
A non-stationary paradigm for the dynamics

of multivariate financial returns1
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Abstract

A simple non-stationary paradigm for the dynamics of multivariate returns is discussed.

Unlike most of the multivariate econometric models for financial returns, our approach

supposes the volatility to be exogenous and non-stationary. The vectors of returns are

assumed to be animated by a slowly changing unconditional covariance structure. The

methodological frame is that of non-parametric regression with fixed, equidistant design

points. The regression function is the time evolving unconditional covariance. Special

attention is payed to the accurate description of the extremal dependence of the vector of

returns. The non-stationary paradigm is first applied to describe the changing dynamics

of a multivariate data set of returns on three financial risk factors: a foreign exchange rate,

an index and an interest rate. Then, its one-day-ahead multivariate distributional forecast

performance is evaluated. We show through an out-of sample simulation experiment that

our methodology is superior to the plain-vanilla specification of the industry standard

RiskMetrics in forecasting the distribution of returns on portfolios of the three risk factors

over horizons of one day, ten days and twenty days.

JEL classification: C14, C16, C32.

Keywords and Phrases: stock returns, volatility, sample autocorrelation, long range

dependence, non-parametric regression, kernel estimator, distributional forecast, heavy

tails.
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1. Introduction

This paper discusses a non-stationary, unconditional approach to understanding the

dynamic of multivariate financial returns. Non-stationary modeling has a long tradition in

financial econometric literature predating the currently prevalent stationary, conditional

paradigm of which the autoregressive conditionally heteroscedastic (ARCH) -type processes

and stochastic volatility models are outstanding examples (see for example, Officer [27] or

Hsu, Miller and Wichern [17]). Our work is motivated by growing evidence of instability

in the stochastic features of stock returns. More concretely, a growing body of econometric

literature (Diebold [4], Lamoureux and Lastrapes [21], Simonato [33], Cai [3], Lobato and

Savin [20], Mikosch and Stărică [22], [23] among others) argues that most of the features

of return series that puzzle through their omni-presence, the so called “stylized facts”,

including the ARCH effects, the slowly decaying sample ACF for absolute returns and

the IGARCH effect (for definitions and details see Mikosch and Stărică [23]) could be

manifestations of non-stationary changes in the second moment dynamic of returns (see

also Stock and Watson [36]). We illustrate our methodology through a detailed analysis of a

tri-variate sample of daily log-returns consisting of the foreign exchange rate Euro/Dollar

(EU), the FTSE 100 index, and the 10 year US T-bond. The three series are common

examples of risk factors5.

The paper concentrates on answering the following methodological question: How can

one analyze the multivariate dynamic of returns in the non-stationary conceptual frame-

work? We argue that a possible adequate set-up could be that of classical non-parametric

regression with fixed equidistant design points (see Campbell et al. [2] or Wand and Jones

5For a definition and examples of the importance of modeling the joint dynamic of risk factors, see

for example the RiskMetrics document [31]. Briefly, a common current approach to modeling the joint

dynamic of large portfolios of financial instruments consists in reducing the size of the model by relating

the movements of a large number of the instruments in the portfolio to a relatively small number of so

called risk factors (market indices, foreign exchange rates, interest rates). The modeling then concentrates

on describing the dynamics of the risk factors.
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[37]). More concretely, the vectors of financial returns are assumed have a time-varying un-

conditional covariance matrix that evolves smoothly. Its dynamics is estimated by a local

weighted average or local smoothing. The vectors of standardized innovations are assumed

to have asymmetric heavy tails and are modeled parametrically. The careful description

of the extremal behavior of the standardized innovations yields a model suited for precise

VaR calculations and for generation of stress-testing scenarios.

A closely related issue to the methodological question discussed is: What type of non-

stationarities might affect the multivariate dynamic of financial returns? The in-depth

analysis in Section 5 as well as the forecasting results in Section 6 indicate the time-varying

second unconditional moment as a possible main source of non-stationarity of returns on

the three financial instruments we use to exemplify our approach6.

An important aspect of the methodology we propose is related to answering the fol-

lowing: How should we interpret the slow decay of the sample autocorrelation function

(SACF) of absolute returns (see Figures 5.1 and 5.2)? Should we take it at face value,

supposing that events that happened a number of months (or years) ago bear a strong

impact on the present dynamics of returns? Or are the non-stationarities in the returns

responsible for its presence as a number of authors have argued lately (the list of related

relevant references includes Hidalgo and Robinson [16], Lobato and Savin [20], Granger

and Hyung [14], Granger and Teräsvirta [15], Diebold and Inoue [5], Mikosch and Stărică

[22], [23])? In a recent paper, Stărică and Granger [35] have documented the superiority

of the paradigm of time-varying unconditional variance over some specifications of station-

ary long memory and stationary conditional autoregressive heteroscedastic methodology in

6Our findings and the modeling methodology that they motivate extend to the multivariate framework

the work of Officer [27] and Hsu, Miller and Wichern [17]. The former, using a non-parametric approach

to volatility estimation, reports evidence of time-varying second moment for the time series of returns on

the S&P 500 index and industrial production. The later modeled the returns as a non-stationary process

with discrete shifts in the unconditional variance. Note also that, although the paper only reports the

detailed results of an analysis of three risk factors, qualitatively similar results are obtained for a large

number of other risk factors.
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longer horizon volatility forecasting. Our approach is based on interpreting the slow decay

of the SACF/SCCF of absolute returns as a sign of the presence of non-stationarities in

the second moment structure.

Our primary goal is to propose an approach that, while capable of explaining the mul-

tivariate dynamics of financial data adequately, is simple and easy to implement. For

this reason, at each step of our modeling and estimation approach, we deliberately choose

simple and well known methodologies rather than complex estimation techniques. Our

empirical study, to which a substantial portion of this article is devoted, demonstrates

that the non-stationary paradigm is capable of fitting multivariate data accurately and

that it outperforms the plain-vanilla specification of the industry standard Riskmetrics in

a simulation study of distributional forecasts.

Non-parametric techniques have been extensively used in the econometric literature on

financial and macro-economic time series. For example, Rodŕıguez-Poo and Linton [28]

use kernel-based inference technique to estimate the time-dependent volatility structure of

residuals of an VAR process. They apply their methodology to macro-economic time series.

Fan et al. [9] also use kernel regression to estimate time-dependent parametric models for

means and covariances in a Gaussian setting. These models are time-dependent general-

izations of the time-homogeneous, stationary models discussed in Fan and Yao [10]. Unlike

these studies, we focus on the the dynamic modeling of the full distribution of multivariate

returns and not only on particular features of it (like mean or second moment structure).

We emphasize a non-Gaussian, heavy-tailed modeling of the standardized innovations for

an accurate description of the extremal behavior of the multivariate distribution of returns.

The rest of the paper is organized as follows. Section 2 introduces our non-stationary

paradigm, Section 3 collects the relevant results from the statistical literature on non-

parametric curve estimation. Section 4 discusses a heavy-tail parametric model for the

innovation series. In Section 5, the non-stationary paradigm described in Section 2 is used

to analyse the dynamics on a tri-variate sample of returns on the foreign exchange rate

Euro/Dollar (EU), the FTSE 100 index, and the 10 year US T-bond (the dimension of
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the multivariate vector of returns has been intentionally kept low to facilitate an in-depths

statistical analysis). Section 6 evaluates the performance of our model in forecasting the

distribution of multivariate returns. In Section 7 we comment on the relationship between

our modeling approach and the RiskMetrics methodology while Section 8 concludes.

