl, xl are vectors of dimension nl and Knl

l is the cone IRnl+ . In the notation
above, Asj denotes the s̄j×mmatrix with s̄j = sj(sj+1)/2 whose columns are obtained
using the svec operator from m symmetric sj × sj constraint matrices corresponding
to the jth semidefinite block xsj . For a definition of the vectorization operator svec
on symmetric matrices, see, e.g., [15]. The matrices Aqi ’s are qi × m dimensional
constraint matrices corresponding to the ith quadratic block xqi , and Al is the l ×m
dimensional constraint matrix corresponding to the linear block xl. The notation
〈p, q〉 denotes the standard inner product in the appropriate space.

The software also solves the dual problem associated with the problem above:

(D) max bT y
s.t. Asjy + zsj = csj , j = 1 . . . , ns

Aqi y + zqi = cqi , i = 1 . . . , nq

Aly + zl = cl,

zsj ∈ K
sj
s ∀j, zqi ∈ Kqi

q ∀i, zl ∈ Knl
l .

This package is written in Matlab version 5.3 and is compatible with Matlab

version 6.0. It is available from the internet sites:

http://www.math.nus.edu.sg/~mattohkc/index.html

http://www.math.cmu.edu/~reha/sdpt3.html

The software package was originally developed to provide researchers in semidef-
inite programming with a collection of reasonably efficient and robust algorithms
that could solve general SDPs with matrices of dimensions of the order of a hun-
dred. The current release, version 3.0, expands the family of problems solvable by
the software in two dimensions. First, this version is much faster than the previous
release [18], especially on large sparse problems, and consequently can solve much
larger problems. Second, the current release can also directly solve problems that

2

have second-order cone constraints — with the previous version it was necessary to
convert such constraints to semidefinite cone constraints.

In this paper, the vector 2-norm and Frobenius norm are denoted by ‖·‖ and ‖·‖F ,
respectively. In the next section, we discuss the algorithm used in the software and
several implementation details including the initial iterates generated by our software
and its data storage scheme. Section 3 describes the search directions used by our
algorithms and explains how they are computed. In Section 4, we provide sample runs
and comment on several major differences between the current and earlier versions of
our software. In the last section, we present performance results of our software on
problems from the SDPLIB and DIMACS libraries.

2 A primal-dual infeasible-interior-point algo-

rithm

The algorithm implemented in SDPT3 is a primal-dual interior-point algorithm that
uses the path-following paradigm. In each iteration, we first compute a predictor
search direction aimed at decreasing the duality gap as much as possible. After
that, the algorithm generates a Mehrotra-type corrector step [10] with the intention
of keeping the iterates close to the central path. However, we do not impose any
neighborhood restrictions on our iterates.1 Initial iterates need not be feasible —
the algorithm tries to achieve feasibility and optimality of its iterates simultaneously.
It should be noted that in our implementation, the user has the option to use a
primal-dual path-following algorithm that does not use corrector steps.

Following next is a pseudo-code for the algorithm we implemented. Note that
this description makes references to later sections where details related to the algo-
rithm are explained.

Algorithm IPC. Suppose we are given an initial iterate (x0, y0, z0) with x0, z0 strictly
satisfying all the conic constraints. Decide on the type of search direction to use. Set γ0 = 0.9.
Choose a value for the parameter expon used in e.

For k = 0, 1, . . .

(Let the current and the next iterate be (x, y, z) and (x+, y+, z+) respectively. Also, let the
current and the next step-length parameter be denoted by γ and γ+ respectively.)

• Set µ = 〈x, z〉/n, and

rel gap =
〈x, z〉

max(1, (|〈c, x〉|+ |bT y|)/2
, infeas meas = max

(
‖rp‖

max(1, ‖b‖)
,

‖Rd‖
max(1, ‖c‖)

)
. (1)

Stop the iteration if the infeasibility measure infeas meas and the relative duality gap
(rel gap) are sufficiently small.

1This strategy works well on most of the problems we tested. However, it should be noted that the
occasional failure of the software on problems with poorly chosen initial iterates is likely due to the lack of
a neighborhood enforcement in the algorithm.

3

• (Predictor step)
Solve the linear system (9) with σ = 0 in the right-side vector (11). Denote the solution
of (3) by (δx, δy, δz). Let αp and βp be the step-lengths defined as in (29) and (30) with
∆x,∆z replaced by δx, δz, respectively.

• Take σ to be

σ = min
(

1,
[
〈x+ αp δx, z + βp δz〉

〈x, z〉

]e)
,

where the exponent e is chosen as follows:

e =

{
max[expon, 3 min(αp, βp)2] if µ > 10−6,
expon if µ ≤ 10−6.

• (Corrector step)
Solve the linear system (9) with Rc in the the right-hand side vector (11) replaced by

R̃sc = svec [σµI −HP (smat(xs)smat(zs))−HP (smat(δxs)smat(δzs))]

R̃qc = σµeq − TG(xq, zq)− TG(δxq, δzq)

R̃lc = σµel − diag(xl)zl − diag(δxl)δzl.

Denote the solution of (3) by (∆x,∆y,∆z).

• Update (x, y, z) to (x+, y+, z+) by

x+ = x+ α∆x, y+ = y + β∆y, z+ = z + β∆z,

where α and β are computed as in (29) and (30) with γ chosen to be γ = 0.9 +
0.09 min(αp, βp).

• Update the step-length parameter by

γ+ = 0.9 + 0.09 min(α, β).

The main routine that corresponds to the infeasible path-following algorithm just
described is sqlp.m:

[obj,X,y,Z,gaphist,infeashist,info,Xiter,yiter,Ziter] =

sqlp(blk,A,C,b,X0,y0,Z0,OPTIONS).

Input arguments.

blk: a cell array describing the block structure of the SQLP problem.
A, C, b: SQLP data.
X0, y0, Z0: an initial iterate.
OPTIONS: a structure array of parameters.

4

If the input argument OPTIONS is omitted, default values are used.

Output arguments.

The names chosen for the output arguments explain their contents. The argument
info is a 5-vector containing performance information; see [18] for details. The
argument (Xiter,yiter,Ziter) is new in this release: it is the last iterate of sqlp.m,
and if desired, the user can continue the iteration process with this as the initial
iterate. Such an option allows the user to iterate for a certain amount of time, stop
to analyze the current solution, and continue if necessary. This can be achieved, for
example, by choosing a small value for the maximum number iterations specified in
OPTIONS.maxit.

Note that, while (X,y,Z) normally gives approximately optimal solutions, if
info(1) is 1 the problem is suspected to be primal infeasible and (y,Z) is an approx-
imate certificate of infeasibility, with bTy = 1, Z in the appropriate cone, and ATy+Z
small, while if info(1) is 2 the problem is suspected to be dual infeasible and X is an
approximate certificate of infeasibility, with 〈C, X〉 = −1, X in the appropriate cone,
and AX small.

A structure array for parameters.

The function sqlp.m uses a number of parameters which are specified in a Matlab

structure array called OPTIONS in the m-file parameters.m. If desired, the user can
change the values of these parameters. The meaning of the specified fields in OPTIONS
are given in the m-file itself. As an example, if the user does not wish to use corrector
steps in Algorithm IPC, then he/she can do so by setting OPTIONS.predcorr = 0.
Similarly, if the user wants to use a fixed value, say 0.98, for the step-length parameter
γ instead of the adaptive strategy used in the default, he/she can achieve that by
setting OPTIONS.gam = 0.98.

Stopping criteria.

The user can set a desired level of accuracy through the parameters OPTIONS.gaptol
and OPTIONS.inftol (the default for each is 10−8).. The algorithm is stopped when
any of the following cases occur.

1. solutions with the desired accuracy have been obtained, i.e.,

rel gap :=
〈x, z〉

max{1, (|〈c, x〉|+ |bT y|)/2}

and

infeas meas := max

[
‖Ax− b‖

max{1, ‖b‖}
,
‖AT y + z − c‖
max{1, ‖c‖}

]
are both below OPTIONS.gaptol.

