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Abstract

We1 study the model theory of abstract elementary classes (AECs). They are a
family of concrete categories closed under directed colimits where all the morphisms
are monomorphisms, containing in particular the category of models of an Lλ,ω(Q)-
theory (with the natural notion of elementary embedding). This framework was
identified by Shelah in 1977, when he proposed the far-reaching program of adapt-
ing his classification theory (originally developed for first-order logic) to AECs and
hence to all “reasonable” infinitary logics. This thesis develops an analog of She-
lah’s first-order superstability theory to AECs. This involves studying forking-like
notions of independence in this general framework, giving criteria for when they
exist, and linking their properties to the stability spectrum and the behavior of
chains of saturated models. We usually assume that the AEC has amalgamation,
and also often that it is tame, a locality property of orbital (Galois) types intro-
duced by Grossberg and VanDieren. It is conjectured that these properties should
follow from categoricity.

We solve several open problems using the technology developed in this thesis.
Shelah’s eventual categoricity conjecture is the statement that an AEC categorical
in some high-enough cardinal should be categorical in all high-enough cardinals.
It is the main open question of the field. We apply the superstability theory to
show that the conjecture holds in universal classes (a special kind of AECs: classes
closed under isomorphisms, substructures, and union of ⊆-increasing chains). Pre-
vious approximations were in a stronger set theory than ZFC and always assumed
categoricity in a successor cardinal. Here, we eliminate the successor hypothesis
and work in ZFC.

We also show that if an AEC K with amalgamation and no maximal models is
categorical in λ > LS(K), then the model of cardinality λ is saturated (in the sense
of orbital types). This answers a question asked by both Baldwin and Shelah.

In several cases, the arguments developed for the superstability theory are use-
ful also in case the AEC is stable but not superstable. This thesis develops the
theory in this case as well, proving for tame AECs the equivalence between stabil-
ity and no order property, as well as an eventual characterization of the stability
spectrum under the singular cardinal hypothesis.

Independence relations (like Shelah’s notion of a good frame) are the central
pillar of the (super)stability theory developed here. They are a deep generalization
of linear independence of vector spaces and algebraic independence in fields, so we
expect that they will have many other applications, both to the abstract theory
and to concrete (algebraic or perhaps analytic) examples.

Another contribution of this thesis is the definition of a quasiminimal AEC :
it is an AEC with countable Löwenheim-Skolem-Tarski number which has a prime
model, is closed under intersections, and has a unique generic type over every
countable model. We show that quasiminimal AECs are exactly the quasiminimal
pregeometry classes that Zilber used to study pseudo-exponential fields, motivated

1The results of this thesis were written up in 22 separate papers submitted for publication

in refereed journals, 16 of which have already been accepted, and 11 of the accepted ones have

already appeared in print. While a majority of the papers are single author, some were written
with collaborators (Boney, Grossberg, Kolesnikov, Lieberman, Rosický, Shelah, and VanDieren).

Details and credits appear in Section 1.6 and at the start of every chapter.
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by Schanuel’s conjecture. In particular, an unbounded quasimimimal AEC is cat-
egorical in every uncountable cardinal. Along the way, we give new conditions
under which a homogeneous closure operator has exchange and conclude that the
exchange axiom is redundant in Zilber’s definition of a quasiminimal pregeometry
class.

We also study a more general notion than AECs: µ-AECs, which are only
required to be closed under µ-directed (rather than ℵ0-directed) colimits. We gen-
eralize some basic arguments from the theory of AECs and show that µ-AECs are
exactly the accessible categories whose morphisms are monomorphisms (this is joint
work with Will Boney, Rami Grossberg, Michael Lieberman, and Jǐŕı Rosický).

Finally, the thesis contains a chapter on simple first-order theories. We present
a new proof of the existence of Morley sequences in such theories which avoids using
the Erdős-Rado theorem and instead uses only Ramsey’s theorem and compactness.
The proof shows that the basic theory of forking in simple theories can be devel-
oped using only principles from “ordinary mathematics”, answering a question of
Grossberg, Iovino and Lessmann, as well as a question of Baldwin.
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CHAPTER 1

Introduction

1.1. Overview of this introduction

In Section 1.2.1, we give some background on the fields and problems that this
thesis is concerned about. In Section 1.3, we present the main results of this thesis,
as related to the problems introduced earlier. In Section 1.4, we discuss some other
results that are peripheral to the core theme of the thesis. In Section 1.5, we make
an attempt to sketch the proof of the main result of this thesis: Shelah’s eventual
categoricity conjecture for universal classes. Note that little background is assumed
there and so we often have to be vague. However we hope that this short discussion
can help give a flavor of what the thesis is about. In Section 1.6, we give a very
short description of the chapters of this thesis, in the order in which they appear.

1.2. Background

1.2.1. Model theory and classification theory. The topic of this thesis
is model theory (a branch of mathematical logic), and more precisely classification
theory.

The main concept of model theory is that of a structure (or model): it is a
(potentially uncountably infinite) tuple M = (|M |, R1, R2, . . . , f1, f2, . . .) consisting
of a universe |M |, relations R1, R2, . . ., and functions f1, f2, . . . which are allowed
to be n-ary for any finite n. For example, a group can be seen as a structure
G = (|G|, ·, x 7→ x−1, e), where · is a binary operation, x 7→ x−1 is a 1-ary function,
and e is a 0-ary function (i.e. a constant) standing for the identity element. A linear
order is a structure I = (|I|, <) where < is a binary relation (at that point we do
not specify what axioms the functions and relations must satisfy). The vocabulary
(also called similarity type) of a structure describes uniquely what type of operation
a structure has (e.g. the vocabulary of linear order will say that it consists of only
a single binary relation).

Broadly speaking, model theory abstractly studies classes of structures (usually
in the same vocabulary) of a particular form. Classically, model theorists have
studied the class of models of a fixed first-order theory T . A first-order theory is
a collection of first-order formulas, and a first-order formula is a statement like
“∀x∀y∃z : x · y = z ∧ y · x = z”, where importantly everything inside the formula
is finitary (for example only finitely many conjunctions are allowed) and we only
allow quantification over objects of the universe, not subsets. Several interesting
classes of mathematical objects are classes of models of a first-order theory (for
example the classes of abelian groups, algebraically closed fields, or vector spaces
over a fixed field). However several are not: consider locally finite groups (we have
to say “every finitely generated subgroup is finite”, and it turns out it is impossible
to encode the notion “is finite” in first-order logic) or non-Archimedean fields (we

1



2 1. INTRODUCTION

have to say “there is an element that is above 1 and above 1+1 and above 1+1+1
and...”, an infinite conjunction).

Roughly speaking, the goal of classification theory (for a certain class of struc-
tures) is to find dividing lines: if a class of structures is on the good side of the line,
then one can analyze and understand its structure well. If it is on the bad side,
then one can prove it behaves so wildly that there is little hope of understanding
it. Classification theory originated in the seventies for classes of structures axiom-
atized by a first-order theory, the reference being Saharon Shelah’s book [She90].
An example of a dividing line in that context is stability: let us say that a first-order
theory T is stable if does not have the order property. T has the order property
if there exists a model M of T , a first-order formula φ(x̄, ȳ) with `(x̄) = `(ȳ) = n
and a sequence 〈āi : i < ω〉 (with āi an n-tuple in M for each i < ω) such that
M |= φ[āi, āj ] if and only if i < j. In other words, φ(x̄, ȳ) defines a linear order
inside M . Shelah has shown that if a theory is stable then it admits a quite well-
behaved notion of independence (forking), and a local notion of dimension. If a
theory has the order property, then it can define infinite linear orders which makes
its analysis much harder. For example, if T has the order property then for all
λ > |T |, T has 2λ non-isomorphic models of size λ. Examples of stable theories
include the theory of algebraically closed fields or the theory of differentially closed
fields of a fixed characteristic.

