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Abstract

This paper discusses computational experiments with linear optimization prob-
lems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many
test problems of this type are solved using a new release of SDPT3, a Matlab imple-
mentation of infeasible primal-dual path-following algorithms. The software devel-
oped by the authors uses Mehrotra-type predictor-corrector variants of interior-point
methods and two types of search directions: the HKM and NT directions. A dis-
cussion of implementation details is provided and computational results on problems
from the SDPLIB and DIMACS Challenge collections are reported.
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1 Introduction

Conic linear optimization problems can be expressed in the following standard form:

min 〈c, x〉
s.t. 〈ak, x〉 = bk, k = 1, . . . ,m, (1)

x ∈ K

where K is a closed, convex pointed cone in a finite dimensional inner product space
endowed with an inner product 〈·, ·〉. By choosing K to be the semidefinite, quadratic
(second-order), and linear cones respectively, one obtains the well-known special cases
of semidefinite, second-order cone, and linear programming problems. Recent years
have seen a dramatic increase in the number of subclasses of conic optimization prob-
lems that can be solved efficiently by interior-point methods. In addition to the on-
going theoretical work that derived convergence guarantees and convergence rates for
such algorithms, many groups of researchers have also implemented these algorithms
and developed public domain software packages that are capable of solving conic op-
timization problems of ever increasing size and diversity. This paper discusses the
authors’ contribution to this effort through the development of the software SDPT3.
Our earlier work on SDPT3 is presented in [20, 23].

The current version of SDPT3, version 3.0, can solve conic linear optimization
problems with inclusion constraints for the cone of positive semidefinite matrices,
the second-order cone, and/or the polyhedral cone of nonnegative vectors. In other
words, we allow K in (1) to be a Cartesian product of cones of positive semidefinite
matrices, second-order cones, and the nonnegative orthant. We use the following
standard form of such problems, henceforth called SQLP problems:

(P ) min
∑ns
j=1〈csj , xsj〉 +

∑nq
i=1〈c

q
i , x

q
i 〉 + 〈cl, xl〉

s.t.
∑ns
j=1(Asj)

T svec(xsj) +
∑nq
i=1(Aqi )

Txqi + (Al)Txl = b,

xsj ∈ K
sj
s ∀j, xqi ∈ Kqi

q ∀i, xl ∈ Knl
l .

Here, csj , x
s
j are symmetric matrices of dimension sj and K

sj
s is the cone of positive

semidefinite symmetric matrices of the same dimension. Similarly, cqi , x
q
i are vectors

in IRqi and Kqi
q is the second-order cone defined by Kqi

q := {x ∈ IRqi : x1 ≥ ‖x2:qi‖}.
Finally, cl, xl are vectors of dimension nl and Knl

l is the cone IRnl+ . In the notation
above, Asj denotes the s̄j×mmatrix with s̄j = sj(sj+1)/2 whose columns are obtained
using the svec operator from m symmetric sj × sj constraint matrices corresponding
to the jth semidefinite block xsj . For a definition of the vectorization operator svec
on symmetric matrices, see, e.g., [20]. The matrices Aqi ’s are qi × m dimensional
constraint matrices corresponding to the ith quadratic block xqi , and Al is the l ×m
dimensional constraint matrix corresponding to the linear block xl. The notation
〈p, q〉 denotes the standard inner product in the appropriate space.
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The software also solves the dual problem associated with the problem above:

(D) max bT y
s.t. Asjy + zsj = csj , j = 1 . . . , ns

Aqi y + zqi = cqi , i = 1 . . . , nq

Aly + zl = cl,

zsj ∈ K
sj
s ∀j, zqi ∈ Kqi

q ∀i, zl ∈ Knl
l .

This package is written in Matlab version 5.3 and is compatible with Matlab

version 6.0. It is available from the internet sites:

http://www.math.nus.edu.sg/~mattohkc/index.html

http://www.math.cmu.edu/~reha/sdpt3.html

This software package was originally developed to provide researchers in semidefi-
nite programming with a collection of reasonably efficient and robust algorithms that
can solve general SDPs with matrices of dimensions of the order of a hundred. The
current release, version 3.0, expands the family of problems solvable by the software
in two dimensions. First, this version is much faster than the previous release [23],
especially on large sparse problems, and consequently can solve much larger problems.
Second, the current release can also directly solve problems that have second-order
cone constraints — with the previous version it was necessary to convert such con-
straints to semidefinite cone constraints.

In this paper, the vector 2-norm and Frobenius norm are denoted by ‖ · ‖ and
‖ · ‖F , respectively. In the next section, we discuss the algorithm used in the software
and several implementation details. Section 3 describes the initial iterates generated
by our software while Section 4 briefly explains how to use the software and its
data storage scheme. In Section 5, we present and comment on the results of our
computational experiments with our software on problems from the SDPLIB and
DIMACS libraries.

2 A primal-dual infeasible-interior-point algo-

rithm

The algorithm implemented in SDPT3 is a primal-dual interior-point algorithm that
uses the path-following paradigm. In each iteration, we first compute a predictor
search direction aimed at decreasing the duality gap as much as possible. After
that, the algorithm generates a Mehrotra-type corrector step [14] with the intention
of keeping the iterates close to the central path. However, we do not impose any
neighborhood restrictions on our iterates.1 Initial iterates need not be feasible — the

1This strategy works well on most problems we tested. However, it should be noted that the occa-
sional failure of the software on problems with poorly chosen initial iterates is likely due to the lack of a
neighborhood enforcement in the algorithm.
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algorithm tries to achieve feasibility and optimality of its iterates simultaneously.
It should be noted that our implementation allows the user to switch to a primal-

dual path-following algorithm that does not use corrector steps and sets a centering
parameter to be used in such a framework. The choices we make on the parameters
used by the algorithm are based on minimizing either the number of iterations or the
CPU time of the linear algebra involved in computing the Schur complement matrix
and its Cholesky factorization. What follows is a pseudo-code for the algorithm we
implemented. Note that this description makes references to later parts of this section
where many details related to the algorithm are explained.

Algorithm IPC. Suppose we are given an initial iterate (x0, y0, z0) with x0, z0 strictly
satisfying all the conic constraints. Decide on the type of search direction to use. Set γ0 = 0.9.
Choose a value for the parameter expon used in e.

For k = 0, 1, . . .

(Let the current and the next iterate be (x, y, z) and (x+, y+, z+) respectively. Also, let the
current and the next step-length parameter be denoted by γ and γ+ respectively.)

• Set µ = 〈x, z〉/n, and

relgap =
〈x, z〉

1 + max(|〈c, x〉|, |bT y|)
, φ = max

(
‖rp‖

1 + ‖b‖
,
‖Rd‖

1 + ‖c‖

)
. (2)

Stop the iteration if the infeasibility measure φ and the relative duality gap (relgap)
are sufficiently small.

• (Predictor step)
Solve the linear system (10), with σ = 0 in the right-side vector (12). Denote the
solution of (4) by (δx, δy, δz). Let αp and βp be the step-lengths defined as in (33) and
(34) with ∆x,∆z replaced by δx, δz, respectively.

• Take σ to be

σ = min
(

1,
[
〈x+ αp δx, z + βp δz〉

〈x, z〉

]e)
,

where the exponent e is chosen as follows:

e =

{
max[expon, 3 min(αp, βp)2] if µ > 10−6,
expon if µ ≤ 10−6.

• (Corrector step)
Solve the linear system (10) with Rc in the the right-hand side vector (12) replaced by

R̃sc = svec [σµI −HP (smat(xs)smat(zs))−HP (smat(δxs)smat(δzs))]

R̃qc = σµeq − TG(xq, zq)− TG(δxq, δzq)

R̃lc = σµel − diag(xl)zl − diag(δxl)δzl.

Denote the solution of (4) by (∆x,∆y,∆z).
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• Update (x, y, z) to (x+, y+, z+) by

x+ = x+ α∆x, y+ = y + β∆y, z+ = z + β∆z,

where α and β are computed as in (33) and (34) with γ chosen to be γ = 0.9 +
0.09 min(αp, βp).