2. A simple non-stationary paradigm for multivariate return modeling

Denote by rk the d × 1-dimensional vector of returns k = 1, 2, . . . , n. ARCH-type

models assume that (rk) is a stationary, dependent, white noise sequence with a certain

conditional second moment structure. More specifically, the d × d conditional variance-

covariance matrix Hk := E(rkr
′
k | rk−1, rk−2, . . .) is assumed to follow a stationary sto-

chastic process defined in terms of past r’s and past H’s. Often, it is assumed that

P (rk ∈ · | rk−1, rk−2, . . .) = P (N(0,Hk) ∈ · ). The common assumptions of the
ARCH-type models imply that (rk) is a strongly stationary sequence. In particular, the

unconditional covariance does not change in time (see Stărică [34] for a discussion on the

implications of this assumption on modeling and forecasting univariate index returns).

Our alternative approach assumes (rk) to be a non-stationary sequence of independent

random vectors. More concretely, the distribution of rk is characterized by a changing

unconditional covariance structure that is a manifestation of complex market conditions.

The covariance dynamics is hence driven by exogenous factors. We emphasize that, in

our approach, the presence of autocorrelation structure in absolute (square) returns is

explained by a non-stationary covariance structure7. To acknowledge the slow nature of

the changes, i.e. the persistence in the second moment structure, the covariance is modeled

7Sequences of independent observations will display spurious autocorrelation structure if there is a break

in the unconditional variance. In other words, the presence of autocorrelation structure is not incompatible

with the assumption of independence. See Diebold and Inoue [5] and Mikosch and Stărică [23].
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as a smooth function of time. This approach leads to the following regression-type model8:

rk = S(tk,n) ε k,n, k = 1, 2, . . . , n, where tk,n := k/n, tk ∈ [0, 1]

S(t) : [0, 1]→ R
d×d is an invertible matrix and a smooth function of time,(2.1)

(ε k,n) is an iid sequence of random vectors with mutually independent coordinates,

such that E ε k,n = 0, V ar ε k,n = Id.

(The notation is that of the classical non-parametric regression set-up and is motivated by

the specific nature of the asymptotic results9. We will omit indices n whenever feasible.)

The precise smoothness assumptions on S(t) are discussed in the sequel. The elements

of the sequence (ε k,n) are called the standardized innovations. From (2.1), it follows that

E(rkr
′
k | rk−1, rk−2, . . .) = E(rkr

′
k) = S(t k,n)S

′
(t k,n) := Σ(t k,n), and

P (rk ∈ · | rk−1, rk−2, . . .) = P (rk ∈ · ), k = 1, 2, . . . , n.

This modeling approach reflects the belief that the distribution of the vector of future

returns incorporates a changing pool of information which is partly expressed in the recent

past of the time series and the fact that we are not aware of exogenous variables capable

of reliably explaining the dynamics of the volatility. In other words, our uncertainty about

the form of the model is manifestly expressed in the choice of the non-parametric regression

approach.

8A mean term could be included in model (2.1). Denoting by uk := rk −Er, k = 1, . . . , n, the model

would then assume ut to be independent with covariance matrix S(t)S
′
(t), a smooth function of t. We have

implemented both procedures, i.e. with and without removing of a mean estimate in a preliminary step,

and obtained qualitatively equal results. Hence, in the sequel, we work under the simplifying assumption

of a negligeable mean of the return series.
9Unlike in other fields of statistics, the asymptotic results involve not only an increasing number of

observations but also an increase in the frequency with which the unknown function is observed. To attain

this goal, the observations are indexed between 0 and 1. In this way an increase in the sample size implies

also an increase in the frequency with which we observe the regression function.
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Furthermore, we will assume the existence of a smooth10 function V(t) : [0, 1] → R
d×d

such that Var ri,krj,k = vij(tk) (in short, Var rkr
′
k = V(tk)) where ri,k is the i-th coordinate

of rk and tk = k/n
11. With this notation

(2.2) ri,krj,k = Σij(tk) + v
1/2
ij (tk)ε̃

ij
k , k = 1, 2, . . . , n, i, j = 1, 2, . . . d,

where the errors ε̃ ij
k are iid vectors with independent coordinates, such that E ε̃ ij

k = 0,

Var ε̃ ij
k = 1. Hence the function Σ(t) can be estimated by standard non-parametric

heteroscedastic regression methods for non-random, equidistant design points using the

series rkr
′
k, k = 1, . . . , n.

The non-stationary paradigm that we have introduced above can be used both for de-

scribing the dynamics of multivariate data as well as for short horizon forecasting. The

methodological difference between applying it for data description or for forecasting will

become clear in the next section.

3. Non-parametric smoothing

Our main reference in the context of non-parametric regression is Müller and Stadtmüller

[25] on kernel curve estimation in the heteroscedastic regression model

yk,n = µ(tk,n) + σ(tk,n) εk,n, k = 1, 2, . . . , n.(3.1)

The random variables yk are observations of the unknown regression function µ(t) : [0, 1]→
R, perturbed by heteroscedastic errors σ(tk)εk. The standardized errors εk are iid with

mean zero and unit variance not necessarily Gaussian. The functions µ : [0, 1] → R and

σ : [0, 1]→ R+ are assumed smooth (the smoothness requirements will be made precise in

the sequel).

Our analysis uses kernel regression smoothing. For an introduction on smoothing esti-

mator and in particular, on kernel estimators, see Section 12.3 of Campbell et al. [2] or

10The precise smoothness assumptions on V(t) are discussed in the sequel.
11In words, we assume that the covariance structure and the variance of the covariance are evolving

smoothly through time.
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Wand and Jones [37]. The following kernel estimator will be used in the various steps of

mean and variance estimation in the heteroscedastic regression model (3.1)

f̂(t; h) =

n∑
k=1

Wk(t; h)Uk ,(3.2)

where Uk stand for σ̃
2(tk), preliminary variance estimates, in the estimation of f := σ

2(t)

and for yk in the estimation of f := µ(t) . The weights Wk(t) satisfy

Wk(t; h) = Wk,n(t; h) =
1

h

∫ sk

sk−1

K

(
t− u

h

)
du , sk =

tk−1 + tk
2

.(3.3)

The quantity h > 0 is the bandwidth of the estimator and the kernel function K on

[−1, 1] satisfies the basic condition ∫ K(u)du = 1 and some further assumptions. These
are satisfied by the Gaussian kernel density function when it is first truncated at [−3, 3],
then rescaled to [−1, 1] and finally made Lipschitz continuous such thatK(−1) = K(1) = 0
by changing the kernel appropriately in [−1, 1]\[−1 + δ, 1 − δ] for δ = 0.01. This is the

kernel used in Section 5. We note that such estimates use past and future information. A

modified kernel, only based on the past, will be introduced later.

3.1. Estimation of the variance. Let us summarize now some of the necessary theory

for the estimation of σ̂ in the heteroscedastic model (3.1). The kernel estimator of σ(t) in

the heteroscedastic regression model (3.1) is defined in two steps.

(1) First, a preliminary smoothing removes the mean function µ in (3.1) in some neigh-

borhood of tk. The preliminary estimator of the variance at an inner point tk in

[0, 1] is given by

σ̃2(tk) =

(
m2∑

j=−m1

wj yj+k

)2

,(3.4)

with the weights wj satisfying
∑m2

j=−m1
wj = 0 and

∑m2

j=−m1
w2

j = 1 for some fixed

m1, m2 ≥ 0.
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(2) Second, we view the preliminary estimates of the variance, σ̃2(tk) as measurements

from the following regression model:

σ̃2(tk) = σ
2(tk) + ε̃k, 1 ≤ k ≤ n,(3.5)

where the errors ε̃k form an m1 +m2-dependent sequence, Eε̃k = 0.

The estimator of the variance is then given by

σ̂2(t) := σ̂2(t; hσ2) =
n∑

k=1

Wk(t; hσ2) σ̃2(tk) ,(3.6)

where the weights Wk(t; h) are defined in (3.3).