1.2.2. Shelah’s main gap theorem. Since even among the stable theories,
there are some that have 2λ-many non-isomorphic models in every size λ > |T |,
Shelah isolated several more dividing lines within the stable theories (superstable,
DOP, OTOP, and deep) and showed each time that (when the theory is countable)
a theory on the good side of the line was nice and a theory on the bad side had
“many” non-isomorphic models. Shelah concluded that if a theory falls on the good
side of each of the lines, then its models can be completely analyzed and described
by invariants. In particular, the theory will have “few” non-isomorphic models.
Shelah called this result the main theorem of his book [She90, Chapter XII] (see
[She85a] for an exposition):

Fact 1.2.1 (Shelah’s main gap theorem). Let T be a countable first-order
theory. Then exactly one of the following is true:

(1) For any uncountable cardinal λ, T has 2λ many non-isomorphic models
of size λ.

(2) For any ordinal α, T has at most1 iω1
(|α|) many non-isomorphic models

of size ℵα. Moreover every model of T can be decomposed into a tree of
countable submodels, each “as free as possible from the others”.

The methods developed to prove Fact 1.2.1 have had a large impact on algebra,
number theory, and geometry, see for example [Bou99]. Note that the main gap
theorem can be extended to some non-elementary classes [GH89, GL05, HS01].
In fact, it is a major open question whether the main gap generalizes to AECs or
even to uncountable first-order theories [She00, 4.7].

1For an ordinal γ and a cardinal µ, the cardinal iγ(µ) is the iteration of the operation

λ 7→ 2λ γ-many times, starting with µ. Intuitively, it is a tower of exponentials of height γ where
the cardinal on the top is µ. iγ denotes iγ(ℵ0).
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1.2.3. Abstract elementary classes. This thesis is about moving beyond
the first-order context and looking at what can be said about classes of structures
that are not axiomatized by a first-order theory. Although this has not yet fully
materialized, it is expected that generalizing the first-order tools will also lead to
applications to algebra, number theory, and geometry. See for example the work of
Zilber on pseudo-exponentiation and Schanuel’s conjecture [Zil05a], connected to
Chapter 21 of this thesis.

We have mentioned the examples of locally finite groups and non-Archimedean
fields: they fall into a framework for which it seems some model-theoretic analysis
is possible: abstract elementary classes (AECs). Roughly speaking, an AEC is
a concrete category (whose objects are structures) satisfying several axioms (for
example, morphisms must be injective homomorphisms and the class must be closed
under directed colimits). It generalizes the notion of a class axiomatized by a first-
order theory, and also encompasses many non first-order logics such as L∞,ω (i.e.
disjunctions and conjunctions of arbitrary, possibly infinite, length are allowed).
For completeness, we give the definition [She87a]:

Definition 1.2.2. An abstract elementary class (AEC) is a pair K = (K,≤K)
where:

(1) K is a class of structures in a fixed vocabulary τ = τ(K).
(2) ≤K is a partial order on K.
(3) K and ≤K are closed under isomorphisms: if M ∈ K and f : M ∼= N , then

N ∈ K, and if M,N ∈ K, M ≤K N , and g : N ∼= N ′, then f [M ] ≤K N ′.
(4) If M ≤K N , then M is a τ(K)-substructure of N (i.e. the way the func-

tions and relations of M are defined agree with the way they are defined
in N).

(5) (Coherence axiom) If M0,M1,M2 ∈ K, M0 ⊆ M1 ≤K M2, and M0 ≤K

M2, then M0 ≤K M1.
(6) (Löwenheim-Skolem-Tarski axiom) There exists a cardinal µ ≥ |τ(K)|+ℵ0

such that whenever M ∈ K and A ⊆ |M |, there exists M0 ∈ K with
M0 ≤K M , A ⊆ |M0|, and2 ‖M0‖ ≤ |A| + µ. We write LS(K) (the
Löwenheim-Skolem-Tarski number of K) for the least such µ.

(7) (Tarski-Vaught chain axioms) Let I be a (non-empty) directed partial
order (i.e. a partial order where every finite subset has an upper bound).
Let 〈Mi : i ∈ I〉 be increasing in K (i.e. for all i ≤ j both in I, Mi ≤K Mj).
Let M :=

⋃
i∈IMi (we define the relations and functions of M naturally).

Then:
(a) M ∈ K.
(b) Mi ≤K M for all i ∈ I.
(c) If N ∈ K is such that Mi ≤K N for all i ∈ I, then also M ≤K N .

An example of an AEC familiar to logicians is K := (Mod(T ),�), for T a
first-order theory and � standing for elementary substructure, or even K∗ :=
(Mod(ψ),�Φ), for ψ an Lω1,ω-sentence and Φ a countable fragment containing
ψ (here Mod(T ) and Mod(ψ) denote the class of models of T and ψ respectively).
We have that LS(K) = |τ(T )| + ℵ0 and LS(K∗) = ℵ0. More algebraic examples
include the class of all locally finite groups ordered by “being a subgroup” or, less

2Given a structure M0, we write |M0| for its universe and ‖M0‖ for the cardinality of the
universe.
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trivially, the class of all abelian groups ordered by “being a pure subgroup”. Both
have Löwenheim-Skolem-Tarski number ℵ0.

There is a downside to working with AECs instead of only looking at classes
of models of a first-order theory: the compactness theorem is no longer available
and thus there are fewer ways of constructing new objects. However, in addition to
having great expressive power and capturing several classical examples, one of the
great advantage of AECs is that they exhibit a lot of closure: starting from an AEC,
one can look at the AEC of models above a certain size, at a sub-AEC of saturated
models, or even at a sub-AEC of models omitting a certain type. These closure
properties are used crucially throughout the development of the theory, including
in the categoricity transfers mentioned later.

Further reasons for working in the framework of AECs include:

(1) It leads to interesting mathematics.
(2) It generalizes the first-order context without tying us to another particular

logic.
(3) It leads to further insight about first-order model theory (for example the

main gap was in fact proven using methods from non-first-order model
theory [She83a, She83b]).

(4) It closely relates to the framework of accessible categories (see Chapter
13). This suggests a strong potential for applications to category theory
and algebra.

AECs were introduced by Shelah in the mid seventies [She87a], and the reader
is encouraged to consult the introduction to Shelah’s two-volume book [She09a,
She09b] for more motivation on studying them. Other recommended beginning
references are Grossberg’s survey [Gro02] and Baldwin’s book [Bal09].

1.2.4. Shelah’s eventual categoricity conjecture. A long-term goal of the
classification theory for AECs is to prove an analog of the main gap, however
this seems out of reach at present. Shelah has suggested the following easier test
question3:

Conjecture 1.2.3 (Shelah’s eventual categoricity conjecture, N.4.2 in [She09a]).
If an AEC is categorical in some high-enough cardinal, then it is categorical in all
high-enough cardinals.

More precisely, there exists a map µ 7→ λ(µ) such that any AEC K categorical
in some λ ≥ λ(LS(K)) is categorical in all λ′ ≥ λ(LS(K)).

Here, we say that a class of structures (or a formula or theory) is categorical
in λ if it has exactly one (up to isomorphism) model of cardinality λ. Shelah’s
eventual categoricity conjecture is inspired by the following classical result which
started modern classification theory [Mor65]:

Fact 1.2.4 (Morley, 1965). If a countable first-order theory is categorical in
some uncountable cardinal, then it is categorical in all uncountable cardinals.

Note that both the class of algebraically closed fields of characteristic zero and
the class of vector spaces over Q are categorical in all uncountable cardinals, and the
reasons for this are “simple” and “uniform” (i.e. there is a notion of basis and any

3The order of presentation that we follow is not the historical one. In particular Conjecture
1.2.7 came much before 1.2.3; see the introduction of Chapter 8 for the history of the conjecture.
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two bases for the same structure have the same cardinality). Morley’s theorem and
Shelah’s eventual categoricity conjecture state that such a phenomenon (namely
having simple uniform reasons for categoricity) should hold of any “reasonable”
(i.e. first-order axiomatizable or at least AEC) class of objects. Further, “small”
objects can have pathological behavior (for example the rationals are the unique
countable dense linear order without endpoints but there are many such orders
in every uncountable size) so (at least at first) we should only care about the
“eventual” behavior of the class.