• Update the step-length parameter by

γ+ = 0.9 + 0.09 min(α, β).

2.1 The search direction

To simplify discussion, we introduce the following notation, which is also consistent
with the internal data representation in SDPT3:

As =


As1
...

Asns

 , Aq =


Aq1
...

Aqnq

 .
Similarly, we define

xs =

 svec(xs1)
...

svec(xsns)

 , xq =


xq1
...
xqnq

 . (3)

The vectors cs, zs, cq, and zq are defined analogously. We will use corresponding
notation for the search directions as well. Finally, let

AT =

 As

Aq

Al

 , x =

 xs

xq

xl

 , c =

 cs

cq

cl

 , z =

 zs

zq

zl

 ,
and

n =
ns∑
j=1

sj + nq + nl.

With the notations introduced above, the primal and dual equality constraints can
be represented respectively as

Ax = b, AT y + z = c.

In this paper, we assume that A has full row rank. In our software, dependent
constraints are automatically removed, if there are any.

The main step at each iteration of our algorithms is the computation of the search
direction (∆x,∆y,∆z) from the symmetrized Newton equation with respect to an
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invertible block diagonal scaling matrix P for the semidefinite block and a block
scaling matrix G for the quadratic block. The matrices P and G are usually chosen
as a function of the current iterate x, z and we will elaborate on specific choices below.
The search direction (∆x,∆y,∆z) is obtained from the following system of equations:

AT∆y + ∆z = Rd := c− z −AT y
A∆x = rp := b−Ax
Es∆xs + Fs∆zs = Rsc := svec (σµI −HP (smat(xs)smat(zs)))

Eq∆xq + Fq∆zq = Rqc := σµeq − TG(xq, zq)

E l∆xl + F l∆zl = Rlc := σµel − E lF lel,

(4)

where µ = 〈x, z〉/n and σ is the centering parameter. The notation smat denotes
the inverse map of svec and both are to be interpreted as blockwise operators if the
argument consists of blocks. Here HP is the symmetrization operator whose action
on the jth semidefinite block is defined by

HPj : IRsj×sj −→ IRsj×sj

HPj (U) = 1
2

[
PjUP

−1
j + P−Tj UTP Tj

]
, (5)

with Pj the jth block of the block diagonal matrix P and Es and Fs are symmetric
block diagonal matrices whose jth blocks are given by

Esj = Pj©∗ P−Tj zsj , Fsj = Pjx
s
j ©∗ P−Tj , (6)

where R©∗ T is the symmetrized Kronecker product operation described in [20].
In the quadratic block, eq denotes the blockwise identity vector, i.e.,

eq =


eq1
...
eqnq

 ,
where eqj is the first unit vector in IRqj . Let the arrow operator defined in [3] be
denoted by Arw (·). Then the operator TG(xq, zq) is defined as follows:

TG(xq, zq) =


Arw (G1x

q
1) (G−1

1 zq1)
...

Arw
(
Gnqx

q
nq

)
(G−1

nq z
q
nq)

 , (7)

where G is a symmetric block diagonal matrix that depends on x, z and Gi is the ith
block of G. The matrices Eq and Fq are block diagonal matrices whose the ith blocks
are given by

Eqi = Arw
(
G−1
i zqi

)
Gi, Fqi = Arw (Gix

q
i )G

−1
i . (8)
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In the linear block, el denotes the nl-dimensional vector of ones, and E l = diag(xl),
F l = diag(zl).

For future reference, we partition the vectors Rd, ∆x, and ∆z in a manner anal-
ogous to c, x, and z as follows:

Rd =


Rsd

Rqd

Rld

 , ∆x =


∆xs

∆xq

∆xl

 , ∆z =


∆zs

∆zq

∆zl

 . (9)

Assuming that m = O(n), we compute the search direction via a Schur comple-
ment equation as follows (the reader is referred to [2] and [20] for details). First
compute ∆y from the Schur complement equation

M∆y = h, (10)

where

M = (As)T (Es)−1FsAs + (Aq)T (Eq)−1FqAq + (Al)T (E l)−1F lAl (11)

h = rp − (As)T (Es)−1(Rsc −FsRsd)
− (Aq)T (Eq)−1(Rqc −FqR

q
d) − (Al)T (E l)−1(Rlc −F lRld). (12)

Then compute ∆x and ∆z from the equations

∆z = Rd −AT∆y (13)

∆xs = (Es)−1Rsc − (Es)−1Fs∆zs (14)

∆xq = (Eq)−1Rqc − (Eq)−1Fq∆zq (15)

∆xl = (E l)−1Rlc − (E l)−1F l∆zl. (16)

2.2 Two choices of search directions

We start by introducing some notation that we will use in the remainder of this
paper. For a given qi-dimensional vector xqi , we let x0

i denote its first component and
x1
i denote its subvector consisting of the remaining entries, i.e.,[

x0
i

x1
i

]
=

[
(xqi )1

(xqi )2:qi

]
. (17)

We will use the same convention for zqi ,∆x
q
i , etc. Also, we define the following

function from Kqi
q to IR+:

γ(xqi ) :=
√

(x0
i )2 − 〈x1

i , x
1
i 〉. (18)

Finally, we use X and Z for smat(xs) and smat(zs), where the operation is applied
blockwise to form a block diagonal symmetric matrix of order

∑ns
j=1 sj .
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In the current release of this package, the user has two choices of scaling operators
parametrized by P and G, resulting in two different search directions: the HKM
direction [10, 12, 15], and the NT direction [18]. See also Tsuchiya [24, 25] for the
second-order case.

(1) The HKM direction. This choice uses the scaling matrix P = Z1/2 for the
semidefinite blocks and a symmetric block diagonal scaling matrix G for the
quadratic blocks where the ith block Gi is given by the following equation:

Gi =


z0
i (z1

i )T

z1
i γ(zqi )I +

z1
i (z1

i )T

γ(zqi ) + z0
i

 . (19)

(2) The NT direction. This choice uses the scaling matrix P = N−1 for the
semidefinite blocks, where N is a matrix such that D := NTZN = N−1XN−T

is a diagonal matrix [20], and G is a symmetric block diagonal matrix whose ith
block Gi is defined as follows. Let

ωi =

√
γ(zqi )
γ(xqi )

, ξi =

[
ξ0
i

ξ1
i

]
=

[ 1
ωi
z0
i + ωix

0
i

1
ωi
z1
i − ωix1

i

]
. (20)

Then

Gi = ωi

 t0i (t1i )
T

t1i I +
t1i (t

1
i )
T

1 + t0i

 , where

[
t0i

t1i

]
=

1
γ(ξi)

[
ξ0
i

ξ1
i

]
. (21)

2.3 Computation of the search directions

The size and the density of the Schur complement matrixM defined in (10) is the main
determinant of the cost of each iteration in our algorithm. The density of this matrix
depends on two factors: (i) The density of the constraint coefficient matrices As,
Aq, and Al, and (ii) any additional fill-in introduced because of the terms (Es)−1Fs,
(Eq)−1Fq, and (E l)−1F l in (10).

2.3.1 Semidefinite blocks

For problems with semidefinite blocks, it appears that there is not much one can do
about additional fill-in, since (Es)−1Fs is dense and structure-less for most problems.
One can take advantage of sparsity in As in related computations, however, and we
discussed some of these issues, such as blockwise computations, in our earlier papers
[20, 23].

The way we exploit sparsity of Asj in the computation of M s
j := (Asj)

T (Esj )−1FsjAsj
basically follows the approach in [7]. We will not go into the details here but just
briefly highlight one issue that is often critical in cutting down the computation
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time in forming M s
j . Let Asj(:, k) be the kth column of Asj . In computing the kth

column of M s
j , typically a matrix product of the form xsj smat(Asj(:, k)) (zsj )

−1 or
wsj smat(Asj(:, k))wsj is required for the HKM direction or NT direction, respectively.
In many large SDP problems, the matrix smat(Asj(:, k)) is usually very sparse, and it
is important to store this matrix as a sparse matrix in Matlab and perform sparse-
dense matrix-matrix multiplication in the matrix products just mentioned whenever
possible. Also, entries of this product only need to be computed if they contribute to
an entry of M , i.e., if they correspond to a nonzero entry of Asj(:, k

′) for some k′.