2. primal infeasibility is suggested because

bT y/‖AT y + z‖ > 1/OPTIONS.inftol;

5

3. dual infeasibility is suggested because

−cTx/‖Ax‖ > 1/OPTIONS.inftol;

4. slow progress is detected, measured by a rather complicated set of tests including

xT z/n < 10−4 and rel gap < 5 ∗ infeas meas;

5. numerical problems are encountered, such as the iterates not being positive
definite or the Schur complement matrix not being positive definite; or

6. the step sizes fall below 10−6.

Initial iterates.

Our algorithms can start with an infeasible starting point. However, the performance
of these algorithms is quite sensitive to the choice of the initial iterate. As observed
in [4], it is desirable to choose an initial iterate that at least has the same order of
magnitude as an optimal solution of the SQLP. If a feasible starting point is not
known, we recommend that the following initial iterate be used:

y0 = 0,

(xsj)
0 = ξsj Isj , (zsj)

0 = ηsj Isj , j = 1, . . . , ns,

(xqi)
0 = ξqi e

q
i , (zqi)

0 = ηqi e
q
i , i = 1, . . . , nq,

(xl)0 = ξl el, (zl)0 = ηl el,

where Isj is the identity matrix of order sj , e
q
i is the first qi-dimensional unit vector,

el is the vector of all ones, and

ξsj =
√
sj max

(
1 ,
√
sj max

1≤k≤m

1 + |bk|
1 + ‖Asj(:, k)‖

)
,

ηsj =
√
sj max

(
1 ,

1 + max(maxk{‖Asj(:, k)‖}, ‖csj‖F)
√
sj

)
,

ξqi =
√
qi max

(
1 , max

1≤k≤m

1 + |bk|
1 + ‖Aqi (:, k)‖

)
,

ηqi =
√
qi max

(
1 ,

1 + max(maxk{‖Aqi (:, k)‖}, ‖cqi ‖)√
qi

)
,

ξl = max
(

1 , max
1≤k≤m

1 + |bk|
1 + ‖Al(:, k)‖

)
,

ηl = max

(
1 ,

1 + max(maxk{‖Al(:, k)‖}, ‖cl‖)
√
nl

)
,

6

where Asj(:, k) denotes the kth column of Asj , and Aqi (:, k) and Ali(:, k) are defined
similarly.

By multiplying the identity matrix Isi by the factors ξsi and ηsi for the semidefinite
blocks, and similarly for the quadratic and linear blocks, the initial iterate has a better
chance of having the appropriate order of magnitude.

The initial iterate above is set by calling infeaspt.m, with initial line

function [X0,y0,Z0] = infeaspt(blk,A,C,b,options,scalefac),

where options = 1 (default) corresponds to the initial iterate just described, and
options = 2 corresponds to the choice where the blocks of X0, Z0 are scalefac times
identity matrices or unit vectors, and y0 is a zero vector.

Cell array representation for problem data.

Our implementation SDPT3 exploits the block structure of the given SQLP prob-
lem. In the internal representation of the problem data, we classify each semidefinite
block into one of the following two types:

1. a dense or sparse matrix of dimension greater than or equal to 30;

2. a sparse block-diagonal matrix consisting of numerous sub-blocks each of di-
mension less than 30.

The reason for using the sparse matrix representation to handle the case when we have
numerous small diagonal blocks is that it is less efficient for Matlab to work with
a large number of cell array elements compared to working with a single cell array
element consisting of a large sparse block-diagonal matrix. Technically, no problem
will arise if one chooses to store the small blocks individually instead of grouping
them together as a sparse block-diagonal matrix.

For the quadratic part, we typically group all quadratic blocks (small or large)
into a single block, though it is not mandatory to do so. If there are a large number
of small blocks, it is advisable to group them all together as a single large block
consisting of numerous small sub-blocks for the same reason we mentioned before.

Let L = ns + nq + 1. For each SQLP problem, the block structure of the problem
data is described by an L × 2 cell array named blk. The content of each of the
elements of the cell arrays is given as follows. If the jth block is a semidefinite block
consisting of a single block of size sj, then

blk{j,1} = ’s’ , blk{j, 2} = [sj],

A{j} = [s̄j x m sparse],

C{j}, X{j}, Z{j} = [sj x sj double or sparse],

where s̄j = sj(sj + 1)/2.
If the jth block is a semidefinite block consisting of numerous small sub-blocks,

say p of them, of dimensions sj1, sj2, . . . , sjp such that
∑p
k=1 sjk = sj, then

7

blk{j,1} = ’s’ , blk{j, 2} = [sj1 sj2 · · · sjp],

A{j} = [s̄j x m sparse],

C{j}, X{j}, Z{j} = [sj x sj sparse] ,

where s̄j =
∑p

k=1 sjk(sjk + 1)/2.
The above storage scheme for the data matrix Asj associated with the semidefinite

blocks of the SQLP problem represents a departure from earlier versions (version 2.x
or earlier) of our implementation, such as the one described in [18]. Previously, the
semidefinite part of A was represented by an ns ×m cell array, where A{j,k} corre-
sponds to the kth constraint matrix associated with the jth semidefinite block, and
it was stored as an individual matrix in either dense or sparse format. Now, we store
all the constraint matrices associated with the jth semidefinite block in vectorized
form as a single s̄j × m matrix where the kth column of this matrix corresponds
to the kth constraint matrix. That is, A{j}(:,k) = svec(kth constraint matrix
associated with the jth semidefinite block). The data format we used in ear-
lier versions of SDPT3 was more natural, but our current data representation was
adopted for the sake of computational efficiency. The reason for such a change is
again due to the fact that it is less efficient for Matlab to work with a single cell
array with many cells.

The data storage scheme corresponding to quadratic and linear blocks is rather
straightforward. If the ith block is a quadratic block consisting of numerous sub-
blocks, say p of them, of dimensions qi1, qi2, . . . , qip such that

∑p
k=1 qik = qi, then

blk{i,1} = ’q’ , blk{i, 2} = [qi1 qi2 · · · qip],

A{i} = [qi x m sparse],

C{i}, X{i}, Z{i} = [qi x 1 double or sparse].

If the ith block is the linear block, then

blk{i,1} = ’l’ , blk{i, 2} = nl,

A{i} = [nl x m sparse],

C{i}, X{i}, Z{i} = [nl x 1 double or sparse].

Notice that we associated with each constraint a column in A{j} rather than the
usual linear programming practice of associating with it a row. The reason is to
avoid the need to take the transpose of A{j} excessively, which can incur a significant
amount of CPU time in Matlab when A{j} is a large sparse matrix.

8

3 The search direction

To simplify discussion, we introduce the following notation, which is also consistent
with the internal data representation in SDPT3:

As =

As1
...

Asns

 , Aq =

Aq1
...

Aqnq

 .
Similarly, we define

xs =

 svec(xs1)
...

svec(xsns)

 , xq =

xq1
...
xqnq

 . (2)

The vectors cs, zs, cq, and zq are defined analogously. We will use corresponding
notation for the search directions as well. Finally, let

A =

 As

Aq

Al

 , x =

 xs

xq

xl

 , c =

 cs

cq

cl

 , z =

 zs

zq

zl

 ,
and

n =
ns∑
j=1

sj +
nq∑
i=1

qi + nl.

Note that the matrix A above is defined as the transpose of that in the standard
literature so as to be consistent with our data representation.

With the notation introduced above, the primal and dual equality constraints can
be represented respectively as

ATx = b, Ay + z = c.

The primal-dual path-following algorithm we implemented assumes that A has full
column rank. But in our software, the presence of (nearly) dependent constraints
is detected automatically, and warning messages are displayed if such constraints
exist. When this happens, the user has the option of removing these (nearly) de-
pendent constraints by calling a preprocessing routine to remove them by setting
OPTIONS.rmdepconstr = 1. We should mention that the routine we have coded for
removing dependent constraints is a rather primitive one, and it is inefficient for large
problems. We hope to improve on this routine in future versions of SDPT3.