We now give some examples illustrating difficulties in generalizing Morley’s
theorem to non-elementary classes of objects. The first example is logically quite
simple (it is the reduct of an elementary class), but the set of cardinals in which it
is categorical has “gaps”.

Example 1.2.5 (Silver’s example). Let τ be the vocabulary containing one
unary predicate. Let K be the class of τ -structures M = (|M |, PM ) such that:

(1) ‖M‖ is infinite.
(2) ||M |\|PM || = ‖M‖.
(3) 2|P

M | ≥ ‖M‖.
Then K is categorical in λ if and only if λ is a strong limit cardinal. Note

however that K (ordered with, say, the τ -substructure relation4) is not an AEC.

The next example shows that for the class of models of an Lω1,ω sentence,
categoricity in a “small” uncountable cardinal will not imply categoricity in all
uncountable cardinals.

Example 1.2.6 (Morley’s example). For any α < ω1, the structure (〈Vβ : β <
α〉,∈) can be coded by an Lω1,ω sentence ψα. Such a sentence has models only up
to cardinality iα (This is known to be optimal: if an Lω1,ω-sentence has a model
of size iω1

, then it has arbitrarily large models).
Now let φα be the “disjoint” disjunction of ψα with the sentence “∃x : x = x”

(or any other totally categorical sentence). Then φα is categorical exactly in the
cardinals λ > iα. This shows that λ(ℵ0) in Conjecture 1.2.3 should be at least
iω1

. In fact, by a similar argument (working with AECs rather than Lω1,ω), λ(µ) ≥
i(2µ)+ .

Despite numerous approximations (e.g. [She83a, She83b, MS90, SK96,
She99, She01a, She09a, She09b, GV06c, GV06a, Bon14b], and this the-
sis), Conjecture 1.2.3 is still open. Shelah stated a version for classes of models
axiomatized by an Lω1,ω-sentence already in the summer of 1976, more than forty
years ago. The conjecture appears as open problem D.(3a) in [She90]. It says that
the “high-enough” threshold given by Example 1.2.6 is optimal:

Conjecture 1.2.7 (see p. 218 of [She83a]). Let ψ be an Lω1,ω sentence (in
a countable vocabulary). If ψ is categorical in some λ ≥ iω1

, then ψ is categorical
in all λ′ ≥ iω1 .

Versions of Conjecture 1.2.3 are known in much easier frameworks, closer to
first-order (homogeneous model theory [She70], simple finitary AECs [HK11], and

4In general, it is known that any AEC K is closed under L∞,LS(K)+ -elementary equivalence

but it is easy to see (using the back and forth characterization of elementary equivalence) that
Silver’s example is not. Thus no ordering of Silver’s example can make it into an AEC.
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quasiminimal pregeometries [Zil05a]). We emphasize that the conjecture is a test
question: no direct applications of a positive answer are known but on the other
hand it is believed that the methods developed to answer it will turn out to be
important.

1.2.5. Independence. We now outline the central concept and tool of mod-
ern classification theory, the theory of independence. A stable independence relation

on an AEC K is a 4-ary relation M1

M3

^
M0

M2 which roughly can be thought of as say-

ing “M3 is a stable amalgam of M1 and M2 over M0” or “M1 is independent from
M2 over M0 in M3” or even “M3 extends the free product of M1 and M2 over M0”.

More precisely, we require that M0 ≤K M` ≤K M3 , ` = 1, 2, ^ is invariant
under isomorphisms and monotonic in natural ways, and ^ satisfies four natural
properties:

• Existence: If M0 ≤K M`, ` = 1, 2, there exists M3 ∈ K and f` : M` −−→
M0

M3 such that f1[M1]
M3

^
M0

f2[M2].

• Uniqueness: If M1

M3

^
M0

M2 and M1

M ′3

^
M0

M2, then there exists N ∈ K with

M3 ≤K N and f : M ′3 −−−−−→
M1∪M2

N .

• Symmetry: M1

M3

^
M0

M2 if and only if M2

M3

^
M0

M1.

• Local character: If N1 ≤K N3, M2 ≤K N3, there exists M0,M1,M3 ∈ K

with N3 ≤K M3, N1 ≤K M1, M1

M3

^
M0

M2, and ‖M0‖ ≤ ‖N1‖.

For example, let K be the class of vector spaces over Q and define M1

M3

^
M0

M2

to hold if and only if M0 ≤K M` ≤K M3, ` = 1, 2 and M1 ∩M2 = M0. Then ^
is a stable independence notion (uniqueness follows from basic properties of linear
independence). One can define a similar notion in classes of algebraically closed
fields. One can localize the definition to allow sets A1, A2 instead of just elements
of the class M1,M2, and it then becomes clear that the notion of stable amalgama-
tion generalizes linear independence in vector spaces and algebraic independence in
fields..

The term “stable” is inspired from the first-order theory, where Shelah showed
that a theory is stable if and only if its class of models admits a stable independence
relation (he called the relation forking5). This is the central notion of Shelah’s book
on first-order classification theory [She90].

An additional property that ^ satisfies in vector spaces (because of the finite
character of the span) is:

5One can define forking as follows: A
M

^
M0

B if and only if for every finite sequences ā and b̄ of

elements of A and |M0| ∪ B respectively, there exists a sequence ā′ of elements of M0 such that
for any first-order formula φ(x̄, ȳ), if φ[ā, b̄] holds in M , then φ[ā′, b̄] holds in M . One can check

that this agrees with the definition given for vector spaces.
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• Finite local character: For any directed system 〈Mi : i ∈ I〉 of ≤K-
substructure of N ∈ K and any b in N , there exists i0 ∈ I such that6

b
N

^
Mi0

⋃
i∈IMi.

Shelah has shown that in the first-order context a stable independence notion
has finite local character if and only if the theory is superstable (another dividing
line, see Definition 1.2.14; it suffices to say here that any first-order theory T
categorical in a cardinal above |T | is superstable). Note that one of the usual
definitions of first-order superstability is “every type does not fork over a finite
set”. We have defined finite local character slightly differently here, since it seems
that it is much harder to consider independence relations over arbitrary sets in
AECs.

The following questions are natural and have essentially been fully answered in
the first-order case:

Questions 1.2.8.

(1) Under what conditions does an AEC have a (super)stable independence
relation?

(2) Is such a relation unique?
(3) What consequences does the existence of a (super)stable independence

relation have?
(4) How does this help to make progress toward Shelah’s eventual categoricity

conjecture?

Among other directions, discussed in Section 1.4, this thesis is motivated by
Question 1.2.8. We will state and discuss our results toward it in Section 1.3. For
now, observe that an arbitrary AEC can be very difficult to work with (for example,
it may have models that do not have any proper extension). Thus we first give the
definition of several structural properties that we will often assume.

1.2.6. Amalgamation, orbital types, and tameness. Let us say that an
AEC K has amalgamation if whenever M0 ≤K M`, ` = 1, 2, there exists N ∈ K and
f` : M` −−→

M0

N (the notion of embedding here is the natural one: f : M → N is a

K-embedding - we will just call it an embedding - if it is an injective homomorphism
and f [M ] ≤K N). Another property that K may have is joint embedding : any two
models in K embed into a common element. In the first-order case, it is well-
known that (in nontrivial cases) amalgamation and no maximal models hold. Joint
embedding will also hold if the theory is complete (i.e. it decides every formula).
However amalgamation and joint embedding do not hold in every AEC: see the
examples in [KLH16] or [BKL].