2.3.2 Quadratic and linear blocks

For linear blocks, (E l)−1F l is a diagonal matrix and it does not introduce any addi-
tional fill-in. This matrix does, however, affect the conditioning of the Schur comple-
ment matrix and is a popular subject of research in implementations of interior-point
methods for linear programming.

From equation (11), it is easily shown that the contribution of the quadratic blocks
to the matrix M is given by

M q = (Aq)T (Eq)−1FqAq =
nq∑
i=1

(Aqi )
T (Eqi )−1Fqi A

q
i︸ ︷︷ ︸

Mq
i

. (22)

For the HKM direction, (Eq)−1Fq is a block diagonal matrix whose ith block is
given by

(Eqi )−1Fqi = G−1
i Arw (Gix

q
i )G

−1
i

=
1

γ2(zqi )

〈xqi , zqi 〉
[
−1 0
0 I

]
+

[
x0
i

x1
i

] [
z0
i

−z1
i

]T
+

[
z0
i

−z1
i

] [
x0
i

x1
i

]T .(23)

(Note that Arw
(
G−1
i zqi

)
= I.) Thus, we see that matrix (Eqi )−1Fqi in M q

i is the sum
of a diagonal matrix and a rank-two symmetric matrix. Hence

M q
i =

〈xqi , z
q
i 〉

γ2(zqi )
(Aqi )

TJiA
q
i + uqi (v

q
i )
T + vqi (u

q
i )
T , (24)

where

Ji =

[
−1 0
0 I

]
, uqi = (Aqi )

T

[
x0
i

x1
i

]
, vqi = (Aqi )

T

(
1

γ2(zqi )

[
z0
i

−z1
i

])
. (25)

The appearance of the outer-product terms in the equation above is potentially
alarming. If the vectors uqi , v

q
i are dense, then even if Aqi is sparse, the corresponding

matrix M q
i , and hence the Schur complement matrix M , will be dense. A direct

factorization of the resulting dense matrix will be very expensive for even moderately
high m.
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does not change much in Iterations 2,3,...

Figure 1: The output of the spy function in Matlab on the Schur complement matrix for
nql30. Later iterations introduce less than 3% new nonzero elements.

The observed behavior of the density of the Schur complement matrix on test
problems depends largely on the particular problem structure. When the problem
has many small quadratic blocks, it is often the case that each block appears in
only a small fraction of the constraints. In this case, all Aqi matrices are sparse and
the vectors uqi and vqi turn out to be sparse vectors for each i. Consequently, the
Schur complement matrix remains relatively sparse for these problems and it can
be factorized directly and cheaply. In Figure 1, the density structures of the Schur
complement matrices in the first and later iterations of our algorithm applied to the
the problem nql30 depict the situation and are typical for all nql and qssp problems.
Since we initially choose multiples of unit vectors for our variables, all the nonzero
elements of the Schur complement matrix in the first iteration come from the nonzero
elements of the constraint matrices. Later iterations introduce fewer than 3% new
nonzero elements.

The situation is drastically different for problems where one of the quadratic
blocks, say the ith block, is large. For such problems the vectors uqi , v

q
i are typically

dense, and therefore, M q
i is likely be a dense matrix even if the data Aqi is sparse.

However, observe that M q
i is a rank-two perturbation of a sparse matrix when Aqi is

sparse. In such a situation, it may be advantageous to use the Sherman-Morrison-
Woodbury update formula [9] when solving the Schur complement equation (10). This
is a standard strategy used in linear programming when there are dense columns in the
constraint matrix and this is the approach we used in our implementation of SDPT3.
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Sparsity structure of the Schur complement matrix 
in iteration 1 for problem "sched−50−50−orig"
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Figure 2: The output of the spy function in Matlab for problem sched-50-50-orig on
(i) the complete Schur complement matrix in the first iteration, (ii) the sparse portion of
the Schur complement matrix in the following iterations.

This approach helps tremendously on the scheduling problems from the DIMACS
Challenge set. Figure 2 depicts the Schur complement matrix M in the first iteration
and its sparse portion in the following iterations. While these two matrices have
almost identical sparsity patterns, the complete Schur complement matrix becomes
completely dense after the first iteration.

To apply the Sherman-Morrison-Woodbury formula, we need to modify the sparse
portion of the matrix M q

i slightly. Since the diagonal matrix Ji has a negative com-
ponent, the matrix (Aqi )

TJiA
q
i need not be a positive definite matrix, and therefore

the Cholesky factorization of the sparse portion of M q
i need not exist. To overcome

this problem, we use the following identity:

M q
i =

〈xqi , z
q
i 〉

γ2(zqi )
(Aqi )

TAqi + uqi (v
q
i )
T + vqi (u

q
i )
T − 2

〈xqi , z
q
i 〉

γ2(zqi )
kik

T
i , (26)

where uqi and vqi are as in (25) and

ki = (Aqi )
T
eqi . (27)

Note that if Aqi is a large sparse matrix with a few dense rows, we also use the
Sherman-Morrison-Woodbury formula to handle the matrix (Aqi )

TAqi in (26).
We end our discussion on the computation of the HKM direction with the following
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formula that is needed in the computation of the right-hand-side vector (12):

(Eqi )−1(Rqc)i =
σµ

γ2(zqi )

[
z0
i

−z1
i

]
− xqi . (28)

Just as for the HKM direction, we can obtain a very simple formula for (Eqi )−1Fqi
for the NT direction. By noting that Gix

q
i = G−1

i zqi , it is easy to see that the ith
block (Eqi )−1Fqi = G−2

i , and a rather straightforward algebraic manipulation gives
the following identity:

(Eqi )−1Fqi = G−2
i =

1
ω2
i

[ −1 0
0 I

]
+ 2

[
t0i
−t1i

] [
t0i
−t1i

]T . (29)

For the NT direction, the formula in (28) also holds and we have:

M q
i =

1
ω2
i

(
(Aqi )

TJiA
q
i + 2uqi (u

q
i )
T
)
, with uqi = (Aqi )

T

[
t0i
−t1i

]
. (30)

We note that the identity (30) describing the NT direction was observed by other
authors — see, e.g., [8]. The identities (23) and (24), however, appear to be new
in the literature. It is straightforward, if a bit tedious, to verify these formulas.
In addition to simplifying the search direction computation, these identities can be
used to provide a simple proof of the scale-invariance of the HKM search direction in
second-order cone programming. In [25], Tsuchiya proves this result and the scale-
invariance of the NT direction using two-page arguments for each proof. We refer the
reader to [20] for a description of scale-invariance and provide the following simple
and instructive proof:

Proposition 1 Consider a pure second-order cone programming problem (ns = 0
and nl=0). The HKM and NT directions for this problem are scale-invariant.

Proof. The scaled problem is constructed as follows: Let Fi ∈ Gi denote a scaling
matrix for block i where Gi is the automorphism group of the cone Kqi

q . For future
reference, note that we have

F Ti J̄iFi = J̄i, F Ti J̄i = J̄iF
−1
i , J̄iFi = F−Ti J̄i, J̄iF

T
i = F−1

i J̄i, (31)

where J̄i = −Ji, and Ji is as in (25). Let F = diag[F1, . . . , Fnq ] and define the scaled
quantities as follows:

Âq = F−1Aq, b̂ = b, ĉq = F−1cq, x̂q = F Txq, ŷ = y, ẑq = F−1zq.