In the sequel we assume that σ2 is twice differentiable with a continuous second deriva-

tive, µ is Lipschitz continuous of order α ≥ 0.25 and E|εi|5+δ < ∞ for some δ > 0. Then

the following statements can be derived from Theorem 3.1 and Remark at the bottom of

p. 622 in Müller and Stadtmüller [25]:

(1) The estimated variance σ̂2(t) satisfies

∣∣σ̂2(t)− σ2(t)
∣∣ ≤ c (h2

σ2 + (log n/nhσ2)1/2) ,

almost surely, for some unspecified positive constant c, uniformly on any compact

of the interval (0,1), if the bandwidth hσ2 satisfies lim inf n1/5+δ
′
hσ2/logn > 0,

lim inf nh2
σ2 > 0, where 0 < δ

′
< δ.

(2) The expected value Eσ̂2(t) satisfies

|Eσ̂2(t)− σ2(t)| ≤ c (h2
σ2 + n−1)

for some unspecified positive constant c, uniformly on any compact of the interval

(0,1) .

3.2. Estimation of the mean in the heteroscedastic regression model. If more-

over, µ is twice differentiable with continuous second derivative, Lemma 5.3 of Müller and

Stadtmüller [25] gives the following results for µ̂He(t; hµ), the estimator given by (3.2) with

f := µ:

(1) The expected value Eµ̂He(t) satisfies, as n→ ∞ and hµ := hµ,n → 0, nhµ → ∞
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(i)

Eµ̂He(t)− µ(t) = µ′′
(t)h2

µB + o(h
2
µ) +O(n

−1),(3.7)

where B =
∫
K(u)u2du/2,

(ii)

|Eµ̂He(t)− µ(t)| ≤ c (h2
µ + n

−1),

for some unspecified positive constant c, uniformly for t ∈ [δ, 1− δ], any fixed

δ ∈ (0, 1).
(2) The variance of µ̂He(t) satisfies for every t, as n→ ∞ and hµ := hµ,n → 0, nhµ → ∞

Var(µ̂He(t)) =
σ2(t)

nhµ
U (1 + o(1)) ,(3.8)

where U =
∫
K2(u)du = 0.84 for the normal kernel used in our analysis. Note that

the bandwidths hµ in the estimation of µ and hσ2 in that of σ2 are in general very

different.

These results apply to the concrete heteroscedastic regressions of interest (2.2) as follows.

The estimator of Σ(t) as given by the heteroscedatic approach described in subsection 3.2

is

(3.9) Σ̂(t; h) :=
n∑

k=1

Wk, n(t; h) rkr
′
k,

where the weights Wk, n are defined in (3.3). Note that the matrix Σ̂(t; h) is positive

definite by construction.

The estimator of V(t) in (2.2) given by the methodology described in subsection 3.1 is

V̂(t; h̃) :=
n∑

k=1

Wk, n(t; h̃)

(
m2∑

l=−m1

wl rl+kr
′
l+k

)2

,(3.10)

where the square operation has to be intended component-wise. The weights wl satisfying∑m2

l=−m1
wl = 0 and

∑m2

l=−m1
w2

l = 1 for some fixed m1, m2 ≥ 0. Note that the matrix V
is not a covariance matrix and that we have simply used the convenience of the matrix
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notation in order to write concisely d× d (coordinate-wise) equations. In the analysis that
follows, we have used m1 = 1, m2 = 0 and w1 = w2 = 1/

√
(2).

If the coordinates of S are twice differentiable with continuous second derivatives and

E|ε1|5+δ <∞ for some δ > 0 then, as n→ ∞
(i)

|E σ̂ij(t)− σij(t)| ≤ c (h2 + n−1),

as h → 0, nh → ∞, for some unspecified positive constant c, uniformly on any
compact in (0,1).

(ii) as h→ 0, nh→ ∞, σ̂ij(t)− σij(t) is approximately N

(
σ

′′
ij(t) h

2B,
vij(t)

nh
U

)
,

(iii) if the bandwidth h̃ is chosen as h̃ ∼ (log n)/n1/5+δ
′
, where 0 < δ

′
< δ, then as

n→ ∞

v̂ij(t)→ vij(t),

almost surely, uniformly on any compact in (0,1). Moreover[
σ̂ij(t)− zα/2

√
v̂ij(t)U

nh
, σ̂ij(t) + zα/2

√
v̂ij(t)U

nh

]
(3.11)

are approximate (100 − α)% point-wise confidence intervals for σij(t), where zα/2

are the (100− α/2)% normal quantile.
In the analysis of the multivariate return time series in Section 5, a Gaussian kernel

is used. We note that, according to our experience, an exponential kernel or the LOESS

procedure produce very close results. This is in accordance with the established fact that

for the equidistant design set-up, the shape of the kernel function makes little difference;

see the monographes by Müller [24] and Wand and Jones [37].

As we have already emphasized, the non-stationary paradigm under discussion can be

used both for understanding the nature of past changes in the dynamics of multivariate

data as well as for short horizon forecasting. The methodological difference between the

use of the paradigm for data description and that for forecasting consists in the type of
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kernel used in estimation of the regression function. A symmetric kernel will be used

when interested in describing the dynamic of the changes in the historical sample while an

asymmetric one, giving weights only to the past and current observations will be applied

in the forecasting exercises. See Sections 5 and 6 for detailed applications of the paradigm

in the two set-ups.

3.3. Bandwidth selection. The equations (3.7) and (3.8) yield the asymptotic integrated

square error (MISE) of µ̂He(t), the estimator of µ in (3.1) given by (3.2) :

MISE = h4
µB

2

∫
µ

′′
(u)2du+

∫
σ2(u)du

nhµ
U.

Minimizing the MISE with respect to the bandwidth hµ yields the globally optimal

bandwidth

h(g)
µ =

( ∫
σ2(u)duU

4nB2
∫
µ′′(u)2du

)1/5

.(3.12)

The choice of smoothing parameter or bandwidth is crucial when applying non-parametric

regression estimators, such as kernel estimators. For this reason we applied a set of dif-

ferent methods of bandwidth selection. Cross-validation is a method based on minimizing

residual mean squared error criteria frequently used to infer the optimal smoothing param-

eter. Another method builds on estimating the asymptotically optimal global bandwidth

(3.12) from the data. Since estimators for the residual variance and for an asymptotic

expression for the bias (3.7) are plugged into the asymptotic formula (3.12), such selection

rules are called ‘plug-in’ estimators. The functional that quantifies bias is approximated

by the integrated squared second derivative of the regression function. This functional is

determined by an iterative procedure introduced in Gasser et al. [11] based on a kernel

estimator µ̂′′(t; hµ′′ ) for the derivative. Such an estimator has the form (3.2) with the kernel

K tailored to estimate second derivatives (see Gasser et al. [12]; for our application we

used the optimal (2,4) kernel).
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4. A heavy-tailed model for the distribution of the innovations

The final step is modeling the distribution of the estimated standardized innovations

defined as

(4.13) ε̂k := Ŝ
−1(tk) r̂k, k = 1, 2, . . . , n

with Ŝ(t), the square root of the estimate Σ̂(t) of S(t)S
′
(t) in (3.9). One possibility is to use

the empirical cumulative distribution function (cdf) of ε̂ as a model for the standardized

innovations as done in Barone-Adesi et al. [1]. However, since the estimated standardized

innovations are usually heavy tailed (see Section 5.3 for evidence supporting this claim),

the use of the empirical cdf12 will underestimate the probability of extreme standardized

innovations and, hence, the risk of extreme returns, with potentially serious consequences

for risk managing.