The main step at each iteration of our algorithms is the computation of the search
direction (∆x,∆y,∆z) from the symmetrized Newton equation with respect to an
invertible block diagonal scaling matrix P for the semidefinite block and an invertible
block diagonal scaling matrix G for the quadratic block. The matrices P and G are

9

usually chosen as functions of the current iterate x, z and we will elaborate on specific
choices below. The search direction (∆x,∆y,∆z) is obtained from the following
system of equations:

A∆y + ∆z = Rd := c− z −Ay
AT∆x = rp := b−ATx
Es∆xs + Fs∆zs = Rsc := svec (σµI −HP (smat(xs)smat(zs)))

Eq∆xq + Fq∆zq = Rqc := σµeq − TG(xq, zq)

E l∆xl + F l∆zl = Rlc := σµel − E lF lel,

(3)

where µ = 〈x, z〉/n and σ is the centering parameter. The notation smat denotes
the inverse map of svec and both are to be interpreted as blockwise operators if the
argument consists of blocks. Here HP is the symmetrization operator whose action
on the jth semidefinite block is defined by

HPj : IRsj×sj −→ IRsj×sj

HPj (U) = 1
2

[
PjUP

−1
j + P−Tj UTP Tj

]
, (4)

with Pj the jth block of the block diagonal matrix P and Es and Fs are symmetric
block diagonal matrices whose jth blocks are given by

Esj = Pj©∗ P−Tj zsj , Fsj = Pjx
s
j ©∗ P−Tj , (5)

where R©∗ T is the symmetrized Kronecker product operation described in [15].
In the quadratic block, eq denotes the blockwise identity vector, i.e.,

eq =

eq1
...
eqnq

 ,
where eqi is the first unit vector in IRqi . Let the arrow operator defined in [2] be
denoted by Arw (·). Then the operator TG is defined as follows:

TG(xq, zq) =

Arw (G1x

q
1) (G−1

1 zq1)
...

Arw
(
Gnqx

q
nq

)
(G−1

nq z
q
nq)

 , (6)

where G is a symmetric block diagonal matrix that depends on x, z and Gi is the ith
block of G. The matrices Eq and Fq are block diagonal matrices whose the ith blocks
are given by

Eqi = Arw
(
G−1
i zqi

)
Gi, Fqi = Arw (Gix

q
i)G

−1
i . (7)

10

In the linear block, el denotes the nl-dimensional vector of ones, and E l = diag(xl),
F l = diag(zl).

For future reference, we partition the vectors Rd, ∆x, and ∆z in a manner anal-
ogous to c, x, and z as follows:

Rd =

Rsd

Rqd

Rld

 , ∆x =

∆xs

∆xq

∆xl

 , ∆z =

∆zs

∆zq

∆zl

 . (8)

Assuming that m = O(n), we compute the search direction via a Schur comple-
ment equation as follows (the reader is referred to [1] and [15] for details). First
compute ∆y from the Schur complement equation

M∆y = h, (9)

where

M = (As)T (Es)−1FsAs + (Aq)T (Eq)−1FqAq + (Al)T (E l)−1F lAl (10)

h = rp − (As)T (Es)−1(Rsc −FsRsd)
− (Aq)T (Eq)−1(Rqc −FqR

q
d) − (Al)T (E l)−1(Rlc −F lRld). (11)

Then compute ∆x and ∆z from the equations

∆z = Rd −A∆y (12)

∆xs = (Es)−1Rsc − (Es)−1Fs∆zs (13)

∆xq = (Eq)−1Rqc − (Eq)−1Fq∆zq (14)

∆xl = (E l)−1Rlc − (E l)−1F l∆zl. (15)

3.1 Two choices of search directions

We start by introducing some notation that we will use in the remainder of this
paper. For a given qi-dimensional vector xqi , we let x0

i denote its first component and
x1
i denote its subvector consisting of the remaining entries, i.e.,[

x0
i

x1
i

]
=

[
(xqi)1

(xqi)2:qi

]
. (16)

We will use the same convention for zqi , ∆xqi , etc. Also, we define the following
function from Kqi

q to IR+:

γ(xqi) :=
√

(x0
i)2 − 〈x1

i , x
1
i 〉. (17)

Finally, we use X and Z for smat(xs) and smat(zs), where the operation is applied
blockwise to form a block diagonal symmetric matrix of order

∑ns
j=1 sj .

11

In the current release of this package, the user has two choices of scaling operators
parametrized by P and G, resulting in two different search directions: the HKM
direction [7, 9, 11], and the NT direction [14]. See also Tsuchiya [20] for the second-
order case.

(1) The HKM direction. This choice uses the scaling matrix P = Z1/2 for the
semidefinite blocks and a symmetric block diagonal scaling matrix G for the
quadratic blocks where the ith block Gi is given by the following equation:

Gi =

z0
i (z1

i)T

z1
i γ(zqi)I +

z1
i (z1

i)T

γ(zqi) + z0
i

 . (18)

(2) The NT direction. This choice uses the scaling matrix P = N−1 for the
semidefinite blocks, where N is a matrix such that D := NTZN = N−1XN−T

is a diagonal matrix [15], and G is a symmetric block diagonal matrix whose ith
block Gi is defined as follows. Let

ωi =

√
γ(zqi)
γ(xqi)

, ξi =

[
ξ0
i

ξ1
i

]
=

[1
ωi
z0
i + ωix

0
i

1
ωi
z1
i − ωix1

i

]
. (19)

Then

Gi = ωi

 t0i (t1i)
T

t1i I +
t1i (t

1
i)
T

1 + t0i

 , where

[
t0i

t1i

]
=

1
γ(ξi)

[
ξ0
i

ξ1
i

]
. (20)

3.2 Computation of the search directions

Generally, the most expensive part in each iteration of Algorithm IPC lies in the
computation and factorization of the Schur complement matrix M defined in (9).
And this depends critically on the size and density of M . Note that the density
of this matrix depends on two factors: (i) The density of the constraint coefficient
matrices As, Aq, and Al, and (ii) any additional fill-in introduced because of the
terms (Es)−1Fs, (Eq)−1Fq, and (E l)−1F l in (9).

3.2.1 Semidefinite blocks

For problems with semidefinite blocks, the contribution by the jth semidefinite block
to M is given by M s

j := (Asj)
T (Esj)−1FsjAsj . As the matrix (Esj)−1Fsj is dense and

structure-less for most problems, the matrix M s
j is generally dense even if Asj is

sparse. The computation of each entry of M s
j involves matrix products, which in the

case of NT direction has the form

(M s
j)αβ = Asj(:, α)T svec

(
wsj smat(Asj(:, β))wsj

)
,

12

where Asj(:, k) denotes the kth column of Asj . This computation can be very expensive
if it is done naively without properly the exploiting sparsity that is generally present
in Asj . In our earlier papers [15, 18], we discussed briefly how sparsity of Asj is
exploited in our implementation by following the ideas presented in [4]. However, as
the efficient implementation of these ideas is not spelled out in the current literature,
we will provide further details here.

In our implementation, firstly the matrix Asj is sorted column-wise in ascending
order of the number of non-zero elements in each column. Suppose we denote the
sorted matrix by Ãsj and the matrix (Ãsj)

T (Esj)−1Fsj Ãsj by M̃ s
j . (We should emphasize

that, in order to cut down memory usage, the matrix Ãsj is not created explicitly, but
it is accessed through Asj via a permutation vector, and similarly for M̃ s

j .) Then a
2-column cell array nzlistA is created such that nzlistA{j,1} is an m-vector where
nzlistA{j,1}(k) is the starting row index in the 2-column matrix nzlistA{j,2}
that stores the row and column indices of the non-zero elements of smat(Ãsj(:, k)).
If the number of non-zero elements of smat(Ãsj(:, k)) exceeds a certain threshold, we
set nzlistA{j,1}(k) = inf, and we do not append the row and column indices of
this matrix to nzlistA{j,2}. We use the flag “inf” to indicate that the density of
the matrix is too high for sparse computation to be done efficiently. If J is the largest
integer for which nzlistA{j,1}(k) < inf, then we compute the upper triangular
part of matrix M̃ s

j (1 : J, 1 : J) through formula F-3 described in [4]. In our software,
this part of the computation is done in a C Mex routine mexschur.mex*.