Note that r̂p = rp and R̂d = F−1Rd. First, we consider the HKM direction. We
observe that γ2(ẑqi ) = (ẑqi )

T J̄iẑ
q
i = (zqi )

TF−Ti J̄iF
−1
i zqi = γ2(zqi ). Now, from equation

(24) and (31) it follows that each M q
i , and therefore M q, is invariant with respect to

this automorphic scaling. Using (28), we see that h in (12) is also invariant. Now, if
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we denote the HKM search direction for the scaled problem by (∆̂x
q
, ∆̂y, ∆̂z

q
) and the

corresponding direction for the unscaled problem by (∆xq,∆y,∆zq) we immediately
obtain ∆̂y = ∆y from equation (10), ∆̂z

q
= F−1∆zq from (13) and ∆̂x

q
= F T∆xq

from (15) and (28). Thus, the HKM direction for SOCP is scale-invariant.
To prove the result for the NT direction, we first observe that γ(x̂qi ) = γ(xqi ) and

that ωi defined in (20) remains unchanged after scaling. The scaled equivalent of ξi
defined in (20) is ξ̂i = 1

ωi
ẑqi + ωiJ̄ix̂

q
i = F−1

i ( 1
ωi
zqi + ωiJ̄ix

q
i ) = F−1

i ξi. Thus, with the
scaled quantities, we obtain

t̂i =

[
t̂0i

t̂1i

]
= F−1

i

[
t0i

t1i

]
.

Now, from equation (30) and (31) it follows that each M q
i , and therefore M q, is

invariant with respect to this automorphic scaling. Continuing as above, we conclude
that the NT direction for SOCP must be scale-invariant as well. ut

2.4 Step-length computation

Once a direction ∆x is computed, a full step will not be allowed if x + ∆x violates
the conic constraints. Thus, the next iterate must take the form x + α∆x for an
appropriate choice of the step-length α. In this subsection, we discuss an efficient
strategy to compute the step-length α.

For semidefinite blocks, it is straightforward to verify that, for the jth block,
the maximum allowed step-length that can be taken without violating the positive
semidefiniteness of the matrix xsj + αsj∆x

s
j is given as follows:

αsj =


−1

λmin((xsj)−1∆xsj)
, if the minimum eigenvalue λmin is negative

∞ otherwise.
(32)

If the computation of eigenvalues necessary in αsj above becomes expensive, then we
resort to finding an approximation of αsj by estimating extreme eigenvalues using
Lanczos iterations [22]. This approach is quite accurate in general and represents a
good trade-off between the effort versus quality of the resulting stepsizes.

For quadratic blocks, the largest step-length αqi that keeps the next iterate feasible
with respect to the kth quadratic cone can be computed as follows. Let

ai = γ2(∆xqi ), bi = 〈∆xqi , −Jix
q
i 〉, ci = γ2(xqi ),

where Ji is the matrix defined in (25) and let

di = b2i − aici.

We want the largest α with aiα
2 + 2biα+ ci > 0 for all smaller positive values. This

13



is given by

αqi =



−bi −
√
di

ai
if ai < 0 or bi < 0, ai ≤ b2i /ci

−ci
2bi

if ai = 0, bi < 0

∞ otherwise.

For the linear block, the maximum allowed step-length αli for the hth component
is given by

αlh =


−xlh
∆xlh

, if ∆xlh < 0

∞ otherwise.

Finally, an appropriate step-length α that can be taken in order for x+α∆x to satisfy
all the conic constraints takes the form

α = min
(

1, γ min
1≤j≤ns

αsj , γ min
1≤i≤nq

αqi , γ min
1≤h≤nl

αlh

)
, (33)

where γ (known as the step-length parameter) is typically chosen to be a number
slightly less than 1, say 0.98, to ensure that the next iterate x + α∆x stays strictly
in the interior of all the cones.

For the dual direction ∆z, we let the analog of αsj , α
q
i and αlh be βsj , β

q
i and βlh,

respectively. Similar to the primal direction, the step-length that can be taken by
the dual direction ∆z is given by

β = min
(

1, γ min
1≤j≤ns

βsj , γ min
1≤i≤nq

βqi , γ min
1≤h≤nl

βlh

)
. (34)

2.5 Sherman-Morrison-Woodbury formula and iterative
refinement

In this subsection, we discuss how we solve the Schur complement equation when
M is a low rank perturbation of a sparse matrix. As discussed in Section 2.3 such
situations arise when the SQLP does not have a semidefinite block, but has large
quadratic blocks or the constraint matrices Aqi , A

l have a small number of dense
rows. In such a case, the Schur complement matrix M can be written in the form

M = H + UUT (35)

where H is a sparse symmetric matrix and U has only few columns. If H is non-
singular, then by the Sherman-Morrison-Woodbury formula, the solution of the Schur
complement equation is given by

∆y = ĥ−H−1U
(
I + UTH−1U

)−1
UT ĥ, (36)
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where ĥ = H−1h.
Computing ∆y via the Sherman-Morrison-Woodbury update formula above is not

always stable, and the computed solution for ∆y can be highly inaccurate when H
is ill-conditioned. To overcome such a difficulty, we combine the Sherman-Morrison-
Woodbury update with iterative refinement [11]. It is noted in [11] that iterative re-
finement is beneficial even if the residuals are computed only at the working precision.
Our numerical experience with the SQLP problems from the DIMACS Challenge set
confirmed that iterative refinement very often does greatly improve the accuracy of
the computed solution for ∆y via the Sherman-Morrison-Woodbury formula. How-
ever, we must mention that iterative refinement can occasionally fail to provide any
significant improvement. We have not yet incorporated a stable and efficient method
for computing ∆y when M has the form (35), but note that Goldfarb, Scheinberg,
and Schmieta [8] discuss a stable product-form Cholesky factorization approach to
this problem.

3 Initial iterates

Our algorithms can start with an infeasible starting point. However, the performance
of these algorithms is quite sensitive to the choice of the initial iterate. As observed
in [7], it is desirable to choose an initial iterate that at least has the same order of
magnitude as an optimal solution of the SQLP. If a feasible starting point is not
known, we recommend that the following initial iterate be used:

y0 = 0,

(xsj)
0 = ξsj Isj , (zsj )

0 = ηsj Isj , j = 1, . . . , ns,

(xqi )
0 = ξqi e

q
i , (zqi )

0 = ηqi e
q
i , i = 1, . . . , nq,

(xl)0 = ξl el, (zl)0 = ηl el,

where Isj is the identity matrix of order sj , and

ξsj = sj max1≤k≤m
1 + |bk|

1 + ‖Asj(:, k)‖
, ηsj =

1
√
sj

[
1 + max(max

k
{‖Asj(:, k)‖}, ‖csj‖F )

]
,

ξqi =
√
qi max

1≤k≤m

1 + |bk|
1 + ‖Aqi (:, k)‖

, ηqi =
√
qi [1 + max(max

k
{‖Aqi (:, k)‖}, ‖cqi ‖)],

ξl = max
1≤k≤m

1 + |bk|
1 + ‖Al(:, k)‖

, ηl = 1 + max(max
k
{‖Al(:, k)‖}, ‖cl‖),

where Asj(:, k) denotes the kth column of Asj , and Aqi (:, k) and Ali(:, k) are defined
similarly.

By multiplying the identity matrix Isi by the factors ξsi and ηsi for the semidefinite
blocks, and similarly for the quadratic and linear blocks, the initial iterate has a better
chance of having the appropriate order of magnitude.
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The initial iterate above is set by calling infeaspt.m, with initial line

function [X0,y0,Z0] = infeaspt(blk,A,C,b,options,scalefac),

where options = 1 (default) corresponds to the initial iterate just described, and
options = 2 corresponds to the choice where the blocks of X0, Z0 are scalefac times
identity matrices or unit vectors, and y0 is a zero vector.

4 The main routine

The main routine that corresponds to the infeasible path-following algorithms de-
scribed in Section 2 is sqlp.m:

[obj,X,y,Z,gaphist,infeashist,info,Xiter,yiter,Ziter] =

sqlp(blk,A,C,b,X0,y0,Z0,OPTIONS).

Input arguments.

blk: a cell array describing the block structure of SQLP problem (see below).
A, C, b: SQLP data (see below).
X0, y0, Z0: an initial iterate.
OPTIONS: a structure array of parameters (see below).

If the input argument OPTIONS is omitted, default values are used.