Given an AEC K with amalgamation, joint embedding, and no maximal mod-
els, one can build a monster model C ∈ K that will intuitively be “very big and
homogeneous”. Formally, it will be universal (any “small” model of K embeds into
it) and model-homogeneous (if M ≤K N and M ≤K C, then N embeds into C over

6We define b

M3

^
M0

M2 to hold if and only if there exists M1,M ′3 ∈ K with M3 ≤K M ′3, b ∈ |M1|,

and M1

M′3

^
M0

M2.
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M). Once such a model is fixed, we can assume all the objects we consider live
inside it. We will say that an AEC has a monster model to mean that it has amal-
gamation, joint embedding, and no maximal models (and hence a monster model
can be built).

It turns out it is very useful to study orbits of elements of C under automor-
phisms. This is the fundamental notion of a Galois (or orbital) type:

Definition 1.2.9. For a fixed monster model C, a subset A of |C|, and an
element b from C, we denote by gtp(b/A) (the Galois type of b over A) the orbit of
b under the automorphisms of C fixing A pointwise. We write gS(A) for the set of
Galois types over A.

It is possible (but more technical) to define Galois types in any AEC (not
necessarily with a monster model), see Definition 2.2.17. This is done in the only
possible way so that the Galois types are the roughest possible types satisfying
gtp(a/M ;N) = gtp(f(a)/f [M ];N ′) for any K-embedding f : M → N ′.

In the first-order case, orbital types have a very nice syntactic characterization:
to check that two elements have the same orbital types over A, it is necessary and
sufficient that they satisfy the same first-order formulas with parameters from A.
In particular non-equality of two orbital types has a “small” (in that case finite)
witness. Grossberg and VanDieren [GV06b] isolated this property from an earlier
argument of Shelah [She99] and made it into a definition7:

Definition 1.2.10. Let µ be an infinite cardinal. An AEC K is µ-tame ((< µ)-
tame) if for anyM ∈ K, types overM are determined by their restrictions to subsets
of M of size µ (strictly less than µ). We say that an AEC is tame if it is µ-tame
for some cardinal µ.

Any AEC induced from a first-order theory is (< ℵ0)-tame, but there are other
examples of tame classes (like the aforementioned classes of locally finite groups
and non-Archimedean fields). In fact, it is quite hard to find counterexamples:
Work of Makkai-Shelah [MS90] and Boney [Bon14b] have shown that assuming
a large cardinal axiom every AEC is tame (but the µ witnessing it will be very
big: the least strongly compact cardinal above LS(K)). Recent work of Boney and
Unger [BU] has established the converse: the statement “every AEC is tame” is
equivalent to a large cardinal axiom.

Still, it seems that many examples have a monster model and are tame (see for
example the recent survey [BVd]). Thus we believe that making these assumptions
is reasonable, at least to obtain a first approximation to Questions 1.2.8. This is why
a large part of this thesis focuses on the theory of tame AECs with a monster model.
Nevertheless, we will also consider the following two deep questions of Grossberg:

Questions 1.2.11.

(1) Does eventual amalgamation follow from categoricity in a high-enough
cardinal?

(2) Does tameness follow from categoricity in a high-enough cardinal?

7Several variations exist: asking for the tameness to hold also for types of sequences, for types
over arbitrary sets, or even for types of sequences to be determined by types of small subsequences

(this is called shortness). We cite the variation that has been most studied in the literature.
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Grossberg and VanDieren [GV06c, GV06a] have proven an upward categoric-
ity transfer in tame AECs with a monster model categorical in a successor cardi-
nal. Earlier, Shelah [She99] had exhibited a downward transfer for classes with
a monster model and again categorical in a successor. Combining the Shelah and
Grossberg-VanDieren results, we see that Shelah’s eventual categoricity conjecture
holds for tame AECs with a monster model, categorical in a successor cardinal.
As mentioned earlier, tameness follows from a large cardinal axiom and the work
of Makkai and Shelah [MS90] and Boney [Bon14b] also showed how to derive
the existence of a monster model from categoricity (thus the answer to Questions
1.2.11 is positive assuming large cardinals). Therefore [Bon14b, 7.5] assuming a
large cardinal axiom, Shelah’s eventual categoricity conjecture holds provided that
the categoricity cardinal is a successor.

Questions 1.2.12.

(1) What about Shelah’s eventual categoricity conjecture when the categoric-
ity cardinal is limit?

(2) Is the dependency on large cardinal axioms needed in the above results?

1.2.7. Stability theory. A natural question is how big the set gS(M) from
Definition 1.2.9 can be. Trivial bounds are ‖M‖ ≤ | gS(M)| ≤ 2‖M‖. When the
lower bound is attained, the following name is given:

Definition 1.2.13. An AEC K is stable in λ if for every M ∈ K of size λ,
| gS(M)| ≤ λ.

We want to study stability in AECs because it is closely connected to Question
1.2.8. Indeed, the reason for the name “stable” is that a first-order theory is stable
in some cardinal exactly when it is stable in the sense given in Section 1.2.1 (i.e.
it does not have the order property). Thus first-order stability is equivalent to the
existence of a stable independence notion (see Section 1.2.5). This is a result of
Shelah who more generally studied:

Definition 1.2.14. The stability spectrum of a first-order theory (or of an
AEC) is the class of cardinals in which it is stable. We say that a first-order theory
is superstable if its stability spectrum is an end-segment of cardinals.

Shelah [She90] proved the following deep results; the proof shows that the
stability spectrum is connected with properties of stable independence:

Fact 1.2.15 (The stability spectrum theorem). Let T be a stable first-order
theory. Then there exists a cardinal κ(T ) ≤ |T |+ such that for any cardinal λ ≥ 2|T |,
T is stable in λ if and only if λ = λ<κ(T ). Moreover, κ(T ) is connected to the local
character of independence.

In their milestone paper on tameness, Grossberg and VanDieren [GV06b]
showed that if a µ-tame AEC with a monster model is stable in some cardinal
above µ, then it is stable in unboundedly many cardinals. Still the following ques-
tions were left unanswered:

Questions 1.2.16.

(1) Is there an analog of the stability spectrum theorem for AECs?
(2) Is an AEC unstable if and only if (in some sense) it can define an order?
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1.2.8. Saturated and limit models. Other objects of study of stability the-
ory are saturated models.

Definition 1.2.17. For an AEC K, we say M is λ-saturated if for every A ⊆
|M |, if |A| < λ every element of gS(A) is realized in M . When λ = ‖M‖, we just
say that M is saturated.

This can be seen as an analog of being algebraically closed (one can think of
types as equations with solutions “somewhere”, and a model is λ-saturated if every
equation with parameters from a set of size less than λ which has a solution has
a solution already inside the model). In fact (working in a fixed characteristic)
algebraically closed fields are saturated in the AEC of fields. One can further show
that (assuming a monster model) saturated models of size above LS(K) are unique,
universal, and model-homogeneous.

A related concept is that of a limit model. We do not give the precise defini-
tion here but refer the reader to [GVV16] (or see Definition 4.2.6 in this thesis).
Intuitively, a κ-limit model is what is obtained when trying to build a saturated
models in κ steps. An important question is the uniqueness of (≥ κ)-limit models,
which roughly means that we can build saturated models in κ-many steps. The
default is κ = ℵ0. Shelah has shown that in a stable first-order theory, one can
build saturated models in κ(T )-many steps, and so in particular in a superstable
theory uniqueness of limit models holds. In addition, the union of any chain of
λ-saturated models of length at least κ(T ) is also λ-saturated. The proof of these
fundamental results heavily use independence.

One can ask whether there is a generalization to AECs. In fact, this is stated
as [Bal09, Problem D.9.(3)], which we quote here:

Problem 1.2.18 (Baldwin). Develop a theory of superstability [for AECs] that
connects the stability spectrum function with properties in a fixed cardinal such as
uniqueness of limit models and preservation of saturation under unions of chains.

Another central “property in a fixed cardinal” is having a so-called good frame.