As formula F-3 is efficient only for very sparse constraint matrices, say with den-
sity below the level of 2%, we also need to handle the case where constraint matrices
have a moderate level of density, say 2% − 20%. For such matrices, the strategy is
to compute only those elements of the matrix product U := wsj smat(Ãsj(:, β))wsj
that contribute to an entry of M̃ s

j , that is, those that correspond to a nonzero
entry of Ãsj(:, k) for some k = 1, . . . , β. Basically, we use formula F-2 described
in [4] in this case. In our implementation, we create another 2-column cell array
nzlistAsum to facilitate such calculations. In this case, nzlistAsum{j,1} is a vec-
tor such that nzlistAsum{j,1}(k) is the starting row index in the 2-column matrix
nzlistAum{j,2} that stores the row and column indices of the non-zero elements
of smat(Ãsj(:, k)) that are not already present in the combined list of non-zero ele-
ments from

∑k−1
i=1 |smat(Ãsj(:, i))|. Again, if the combined list of non-zero elements

of
∑k
i=1 |smat(Ãsj(:, i))| exceeds a certain threshold, we set nzlistAsum{j,1}(k) =

inf since formula F-2 in [4] is not efficient when the combined list of non-zeros ele-
ments that need to be calculated for U is too large. Suppose L is the largest integer
such that nzlistAsum{j,1}(k) < inf. Then we compute the upper triangular part
of M̃ s

j (1 : L, J : L) through formula F-2. Again, for efficiency, we do the computation
in a C Mex routine mexProd2nz.mex*.

The remaining columns of M̃ s
j are calculated by first computing the full matrix

U , and then taking the inner product between the appropriate columns of Ãsj and
svec(U).

Finally, we would like to highlight an issue that is often critical in cutting down

13

the computation time in forming M s
j . In many large SDP problems, the matrix

smat(Asj(:, k)) is usually sparse, and it is important to store this matrix as a sparse
matrix in Matlab and perform sparse-dense matrix-matrix multiplication whenever
possible.

3.2.2 Quadratic and linear blocks

For linear blocks, (E l)−1F l is a diagonal matrix and it does not introduce any addi-
tional fill-in. This matrix does, however, affect the conditioning of the Schur comple-
ment matrix and is a popular subject of research in implementations of interior-point
methods for linear programming.

From equation (10), it is easily shown that the contribution of the quadratic blocks
to the matrix M is given by

M q = (Aq)T (Eq)−1FqAq =
nq∑
i=1

(Aqi)
T (Eqi)−1Fqi A

q
i︸ ︷︷ ︸

Mq
i

. (21)

For the HKM direction, (Eqi)−1Fqi is a diagonal matrix plus a rank-two symmetric
matrix, and we have

M q
i =

〈xqi , z
q
i 〉

γ2(zqi)
(Aqi)

TJiA
q
i + uqi (v

q
i)
T + vqi (u

q
i)
T , (22)

where

Ji =

[
−1 0
0 I

]
, uqi = (Aqi)

T

[
x0
i

x1
i

]
, vqi = (Aqi)

T

(
1

γ2(zqi)

[
z0
i

−z1
i

])
. (23)

The appearance of the outer-product terms in the equation above is potentially
alarming. If the vectors uqi , v

q
i are dense, then even if Aqi is sparse, the corresponding

matrix M q
i , and hence the Schur complement matrix M , will be dense. A direct

factorization of the resulting dense matrix will be very expensive for even moderately
high m.

The observed behavior of the density of the matrix M q
i on test problems depends

largely on the particular problem structure. When the problem has many small
quadratic blocks, it is often the case that each block appears in only a small fraction
of the constraints. In this case, all Aqi matrices are sparse and the vectors uqi and
vqi turn out to be sparse vectors for each i. Consequently, the matrices M q

i remain
relatively sparse for these problems. As a result, M is also sparse and it can be
factorized directly with reasonable cost. The behavior is typical for all nql and qssp
problems from the DIMACS library.

The situation is drastically different for problems where one of the quadratic
blocks, say the ith block, is large. For such problems the vectors uqi , v

q
i are typically

dense, and therefore, M q
i is likely be a dense matrix even if the data Aqi is sparse.

However, observe that M q
i is a rank-two perturbation of a sparse matrix when Aqi is

14

sparse. In such a situation, it may be advantageous to use the Sherman-Morrison-
Woodbury update formula [6] when solving the Schur complement equation (9). This
is a standard strategy used in linear programming when there are dense columns
in the constraint matrix and this is the approach we used in our implementation
of SDPT3. This approach helps tremendously on the scheduling problems from the
DIMACS library.

To apply the Sherman-Morrison-Woodbury formula, we need to modify the sparse
portion of the matrix M q

i slightly. Since the diagonal matrix Ji has a negative com-
ponent, the matrix (Aqi)

TJiA
q
i need not be a positive definite matrix, and therefore

the Cholesky factorization of the sparse portion of M q
i need not exist. To overcome

this problem, we use the following identity:

M q
i =

〈xqi , z
q
i 〉

γ2(zqi)
(Aqi)

TAqi + uqi (v
q
i)
T + vqi (u

q
i)
T − 2

〈xqi , z
q
i 〉

γ2(zqi)
kik

T
i , (24)

where uqi and vqi are as in (23) and ki = (Aqi)
T
eqi . Note that if Aqi is a large sparse

matrix with a few dense rows, we also use the Sherman-Morrison-Woodbury formula
to handle the matrix (Aqi)

TAqi in (24).
In the above, we have focused our discussion on the HKM direction, but the same

holds true for the NT direction, where the corresponding matrix M q
i is given by

M q
i =

1
ω2
i

(
(Aqi)

TJiA
q
i + 2uqi (u

q
i)
T
)
, with uqi = (Aqi)

T

[
t0i
−t1i

]
. (25)

Finally, we give a brief description of our implementation of the Sherman-Morrison-
Woodbury formula for solving the Schur complement equation when M is a low rank
perturbation of a sparse matrix. In such a case, the Schur complement matrix M can
be written in the form

M = H + UUT (26)

where H is a sparse symmetric matrix and U has only few columns. If H is non-
singular, then by the Sherman-Morrison-Woodbury formula, the solution of the Schur
complement equation is given by

∆y = ĥ−H−1U
(
I + UTH−1U

)−1
UT ĥ, (27)

where ĥ = H−1h.
Computing ∆y via the Sherman-Morrison-Woodbury update formula above is not

always stable, and the computed solution for ∆y can be highly inaccurate when H
is ill-conditioned. To partially overcome such a difficulty, we combine the Sherman-
Morrison-Woodbury update with iterative refinement [8]. It is noted in [8] that
iterative refinement is beneficial even if the residuals are computed only at the working
precision.

Our numerical experience with the second-order cone problems from the DIMACS
library confirmed that iterative refinement very often does improve the accuracy of

15

the computed solution for ∆y via the Sherman-Morrison-Woodbury formula. How-
ever, we must mention that iterative refinement can occasionally fail to provide any
significant improvement. We have not yet incorporated a stable and efficient method
for computing ∆y when M has the form (26), but note that Goldfarb and Scheinberg
[5] discuss a stable product-form Cholesky factorization approach to this problem.

3.3 Step-length computation

Once a direction ∆x is computed, a full step will not be allowed if x + ∆x violates
the conic constraints. Thus, the next iterate must take the form x + α∆x for an
appropriate choice of the step-length α. In this subsection, we discuss an efficient
strategy to compute the step-length α.

For semidefinite blocks, it is straightforward to verify that, for the jth block,
the maximum allowed step-length that can be taken without violating the positive
semidefiniteness of the matrix xsj + αsj∆x

s
j is given as follows:

αsj =

−1

λmin((xsj)−1∆xsj)
, if the minimum eigenvalue λmin is negative

∞ otherwise.
(28)

If the computation of eigenvalues necessary in αsj above becomes expensive, then we
resort to finding an approximation of αsj by estimating extreme eigenvalues using
Lanczos iterations [17]. This approach is quite accurate in general and represents
a good trade-off between the computational effort versus quality of the resulting
stepsizes.

For quadratic blocks, the largest step-length αqi that keeps the next iterate feasible
with respect to the kth quadratic cone can be computed as follows. Let

ai = γ2(∆xqi), bi = 〈∆xqi , −Jix
q
i 〉, ci = γ2(xqi), di = b2i − aici,

where Ji is the matrix defined in (23). We want the largest positive ᾱ for which
aiα

2 + 2biα+ ci > 0 for all smaller positive α’s, which is given by

αqi =

−bi −
√
di

ai
if ai < 0 or bi < 0, ai ≤ b2i /ci

−ci
2bi

if ai = 0, bi < 0

∞ otherwise.