Output arguments. The names chosen for the output arguments explain their
contents. The argument info is a 5-dimensional vector containing performance in-
formation; see [23] for details. The argument (Xiter,yiter,Ziter) is new in this
release: it is the last iterate of sqlp.m, and if desired, the user can continue the iter-
ation process with this as the initial iterate. Such an option allows the user to iterate
for a certain amount of time, stop to analyze the current solution, and continue if
necessary.

Note that, while (X,y,Z) normally gives approximately optimal solutions, if
info(1) is 1 the problem is suspected to be primal infeasible and (y,Z) is an approx-
imate certificate of infeasibility, with bTy = 1, Z in the appropriate cone, and ATy+Z
small, while if info(1) is 2 the problem is suspected to be dual infeasible and X is an
approximate certificate of infeasibility, with 〈C, X〉 = −1, X in the appropriate cone,
and A X small.

A structure array for parameters.

sqlp.m use a number of parameters which are specified in a Matlab structure array
called OPTIONS in the m-file parameters.m. If desired, the user can change the values
of these parameters. The meaning of most of the specified fields in OPTIONS are given
in [23]. The new fields are self-explanatory.
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C Mex files used.

Our software uses a number of Mex routines generated from C programs written to
carry out certain operations that Matlab is not efficient at. In particular, operations
such as extracting selected elements of a matrix, and performing arithmetic opera-
tions on these selected elements are all done in C. As an example, the vectorization
operation svec is coded in the C program mexsvec.c.

Our software also uses a number of Mex routines generated from Fortran pro-
grams written by Esmond Ng and Barry Peyton and Joseph Liu for computing sparse
Cholesky factorization. These programs are adapted from the LIPSOL software writ-
ten by Yin Zhang [28].

Cell array representation for problem data.

Our implementation SDPT3 exploits the block structure of the given SQLP problem.
In the internal representation of the problem data, we classify each semidefinite block
into one of the following two types:

1. a dense or sparse matrix of dimension greater than or equal to 30;

2. a sparse block-diagonal matrix consisting of numerous sub-blocks each of di-
mension less than 30.

The reason for using the sparse matrix representation to handle the case when we have
numerous small diagonal blocks is that it is less efficient for Matlab to work with
a large number of cell array elements compared to working with a single cell array
element consisting of a large sparse block-diagonal matrix. Technically, no problem
will arise if one chooses to store the small blocks individually instead of grouping
them together as a sparse block-diagonal matrix.

For the quadratic part, we typically group all quadratic blocks (small or large)
into a single block, though it is not mandatory to do so. If there are a large number
of small blocks, it is advisable to group them all together as a single large block
consisting of numerous small sub-blocks for the same reason we mentioned before.

Let L = ns + nq + 1. For each SQLP problem, the block structure of the problem
data is described by an L×2 cell array named blk, The content of each of the elements
of the cell arrays is given as follows. If the jth block is a semidefinite block consisting
of a single block of size sj, then

blk{j,1} = ’s’ blk{j, 2} = [sj]

A{j} = [s̄j x m sparse]

C{j}, X{j}, Z{j} = [sj x sj double or sparse],

where s̄j = sj(sj + 1)/2.
If the jth block is a semidefinite block consisting of numerous small sub-blocks,

say p of them, of dimensions sj1, sj2, . . . , sjp such that
∑p
k=1 sjk = sj, then

blk{j,1} = ’s’ blk{j, 2} = [sj1 sj2 · · · sjp]
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A{j} = [s̄j x m sparse]

C{j}, X{j}, Z{j} = [sj x sj sparse] ,

where s̄j =
∑p

k=1 sjk(sjk + 1)/2.
The above storage scheme for the data matrix Asj associated with the semidefi-

nite blocks of the SQLP problem represents a departure from earlier versions of our
implementation, such as the one described in [23]. Previously, the semidefinite part
of A was represented by an ns ×m cell array, where A{j,k} corresponds to the kth
constraint matrix associated with the jth semidefinite block, and it was stored as an
individual matrix in either dense or sparse format. Now, we store all the constraint
matrices associated with the jth semidefinite block in vectorized form as a single
s̄j ×m matrix where the kth column of this matrix corresponds to the kth constraint
matrix. The data format we used in earlier versions of SDPT3 was more natural but,
for the sake of computational efficiency, we adopted our current data representation.
The reason for such a change is again due to the fact that it is less efficient for Mat-

lab to work with a single cell array with many cells. We also avoid explicit loops over
the index k. In the next section, we will discuss the consequence of this modification
in our storage scheme.

If the ith block is a quadratic block consisting of numerous sub-blocks, say p of
them, of dimensions qi1, qi2, . . . , qip such that

∑p
k=1 qik = qi, then

blk{i,1} = ’q’ blk{i, 2} = [qi1 qi2 · · · qip]
A{i} = [qi x m sparse]

C{i}, X{i}, Z{i} = [qi x 1 double or sparse].

If the ith block is the linear block, then

blk{i,1} = ’l’ blk{i, 2} = nl

A{i} = [nl x m sparse]

C{i}, X{i}, Z{i} = [nl x 1 double or sparse].

Caveats.

The user should be aware that SQLP is more complicated than linear programming.
For example, it is possible that both primal and dual problems are feasible, but
their optimal values are not equal. Also, either problem may be infeasible without
there being a certificate of that fact (so-called weak infeasibility). In such cases, our
software package is likely to terminate after some iterations with an indication of
short step-length or lack of progress. Also, even if there is a certificate of infeasibility,
our infeasible-interior-point methods may not find it. In our very limited testing on
strongly infeasible problems, most of our algorithms have been quite successful in
detecting infeasibility.
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5 Computational experiments

Here we describe the results of our computational testing of SDPT3, on problems
from the SDPLIB collection of Borchers [4] as well as the DIMACS Challenge test
problems [16]. In both, we solve a selection of the problems; in the DIMACS problems,
these are selected as the more tractable problems, while our subset of the SDPLIB
problems is more representative (but we cannot solve the largest two maxG problems).
Since our algorithm is a primal-dual method storing the primal iterate X, it cannot
exploit common sparsity in C and the constraint matrix as well as dual methods or
nonlinear-programming based methods. We are therefore unable to solve the largest
problems.

Most of the results given were obtained on a Sun UltraSPARC 170E (170 MHz)
with 512MB of memory running Solaris 2.6, using Matlab 5.3 with the numerics
library based on LAPACK distributed by MathWorks. (We had some difficulty with
Matlab 6 using some of our codes, so use 5.3 throughout.) For some of the larger
problems we require more memory, and so used (one processor of) a Sun UltraSPARC
420R (450 MHz) with 2 GB of memory.

The test problems are listed in Tables 1 and 2, along with their dimensions.

5.1 Cholesky factorization

Earlier versions of SDPT3 were intended for problems that always have semidefinite
cone constraints. As we indicated above, for such problems, the Schur complement
matrix M in (11) is a dense matrix after the first iteration. To solve the associated
linear system (10), we first find a Cholesky factorization of M and then solve two tri-
angular systems. When M is dense, a reordering of the rows and columns of M does
not alter the efficiency of the Cholesky factorization and specialized sparse Cholesky
factorization routines are not useful. Therefore, earlier versions of SDPT3 (up to
version 1.3) simply used Matlab’s chol routine for Cholesky factorizations. For
versions 2.1 and 2.2, we introduced our own Cholesky factorization routine mexchol
that utilizes loop unrolling and provided 2-fold speed-ups on some architectures com-
pared to Matlab’s chol routine. However, in newer versions of Matlab that use
numerics libraries based on LAPACK, Matlab’s chol routine is more efficient than
our Cholesky factorization routine mexchol for dense matrices. Thus, in version 3.0,
we use Matlab’s chol routine whenever M is dense.