1.2.9. Good frames. One of the main concepts in Shelah’s AEC book [She09a]
is that of a good λ-frame. Roughly (see [She09a, Definition II.2.1]) a good λ-frame

is a superstable independence notion B
N

^
M
C, but we require that M and C have size

λ and B has size one (i.e. is a single element8). The definition of a good λ-frame,
also asks that its underlying AEC has amalgamation, no maximal models, and joint
embedding for models of cardinality λ. One further asks that it be stable in λ (see
Definition 1.2.13). Intuitively, K has a good λ-frame if it has “superstable-like”
behavior at λ. In the first-order case, a theory has a good λ-frame if and only if
it is stable in all µ ≥ λ (and hence in particular superstable). The three natural
questions on good frames in AECs are:

Questions 1.2.19.

(1) Existence: When does an AEC have a good λ-frame?
(2) Extension: If an AEC has a good λ-frame, when does it have a good

µ-frame for µ > λ?

8Formally, Shelah restricts further to a class of basic types, but we omit this technical point
here.
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(3) Categoricity transfer: How do good frames help making progress toward
Shelah’s eventual categoricity conjecture?

The theory of good frames has been developed over hundreds of pages by Shelah
[She09a, She09b] (see also [JS13]) who answers some of these questions using
a mix of strong local model-theoretic and set-theoretic hypotheses. This thesis
investigates how to trade these strong local assumptions for somewhat weaker but
more natural global assumptions (like tameness and a monster model).

1.3. Results

1.3.1. Canonicity of independence. Chapter 3 (a joint work with Will
Boney, Rami Grossberg, and Alexei Kolesnikov) shows that in any AEC with a
monster model, a stable independence relation (see Section 1.2.5) is unique if it
exists. This answers Question 1.2.8(2) and generalizes a result of Harnik and Har-
rington [HH84] for first-order theories. The chapter also shows that the symmetry
property follows from the others, generalizing the first-order argument of Shelah
[She90, III.4.13]. This is used in other parts of the thesis to construct (relatives
of) such an independence relation. In Theorem 6.9.7 of this thesis, we also show
that categorical good frames are canonical. This gives evidence that these notions
of independence are not ad-hoc.

1.3.2. Constructing and extending good frames and superstable in-
dependence relations. Toward an answer to Question 1.2.19(1), we give the first
construction of a good frame from tameness and the existence of a monster model
in Chapter 4. The result is extended in various ways throughout several (sometimes
interconnected) chapters: 6, 7, 10, and 23. The argument can be extended to also
build a superstable independence relation (see Section 1.2.5) assuming a stronger
tameness hypothesis. We limit ourselves to quoting the strongest result:

Corollary 10.6.14. (joint with Monica VanDieren)
Let K be a µ-tame AEC with a monster model. If K is µ-superstable (a tech-

nical definition that follows from categoricity in some λ > µ, see Definition 6.10.1)
then K has a good µ+-frame on its saturated models of size µ+.

Interestingly, when K is stable in ℵ0, then some amount of tameness follows
and a good frame can be built directly:

Theorem 1.3.1 (joint with Saharon Shelah, see Chapter 23). Assume that K
is an AEC with LS(K) = ℵ0 such that Kℵ0

has amalgamation, joint embedding,
no maximal models, is categorical in ℵ0, and is stable in ℵ0. Then K is (< ℵ0,ℵ0)-
tame (this means that Galois types over countable models are determined by their
restrictions to finite sets) and there is a type-full good ℵ0-frame on K.

One can also give an answer to Question 1.2.8(1):

Corollary 6.16.3. Let K be a fully (< ℵ0)-tame and short AEC9 with a
monster AEC. If K is µ-superstable then K admits a superstable independence

9This means, roughly, that types (of sequences, not elements) are determined by their re-
strictions to finite sets and finite sequences.
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relation on its class of λ-saturated models (for some high-enough λ).

If K is only fully (< µ)-tame and short (for a possibly uncountable µ), the
construction also gives a slightly weaker independence notion.

Finally, Will Boney has shown [Bon14a] that one can extend good frames (see
Question 1.2.19(2)) if the class has a monster model and satisfies a slightly stronger
condition than tameness (tameness for types of length two). In Chapter 5 (a joint
work with Boney) we improve the condition to only tameness:

Corollary 5.6.9 (joint with Will Boney). Let s be a good λ-frame on the
AEC K. If K has amalgamation and is λ-tame, then s extends to a good (≥ λ)-
frame.

In Chapter 18 (also a joint work with Boney), we examine the well-known Hart-
Shelah counterexample [HS90] (where good frames cannot always be extended) and
isolate in a sense the precise reason why they cannot be extended. The work also
provides new ways of building good frames.

These results show how to build various independence relations in tame AECs
and are crucial in proving the results presented next.

1.3.3. Superstability theory for tame AECs. Starting with a joint work
with Boney (Chapter 7), later with VanDieren (Chapter 10), and also in Chapters
17 and 19, we explore how one can prove questions around closure of saturated mod-
els under chains and uniqueness of limit models in the framework of tame AECs
with a monster model. Most often we focus on the superstable case, starting by
assuming a technical condition called µ-superstability (mentioned earlier), building
some kind of independence relation (see above), and using it to prove results on
saturated and limit models. The µ-superstability condition can be obtained from
categoricity (this is a result of Shelah and Villaveces [SV99, 2.2.1], generalized in
Chapter 20) but in Chapter 19 we establish that it also follows from tameness and
stability on a tail:

Corollary 19.4.24. Let K be a µ-tame AEC with a monster model. If K is
stable on a tail of cardinals, then there exists λ such that K is λ-superstable.

From µ-superstability and tameness, we completely solve the questions of unique-
ness of limit models and behavior of saturated models:

Theorem 1.3.2 (Some results also joint with VanDieren, see Chapter 10). Let
K be a µ-tame AEC with a monster model. If K is µ-superstable, then:

(1) For any λ ≥ µ, K is stable in λ and limit models of size λ are unique.
(2) For any λ > µ, the union of an increasing chain of λ-saturated models is

λ-saturated. Moreover there is a saturated model of cardinality λ.

One can also obtain converses, deriving superstability from uniqueness of limit
models or good behavior of saturation. In fact, in Chapter 9 (a joint work with
Grossberg) we show that many definitions of superstability that are equivalent
in the first-order case are also equivalent in the context of tame AECs with a
monster model. We believe that these results show there is a satisfactory theory of
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superstability in tame AECs with a monster model, answering Problem 1.2.18 in
that context.

1.3.4. Stability theory for tame AECs. Recall that in the first-order case,
orbital types can be identified with sets of formulas, and a consequence of this is
tameness. In Chapter 2, we show that in any tame AEC, orbital types can be seen
as sets of formulas. This establishes a connection between the study of tame AECs
and an earlier framework (introduced in Rami Grossberg’s 1981’s master thesis and
well studied by Shelah, e.g. in [She09b, Chapter V.A]) called stability theory inside
a model. One can then positively answer Question 1.2.16(2) for tame AECs with a
monster model:

Theorem 2.4.15. Let K be a tame AEC with a monster model. The following
are equivalent10:

(1) K is stable in some cardinal.
(2) K does not have the order property (defined in terms of orbital types).

The historically more recent Chapter 19 focuses on answering Question 1.2.16(1).
We give a positive answer assuming the singular cardinal hypothesis (SCH), see
Corollary 19.4.22.

The SCH is much weaker than the generalized continuum hypothesis (GCH).
For example, there is a sense in which SCH holds assuming a large cardinal axiom
[Sol74] so the eventual stability spectrum can be characterized unconditionally
if one works above a large cardinal. Note also that the argument gives several
interesting ZFC results. Chapter 19 also generalizes the superstable results on
uniqueness of limit models and chains of saturated models to the stable context
(some arguments use joint work with Will Boney from Chapter 7).

In the author’s opinion, this shows that there is not only a superstability theory,
but really a stability theory for tame AECs with a monster model. Hence Problem
1.2.18 can be solved more generally in this context.