Since we assume the estimated standardized innovations to have d independent coor-

dinates, it is sufficient to specify the distributions of ε̂i, i = 1, . . . , d. A flexible and

parcimonious family of distributions that allow for asymmetry between the distributions

of positive and negative standardized innovations and, in addition, for arbitrary tail indices

can be defined starting from the Pearson type VII distribution with shape parameter m

and scale parameter c; see Drees and Stărică [8]. The density of this distribution is

(4.14) f(x;m, c) =
2Γ(m)

cΓ(m− 1/2)π1/2

(
1 +

(x
c

)2)−m

, x > 0.

Note that f is the density of a t-distributed random variable with ν = 2m − 1 degrees
of freedom multiplied by the scale parameter cν−1/2. This family was also used to model

the distribution of financial returns in an univariate stochastic volatility framework by

Nagahara and Kitagawa [29].

12Using the empirical cdf is tantamount to assuming that the worse case scenarios cannot be any worse

than what we have in the sample. Using extreme value techniques for modeling the tails of the innovations

allows to extrapolate outside the range of the observed data producing events that are more extreme than

the limited history available and that are in line with the distributional features of the observed sample.



15

According to our experience, this distribution (concentrated on the positive axis) fits

well the positive standardized innovations and the absolute value of the negative ones.

Because usually there are about as many positive standardized innovations as there are

negative ones, it may be assumed that the cdf of the standardized innovations has median

0. Hence, denoting the densities of the negative and positive standardized innovations

by f−( · ;m−, c−) and f+( · ;m+, c+), respectively, the density of the distribution of the

coordinates of the standardized innovations is

(4.15) fV II(x;m−, c−, m+, c+) =
1

2

(
f−(x;m−, c−)1(−∞,0)(x) + f+(x;m+, c+)1[0,∞)(x)

)
.

We refer to the distribution with density (4.15) (that covers the whole real axis) as the

asymmetric Pearson type VII and denote its cdf by F V II .

To summarize, for a given coordinate, fV II is determined by four parameters m−, c−,

m+, and c+, with (m−, c−) and (m+, c+) being estimated separately by fitting a one-

sided Pearson type VII distribution to the absolute values of the negative and positive

standardized innovations, respectively, e.g. by maximum likelihood. These parameters,

together with the covariance estimates Ŝ(t) fully specify the distribution of the time series

of returns in the model (2.1).

5. Understanding the dynamics of multivariate returns. An example.

In this section, we apply the methods described in the previous section to the 2927

observations (from January 2, 1990 until September 12, 2001) of the time series of daily

returns of three qualitatively different financial instruments: one foreign exchange rate, the

Euro/Dollar (EU), an index, the FTSE 100 and an interest rate, the 10 year US T-bond.

The EU and the US T-bond series are available on the site of the US Federal Reserve

Board: http://www.federalreserve.gov/releases/. To facilitate a graphical display of the

empirical analysis, we conduct our study in a tri-variate setup. Note that similar modeling

results have been achieved with higher dimensional vectors of returns.

The goal of the discussion in this section is to provide a picture of the changes in the

dynamic of the multivariate vector of returns and to check the quality of the non-parametric
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paradigm applied in the set-up of modeling. The next section will consider the performance

of the paradigm in the forecasting set-up.

Figures 5.1 and 5.2 display the SACF-SCCF of the data and that of the absolute values

of the data.
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Figure 5.1. SACF-SCCF of the data (EU returns, the first coordinate, FTSE returns,

the second coordinate, the 10 year T-bond returns, the third coordinate respectively). On

the diagonal the SACF of the 3 series. Off the diagonal the SCCF of pairs. Since the

dependency structure in the data is unknown, no confidence intervals for the correlations

are displayed.

The SACF/SCCF of the returns (Figure 5.1) show extremely small auto- or cross-

correlations at lags greater then 4 between the EU, the FTSE or the 10 year T-bond

returns. In contrast to this, the SACF/SCCF of absolute returns in Figure 5.2 show larger

correlations in the absolute values.

Note that an SACF/SCCF that displays positive correlations at large lags (like that in

Figure 5.2) is not evidence of dependent data. Independent and non-stationary observa-

tions with a time-varying unconditional variance can produce SACF/SCCF like the ones

in Figure 5.2. Positive correlations at large lags could be a sign of non-stationarities in
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Figure 5.2. SACF-SCCF of the absolute values of the data (EU returns, the first coordi-

nate, FTSE returns, the second coordinate, the 10 year T-bond returns, the third coordinate

respectively). On the diagonal the SACF of the 3 series. Off the diagonal the SCCF of

pairs. Since the dependency structure in the data is unknown, no confidence intervals for

the correlations are displayed.

the second moment structure of the time series as well as a proof of stationary, non-linear,

long-range dependence; see Mikosch and Stărică [23]. As emphasized earlier, our working

paradigm is consistent with the non-stationary interpretation of the SACF/SCCF.

5.1. The evolution of the unconditional covariance structure. We estimated the

optimal bandwidth in the set-up of the model (3.1) with yk = |rkr′k|, k = 1, 2, . . . , n, using
cross-validation and the method of Gasser et al. [11]13. Figure 5.3 displays the cross-

validation graph. Based on this graph, the choice for the bandwidth is h
(c)
µ ∈ [0.005, 0.008]

with a minimum at 0.006. The procedure of Gasser et al. [11] produced h
(g)
µ = 0.0076.

This is the bandwidth that we use in defining Σ̂(t).

The graphs in Figure 5.4 display two estimates of the time-varying standard deviations

(sd’s) of the three time series. Those in Figure 5.5 show two estimates of the time-dependent

13Using yk = |rk| yields qualitatively egual results.
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Figure 5.3. The cross validation graph for the choice of the bandwidth hµ for µ̂ in (3.2)

and yk = |rkr′k|. The bandwidths h
(c)
µ that minimize the cross validation function belongs

to the interval [0.005, 0.008].

correlation between the three pairs of univariate time series (in the top graph, EU and

FTSE, in the middle FTSE and T-bill, in the lower one, EU and T-bill). In all the

pictures, the solid line is the estimate obtained using Σ̂, defined in (3.9) with bandwidth

h = 0.0076. The dotted line is the estimate obtained using the estimator

(5.1) Σ̂1(t) :=
n∑

k=1

W̃k, n(t) rkr
′
k,

where the weights W̃k, n are defined as in (3.3) with the symmetric kernel K replaced by

K̃(u) = K(u)1u≤0. The bandwidth used in (5.1) was h = 0.007 14. Note that Σ̂1(t),

estimate of S(t)S′(t), uses only the information available at day t. This estimator will be

used to produce the forecasting results presented in Section 615.

The 95% confidence intervals given by (3.11) are also plotted. Note that the estimated

volatilities and correlations that use only the past information belong almost always to

the 95% confidence intervals. Hence using only past information seems to yield a rather

precise estimates.

14For the choice of this value, see Section 6.
15The boundary modification proposed in Rice [30] has been used to take care of the boundary effect.
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Figure 5.4. Local estimates (Σ̂(t), h = 0.0076, solid line, Σ̂1(t), h = 0.007, dotted line)

of the (annualized) standard deviation (sd) of the data: EU, (Top), FTSE (Middle) and

the 10-year T-bond (Bottom). The annualized sd is obtained by multiplying the daily sd by

a factor of
√
250. The 95% confidence intervals given by (3.11) are also displayed.