For the solution of most second-order cone programming problems in DIMACS
test set, however, Matlab’s chol routine is not competitive. This is largely due
to the fact that the Schur complement matrix M is often sparse for SOCPs and
LPs, and Matlab cannot sufficiently take advantage of this sparsity. To solve such
problems more efficiently we imported the sparse Cholesky solver in Yin Zhang’s
LIPSOL [28], an interior-point code for linear programming problems. It should be
noted that LIPSOL uses Fortran programs developed by Esmond Ng, Barry Peyton,
and Joseph Liu for Cholesky factorization. When SDPT3 uses LIPSOL’s Cholesky
solver, it first generates a symbolic factorization of the Schur complement matrix to
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Problem m semidefinite blocks second-order blocks linear block
bm1 883 882 – –
copo14 1275 [14 x 14] – 364
copo23 5820 [23 x 23] – 1771
filter48-socp 969 48 49 931
filtinf1 983 49 49 945
hamming-7-5-6 1793 128 – –
hamming-9-8 2305 512 – –
hinf12 43 24 – –
hinf13 57 30 – –
minphase 48 48 – –
nb 123 – [793 x 3] 4
nb-L1 915 – [793 x 3] 797
nb-L2 123 – [1637, 838 x 3] 4
nb-L2-bessel 123 – [123, 838 x 3] 4
nql30 3601 – [900 x 3] 5560
nql60 14401 – [3600 x 3] 21920
nql180 129601 – [32400 x 3] 195360
qssp30 5674 – [1891 x 4] 3600
sched-50-50-orig 2527 – [2474, 3] 2502
sched-50-50-scaled 2526 – 2475 2502
sched-100-50-orig 4844 – [4741, 3] 5002
sched-100-50-scaled 4843 – 4742 5002
sched-100-100-orig 8338 – [8235, 3] 10002
sched-100-100-scaled 8337 – 8236 10002
sched-200-100-orig 18087 – [17884, 3] 20002
sched-200-100-scaled 18086 – 17885 20002
torusg3-8 512 512 – –
toruspm3-8-50 512 512 – –
truss5 208 [33 x 10, 1] – –
truss8 496 [33 x 19, 1] – –

Table 1: Selected DIMACS Challenge Problems. Notation like [33 x 19] indicates that
there were 33 semidefinite blocks, each a symmetric matrix of order 19, etc.
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Problem m semidefinite blocks linear block
arch8 174 161 174
control7 666 [70, 35] –
control10 1326 [100, 50] –
control11 1596 [110, 55] –
gpp250-4 251 250 –
gpp500-4 501 500 –
hinf15 91 37 –
mcp250-1 250 250 –
mcp500-1 500 500 –
qap9 748 82 –
qap10 1021 101 –
ss30 132 294 132
theta3 1106 150 –
theta4 1949 200 –
theta5 3028 250 –
theta6 4375 300 –
truss7 86 [150 x 2, 1] –
truss8 496 [33 x 19, 1] –
equalG11 801 801 –
equalG51 1001 1001 –
equalG32 2001 2001 –
maxG11 800 800 –
maxG51 1000 1000 –
maxG32 2000 2000 –
qpG11 800 1600 –
qpG112 800 800 800
qpG51 1000 2000 –
qpG512 1000 1000 1000
thetaG11 2401 801 –
thetaG11n 1600 800 –
thetaG51 6910 1001 –
thetaG51n 5910 1000 –

Table 2: Selected SDPLIB Problems. Note that qpG112 is identical to qpG11 except that
the structure of the semidefinite block is exposed as a sparse symmetric matrix of order
800 and a diagonal block of the same order, which can be viewed as a linear block, and
similarly for qpG512. Also, thetaG11n is a more compact formulation of thetaG11, and
similarly for thetaG51n.
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determine the pivot order by examining the sparsity structure of this matrix carefully.
Then, this pivot order is re-used in later iterations to compute the Cholesky factors.
Contrary to the case of linear programming, however, the sparsity structure of the
Schur complement matrix can change during the iterations for SOCP problems. If
this happens, the pivot order has to be recomputed. We detect changes in the sparsity
structure by monitoring the nonzero elements of the Schur complement matrix. Since
the default initial iterates we use for an SOCP problem are unit vectors but subsequent
iterates are not, there is always a change in the sparsity pattern of M after the first
iteration. After the second iteration, the sparsity pattern remains unchanged for most
problems, and only one more change occurs in a small fraction of the test problems.

The effect of including a sparse Cholesky solver option for SOCP problems was
dramatic. We observed speed-ups up to two orders of magnitude. Version 3.0 of
SDPT3 automatically makes a choice between Matlab’s built-in chol routine and
the sparse Cholesky solver based on the density of the Schur complement matrix.
The cutoff density is provided in the spdensity field of the OPTIONS structure array.

5.2 Vectorized matrices vs. sparse matrices

The current release, version 3.0, of the code stores the constraint matrix in “vector-
ized” form as described in Sections 2 and 4. In the previous version 2.2, A was a
doubly subscripted cell array of symmetric matrices for the semidefinite blocks, as we
outlined at the end of the previous section. The result of the change is that much less
storage is required for the constraint matrix, and that we save a considerable amount
of time in forming the Schur complement matrix M in (11) by avoiding loops over the
index k. Operations relating to forming and factorizing the Schur complement and
hence computing the predictor search direction comprise much of the computational
work for most problem classes, ranging from 25% for qpG11 up to 99% for the larger
theta problems, the control problems, copo14, hamming-7-5-6, and the nb prob-
lems. Other significant parts are computing the corrector search direction (between
less than 1% and 75%) and computing step lengths (between less than 1% and 60%).

While we now store the constraint matrix in vectorized form, the parts of the
iterates X and Z corresponding to semidefinite blocks are still stored as matrices,
since that is how the user wants to access them.

Results are given in Tables 3 through 6: Tables 3 and 4 give results on the
DIMACS problems for both SDPT3-3.0 and SDPT3-2.2, while Tables 5 and 6 give the
comparable results for the SDPLIB problems. In all of these, the format is the same.
We give the number of iterations required, the time in seconds, and four measures of
the precision of the computed answer. The first column gives the logarithm (to base
10) of the total complementary slackness; the second the scaled primal infeasibility
‖Ax− b‖/(1 + max ‖bk‖), and the third ‖AT y+ z− c‖/(1 + max |c|), where the norm
is subordinate to the inner product and the maximum taken over all components of
c; and the last the maximum of 0 and 〈c, x〉 − bT y.

In general, the codes solved the problems to reasonable accuracy. On the DIMACS
problems, only 1 digit of precision was obtained for bm1 (NT only), filtinf1, nql180,
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and torusg3-8, and even less for some of the sched-orig problems. However, the
optimal value for the latter problems and for torusg3-8 is at least of order 105, so the
relative accuracy is better than it appears. The other measures of accuracy were also
reasonable, except for the NT search direction applied to nql60 and again three of the
sched-orig problems. For the SDPLIB problems, again the accuracy is reasonable;
on the equalG problems, the optimal value is of order 103, so the duality gap is not too
excessive. We note that on three problems, qpG11, qpG51, and sched-100-100-orig,
the algorithm terminated with an indication that X and Z were not both positive
definite. However, this is a conservative test designed to stop if numerical difficulties
are imminent. Using SeDuMi’s eigK.m routine to check the iterates, it was found
that in all cases both were feasible in the conic constraints.

To compare the two codes in terms of time, we consider only the problems that
both codes could solve, and omit the simplest problems with times under 20 seconds
(the hinf problems, minphase, and truss5 and truss7). For the remaining problems,
we compute the ratio of the times taken by the two codes, take its logarithm to base
2, and then plot the results in decreasing order of absolute values. The results are
shown in Figures 1 and 2 for the HKM and NT search directions. A bar of height 1
indicates that SDPT3-3.0 was 2 times faster than SDPT3-2.2, of −1 the reverse, and
of 3 that SDPT3-3.0 was 8 times faster. Note that the new version using vectorized
matrices is uniformly faster for the HKM direction, and faster or comparable for the
NT direction.

5.3 HKM vs. NT

The new version of the code allows only two search directions, HKM and NT. Version
2.2 also allowed the AHO direction of Alizadeh, Haeberly, and Overton [2] and the GT
(Gu-Toh) direction — see [21], but these are uncompetitive when the problems are
of large scale. We intend to keep Version 2.2 of the code available for those who wish
to experiment with these other search directions, which tend to give more accurate
results on smaller problems.