1.3.5. Structure of categorical AECs with a monster model. This the-
sis is not limited to tame AECs. In fact often arguments developed in the tame
context can be recycled and applied to a “tameless” framework. Further, Shelah
[She99] has shown that there are ways to derive certain weak amount of tame-
ness from categoricity (if, say, the AEC has a monster model). Shelah’s argument
depends critically on the categoricity cardinal being of “high-enough” cofinality in
order to get a certain degree of saturation of the model. Chapter 17 answers a
question of Baldwin and Shelah by showing it is not necessary:

Corollary 17.4.11. Let K be an AEC with a monster model. Let λ > LS(K).
If K is categorical in λ, then the model of cardinality λ is saturated.

As a consequence, we obtain the following nice pictures on the behavior of the
class below the categoricity cardinal. This answers questions on uniqueness of limit
models that had been open since [SV99]:

Corollary 17.5.7. Let K be an AEC with a monster model. Let λ > LS(K).
If K is categorical in λ, then:

10The direction (1) implies (2) is known [She99, Claim 4.7(2)].
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(1) For any µ ∈ [LS(K), λ), limit models of cardinality µ are unique and (if
µ > LS(K)) an increasing union of µ-saturated models is µ-saturated.

(2) If λ ≥ i(2LS(K))
+ , then there exists χ < i(2LS(K))

+ such that:

(a) K is (χ,< λ)-weakly tame (i.e. only types over saturated models of
size less than λ are determined by their restrictions to domains of
size χ).

(b) K has a good µ-frame on the class of saturated models of cardinality
µ for any µ ∈ (χ, λ).

The proof of these two theorems uses arguments from many of the earlier results
on proving good behavior of saturated models and building good frames.

Chapter 17 also studies a property called solvability, introduced by Shelah as a
possible definition of superstability in AECs, and proves that it behaves very well in
AECs with a monster model. In particular, the consequences of categoricity above
also follow from just solvability in λ.

1.3.6. Applications to the categoricity conjecture. From the theory of
superstability discussed earlier, one can almost effortlessly obtain several partial
categoricity transfers. For example:

Theorem 15.3.8. Let K be a µ-tame AEC with a monster model. If K is cate-
gorical in some λ > µ, then K is categorical in all λ′ > µ of the form λ′ = iδ, where
δ is divisible by i(2µ)+ . In particular, K is categorical in a proper class of cardinals.

Toward a full categoricity transfer, Shelah has isolated [She09a, Chapter III]
a property he calls having primes. He gives several ideas at the end of [She09a,
Chapter III] about how to use the property to transfer categoricity. Inspired by
this, we prove in Chapters 8 and 11:

Theorem 11.2.8. Let s be a good λ-frame on the AEC K that is categorical
in λ. Assume that K is λ-tame and has primes. If K is categorical in some µ > λ,
then K is categorical in all µ′ > λ.

Roughly (say assuming the existence of a monster model and working inside it)
a class has primes if it has a prime model N over sets of the form Ma. This means
that whenever N ′ contains Ma, then N embeds inside it. The notion can also be
defined without assuming a monster model. Vector spaces always have primes (take
the span of Ma).

Notice that Theorem 11.2.8 did not assume the existence of a monster model.
Thus one application is to deduce the amalgamation property (and thus by a stan-
dard argument the existence of a monster model) from categoricity in appropriate
cardinals. This is a step toward answering Question 1.2.11(1). The argument uses
deep results of Shelah:

Corollary 8.4.17. Let K be a tame AEC with primes. If K is categorical in
cardinals of arbitrarily high cofinality, then there exists λ such that K has amalga-
mation for models of size at least λ.
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Once one has a monster model, we can deduce the eventual categoricity con-
jecture for tame AECs with primes. This relies on many of the arguments given
above, in particular to build good frames.

Corollary 15.4.9. Let K be a µ-tame AEC with a monster model and primes.
If K is categorical in some λ > µ, then K is categorical in all λ′ ≥ min(λ,i(2µ)+).

We also improve existing results on categoricity in a successor, proving in the
good frame context:

Theorem 14.6.14. Let s be a good λ-frame on the AEC K that is categorical
in λ. If K is λ-tame, has a monster model, and is categorical in some successor
µ > λ, then K is categorical in all µ′ > λ.

Compared to Theorem 11.2.8, Theorem 14.6.14 does not assume primes. To-
gether, the two theorems give an interesting answer to Question 1.2.19(3). We can
use Theorem 14.6.14 to improve a bound in a classical transfer of Shelah [She99]
(but assuming that the AEC is tame), see the discussion in Chapter 14. Theorem
11.2.8 also proves new cases of the categoricity conjecture in homogeneous model
theory (see Section 11.4).

We believe that the assumptions of having primes gives a partial answer to
Question 1.2.12(1). It is open whether it follows from categoricity in a high-enough
cardinal, but we can show that it is necessary: it follows from categoricity on a tail
of cardinals. For example:

Theorem 8.5.23 (see also Remark 8.5.24). Let K be an AEC and let κ >
LS(K) be a strongly compact cardinal. Assume that K is categorical in some
λ ≥ i(2κ)+ . The following are equivalent:

(1) K is categorical in all λ′ ≥ i(2κ)+ .

(2) K has primes for models of size at least i(2κ)+ .

In other words (assuming a large cardinal axiom), Shelah’s eventual categoricity
conjecture is equivalent to the statement that one can get existence of primes from
categoricity.

It is natural to ask for a “concrete” framework where the categoricity transfers
above apply. It turns out that universal classes are such a framework. A universal
class is a class of structures in a fixed vocabulary closed under isomorphisms, sub-
structure, and unions of chains (thus it is in particular an AEC, where the ordering
is just “being a τ -substructure”). There Shelah has developed a nice structure
theory [She87b] and one can show (with a lot of additional work) that, roughly
speaking, amalgamation follows from categoricity (and in fact Grossberg’s Ques-
tions 1.2.11 have positive answers there). Further the class is known to be tame and
have primes, so applying Theorem 15.4.9 we obtain Shelah’s eventual categoricity
conjecture in universal classes:

Theorem 16.7.3. Let K be a universal class. If K is categorical in some
λ ≥ ii

(2|τ(K)|+ℵ0)
+ , then K is categorical in all λ′ ≥ ii

(2|τ(K)|+ℵ0)
+ .
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This gives the first example of a non-trivial context where neither large car-
dinal nor model-theoretic properties such as the existence of a monster model are
assumed to prove Shelah’s eventual categoricity conjecture. One also does not need
to assume that the categoricity cardinal is a successor. Note that the syntactic
version of Theorem 16.7.3 (in countable vocabularies) also gives an approximation
to Conjecture 1.2.7:

Theorem 16.0.9. Let ψ be a universal Lω1,ω sentence (in a countable vocab-
ulary). If ψ is categorical in some λ ≥ iiω1

, then ψ is categorical in all λ′ ≥ iiω1
.

1.4. Other results

1.4.1. Building primes over saturated models. We have already men-
tioned Theorem 8.5.23 which shows (under a large cardinal axiom) that Shelah’s
eventual categoricity conjecture is equivalent to the statement that every AEC cat-
egorical in a high-enough cardinal eventually has primes. The main result used in
proving the left to right direction is a construction of prime models assuming the
existence of a well-behaved independence notion. The technical statement is:

Theorem 12.3.6. Let K be an almost fully good AEC that is categorical in
LS(K) and has the LS(K)-existence property for domination triples.

For any λ > LS(K), Kλ-sat
λ has primes. That is, there is a prime model N over

every set of the form M ∪ {a} for M ∈ Kλ saturated, but N is prime in the class
of saturated models, i.e. it embeds over M ∪ {a} into any saturated N ′ containing
M ∪ {a}.

When K is eventually categorical, then (using the large cardinal axiom), we can
show that the hypotheses of Theorem 12.3.6 are satisfied on a tail of the AEC, and
hence (since by eventual categoricity, all models are saturated) K will have primes.
The proof of Theorem 12.3.6 generalizes an argument of Shelah who proved the
result when λ was a successor cardinal.