For the linear block, the maximum allowed step-length αli for the hth component
is given by

αlh =

−xlh
∆xlh

, if ∆xlh < 0

∞ otherwise.

16

Finally, an appropriate step-length α that can be taken in order for x+α∆x to satisfy
all the conic constraints takes the form

α = min
(

1, γ min
1≤j≤ns

αsj , γ min
1≤i≤nq

αqi , γ min
1≤h≤nl

αlh

)
, (29)

where γ (known as the step-length parameter) is typically chosen to be a number
slightly less than 1, say 0.98, to ensure that the next iterate x + α∆x stays strictly
in the interior of all the cones.

For the dual direction ∆z, we let the analog of αsj , α
q
i and αlh be βsj , β

q
i and βlh,

respectively. Similar to the primal direction, the step-length that can be taken by
the dual direction ∆z is given by

β = min
(

1, γ min
1≤j≤ns

βsj , γ min
1≤i≤nq

βqi , γ min
1≤h≤nl

βlh

)
. (30)

4 Further details

Sample runs.

We will now generate some sample runs to illustrate how our package might be used
to solve test problems from the SDPLIB and DIMACS libraries [3, 13]. We provide
two m-files, read sdpa.m and read sedumi.m, to convert problem data from these
libraries into Matlab cell arrays described in Section 2. We assume that the current
directory is SDPT3-3.0 and sdplib is a subdirectory.

>> startup % set up default parameters in the OPTIONS structure
>> [blk,A,C,b] = read_sdpa(’./sdplib/mcp250.1.dat-s’);
>> [obj,X,y,Z] = sqlp(blk,A,C,b);

Infeasible path-following algorithms

version predcorr gam expon scale_data
HKM 1 0.000 1 0

it pstep dstep p_infeas d_infeas gap obj cputime

0 0.000 0.000 1.8e+02 1.9e+01 7.0e+05 -1.462827e+04
1 0.981 1.000 3.3e+00 2.0e-15 1.7e+04 -2.429708e+03 0.7
2 1.000 1.000 4.3e-14 0.0e+00 2.4e+03 -1.352811e+03 2.2
: : : : : : : :
13 1.000 0.996 3.9e-13 8.6e-17 2.1e-05 -3.172643e+02 19.2
14 1.000 1.000 4.1e-13 8.9e-17 6.5e-07 -3.172643e+02 20.6

Stop: max(relative gap, infeasibilities) < 1.00e-08
--
number of iterations = 14
gap = 6.45e-07
relative gap = 2.03e-09

17

primal infeasibilities = 4.13e-13
dual infeasibilities = 8.92e-17
Total CPU time (secs) = 21.8
CPU time per iteration = 1.6
termination code = 0

Percentage of CPU time spent in various parts

preproc Xchol Zchol pred pred_steplen corr corr_steplen misc
5.7 3.6 0.5 33.3 9.5 3.9 25.2 11.1 3.9 3.3

We can solve a DIMACS test problem in a similar manner.

>> OPTIONS.vers = 2; % use NT direction
>> [blk,A,C,b] = read_sedumi(’./dimacs/nb.mat’);
>> [obj,X,y,Z] = sqlp(blk,A,C,b,[],[],[],OPTIONS);

**
Infeasible path-following algorithms

version predcorr gam expon scale_data

NT 1 0.000 1 0
it pstep dstep p_infeas d_infeas gap obj cputime

0 0.000 0.000 1.4e+03 5.8e+02 4.0e+04 0.000000e+00
1 0.981 0.976 2.6e+01 1.4e+01 7.8e+02 -1.423573e+01 2.8
2 1.000 0.989 1.2e-14 1.5e-01 2.7e+01 -1.351345e+01 6.4
: : : : : : : :
13 0.676 0.778 2.6e-05 1.4e-08 2.4e-04 -5.059624e-02 45.7
14 0.210 0.463 2.6e-04 7.7e-09 1.9e-04 -5.061370e-02 49.3

Stop: relative gap < 5*infeasibility
--
number of iterations = 14
gap = 1.89e-04
relative gap = 1.89e-04
primal infeasibilities = 2.57e-04
dual infeasibilities = 7.65e-09
Total CPU time (secs) = 51.3
CPU time per iteration = 3.7
termination code = 0

Percentage of CPU time spent in various parts

preproc Xchol Zchol pred pred_steplen corr corr_steplen misc
4.0 0.2 0.1 90.0 0.2 0.1 2.6 0.1 0.3 2.3

Note that in this example, dual feasibility is almost attained, while primal feasibility
was attained at iteration 2 but has since been slowly degrading. The iterations

18

terminate when this degradation overtakes the improvement in the duality gap (this
is part of Item 4 in our list of stopping criteria in Section 2).

Mex files used.

Our software uses a number of Mex routines generated from C programs written to
carry out certain operations that Matlab is not efficient at. In particular, operations
such as extracting selected elements of a matrix, and performing arithmetic opera-
tions on these selected elements are all done in C. As an example, the vectorization
operation svec is coded in the C program mexsvec.c.

Our software also uses a number of Mex routines generated from Fortran programs
written by Ng, Peyton, and Liu for computing sparse Cholesky factorizations [12].
These programs are adapted from the LIPSOL software written by Y. Zhang [21].

To generate these Mex routines, the user can run the shell script file Installmex
in the subdirectory SDPT3-3.0/Solver/mexsrc by typing ./Installmex in that sub-
directory.

Cholesky factorization.

Earlier versions of SDPT3 were intended for problems that always have semidefinite
cone constraints. For SDP problems, the Schur complement matrix M in (10) is
generally a dense matrix after the first iteration. To solve the associated linear system
(9), we first find a Cholesky factorization of M and then solve two triangular systems.
When M is dense, a reordering of the rows and columns of M does not alter the
efficiency of the Cholesky factorization and specialized sparse Cholesky factorization
routines are not useful. Therefore, earlier versions of SDPT3 (up to version 1.3)
simply used Matlab’s chol routine for Cholesky factorizations. For versions 2.1 and
2.2, we introduced our own Cholesky factorization routine mexchol that utilizes loop
unrolling and provided 2-fold speed-ups on some architectures compared to Matlab’s
chol routine. However, in newer versions of Matlab that use numerics libraries based
on LAPACK, Matlab’s chol routine is more efficient than our Cholesky factorization
routine mexchol for dense matrices. Thus, in version 3.0, we use Matlab’s chol
routine whenever M is dense.

For most second-order cone programming problems in the DIMACS library, how-
ever, Matlab’s chol routine is not competitive. This is largely due to the fact that
the Schur complement matrix M is often sparse for SOCPs and LPs, and Matlab

cannot sufficiently take advantage of this sparsity. To solve such problems more
efficiently we imported the sparse Cholesky solver in Y. Zhang’s LIPSOL [21], an
interior-point code for linear programming problems. It should be noted that LIP-
SOL uses Fortran programs developed by Ng, Peyton, and Liu for Cholesky factoriza-
tion [12]. When SDPT3 uses LIPSOL’s Cholesky solver, it first generates a symbolic
factorization of the Schur complement matrix to determine the pivot order by exam-
ining the sparsity structure of this matrix carefully. Then, this pivot order is re-used
in later iterations to compute the Cholesky factors. Contrary to the case of linear
programming, however, the sparsity structure of the Schur complement matrix can

19

change during the iterations for SOCP problems. If this happens, the pivot order
has to be recomputed. We detect changes in the sparsity structure by monitoring the
nonzero elements of the Schur complement matrix. Since the default initial iterates
we use for an SOCP problem are unit vectors but subsequent iterates are not, there
is always a change in the sparsity pattern of M after the first iteration. After the
second iteration, the sparsity pattern remains unchanged for most problems, and only
one more change occurs in a small fraction of the test problems.

The effect of including a sparse Cholesky solver option for SOCP problems was
dramatic. We observed speed-ups of up to two orders of magnitude. Version 3.0 of
SDPT3 automatically makes a choice between Matlab’s built-in chol routine and
the sparse Cholesky solver based on the density of the Schur complement matrix.
The cutoff density is specified in the parameter OPTIONS.spdensity.

Vectorized matrices vs. sparse matrices.