The graphs in Figure 5.4 and 5.5 show rather large variations in the estimated standard

deviations as well as in the estimated correlation structure of the series. They individu-

ate the existence of periods with unconditional volatilities and unconditional correlations



20

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 5.5. Local estimates (Σ̂(t), h = 0.0076, solid line, Σ̂1(t), h = 0.0076, dotted line)

of the correlations between the data: EU and FTSE, (Top), FTSE and 10-year T-bond

(Middle) and 10-year T-bond and EU (Bottom). The 95% confidence intervals given by

(3.11) are also displayed.

that are statistically significant different. In particular, the estimated correlation between

the EU and the T-bond switched from negative values in the interval (-0.3, -0.2) in the

beginning of the 90’s, to positive ones around 0.2 in the beginning of the second half
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of the decade. The largest fluctuations in the estimated sd are displayed by the FTSE

with increases from values around 10% in the middle of the decade to a peak of roughly

25% towards the end of the 90’s. The two figures support the assumption of time-varying

unconditional covariance structure that is the basis of our non-stationary paradigm.

5.2. The dependence structure of the standardized innovations. In this section we

analyze the dependency structure of the estimated standardized innovations ε̂t defined in

(4.13). A battery of three tests is used to achieve this goal. In the sequel we are ignoring

the fact that the innovations come from a kernel regression and we treat them as if they

were directly observed. In doing this we neglect the possible effect of the estimation error

on the asymptotic properties of the statistics we present. As a consequence, the p-values

of the tests should be interpreted more as upper limits than as precise values.

With this caveat in mind, we begin by verifying that the marginal distributions of the

coordinates of the estimated standardized innovations ε̂i, i = 1, 2, 3, do not change through

time. Towards this goal, for a given coordinate i, we split the sample (ε̂i,t) in three

subsamples of equal length, (ε̂
(1)
i,t ), (ε̂

(2)
i,t ), (ε̂

(3)
i,t ) respectively. Then, we perform a pairwise

comparison of the three resulting empirical cumulative distribution functions using a 2-

sample Kolmogorov-Smirnov test, producing three p-values.

For the pair (ε̂
(1)
i , ε̂

(2)
i ), the working assumptions are that ε̂

(1)
i ’s and ε̂

(2)
i ’s are mutually

independent (see the independence tests (5.3) in the sequel for evidence supporting this

assumption) and that all the observations in the sample (ε̂
(1)
i ) come from the same contin-

uous population F
(1)
i , while all the observations in the sample (ε̂

(2)
i ) come from the same

continuous population F
(2)
i . The null hypothesis is

(5.2) H0 : F
(1)
i and F

(2)
i are identical.

Table 5.6 reports the nine p-values (3 for each coordinate) for the estimated standardized

innovations (ε̂t) (left) together with the nine values corresponding to their absolute values

(|ε̂t|) (right).
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Table 5.6 supports the hypothesis of stationarity of the coordinates of the sequence of

estimated standardized innovations (ε̂t).
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Figure 5.7. SACF/SCCF of the estimated standardized innovations (ε̂t). The covariance

structure was estimated using Σ̂.

In the sequel we use the covariance/autocovariance structure of the estimated standard-

ized innovations (ε̂t) and their absolute values (|ε̂t|) (see Figures 5.7 and 5.8) to test the
hypothesis

(5.3) H0 : ε̂t are iid vectors with independent coordinates.

1 and 2 1 and 3 2 and 3 1 and 2 1 and 3 2 and 3

ε̂1 0.93 0.23 0.05 |ε̂1| 0.89 0.39 0.21

ε̂2 0.10 0.46 0.59 |ε̂2| 0.20 0.43 0.75

ε̂3 0.23 0.63 0.65 |ε̂3| 0.09 0.48 0.64

Table 5.6. The p-values corresponding to the 2-sample Kolmogorov-Smirnov tests on sub-

samples of estimated standardized innovations (ε̂t) (left) and their absolute values (|ε̂t|)
(right). The column labels code the pairs of subsamples.
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Figure 5.8. SACF/SCCF of the absolute values of the estimated standardized innovations

(|ε̂t|). The covariance structure was estimated using Σ̂.

The confidence intervals in Figures 5.7 and 5.8 correspond to the null hypothesis (5.3).

These figures show that accounting for the changing covariance produces standardized

innovations that are practically uncorrelated, removing the long memory look of the SACF

of absolute returns in Figure 5.2. They support the choice of modeling the standardized

innovations as a sequence of iid vectors with independent coordinates.

The visual test of the hypothesis (5.3) is complemented by a Ljung-Box test for the first

25 lags. Table 5.9 gives the p-values for the estimated standardized innovations (ε̂t) (the

left half) and their absolute values (the right half). The value reported at the intersection

of the i-th line with the j-th column is the p-value of the Ljung-Box statistic obtained by

summing the first 25 values of the SCCF between the coordinate i and past lags of the

coordinate j. Besides the pair (1,3), all other p-values do not reject the hypothesis (5.3)

at 5% significance levels.

Finally, the hypothesis that the coordinates of the estimated standardized innovations,

ε̂1, ε̂2, ε̂3 are pair-wise independent is tested using Kendall’s τ distribution-free statistic.
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1 2 3 1 2 3

1 0.15 0.17 0.03 0.20 0.89 0.12

2 0.81 0.12 0.11 0.62 0.21 0.16

3 0.70 0.88 0.07 0.25 0.50 0.22

Table 5.9. The p-values for the Ljung-Box test at lag 25 of the estimated standardized

innovations (ε̂t) (left) and their absolute values (|ε̂t|) (right). The row and column numbers

represent the coordinates.

Kendall’s τ takes values between -1 and 1 (independent variables have τ=0) and pro-

vides an alternative measure of dependence between two variables to the usual correlation.

While the easy-to-compute correlation is the natural scalar measure of linear dependence,

Kendall’s τ is a valuable measure of dependency also in the case of non-normality and

non-linearity. In large samples, as the sample size n goes to ∞,

3τ

√
n(n− 1)
2(2n+ 5)

d→ N(0, 1).

Therefore Kendall’s τ can be used as a test statistic for testing the null hypothesis of

independent variables. (For more details on Kendall’s τ we refer to Kendall and Stuart

[18].)

The test is applied to all pairs of coordinates (ε̂i, ε̂j) (i, j = 1, 2, 3, i < j) and all pairs

of their absolute values. The null hypothesis is

(5.4) H0 : the random variables ε̂i and ε̂j are independent.

The resulting p-values are given in Table 5.10. For all pairs the hypothesis of independence

(5.4) is not rejected at usual statistical levels of significance..

At this point, we conclude that the battery of test described above do not reject the

hypothesis that the estimated standardized innovations (ε̂t) is a stationary sequence of iid

vectors with independent coordinates.
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5.3. The multivariate distribution of the standardized innovations. In this sec-

tion we concentrate on modeling the marginal distribution of the estimated standardized

innovations (ε̂t). We begin by presenting some evidence that supports our claim that the

marginal distributions of the three coordinate series (ε̂i), i = 1, 2, 3, are heavy tailed. Fig-

ure 5.11 displays the standard normal plots of three coordinate series of the estimated

standardized innovations (ε̂t). The graphs seem to show departures from normality for at

least two of the three coordinates (the first and the third) with the right tail apparently

heavier than the left one.
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Figure 5.11. Normal probability plots of the three series of coordinates the of estimated

standardized innovations (ε̂t).

The impression given by Figure 5.11 is confirmed by the p-values of the Kolmogorov-

Smirnov (K-S) and Andersen-Darling (A-D) tests (for details on these tests see [32]) applied

to the coordinate series (ε̂i), i = 1, 2, 3 reported in the left half of Table 5.12. The null

(1,2) (1,3) (2,3) (1,2) (1,3) (2,3)

Kendall 0.34 0.60 0.89 0.98 0.99 0.71

Table 5.10. The p-values for the Kendall’s τ distribution-free test of independence applied

to the estimated standardized innovations sequence (ε̂t) (left) and to the absolute values

(|ε̂t|) (right). The pairs on the top are pairs of coordinates.
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hypothesis is

(5.5) H0 : Fi is the standard normal distribution.