1.4.2. µ-AECs. Chapter 13 (a joint work with Will Boney, Rami Grossberg,
Mike Lieberman, and Jǐŕı Rosický) introduces µ-AECs, a generalization of AECs
where we require that the chain axiom holds only for chains of cofinality at least µ
(so ℵ0-AECs are exactly AECs). We show that some classification-theoretic results
(such as Shelah’s argument for getting amalgamation in λ from few models in λ+)
carry over to this framework. We also show that there is a correspondence between
µ-AECs and accessible categories whose morphisms are monomorphisms.

1.4.3. Quasiminimal AECs. Quasiminimal pregeometry classes were intro-
duced by Zilber [Zil05a] in order to prove a categoricity theorem for the so-called
pseudo-exponential fields. Quasiminimal pregeometry classes are a class of struc-
tures carrying a pregeometry satisfying several axioms. Roughly (see Definition
21.4.5) the axioms specify that the countable structures are quite homogeneous
and that the generic type over them is unique (where types here are syntactic
quantifier-free types). The original axioms included an “excellence” condition (but
it has since been shown [BHH+14] that this follows from the rest). Zilber showed
that a quasiminimal pregeometry class has at most one model in every uncount-
able cardinal, and in fact the structures are determined by their dimension. Note
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that quasiminimal pregeometry classes are typically non-elementary (see [Kir10,
§5]): they are axiomatizable in Lω1,ω(Q) (where Q is the quantifier “there exists
uncountably many”) but not even in Lω1,ω.

In fact, quasiminimal pregeometry classes can be naturally seen as AECs (see
Fact 21.4.8). In Chapter 21, we show that a converse is true: there is a natural
class of AECs, which we call the quasiminimal AECs, that corresponds to quasimin-
imal pregeometry classes. Quasiminimal AECs are required to satisfy four purely
semantic properties (see Definition 21.4.1), the most important of which are that
the AEC must, in a technical sense, be closed under intersections (this is called
“admitting intersections”, see Definition 21.3.1) and over each countable model M
there must be a unique Galois type that is not realized inside M .

This gives a simple purely semantic characterization of quasiminimal pregeom-
etry classes (whose axioms are very syntactic: roughly they ask for some homo-
geneity of countable syntactic types). Along the way, we prove a new result in the
theory of pregeometries: any homogeneous closure space with finite character is a
pregeometry, i.e. it satisfies exchange (Corollary 21.2.12). This seems to be new
(but see the remarks preceding the proof).

1.4.4. On the uniqueness property of forking. An important property
of nonforking independence in a first-order stable theory is the uniqueness (or sta-
tionarity) of nonforking types over models: if M � N and p, q ∈ S(N) do not fork
over M and are such that p � M = q � M , then p = q. This property is part of
the definition of a good frame and we can prove various analogs in tame AECs. In
Chapter 22, we prove an analog without assuming tameness.

We assume that we are working in a µ-superstable AEC (where superstability
is defined in terms of a technical condition, no long splitting chains; recall that in
an AEC with amalgamation and no maximal models, µ-superstability follows from
categoricity above µ). For M ≤K N both limit models in Kµ and p a Galois type
over N , we say p does not µ-fork over M if there exists M0 ∈ Kµ such that M is
universal over M0 and p does not µ-split over M0 (the exact definition of splitting
is immaterial for this discussion). VanDieren has shown that non-µ-forking satisfies
the definition of uniqueness if the “witnesses” M0 to the non-µ-forking are the same
for both p and q. This weak form of uniqueness is fundamental to the development
of the theory, but is not convenient to work with (to talk about nonforking, we have
to mention the witnesses). In Chapter 22, we prove that the uniqueness property
of µ-nonforking holds regardless of the witnesses. This streamlines the theory and
proves as a corollary the equivalence between several versions of the symmetry
property defined in the literature.

1.4.5. Indiscernible extraction and Morley sequences. This chapter is
not about AECs but about simple first-order theories. Simple theories are an
extension of stable theories where it is still possible to develop some of the theories of
nonforking independence. As a canonical example, the theory of the random graph
is simple. In this setup an argument of Shelah shows how to build a fundamental
object of study, Morley sequences. They are indiscernible sequences such that each
element does not fork over the preceding ones. This argument uses the Erdős-Rado
theorem on a sequence of length i(2|T |)

+ . It was asked by Grossberg, Iovino and

Lessmann as well as by Baldwin whether it was possible to avoid using such big
cardinals, i.e. whether it was possible to build Morley sequences and prove the basic
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facts on simple theories using only “ordinary mathematics” (e.g. without using too
much of the axiom of replacement).

Chapter 24 answers this question positively by giving an alternate proof of the
existence of Morley sequences in simple theories that uses just Ramsey’s theorem
and compactness. The proof leads to a new characterization of simple theories: a
theory is simple if and only if forking has the dual finite character (DFC) property
(see Definition 24.3.2). The right to left direction of this result was contributed by
Itay Kaplan after the initial circulation of [Vas17b] (which is Chapter 24 here).

1.5. Categoricity in universal classes: a sketch

In this section, we sketch the proof of Shelah’s eventual categoricity conjecture
in universal classes. We try to be as self-contained as possible and still describe the
main ideas somewhat accurately. The full proof is given in Theorem 16.7.3. This
section is loosely based on [Vasb].

Recall that a universal class is a class K of structures in a fixed vocabulary
τ(K) closed under isomorphisms, substructures, and ⊆-increasing chains. We will
think of K as the AEC K = (K,⊆), and write LS(K) = |τ(K)|+ ℵ0.

We will prove a weaker version than Theorem 16.7.3:

Theorem 1.5.1. Let K be a universal class. If K is categorical in a proper
class of cardinals, then K is categorical on a tail of cardinals.

Note that by a Hanf number argument, this immediately implies the eventual
categoricity conjecture for universal classes:

Corollary 1.5.2. There exists a map µ 7→ λµ such that for any universal
class K, with |τ(K)| ≤ µ, if K is categorical in some λ ≥ λµ, then K is categorical
on a tail of cardinals.

Proof. Given µ, there is only a set of (not equivalent up to renaming) universal
classes with vocabulary of size at most µ. Therefore we can let λµ be the successor
of the supremum of the set of cardinals λ such that there exists a universal class
with vocabulary size at most µ categorical in λ but not in a proper class of cardinals.
Then any universal class K with |τ(K)| ≤ µ categorical in some λ ≥ λµ will be
categorical in a proper class of cardinals, and hence on a tail by Theorem 1.5.1. �

Theorem 16.7.3 shows that one can take λµ = ii(2µ)+
. This is proven using

more of the superstability theory. For example, given µ, if we want to work at a
“nice” class above µ in the setup of Theorem 1.5.1 we can pick the next categoricity
cardinal λ > µ and work with K≥λ. In the more general case, there may not be
such a nice cardinal but we can work in the class of µ+-saturated models of K,
which by the superstability theory will (in cases of interest) be an AEC.

Theorem 1.5.1 will be proven in two steps. We will use the definitions from
Section 1.2.6, in particular the notion of an orbital type and the tameness property.

1.5.1. Two steps, and connecting them. In general, a universal class may
not have amalgamation. The first step derives amalgamation from categoricity.
However the class will be changed:

Theorem 1.5.3 (Structure of categorical universal classes). Let K be a uni-
versal class categorical in a proper class of cardinals. Then there exists an AEC
K∗ such that:
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(1) K and K∗ have the same vocabulary.
(2) LS(K) ≤ LS(K∗) < i(2LS(K))

+ .

(3) Whenever µ > LS(K∗), K is categorical in µ if and only if K∗ is categorical
in µ. In this case, the model of cardinality µ is the same in both classes.

(4) K∗ has amalgamation, joint embedding, and arbitrarily large models (thus
it has a monster model).

(5) K∗ is LS(K∗)-tame (recall that this means that two different Galois types
must differ over a domain of size at most LS(K∗)).