The current release, version 3.0, of the code stores the constraint matrix in “vector-
ized” form as described in Section 2. In the previous version 2.3, Ã was a doubly
subscripted cell array of symmetric matrices for the semidefinite blocks. The result
of the change is that much less storage is required for the constraint matrix, and that
we save a considerable amount of time in forming the Schur complement matrix M
in (10) by avoiding loops over the index k. An analysis of the amount of time version
3.0 of our code spends on different parts of the algorithm leads to the following obser-
vations, which can sometimes be platform dependent: Operations relating to forming
and factorizing the Schur complement and hence computing the predictor search di-
rection comprise much of the computational work for most problem classes, ranging
from about 25% for qpG11 up to 99% for the larger theta problems, the control
problems, copo14, hamming-7-5-6, and the nb problems. Other parts of the code
that require significant amount of computational time include the computation of the
corrector search direction (up to 51% on some qp problems) and the computation of
step lengths (up to 50% on truss7).

While we now store the constraint matrix in vectorized form, the parts of the
iterates X and Z corresponding to semidefinite blocks are still stored as matrices,
since that is how the user wants to access them.

Choice of search direction.

The new version of the code allows only two search directions, HKM and NT. Version
2.3 also allowed the AHO direction of Alizadeh, Haeberly, and Overton [1] and the
GT (Gu-Toh, see [16]) direction, but these options are not competitive when the
problems are of large scale. We intend to keep version 2.3 of the code available for
those who wish to experiment with these other search directions, which tend to give
more accurate results on smaller problems.

For the two remaining search directions, our computational experience on prob-
lems from the SDPLIB and DIMACS libaries is that the HKM direction is almost
universally faster than NT on problems with semidefinite blocks, especially for sparse

20

problems with large semidefinite blocks such as the equalG and maxG problems. The
reason that the latter is slower is due to the NT direction’s need to compute an eigen-
value decomposition to calculate the NT scaling matrix wsj . This computation can
dominate the work in each interior-point iteration when the problem is sparse.

The NT direction, however, was faster on SOCP problems such as the nb, nql,
and sched problems. The reason for this behavior is not hard to understand. By
comparing the formula in (22) for the HKM direction with (25) for the NT direction, it
is clear that more computation is required to assemble the Schur complement matrix
and more low-rank updating is necessary for the former direction.

Real vs. complex data.

In earlier versions, we allowed SDP problems with complex data, i.e., the constraint
matrices are hermitian matrices. However, as problems with complex data rarely
occur in practice, and in an effort to simplify the code, we removed this flexibility in
the current version. But we intend to keep version 2.3 of the code available for users
who wish to solve SDP problems with complex data.

Homogeneous vs. infeasible interior-point methods.

Version 2.3 also allowed the user to employ homogeneous self-dual algorithms instead
of the usual infeasible interior-point methods. However, this option almost always
took longer than the default choice, and so it has been omitted from the current
release. One theoretical advantage of the homogeneous self-dual approach is that it
is oriented towards either producing optimal primal and dual solutions or generating
a certificate of primal or dual infeasibility, while the infeasible methods strive for
optimal solutions only, but detect infeasibility if either the dual or primal iterates
diverge. However, we have observed no advantage to the homogeneous methods
when applied to infeasible problems. We should mention, however, that our current
version does not detect infeasibility in the problem filtinf1, but instead stops with a
primal near-feasible solution and a dual feasible solution when it encounters numerical
problems.

Specifying the block structure of problems.

Our software requires the user to specify the block structure of the SQLP prob-
lem. Although no technical difficulty will arise if the user choose to lump a few
blocks together and consider it as a single large block, the computational time
can be dramatically different. For example, the problem qpG11 in the SDPLIB li-
brary actually has block structure blk{1,1} = ’s’, blk{1,2} = 800, blk{2,1} =
’l’, blk{2,2}=800, but the structure specified in the library is blk{1,1} = ’s’,
blk{1,2} = 1600. That is, in the former, the linear variables are explicitly identi-
fied, rather than being part of a large sparse semidefinite block. The difference in
the running time for specifying the block structure differently is dramatic: the former
representation is at least six times faster when the HKM direction is used, besides

21

using much less memory space.
It is thus crucial to present problems to the algorithms correctly. We could add

our own preprocessor to detect this structure, but believe users are aware of linear
variables present in their problems. Unfortunately the versions of qpG11 (and also
qpG51) in SDPLIB do not show this structure explicitly. In our software, we provided
an m-file, detect diag.m, to detect and correct problems with hidden linear variables.
The user can call this m-file after loading the problem data into Matlab as follows:

>> [blk,A,C,b] = read_sdpa(’../SDPtest/sdplib/qpG11.dat-s’);
>> [blk,A,C,b] = detect_diag(blk,A,C,b);

Finally, version 2.3 of SDPT3 included specialized routines to compute the Schur
complement matrices directly for certain classes of problem (e.g., maxcut problems).
In earlier versions of SDPT3, these specialized routines had produced dramatic de-
creases in solution times, but for version 2.3, these gains were marginal, since our C
Mex routines for exploiting sparsity in computing the Schur complement matrix pro-
vided almost as much speedup. We have therefore dropped these routines in version
3.0.

Conversion of problems into standard form.

Here we shall just give an example of how an SDP with linear inequality constraints
can be converted into the standard form given in the Introduction. Suppose we have
an SDP of the following form:

(P1) min 〈cs, xs〉

s.t. (As)T svec(xs) ≤ b,

xs ∈ Kn
s .

That is, it has inequality constraint instead of equality constraints. But by introduc-
ing a slack variable xl, we can easily convert (P1) into the standard form, namely,

(P ∗1) min 〈cs, xs〉 + 〈cl, xl〉

s.t. (As)T svec(xs) + (Al)Txl = b,

xs ∈ Kn
s . xl ∈ Km

l ,

where cl = 0, and Al = [e1 · · · em]. With our use of cell arrays to representation
SQLP data, it is easy to take the problem data of (P1) and use them for the standard
form (P ∗1) as follows:

blk{1,1} = ’s’ blk{1,2} = n

A{1} = As C{1} = cs

blk{2,1} = ’l’ blk{2,2} = m

A{2} = Al C{2} = cl.

22

Caveats.

The user should be aware that SQLP is more complicated than linear programming.
For example, it is possible that both primal and dual problems are feasible, but
their optimal values are not equal. Also, either problem may be infeasible without
there being a certificate of that fact (so-called weak infeasibility). In such cases, our
software package is likely to terminate after some iterations with an indication of
short step-length or lack of progress. Also, even if there is a certificate of infeasibility,
our infeasible-interior-point methods may not find it. In our very limited testing on
strongly infeasible problems, most of our algorithms have been quite successful in
detecting infeasibility.

5 Computational results

Here we describe the results of our computational testing of SDPT3, on problems from
the SDPLIB collection of Borchers [3] as well as the DIMACS library test problems
[13]. In both, we solve a selection of the problems; in the DIMACS problems, these
are selected as the more tractable problems, while our subset of the SDPLIB problems
is more representative (but we cannot solve the largest two maxG problems). Since
our algorithm is a primal-dual method storing the primal iterate X, it cannot exploit
common sparsity in C and the constraint matrices as effectively as dual methods or
nonlinear-programming based methods. We are therefore unable to solve the largest
problems.

The test problems are listed in Tables 1 and 2, along with their dimensions. The
results given were obtained on a Pentium III PC (800MHz) with 1G of memory
running Linux, using Matlab 6.0. (We had some difficulties with Matlab 6 using
some of our codes on a Solaris platform, possibly due to bugs in the Solaris version
of Matlab 6.)

Results are given in Tables 3 and 4: Table 3 summarizes the results of our compu-
tational experiments on the DIMACS set of problems, while the corresponding results
for problems from the SDPLIB library are presented in Table 4. In each table, we
list the number of of iterations required, the time in seconds, and four measures of
the precision of the computed answer for each problem and for both the HKM and
the NT directions. The first of the four accuracy measures is the logarithm (to base
10) of the total complementary slackness; the second is the scaled primal infeasibility
‖Ax− b‖/(1+max |bk|), and the third is ‖AT y+z− c‖/(1+max |c|), where the norm
is subordinate to the inner product and the maximum taken over all components
of c; and the last one is the maximum of 0 and 〈c, x〉 − bT y. Entries like 3 − 13
mean 3× 10−13, etc. In accuracy reporting we followed the guidelines set up for the
DIMACS Challenge that took place in November 2000. These set of measures are
somewhat inconsistent: the first and the last are absolute measures that do not take
the solution size into account while the other two measures are relative to the sizes
of certain input parameters.