To compare the two remaining search directions, we again use a bar chart to show
their relative performance as in Figures 1 and 2. It is clear that the HKM direction
is almost universally faster than NT, but the exceptions do show some patterns. The
NT direction was faster on the nb and nql problems, which all have a large number of
low-dimensional second-order cone constraints. (The reason for this behavior is not
hard to understand. By comparing the formula in (23) for the HKM direction with
(29) for the NT direction, it is clear that more computation is required to assemble the
Schur complement matrix and more low-rank updating is necessary for the former
direction, and these computations can dominate the work when the dimensions of
each second-order cone is small.) Also, the NT direction is faster on the semidefinite
problem copo23, again with many small blocks, and on the sched problems, which
have small as well as large second-order blocks. The HKM direction is much faster
on maxG32 and considerably faster on the other maxG and the qpG problems. Because
there is a class of problems on which the NT direction is faster, we feel it is worthwhile
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to keep both options.

5.4 Homogeneous vs infeasible interior-point methods

Version 2.2 also allowed the user to employ homogeneous self-dual algorithms instead
of the usual infeasible interior-point methods. However, this option almost always
took longer than the default choice, and so it has been omitted from the current
release. One theoretical advantage of the homogeneous self-dual approach is that it
is oriented towards either producing optimal primal and dual solutions or generating
a certificate of primal or dual infeasibility, while the infeasible methods strive for
optimal solutions only, but detect infeasibility if either the dual or primal iterates
diverge. However, we have observed no advantage to the homogeneous methods
when applied to infeasible problems. We should mention, however, that our current
version does not detect infeasibility in the problem filtinf1, but instead stops with a
primal near-feasible solution and a dual feasible solution when it encounters numerical
problems.

5.5 Presentation of problems

We note that qpG11 and qpG112, and similarly qpG51 and qpG512, are basically the
same problem, but in the second version the linear variables are explicitly identified,
rather than being part of a large sparse semidefinite block. The improvement in
running time is dramatic: a factor of at least four (recall that qpG512 is solved using
the slower machine, qpG51 by the faster). It is thus crucial to present problems to the
algorithms correctly. We could add our own preprocessor to detect this structure, but
believe users are aware of linear variables present in their problems. Unfortunately
the versions of qpG11 and qpG51 in SDPLIB do not show this structure explicitly.

We also remark that the computation of the Lovasz theta function for a graph can
be expressed as a semidefinite programming problem in two ways, and one of these is
much more compact than the other, requiring a linear constraint only for each edge
of the graph rather than also for each node, and so the problems thetaG11n and
thetaG51n are much easier to solve than thetaG11 and thetaG51, here by a factor
up to two.

Finally, version 2.2 of SDPT3 included specialized routines to compute the Schur
complement matrices directly for certain classes of problem (e.g., maxcut problems).
In earlier versions of SDPT3, these specialized routines had produced dramatic de-
creases in solution times, but for version 2.2, these gains were marginal, since our
general sparse matrix routines provided almost as much speedup. We have therefore
dropped these routines in version 3.0.

24



HKM NT

Problem Itn
log
〈x, z〉 err1 err3 err5 time Itn

log
〈x, z〉 err1 err3 err5 time

bm1 18 -5 7-8 3-13 7-6 3314 17 -1 6-6 2-12 9-2 9640
copo14 15 -9 1-10 5-15 5-9 913 15 -10 8-10 5-15 2-8 901
copo23∗ 18 -9 8-10 8-15 0 32928 17 -9 3-10 1-14 2-8 31427
hamming-7-5-6 10 -8 2-15 0 2-8 965 10 -8 2-15 0 2-8 968
hamming-9-8 12 -7 4-15 0 9-8 2843 12 -7 4-15 0 9-8 3575
hinf12 42 -7 4-8 2-10 0 17 39 -7 5-8 2-10 0 22
hinf13 23 -2 2-4 5-13 0 13 22 -3 3-4 5-13 0 16
minphase 31 -7 2-8 0 0 19 34 -4 5-8 0 0 26
torusg3-8 15 -2 4-10 8-16 1-2 362 14 -1 4-9 7-16 2-1 1249
toruspm3-8-50 13 -6 5-10 6-16 3-6 316 14 -7 1-9 6-16 2-7 1230
truss5 19 -5 2-6 8-15 0 54 18 -4 2-6 9-15 9-5 57
truss8 21 -3 1-5 9-15 3-5 444 21 -4 1-5 1-14 0 481

Table 3: Computational results on SDP problems in the DIMACS Challenge test set using
SDPT3-2.2. These were performed on a 170MHz Sun Ultra 170 with 512MB of memory,
except for the problems marked with an asterisk which were on (1 processor of) a 420MHz
Sun Ultra 420R with 2GB of memory.
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Problem Itn
log
〈x, z〉 err1 err3 err5 time Itn

log
〈x, z〉 err1 err3 err5 time

bm1 19 -6 1-6 4-13 1-6 3027 15 -1 1-5 3-13 2-1 7901
copo14 15 -10 8-11 5-15 3-9 80 14 -9 5-11 5-15 1-8 77
copo23 18 -9 5-10 9-15 0 3644 17 -10 4-10 1-14 2-8 3463
filter48-socp 43 -6 1-6 1-13 4-5 136 50 -4 1-6 9-14 8-4 148
filtinf1 26 -1 3-5 1-12 1-1 89 26 -1 2-5 4-12 1-1 88
hamming-7-5-6 9 -7 6-15 0 3-7 192 9 -7 3-15 0 3-7 195
hamming-9-8 11 -6 7-15 8-14 2-6 725 11 -6 7-15 8-14 2-6 1295
hinf12 43 -8 2-8 3-10 0 14 39 -8 2-8 2-10 0 10
hinf13 26 -5 9-5 8-13 0 11 24 -4 1-4 7-13 0 7
minphase 35 -7 8-9 1-12 0 18 36 -4 2-8 6-13 0 19
nb 14 -5 8-6 2-9 5-5 122 14 -5 8-6 2-9 5-5 94
nb-L1 17 -5 7-5 6-11 1-5 212 17 -5 8-5 6-11 2-5 168
nb-L2 14 -8 2-8 3-11 2-8 202 12 -8 3-9 2-9 1-8 146
nb-L2-b 13 -8 5-9 2-11 9-9 120 12 -9 3-8 2-10 0 86
nql30 12 -3 7-6 3-7 2-3 28 12 -3 6-6 3-7 2-3 26
nql60 14 -4 7-5 2-9 0 211 14 -4 3-1 2-8 0 174
nql180∗ 9 -1 4-4 5-5 2-1 2117 11 -1 7-4 5-6 0 1687
qssp30 13 -1 3-5 2-6 3-1 141 14 -2 5-5 3-6 3-2 142
sched-50-50-orig 34 -2 6-4 1-10 0 59 31 -2 4-4 3-9 0 50
sched-50-50-scaled 22 -4 1-4 1-10 6-5 40 21 -4 3-5 4-10 5-5 35
sched-100-50-orig 50 +1 3-3 2-10 0 185 50 +5 2-3 7-2 4+5 171
sched-100-50-scaled 25 -2 4-4 6-11 2-2 95 24 -2 4-4 4-11 1-2 86
sched-100-100-orig 44 -2 2-1 1-10 0 298 42 +2 4+0 1-9 1+8 268
sched-100-100-scaled 22 -1 3-2 2-14 0 163 20 -1 3-2 3-14 0 140
sched-200-100-orig 48 -1 5-3 2-9 0 912 50 +8 5+3 5+3 3+7 883
sched-200-100-scaled 28 -1 3-3 5-9 0 556 27 -2 3-3 1-9 0 500
torusg3-8 15 -1 2-11 7-16 2-1 276 14 -1 2-10 8-16 4-1 1082
toruspm3-8-50 14 -6 2-11 6-16 2-6 263 13 -6 3-11 6-16 5-6 1001
truss5 16 -5 5-7 8-15 0 17 15 -5 5-7 1-14 2-5 20
truss8 16 -5 2-6 8-15 0 96 15 -4 3-6 9-15 0 115