The K-S and A-D tests are chosen for their complementary nature. It is well known

that the Kolmogorov-Smirnov test is sensitive to departures from the hypothesized law

affecting the middle of the distribution while the Andersen-Darling test has been proved

to be effective in identifying departures that affect the tails. The normality assumption is

rejected at the 5% level by the A-D test for all three coordinates, while the K-S rejects it

for the first and third coordinate.

H0: Normal A-D K-S H0: Pearson VII A-D K-S

ε̂1 0.007 0.038 ε̂1 0.21 0.20

ε̂2 0.037 0.108 ε̂2 0.17 0.48

ε̂3 ¡0.001 0.003 ε̂3 0.10 0.25

Table 5.12. The p-values for the Andersen-Darling and Kolmogorov-Smirnov tests of nor-

mality (left) and of asymmetric VII Pearson (right) applied to the 3 coordinate series of

the estimated standardized innovations (ε̂t).

Figure 5.11 and the values on the left side of Table 5.12 show that the estimated stan-

dardized innovations have tails that are heavier than normal tails.

We continue with the parametric modeling of the marginals of the estimated standard-

ized innovations (ε̂t) as asymmetric Pearson type VII heavy tailed distributions. Table

5.13 contains the estimated parameters obtained by fitting an asymmetric Pearson VII

distribution (4.15) to the three coordinates of the estimated standardized innovations (ε̂t).

The estimated parameters in Table 5.13 confirm the results of the previous tail analysis:

the first and the third coordinates have heavier tails then the second, with the right tail

being heavier then the left one. To test the hypothesis

(5.6) H0 : V ar(ε̂t) = Id,



27

m− c− m+ c+ Left tail Right tail

ε̂1 5.94 (1.48) 2.92 (0.47) 3.88 (0.60) 2.24 (0.25) 10.87 6.75

ε̂2 9.24 (3.71) 3.87 (0.91) 9.84 (4.22) 4.14 (1.03) 17.48 18.67

ε̂3 6.62 (1.86) 3.16 (0.55) 4.30 (0.75) 2.40 (0.29) 12.23 7.59

Table 5.13. The parameters of the asymmetric Pearson distribution corresponding to the

3 series of estimated standardized innovations ε̂t (the standard deviations are provided in

parentheses). The tail indices are given by ν = 2m− 1.

two estimates of the variances of the coordinates of the estimated standardized innovations

(ε̂t) together with the corresponding standard deviations are produced. The first estimate

is the sample variance with the standard deviation given by
√
m4

i /n, i = 1, 2, 3, where m
4
i

is the sample fourth moment of (ε̂i). The second estimate is the variance of the estimated

asymmetric Pearson type VII given by (4.15). Since the variance of any coordinate is a

function of the parameters reported in Table 5.13, the standard deviation for this variance

estimate is obtained from the covariance matrix of the MLE estimates using the delta

method. The three pairs of point estimates together with the standard deviations are

reported on the left half of Table 5.14. The right half of the same table reports the sample

covariance together with the corresponding standard deviation. According to the values in

Table 5.14 the hypothesis that V ar(ε̂t) = Id is not rejected at the 5% significance level.

Empirical Pearson VII Covariance

ε̂1 0.971 (0.043) 1.007 (0.10) ε̂1, ε̂2 0.0080 (0.020)

ε̂2 0.957 (0.037) 0.997 (0.17) ε̂1, ε̂3 0.0026 (0.020)

ε̂3 0.944 (0.041) 1.002 (0.10) ε̂2, ε̂3 0.0004 (0.019)

Table 5.14. The estimated variances of the coordinates of the estimated standardized in-

novations (ε̂t). The first column reports the sample variance while the second one is the

variance of the estimated asymmetric Pearson type VII. The last column reports the sample

covariance. The standard deviations are reported in parentheses.
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To verify the goodness of fit of the asymmetric Pearson type VII distribution, the prob-

ability plot of the coordinates of the estimated standardized innovations (ε̂t) using the

estimated asymmetric Pearson VII distributions are displayed in Figure 5.15. A good fit

of the asymmetric Pearson VII distributions should translate in linear graphs close to the

first diagonal. The null hypothesis is

H0 : Fi is the asymmetric Pearson VII distribution with parameters given in(5.7)

Table 5.12.
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Figure 5.15. The asymmetric Pearson VII probability plots of the three coordinate series

of the estimated standardized innovations (ε̂i,t), i = 1, 2, 3.

The straight plots in Figure 5.15 are a confirmation of the good fit of the asymmetric

Pearson VII distribution.

The hypothesis (5.7) is formally tested using the Kolmogorov-Smirnov and Andersen-

Darling tests. The p-values of these tests are reported on the right in Table 5.12. The

hypothesis is not rejected at usual levels of significance.

The plots in Figure 5.15 and the results in Table 5.12 provide evidence that the paramet-

ric family described by (4.15) is indeed an appropriate model for the estimated standardized

innovations (ε̂t) .
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This concludes the evaluation of the goodness of fit of the model (2.1). The statistical

analysis seems to show that the model provides an overall good description of the multi-

variate data set considered. We now direct our attention towards evaluating the forecasting

performance of the non-stationary paradigm.

6. Forecasting multivariate returns

In this section we discuss aspects related to forecasting the multivariate returns using

the non-stationary paradigm described in Section 2. We emphasize that we are interested

in forecasting the whole distribution of the vector of future returns and not only the second

moment structure.

We begin by specifying the m-day ahead forecasting methodology. Then we check the

quality of our 1-day multivariate distributional forecasts. We end the section with a com-

parison (in the univariate framework) between the forecasting behavior of the industry

standard Riskmetrics and that of our methodology on randomly generated portfolios con-

taining the three instruments EU, the FTSE, and the US T-bond at one-day, ten-day and

twenty-day horizons.

6.1. The m-day ahead forecasting methodology. Given Σ̂1(·), an estimate of the
unconditional covariance matrix Σ(·) = S(·)S′

(·) based only on past information, denote
by F̂ V II

i,t , i = 1, 2, 3, the asymmetric Pearson type VII distributions (4.15) with parameters

estimated on the coordinates of the series (Ŝ−1
1 (1) r1, Ŝ

−1
1 (2) r2,. . . , Ŝ

−1
1 (t) rt), where Ŝ1(·)

is the square root of Σ̂1(·) .
Based on the model (2.1), the distributional forecast at time t of the m-day ahead return

rt+1,m := rt+1 + . . .+ rt+m is given by

rREG
t,m =

m∑
l=1

Ŝ1(t) ε lt,

ε lt, l = 1, . . . , m, are iid d-dimensional random vectors,(6.1)

εi,lt are mutually independent with distributions F̂
V II
i,t , (i = 1, 2, 3).
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In other words, since the covariance matrix evolves slowly through time, to produce the

m-day ahead forecast, the next m multivariate returns are assumed iid with a covariance

matrix and parameters of the distribution of the standardized innovations estimated on

recent past data.

For our forecasting exercise we use the one-sided-kernel estimate of the unconditional

covariance matrix S(·)S′
(·) defined in (5.1). While the theoretical discussion in Section 2

focused on symmetric kernels, similar results are available for estimators of the type (5.1)

(see Gijbels, Pope and Wand [13] for the homoscedastic case). In particular, the bias and

the variance of these estimators are also given by (3.7) and (3.8). Moreover, for forecasting,

cross-validation can be safely employed as a method of bandwidth selection even when the

errors are serially correlated 16.

6.2. One-day ahead multivariate density forecast evaluation. Evaluating the mul-

tivariate distributional forecast (see Diebold et al. [7]) is particularly simple in the case of

the model (2.1), due to the assumption of independence of the sequence (rt). Verifying that

the distribution of rREG
t,1 defined by (6.1) coincides with that of rt+1,1 = rt+1 is equivalent

to checking that the m-dimensional vectors (zt)

(6.2) zi, t := F
V II
i,t (vi,t), i = 1, 2, 3, where vt = Ŝ

−1
1 (t)rt,

are iid, with independent, uniformly (0,1) distributed coordinates.