Our codes solved most of the problems in the two libraries to reasonable accuracy

23

Problem m semidefinite blocks second-order blocks linear block
bm1 883 882 – –
copo14 1275 [14 x 14] – 364
copo23 5820 [23 x 23] – 1771
copo68 154905 [68 x 68] – 50116
filter48-socp 969 48 49 931
filtinf1 983 49 49 945
minphase 48 48 – –
hamming-7-5-6 1793 128 – –
hamming-9-8 2305 512 – –
hinf12 43 [3, 6, 6, 12] – –
hinf13 57 [3, 7, 9, 14] – –
nb 123 – [793 x 3] 4
nb-L1 915 – [793 x 3] 797
nb-L2 123 – [1677, 838 x 3] 4
nb-L2-bessel 123 – [123, 838 x 3] 4
nql30 3680 – [900 x 3] 3602
nql60 14560 – [3600 x 3] 14402
nql180 130080 – [32400 x 3] 129602
nql30old 3601 – [900 x 3] 5560
nql60old 14401 – [3600 x 3] 21920
nql180old 129601 – [32400 x 3] 195360
qssp30 3691 – [1891 x 4] 2
qssp60 14581 – [7381 x 4] 2
qssp180 130141 – [65341 x 4] 2
qssp30old 5674 – [1891 x 4] 3600
qssp60old 22144 – [7381 x 4] 14400
qssp180old 196024 – [65341 x 4] 129600
sched-50-50-orig 2527 – [2474, 3] 2502
sched-50-50-scaled 2526 – 2475 2502
sched-100-50-orig 4844 – [4741, 3] 5002
sched-100-50-scaled 4843 – 4742 5002
sched-100-100-orig 8338 – [8235, 3] 10002
sched-100-100-scaled 8337 – 8236 10002
sched-200-100-orig 18087 – [17884, 3] 20002
sched-200-100-scaled 18086 – 17885 20002
torusg3-8 512 512 – –
toruspm3-8-50 512 512 – –
truss5 208 [33 x 10, 1] – –
truss8 496 [33 x 19, 1] – –

Table 1: Selected DIMACS library problems. Notation like [33 x 19] indicates that there
were 33 semidefinite blocks, each a symmetric matrix of order 19, etc.

24

Problem m semidefinite blocks linear block
arch8 174 161 174
control7 666 [70, 35] –
control10 1326 [100, 50] –
control11 1596 [110, 55] –
gpp250-4 251 250 –
gpp500-4 501 500 –
hinf15 91 37 –
mcp250-1 250 250 –
mcp500-1 500 500 –
qap9 748 82 –
qap10 1021 101 –
ss30 132 294 132
theta3 1106 150 –
theta4 1949 200 –
theta5 3028 250 –
theta6 4375 300 –
truss7 86 [150 x 2, 1] –
truss8 496 [33 x 19, 1] –
equalG11 801 801 –
equalG51 1001 1001 –
equalG32 2001 2001 –
maxG11 800 800 –
maxG51 1000 1000 –
maxG32 2000 2000 –
qpG11 800 1600 –
qpG112 800 800 800
qpG51 1000 2000 –
qpG512 1000 1000 1000
thetaG11 2401 801 –
thetaG11n 1601 800 –
thetaG51 6910 1001 –
thetaG51n 5910 1000 –

Table 2: Selected SDPLIB Problems. Note that qpG112 is identical to qpG11 except that
the structure of the semidefinite block is exposed as a sparse symmetric matrix of order
800 and a diagonal block of the same order, which can be viewed as a linear block, and
similarly for qpG512. Also, thetaG11n is a more compact formulation of thetaG11, and
similarly for thetaG51n.

25

— we discuss some of the exceptions. On the DIMACS set of problems, our algo-
rithms terminated with low accuracy solutions (measured by 〈x, z〉) on the scheduling
problems and old versions of the nql and qssp problems as well as torusg3-8 and
filtinf1. The last of these problems, filtinf1, is an infeasible problem, but we
run into numerical problems before detecting its infeasibility. The optimal values for
the sched*.orig problems and for torusg3-8 are above 105, so the relative accuracy,
which may be considered a better measure of accuracy, is acceptable. Both the old
and new versions of the nql and qssp problems contain duplicated columns coming
from splitting free variables. Feasible sets of the duals of these problems have empty
interiors and this fact affects the performance of our codes — apparently more so on
the older formulations of these problems. Other measures of accuracy were also rea-
sonable for most DIMACS problems, except for, once again, the scheduling problems
and some of the nql and qssp problems.

For the SDPLIB set of problems, we consistently achieve high accuracy solutions,
for both the HKM and the NT directions. A few of the smaller problems (hinf15,
truss7, and truss8) turn out to be more difficult to solve accurately using either
search direction. Interested readers can find detailed discussion of these computa-
tional experiments as well as qualitative and quantitative comparisons of different
versions of the code and different search directions in a related article by the authors
[19].

References

[1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point
methods for semidefinite programming: convergence results, stability and numer-
ical results, SIAM J. Optimization, 8 (1998), pp. 746–768.

[2] F. Alizadeh, J.-P. A. Haeberly, M. V. Nayakkankuppam, M. L. Overton, and
S. Schmieta, SDPPACK user’s guide, Technical Report, Computer Science De-
partment, NYU, New York, June 1997.

[3] B. Borchers, SDPLIB 1.2, a library of semidefinite programming test problems,
Optimization Methods and Software, 11 & 12 (1999), pp. 683–690. Available at
http://www.nmt.edu/~borchers/sdplib.html.

[4] K. Fujisawa, M. Kojima, and K. Nakata, Exploiting sparsity in primal-dual
interior-point method for semidefinite programming, Mathematical Program-
ming, 79 (1997), pp. 235–253.

[5] D. Goldfarb and K. Scheinberg, A product-form Cholesky factorization im-
plementation of an interior-point method for second order cone programming,
preprint.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins
University Press, Baltimore, MD, 1989.