Table 4: Computational results on DIMACS Challenge problems using SDPT3-3.0. These
were performed on a 170MHz Sun Ultra 170 with 512MB of memory, except for the problems
marked with an asterisk which were on (1 processor of) a 420MHz Sun Ultra 420R with
2GB of memory.
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Problem Itn
log
〈x, z〉 err1 err3 err5 time Itn

log
〈x, z〉 err1 err3 err5 time

arch8 19 -7 4-7 7-13 8-8 144 23 -6 3-8 4-13 7-7 199
control7 22 -4 1-6 2-9 6-5 771 22 -5 1-6 2-9 0 835
control10 24 -4 2-6 6-9 0 4045 24 -4 3-6 6-9 0 4592
control11 23 -4 2-6 6-9 0 5982 24 -4 3-6 6-9 0 7181
gpp250-4 16 -6 5-8 8-14 0 91 16 -4 2-7 8-14 0 205
gpp500-4 15 -5 6-8 1-14 3-5 575 15 -4 3-8 2-14 3-4 1549
hinf15 22 -2 3-4 1-12 0 22 22 -2 3-4 9-13 0 27
mcp250-1 13 -6 3-10 5-16 2-6 42 15 -6 9-11 4-16 8-7 138
mcp500-1 14 -6 3-10 5-16 1-6 257 16 -6 5-10 5-16 1-6 1182
qap9 15 -5 4-8 3-13 0 141 15 -5 5-8 3-13 0 147
qap10 14 -5 4-8 9-13 0 297 14 -5 4-8 9-13 0 302
ss30 18 -5 2-7 2-13 5-6 348 25 -6 3-8 2-13 4-6 720
theta3 14 -7 2-11 6-15 1-7 360 14 -8 1-10 6-15 3-8 381
theta4 15 -7 1-10 9-15 2-7 1866 15 -8 2-10 8-15 3-8 1911
theta5 15 -7 1-10 1-14 3-7 6519 14 -6 2-10 1-14 5-7 6151
theta6 15 -7 2-10 1-14 2-8 20280 15 -7 2-10 1-14 6-8 20392
truss7 23 -3 4-6 2-13 0 17 22 -5 7-6 2-13 0 23
truss8 21 -3 1-5 1-14 3-5 444 21 -4 1-5 9-15 0 477
equalG11 18 -7 3-10 3-16 5-7 2625 17 -4 2-9 2-16 7-5 7001
equalG51 20 -6 7-9 5-16 0 5748 16 -2 4-8 5-16 3-2 12127
equalG32∗ 19 -5 1-9 1-16 1-5 19425 15 -1 6-8 8-17 7-2 50465
maxG11 14 -6 4-10 7-16 3-6 943 14 -6 8-10 7-16 1-6 4087
maxG51 16 -5 3-10 4-16 1-5 3155 16 -6 2-9 4-16 2-6 11257
maxG32∗ 15 -5 2-9 1-15 7-6 6165 15 -6 4-9 1-15 2-6 35362
qpG11 14 -5 2-10 0 2-5 4839 16 -5 2-11 0 2-5 20717
qpG112 15 -6 4-10 0 2-6 1142 15 -6 1-9 0 2-6 4543
qpG51∗ 21 -4 4-10 0 1-4 7790 24 -3 6-9 0 1-3 32103
qpG512 17 -4 4-9 0 1-4 3462 25 -4 2-9 0 5-5 18182
thetaG11 19 -6 1-7 8-14 0 6173 17 -6 9-8 2-14 0 8902
thetaG11n 15 -6 4-12 0 1-6 3113 15 -6 4-12 0 1-6 6742
thetaG51∗ 33 -6 4-8 1-14 4-6 109681 30 -5 5-8 8-14 9-6 102457
thetaG51n∗ 20 -7 2-9 2-14 0 37692 22 -7 2e-9 3e-14 0 46453

Table 5: Computational results on SDPLIB problems using SDPT3-2.2. These were per-
formed on a 170MHz Sun Ultra 170 with 512MB of memory, except for the problems
marked with an asterisk which were on (1 processor of) a 420MHz Sun Ultra 420R with
2GB of memory.
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Problem Itn
log
〈x, z〉 err1 err3 err5 time Itn

log
〈x, z〉 err1 err3 err5 time

arch8 18 -6 1-7 5-13 8-7 96 23 -6 6-8 4-13 9-7 151
control7 23 -5 7-7 2-9 4-6 380 23 -4 4-7 2-9 6-5 379
control10 25 -5 1-6 6-9 0 1850 24 -4 7-7 6-9 1-4 2031
control11 24 -5 1-6 6-9 0 2751 24 -4 1-6 6-9 6-5 3167
gpp250-4 15 -5 6-8 2-12 0 77 15 -4 2-8 1-13 3-4 169
gpp500-4 16 -6 3-8 4-14 0 520 15 -3 2-7 8-14 6-4 1450
hinf15 25 -4 9-5 2-12 0 15 24 -4 1-4 2-12 0 11
mcp250-1 13 -6 4-12 4-16 6-7 32 14 -6 1-11 4-16 7-7 97
mcp500-1 15 -7 2-11 5-16 2-7 185 16 -7 3-11 5-16 4-7 1077
qap9 15 -5 5-8 7-13 0 51 15 -5 5-8 4-13 0 53
qap10 14 -5 4-8 7-13 0 101 14 -5 4-8 1-12 0 101
ss30 17 -5 7-7 2-13 5-6 227 22 -5 1-7 2-13 2-5 428
theta3 14 -8 6-11 1-14 4-8 105 14 -8 2-10 2-14 4-8 121
theta4 15 -7 2-10 2-14 2-7 423 14 -7 3-10 2-14 8-8 429
theta5 15 -7 3-10 3-14 2-7 1380 14 -8 4-10 3-14 4-8 1354
theta6 14 -6 2-10 3-14 6-7 3643 14 -7 6-10 3-14 1-7 3767
truss7 23 -4 2-6 2-13 0 12 21 -3 2-5 2-13 0 17
truss8 16 -4 2-6 9-15 0 96 15 -3 3-6 1-14 0 113
equalG11 17 -6 2-10 3-16 2-6 2046 18 -6 1-8 1-16 3-6 7032
equalG51 20 -6 1-8 4-16 3-7 4776 16 -1 1-7 9-16 1-1 12103
equalG32∗ 20 -5 4-10 2-16 1-5 17588 14 -1 2-7 7-15 1-1 47067
maxG11 14 -6 2-11 7-16 4-6 562 14 -6 5-11 7-16 8-7 3334
maxG51 17 -5 4-11 3-16 2-5 2072 16 -5 7-11 4-16 4-6 7981
maxG32∗ 15 -5 9-11 1-15 6-6 3578 15 -6 2-10 1-15 2-6 30521
qpG11 14 -5 1-11 0 1-5 4220 15 -5 1-10 0 3-5 18280
qpG112 15 -7 1-11 0 4-7 602 14 -5 9-11 0 1-5 3382
qpG51∗ 21 -4 5-11 0 1-4 6850 24 -4 8-10 0 3-4 31682
qpG512 19 -4 3-10 0 2-5 2086 27 -4 1-9 0 2-4 13993
thetaG11 18 -7 1-9 1-14 4-7 2103 18 -7 5-10 2-14 2-7 5289
thetaG11n 15 -7 1-12 2-13 4-7 1559 15 -7 1-12 2-13 4-7 4606
thetaG51∗ 33 -6 6-8 1-14 2-6 19426 30 -5 1-8 2-13 7-6 22299
thetaG51n∗ 19 -5 2-9 3-13 0 5941 22 -5 2-9 3-13 0 11541

Table 6: Computational results on SDPLIB problems using SDPT3-3.0. These were per-
formed on a 170MHz Sun Ultra 170 with 512MB of memory, except for the problems
marked with an asterisk which were on (1 processor of) a 420MHz Sun Ultra 420R with
2GB of memory.
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Figure 1. Comparing SDPT3-3.0 and SDPT3-2.2 using the HKM search direction. Bars
above the axis demonstrate a win for 3.0.
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