For evaluating the forecasting performance the sample is split in two: the first 1000

observations are used to produce the initial parameter estimates while the remaining 1926

observations are used to check the goodness of fit of the distribution forecast.

For an informed decision on the bandwidth to be used in the estimation of the uncon-

ditional covariance matrix (5.1), the cross-validation was run (using only the first 1000

16Cross-validation mistakes the smoothness of the series caused by positive correlation for low variability,

yielding bandwidth choices usually smaller then than the optimal one. While this can be disastrous in

mean estimation, it is the correct type of behavior in the forecasting context since averaging over a small

number of past observations is more likely to be close to the next value in the series when there are positive

correlations.
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Figure 6.1. SACF of the sequence (zt − z̄).

observations) in the set-up of the model (3.1) with yk = |rkr′k|, k = 1, 2, . . . , n both for K,
the symmetric Gaussian kernel and for the asymmetric K̃, K̃(u) = K(u)1u≤0. The results

are displayed in Figure 6.2: on the left, the graph for the Gaussian kernel K, on the right,

the one for K̃. The cross-validation optimal bandwidth seem to belong to the interval

[0.0025, 0.008] for the Gaussian kernel and to the interval [0.004, 0.007] for K̃. The em-

pirical relationship between the two intervals of optimal bandwidth is in accordance with

the equivalent kernel theory according to which the optimal bandwidths corresponding to

the two kernels are related by: h(K̃) = 2
1/5h(K). Although in the forecasting exercise a

fixed band-width, hµ = 0.007 was used, an adaptative choice is also available. A time-

depending bandwidth can be obtained by running the cross-validation on the sample up

to the moment when the forecast is made.

A battery of tests similar to the one in Section 5 is employed to verify the hypotheses

of iid-ness of the sequence (zt) and those of uniformity and mutual independence of the

coordinate sequences (zi,t), i = 1, 2, 3. The precise working assumptions are those of the

corresponding tests in Section 5. The same caveat on the impact of the uncertainty with

respect to the estimated covariance matrix as in Section 5 applies. Figures 6.1 and 6.3
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Figure 6.2. The cross validation graph for the choice of the bandwidth hµ for µ̂ in (3.2)

and yk = |rkr′k| using only the first 1000 observations for the Gaussian kernel (Left: h
(c)
µ ∈

[0.0025, 0.008]) and the kernel K̃ (Right: h
(c)
µ ∈ [0.004, 0.007]).
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Figure 6.3. SACF of the absolute values of the sequence (zt − z̄).

display the SACF/SCCF of the sequence (zt − z̄) and that of its absolute values (z̄ is the
sample mean). Overall, they seem to support the hypothesis of iid vectors with independent

coordinates for the sequence (zt), although small violations of the confidence intervals are

observed in the absolute values at the first lag of pairs (1,3) and (2,3).
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The visual test of the SACF/SCCF is complemented by the Ljung-Box test for the first

25 lags (the p-values are reported in Table 6.4). The value at the intersection of the row

i with column j corresponds to the p-value of the Ljung-Box statistic associated with the

SACF/SCCF of the coordinate i and past lags of the coordinate j. The p-values confirm

the validity of the assumption of iid vectors with independent coordinates for the sequence

(zt).

1 2 3 1 2 3

1 0.53 0.20 0.38 0.50 0.34 0.62

2 0.96 0.20 0.09 0.71 0.51 0.32

3 0.80 0.75 0.67 0.52 0.47 0.49

Table 6.4. The p-values for the Ljung-Box test at lag 25 of the sequence (zt− z̄) (left) and
the absolute values (|zt−z̄|)(right). The row and column numbers represent the coordinates.

The hypothesis of pair-wise, mutual independence of the coordinates of the vector z

is tested using the already familiar distribution-free test of Kendall’s τ . The p values

corresponding to the pairs of coordinates are given in Table 6.5. For all pairs the hypothesis

of independent coordinates is not rejected at usual levels of statistical significance.

(1,2) (1,3) (2,3) (1,2) (1,3) (2,3)

Kendall 0.31 0.55 0.95 0.97 0.99 0.98

Table 6.5. The p values for Kendall’s τ distribution-free test of independence applied to

the sequence (zt − z̄) (left) and to that of absolute values (|zt − z̄|) (right).

Figure 6.6 displays the uniform probability plots for the three coordinates zi, i = 1, 2, 3.

The straight plots in this figure together with the p-values of the Andersen-Darling and

Kolmogorov-Smirnov tests of uniformity given in Table 6.7 support the conclusion that the

marginal distributions of the three sequences (zi,t), i = 1, 2, 3 are uniform (0,1).



34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Data

P
ro

b
a
b
ili

ty
Uniform Probability Plot 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Data

P
ro

b
a
b
ili

ty

Uniform Probability Plot 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Data

P
ro

b
a
b
ili

ty

Uniform Probability Plot 

Figure 6.6. The uniform probability plot of the three series of coordinates zi, i = 1, 2, 3,

t = 1, . . . , 1926 .

1 2 3 1 2 3

A-D 0.14 0.19 0.77 K-S 0.10 0.24 0.58

Table 6.7. p-values for the Andersen-Darling and Kolmogorov-Smirnov tests of uniformity

applied to the coordinates of the sequence (zt).

6.3. Univariate density forecast evaluation. We conclude this section with a distri-

butional forecast comparison in a univariate framework. The comparison is done between

the industry standard RiskMetrics and the approach described in Section 6.1 for forecast-

ing horizons of one, ten and twenty days. Both methodologies are used to produce daily

distributional forecasts for the returns of randomly generated portfolios containing the (by

now familiar) three financial instruments. More specifically, for a given day t, the two

approaches are first used to produce two multivariate distributional forecasts for the next

day vector of returns. For RiskMetrics, the distributional forecast is

(6.3) rRM
t,m

d
= N(0, mΣ̂2

t ),

where

(6.4) Σ̂2
t :=

l−1∑
i=0

λt−irt−ir
′
t−i/

l−1∑
i=0

λt−i,
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is the exponential moving average estimate of the conditional covariance matrix Σ2
t . The

parameters used were λ = 0.94 and l = 120 for one-day ahead forecasts and λ = 0.97

and l = 200 for ten- and twenty-day ahead forecasts (as stipulated in the RiskMetrics

documents [31]). For the regression-type model (2.1), the m-day forecast rREG
t,m is given by

(6.1).

Note that our comparison focuses on the most common specification of the distributional

forecast of RiskMetrics, i.e. that where the future returns are jointly normal. We chose

this specification due to the fact that it is widely used in practice. Comparisons with other

specifications (normal mixture models, GED models) are currently under investigation and

the results will be reported elsewhere.

The return of a given portfolio w with weights w = (w1, w2, w3) over the period [t+ 1,

t + m] is denoted by r
(w)
t+1,m. The distribution of r

(w)
t+1,m forecasted by the RiskMetrics

methodology, which we denote by FRM
t,m , is the distribution of wr

RM
t,m (a normal with mean

0 and variance mwΣ̂2
tw

′
). The distribution forecasted by the regression-type model (2.1),

denoted by FREG
t,m , is that of wrREG

t,m .

As explained in Diebold et al. [6], evaluating the correct distributional forecast Fmt,m

at the realized portfolio returns r
(w)
mt+1,m, t = 1, . . . , [n/m] − 1 yields an iid sequence

(Fmt,m(r
(w)
mt+1,m)) of uniform (0,1) random variables. Hence the quality of a distributional

forecast Gmt,m can then be assessed by testing the hypothesis

(6.5) H0: (Gmt,m(r
(w)
mt+1,m)) is an iid sequence with uniform (0,1) marginal distribution.