26

HKM NT

Problem Itn
log
〈x, z〉 err1 err3 err5 time Itn

log
〈x, z〉 err1 err3 err5 time

bm1 18 -6 5-7 3-13 4-6 816 16 -3 4-7 3-13 2-3 2786
copo14 15 -10 1-10 6-15 0 38 13 -9 6-11 6-15 9-9 34
copo23 17 -10 2-9 1-14 8-8 2041 16 -9 8-10 1-14 2-8 1976
filter48-socp 38 -6 1-6 1-13 4-5 54 45 -6 1-6 6-14 5-5 60
filtinf1 27 -1 3-5 1-11 3-1 38 29 -1 1-5 3-11 4-1 44
minphase 32 -7 8-9 3-12 0 5 37 -5 2-8 7-13 0 7
hamming-7-5-6 10 -9 2-15 9-15 7-9 66 10 -9 2-15 9-15 7-9 67
hamming-9-8 11 -6 5-15 9-14 2-6 212 11 -6 5-15 8-14 2-6 422
hinf12 42 -8 2-8 4-10 0 5 39 -8 2-8 2-10 0 5
hinf13 23 -3 9-5 8-13 0 4 22 -4 1-4 9-13 0 4
nb 15 -4 1-5 2-9 2-4 42 14 -4 1-5 1-8 2-4 31
nb-L1 16 -4 7-5 4-9 4-4 75 16 -5 2-4 9-11 1-4 60
nb-L2 12 -8 2-9 1-11 3-8 58 11 -6 4-9 1-8 2-6 45
nb-L2-b 13 -8 8-6 4-12 1-6 40 11 -7 3-7 2-9 7-7 27
nql30 13 -4 6-8 5-9 5-5 11 16 -6 2-6 3-11 0 12
nql60 13 -4 4-7 1-8 1-4 64 15 -5 3-6 2-10 0 57
nql180 15 -3 1-5 3-8 2-4 5686 16 -4 7-5 4-10 0 3264
nql30o 12 -4 5-5 2-8 0 14 12 -4 5-5 2-8 0 12
nql60o 13 -4 1-4 9-9 0 88 13 -3 9-5 5-8 0 76
nql180o 11 -2 2-3 3-6 0 4932 8 0 4-4 1-4 6-1 2221
qssp30 21 -5 7-8 1-9 1-5 24 18 -7 3-7 2-11 0 17
qssp60 21 -4 5-5 2-9 9-4 153 20 -6 3-6 1-11 0 107
qssp180 24 -3 3-4 1-8 1-2 17886 25 -7 3-5 4-12 1-3 9873
qssp30o 11 -1 2-4 4-5 7-1 60 12 -1 4-4 1-5 1-1 62
qssp60o 11 0 3-4 2-4 2-0 390 11 0 2-4 4-4 2-0 359
sched-50-50-orig 28 -1 7-4 3-9 0 21 29 -1 2-4 3-7 0 20
sched-50-50-scaled 23 -4 1-4 4-15 3-4 18 22 -4 6-5 4-15 2-5 16
sched-100-50-orig 39 -1 6-3 3-11 0 63 33 -1 6-3 2-11 3+2 50
sched-100-50-scaled 26 -2 8-4 8-13 2-2 45 22 -2 7-4 1-9 3-2 36
sched-100-100-orig 33 -1 5-2 9-11 0 103 50 +1 1-0 2-8 3+7 141
sched-100-100-scaled 19 -1 4-2 1-14 0 66 27 -1 3-2 2-14 0 56
sched-200-100-orig 41 -1 6-3 3-9 3-2 350 39 0 6-3 1-8 0 313
sched-200-100-scaled 27 -2 3-3 6-9 0 250 25 -2 3-3 7-10 0 218
torusg3-8 15 -2 2-11 8-16 3-2 90 14 -1 2-10 7-16 3-1 405
toruspm3-8-50 14 -6 2-11 6-16 2-6 85 15 -7 4-11 6-16 7-7 429
truss5 16 -5 4-7 7-15 0 9 16 -6 4-7 8-15 0 10
truss8 15 -5 3-6 8-15 0 44 14 -4 2-6 7-15 0 47

Table 3: Computational results on DIMACS library problems using SDPT3-3.0. These
were performed on a Pentium III PC (800MHz) with 1G of memory.

27

HKM NT

Problem Itn
log
〈x, z〉 err1 err3 err5 time Itn

log
〈x, z〉 err1 err3 err5 time

arch8 21 -8 1-9 5-13 1-8 42 24 -6 2-8 5-13 2-6 55
control7 22 -5 5-7 2-9 3-5 112 22 -5 7-7 2-9 0 131
control10 24 -5 1-6 6-9 0 505 24 -5 1-6 6-9 0 610
control11 24 -5 2-6 6-9 0 768 23 -4 9-7 6-9 0 890
gpp250-4 15 -6 7-8 6-14 0 25 15 -5 6-8 7-14 0 64
gpp500-4 15 -5 6-8 4-14 0 156 17 -5 1-8 5-14 1-5 579
hinf15 23 -4 9-5 2-12 0 6 22 -4 1-4 2-12 0 7
mcp250-1 14 -7 3-12 4-16 6-7 12 15 -7 1-11 4-16 2-7 42
mcp500-1 15 -7 1-11 5-16 7-7 62 16 -7 3-11 5-16 3-7 327
qap9 15 -5 4-8 5-13 0 17 15 -5 5-8 6-13 0 18
qap10 14 -5 4-8 3-13 0 30 13 -4 4-8 5-13 0 30
ss30 21 -7 8-9 3-13 5-7 139 24 -6 1-8 2-13 4-6 245
theta3 15 -7 2-10 2-14 1-7 38 14 -8 2-10 2-14 3-8 40
theta4 15 -7 2-10 3-14 2-7 130 14 -8 3-10 3-14 6-8 135
theta5 15 -7 3-10 4-14 2-7 396 14 -8 4-10 4-14 4-8 402
theta6 14 -7 2-10 5-14 3-7 975 14 -7 6-10 5-14 1-7 1034
truss7 23 -4 3-6 1-13 0 4 21 -4 2-6 2-13 0 5
truss8 15 -5 3-6 7-15 0 45 14 -4 2-6 1-14 1-4 47
equalG11 17 -6 3-10 3-16 2-6 606 18 -5 7-11 7-15 2-5 2371
equalG51 20 -6 2-8 5-16 4-6 1358 20 -6 2-9 1-15 4-6 5116
equalG32 19 -6 2-10 1-14 6-6 8839 19 -6 2-10 4-15 1-6 37419
maxG11 15 -6 9-12 7-16 6-6 192 15 -6 4-11 7-16 1-6 1360
maxG51 17 -6 3-12 5-16 4-6 617 16 -5 2-10 3-16 1-5 3071
maxG32 16 -5 1-10 1-15 1-5 2441 16 -6 2-10 1-15 2-6 21999
qpG11 16 -7 2-11 0 9-7 1498 15 -5 1-10 0 2-5 4487
qpG112 18 -6 2-11 0 1-6 222 17 -5 5-11 0 2-5 1529
qpG51 17 -5 2-10 0 6-5 3157 25 -5 8-10 0 9-5 16548
qpG512 19 -5 8-10 0 1-5 635 29 -5 6-10 0 8-5 5688
thetaG11 19 -6 4-9 4-14 2-6 817 20 -7 2-9 5-14 8-8 2311
thetaG11n 15 -7 1-12 2-13 4-7 460 15 -7 1-12 2-13 4-7 1581
thetaG51 38 -7 1-8 3-13 7-7 17582 30 -5 2-8 1-12 2-5 18659
thetaG51n 19 -6 2-9 5-13 0 3908 23 -7 3-9 5-13 0 8479

Table 4: Computational results on SDPLIB problems using SDPT3-3.0. These were per-
formed on a Pentium III PC (800MHz) with 1G of memory.

28

[7] C. Helmberg, F. Rendl, R. Vanderbei and H. Wolkowicz, An interior-point
method for semidefinite programming, SIAM Journal on Optimization, 6 (1996),
pp. 342–361.

[8] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadel-
phia, 1996.

[9] M. Kojima, S. Shindoh, and S. Hara, Interior-point methods for the monotone
linear complementarity problem in symmetric matrices, SIAM J. Optimization,
7 (1997), pp. 86–125.

[10] S. Mehrotra, On the implementation of a primal-dual interior point method,
SIAM J. Optimization, 2 (1992), pp. 575–601.

[11] R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite pro-
gramming, SIAM J. Optimization, 7 (1997), pp. 663–678.

[12] J. W. Liu, E. G. Ng, and B. W. Peyton, On finding supernodes for sparse matrix
computations, SIAM J. Matrix Anal. Appl., 1 (1993), pp. 242–252.

[13] G. Pataki and S. Schmieta, The DIMACS library of mixed semidefinite-quadratic-
linear programs.
Available at http://dimacs.rutgers.edu/Challenges/Seventh/Instances

[14] Yu. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods
in convex programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[15] M. J. Todd, K. C. Toh, and R. H. Tütüncü, On the Nesterov-Todd direction in
semidefinite programming, SIAM J. Optimization, 8 (1998), pp. 769–796.

[16] K. C. Toh, Some new search directions for primal-dual interior point methods in
semidefinite programming, SIAM J. Optimization, 11 (2000), pp. 223–242.

[17] K. C. Toh, A note on the calculation of step-lengths in interior-point methods
for semidefinite programming, submitted.

[18] K. C. Toh, M. J. Todd, R. H. Tütüncü, SDPT3 — a Matlab software package for
semidefinite programming, Optimization Methods and Software, 11/12 (1999),
pp. 545-581.

[19] R. H. Tütüncü, K. C. Toh, M. J. Todd, Solving semidefinite-quadratic-linear
programs using SDPT3, March 2001. Submitted to Mathematical Programming.

[20] T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-
following algorithms for second-order cone programming, Optimization Methods
and Software, 11/12 (1999), pp. 141–182.

[21] Y. Zhang, Solving large-scale linear programs by interior-point methods under
the Matlab environment, Optimization Methods and Software, 10 (1998), pp.
1–31.

29