In the sequel we test hypothesis (6.5) forGt,m = F
RM
t,m andGt,m = F

REG
t,m . More concretely

the sequences (FRM
mt,m(r

(w)
mt+1,m)) and (F

REG
mt,m (r

(w)
mt+1,m)), t = 1, . . . , [n/m] − 1 are tested for

variance 1/12 (the variance of a uniform (0,1)), using a test based on the Central Limit

Theorem, for uniform (0,1) marginal distribution, employing the Kolmogorov-Smirnov and

Andersen-Darling test and for independence, using the Ljung-Box statistic at lag 10. We

used the following simulation set-up.

For every horizon (m = 1, m = 10, m = 20) three thousand portfolios were randomly

generated. The weights of each portfolio w were sampled from a uniform (0,1) distribution
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then normalized such that they added up to 1. As in Section 6.2, the sample is split into

two parts: the first 1000 observations serve to produce the initial parameter estimates for

the regression-type model while the remaining 1926 observations are used to compute the

sequences 17 (FRM
mt,m(r

(w)
mt+1,m)) and (F

REG
mt,m (r

(w)
mt+1,m)), t = 1, . . . , [n/m]−1, for each portfolio

w. (We kept the weights of the portfolios constant during the testing period.) For every

sequence we produced the p-values corresponding to the four mentioned statistics.
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Figure 6.8. The percentage of the p-values for the K-S (1), A-D (2), the L-B at lag 10

(3) and the variance test (4) that are smaller than 5% (Left and Center) and 10% (Right).

For a given test, the first bar concerns the RiskMetrics methodology while the second one

refers to the forecasting methodology described in Section 6.1. Left: One-day ahead, Center:

Ten-day ahead, Right: Twenty-day ahead.

The results of these simulations are summarized in Figure 6.8 where the percentage

of p-values smaller than 5% for m = 1, m = 10 and than 10% for m = 20 is reported

18. For a given test, the first bar concerns RiskMetrics while the second one refers to

the forecasting methodology described in Section 6.1. It is interesting to notice that, for

one-day ahead forecasting, for almost 90% of the portfolios, plain-vanilla RiskMetrics fails

(at the 5% level) the variance test. This should be compared to the 94% acceptance rate

17The sequence of the m-days ahead forecast would exhibit an intertemporal m − 1 dependence. To

keep the independence between observations, necessary for the statistical tests, we restricted the sample

to the sub-sequence of m-days apart forecasts.
18For m = 20, a higher percentage of 10 has been used due to the small number of observations in the

sequences (Gmt,m(r(w)
mt+1,m)), t = 1, . . . , [n/m]− 1.
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for our methodology. Moreover, 25% of the sequences (FRM
t,1 (r

(w)
t+1)) fail at least one of the

uniformity tests (either K-S or A-D) compared to only 5% of the (FREG
t,1 (r

(w)
t+1)) sequences.

Finally, RiskMetrics fails at least one of the four tests in 94% of the cases compared to

only 9% for our methodology.

For m = 10 and m = 20, the empirical percentage of p-values for the last two tests

were, for both methods, below the fixed theoretical level of 5% for ten-day forecasts and

10% for the twenty-day forecasts19. For the variance test, this is not surprising, since, due

to averaging, for ten- and twenty-day returns, the multivariate normality assumption of

RiskMetrics is more adequate than for daily returns. However, the normality tests show

once again the superiority of our methodology over the plain-vanilla RiskMetrics20. As

mentioned before, comparisons involving other RiskMetrics specifications of the conditional

distribution are under study and the results will be reported elsewhere.

7. RiskMetrics vs. non-parametric regression

We conclude with a few remarks on the relationship between our approach and RiskMet-

rics. Univariately, the probabilistic model that forms the basis of RiskMetrics forecasting

methodology outlined in (6.3) and (6.4) is the following conditional, multiplicative process

(7.6) rt = σt εt, εt ∼ N (0, 1),

(see page 73 of [31]) where

(7.7) σ2
t = λσ

2
t−1 + (1− λ)r2

t−1,

according to Section B.2.1 of the Appendix B of [31]. This specification is, up to a constant

term, that of a IGARCH process explaining why in the literature the RiskMetrics model

is often thought of as being an IGARCH model.

19For this reason, they are not reported in the graphs in the center and right of Figure 6.8.
20This forecasting methodology has been thoroughly investigated in the univariate case in a companion

paper by Drees and Stărică [8]. There the authors show by the example of the S&P 500 time series of

returns that this apparently structureless forecasting methodology outperforms conventional GARCH-type

models both over one day and over time horizons of up to forty days.
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From a probabilistic point of view, the model (7.6) and (7.7) is faulty. Results by Kesten

[19] and Nelson [26] imply that a time series evolving according to the dynamics (7.6) and

(7.7) will tend to 0 almost surely.

The claimed close relationship between the RiskMetrics methodology and GARCH-type

models, prompted by the deceiving formal analogy between the GARCH(1,1) specification

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1,

and (7.7) and emphasized by the comparisons in Section 5.2.3 of ([31]), is hence misleading.

Instead, the RiskMetrics approach can be motivated by the non-stationary model (2.1).

Note that the forecast (6.4) is just a kernel smoother of the type (5.1) with an one-sided

exponential kernel Kexp(x) = ax1[−∞,0](x), a = λm and h = 1/m. Our experience shows

that replacing the normal kernel with the exponential leads to results very similar to the

ones reported in Section 6. This finding is in line with the well-known fact that the choice

of the bandwidth h affects the performance of a kernel regression estimator much more

strongly than the choice of the kernel. In fact, in the Sections 5 and 6 we have deliberately

chosen the normal kernel instead of the exponential filter (more common in time series

analysis) to demonstrate that the choice of the kernel does not matter much.

Besides providing a solid statistical framework, the set-up of the non-stationary paradigm

introduced in Section 2 allows for a optimal choice of the bandwidth, motivated by results

from the statistical theory of curve estimation. By contrast, the choice of the parameters

λ and l is empirical.

While the volatility forecasts by the RiskMetrics methodology are similar to ours, the

assumption of normal innovations is too restrictive to yield accurate forecasts of the dis-

tribution of future returns. This has also been observed in [31]. In Appendix B of the

RiskMetrics document normal mixture models or GED models for the innovations are

proposed. However, these alternative models lack two features that are essential for a

successful fit of many real data sets: they do not allow for asymmetry of the distribution

of innovations and they assume densities with exponentially decaying tails, thus excluding

heavy tails.
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8. Conclusions

In this paper a simple multivariate non-stationary paradigm for modeling and forecasting

the distribution of returns on financial instruments is discussed.

Unlike most of the multivariate econometric models for financial returns, our approach

supposes the volatility to be exogenous. The vectors of returns are assumed to be inde-

pendent and to have a changing unconditional covariance structure. The methodological

frame is that of non-parametric regression with fixed equidistant design points where the

regression function is the evolving unconditional covariance. The vectors of standardized

innovations have independent coordinates and asymmetric heavy tails and are modeled

parametrically. The use of the non-stationary paradigm is exemplified on a tri-variate

sample of risk factors consisting of a foreign exchange rate Euro/Dollar (EU), an index,

FTSE 100 index, and an interest rate, the 10 year US T-bond. The paradigm provides

both a good description of the changes in the dynamic of the three risk factors and good

multivariate distributional forecasts.

We believe that the careful parametric modeling of the extremal behavior of the stan-

dardized innovations makes our approach amenable for precise VaR calculations. Evaluat-

ing its behavior in these settings is, however, subject of further research.
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