Note that K∗ may not be a universal class, but we do know that it has some
agreement with K: it has the same vocabulary, its Löwenheim-Skolem-Tarski num-
ber is not too different, its categoricity spectrum is (eventually) the same and
further the model in the categoricity cardinals agree. It turns out that this will
be enough to show that K and K∗ are eventually identical (so in particular their
orderings eventually coincide). For an AEC K, we write K≥µ for its restriction to
models of size µ (this is also an AEC with Löwenheim-Skolem-Tarski number µ).

Lemma 1.5.4 (The connecting Lemma). Let K1 and K2 be AECs with the
same vocabulary, the same Löwenheim-Skolem-Tarski number and such that for
any µ > LS(K1) = LS(K2), K1 is categorical in µ if and only if K2 is categorical
in µ and further in this case the model of cardinality µ is the same in K1 and K2.

Assume that K1 (and therefore K2) is categorical in a proper class of cardinals.
Assume also that K1 has amalgamation, joint embedding, and arbitrarily large
models. Then there exists λ > LS(K1) such that K1

≥λ = K2
≥λ (in particular, also

the orderings coincide above λ).

The proof of Theorem 1.5.1 can be completed by appealing to a categoricity
transfer in AECs satisfying enough structural properties:

Theorem 1.5.5 (Categoricity for tame AECs with primes). Let K be an AEC
that has amalgamation, joint embedding, and arbitrarily large models. Assume
that K is LS(K)-tame and has primes over every set of the form M ∪ {a} (i.e.
working in the monster model C, there is N such that M ≤K N , a ∈ N , and N
embeds inside any other model containing M ∪ {a}).

If K is categorical in a proper class of cardinals, then K is categorical on a tail
of cardinals.

Given the structure theorem, the connecting lemma, and the categoricity the-
orem, we can prove the eventual categoricity conjecture for universal classes:

Proof of Theorem 1.5.1. Let K be a universal class categorical in a proper
class of cardinals. Let K∗ be as given by the structure theorem for categorical
universal classes (Theorem 1.5.3). We apply the connecting Lemma (Lemma 1.5.4
where K1, K2 there stand for K∗, K≥LS(K∗) here). We get that there exists λ such
that K≥λ = K∗≥λ.

Now, K≥λ has primes over sets of the form M∪{a}: one simply lets N to be the
closure ofM∪{a} under the functions of C. Note thatN ∈ K as universal classes are
closed under substructures and it is easy to see that N is prime over M ∪{a}. K≥λ
is also λ-tame and has amalgamation, joint embedding, and arbitrarily large models
(because K≥λ = K∗≥λ, and K∗ has those properties). Therefore the categoricity

theorem for tame AECs with primes (Theorem 1.5.5) applies and so K≥λ (hence
also K) is categorical on a tail of cardinals, as desired. �
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It remains to prove the structure theorem, the connecting lemma, and the
categoricity theorem. We start with the connecting lemma, since it is conceptually
the simplest of the three. The full proof appears as Theorem 16.3.8.

Proof of Lemma 1.5.4. We proceed in several steps.

(1) The categoricity spectrum of K1 is closed: for any limit cardinal λ, if K1

is categorical cofinally below λ, then K1 is categorical in λ. Why? Again
we proceed in several steps:
(a) For any categoricity cardinal µ, K1 is stable below µ (i.e. for any

µ0 < µ, K1 has at most µ0-many Galois type over any model of size
µ0) [Why? By what is now called Shelah’s presentation theorem, one
can do something like adding Skolem functions to any AECs. In par-
ticular, AECs with arbitrarily large models admit models generated
by indiscernibles (Ehrenfeucht-Mostowski, or EM, models). Look-
ing at an EM model generated by the linear order λ, we see that it
must have few Galois types. This is essentially the argument that
categoricity implies ℵ0-stability in the proof of Morley’s categoricity
theorem.]

(b) K1 is stable in all cardinals below λ. [Why? by the previous part
and the assumption that K1 is categorical cofinally below λ]

(c) For any categoricity cardinal µ < λ, any model of size µ is saturated
(i.e. it realizes every Galois type over a model of size less than µ).
[Why? By stability in µ, one can build a µ+

0 -saturated model in µ
for every µ0 < µ, then use categoricity.]

(d) Any model M of size λ is saturated [Why? By the previous part
and using categoricity in cofinally-many cardinals below λ, for any
≤K-submodel M0 of M of size less than λ, there is a saturated model
of larger size (but still less than λ) containing M0 and contained in
M thus all types over M0 are realized in M .]

(e) K1 is categorical in λ. [Why? By a lemma of Shelah, saturated mod-
els correspond to model-homogeneous models, and hence are unique.]

(2) There is a categoricity cardinal λ such that λ = λLS(K1). [Why? Using
the previous part, recalling that K1 is categorical in a proper class of
cardinals by assumption].

(3) Write K` = (K`,≤K`) for ` = 1, 2. Then K1
λ = K2

λ [Why? Because they
are categorical in λ, hence have the same model of cardinality λ.]

(4) For ` ∈ {1, 2}, M,N ∈ K`
λ, if M ≤K` N then M �L∞,LS(K`)+

N [Why?

This is a result of Shelah [She09a, IV.1.12(2)]. The proof proceeds by

induction on the formula, using Fodor’s lemma (with λ = λLS(K1)) and
categoricity at appropriate steps. It does not rely on amalgamation.]

(5) For ` ∈ {1, 2}, M,N ∈ K`
λ, if M �L∞,LS(K`)+

N then M ≤K` N [Why?

For any AEC K, the ≤K relation extends �L∞,LS(K)+
. This is a gen-

eral result proven independently by Kueker [Kue08, 7.2(b)] and Shelah
[She09a, IV.1.10(1)], using back and forth systems.]

(6) For M,N ∈ K1
λ, M ≤K1 N if and only if M ≤K2 N . [Why? By the

previous steps, ≤K` coincides with �L∞,LS(K`)
. Now use that LS(K1) =

LS(K2).]
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(7) K1
≥λ = K2

≥λ [Why? Using resolutions into directed systems, one can

show that K1 and K2 are determined by their models of size λ and the
restriction of the orderings on models of size λ. The previous steps proved
that K1

λ = K2
λ, and hence it follows that K1

≥λ = K2
≥λ.]

�

We discuss the proof of the structure theorem. Here we have to be a bit more
vague as the details are very technical. A full proof is in Chapter 16, see Theorem
16.7.2.

Proof of Theorem 1.5.3. The proof heavily uses Shelah’s classification the-
ory for universal classes, which first appeared in [She87b] and is revised in [She09b,
Chapter V].

(1) K does not have the order property: there is no quantifier-free formula φ,
M ∈ K, and sequence 〈āi : i < i(2LS(K))

+〉 in M such that M |= φ[āi, āj ] if

and only if i < j. [Why? Roughly, if there were such a sequence, then one
could use Morley’s method to get such a sequence ordered with a linear
order I with more than |I|-many cuts. Thus K is unstable (in terms of
quantifier-free types) somewhere below the categoricity cardinal, and we
argued in the proof of the connecting lemma that this could not happen.]

(2) By Shelah’s structure theory for universal classes, there exists a relation
“p does not fork over M” for M ⊆ N and p a quantifier-free type over N .
We define M ≤∗ N if and only if any quantifier-free type over M realized

in N does not fork over M . We also define M1

M3

^
M0

M2 to mean that

M0 ≤∗ M` ≤∗ M3 for ` ∈ {1, 2} and for any ā ∈ <ωM1, the quantifier-free
type of ā over M2 (as computed in M3) does not fork over M0.

(3) The reader can think of M1

M3

^
M0

M2 as meaning that M1 and M2 are in

nonforking amalgamation over M0 inside M3. This has several nice prop-
erties: monotonicity (in the obvious directions), symmetry (M1 and M2

can be swapped) existence (any triple of models can be put in nonfork-
ing amalgamation), uniqueness (the non-forking amalgam is unique in the

sense that if M1
3 and M2

3 are such that M1

M`
3

^
M0

M2, then M1
3 and M2

3 em-

bed into a common ≤∗- extension over M1 ∪M2), and some continuity
properties. Nonforking amalgamation also plays nicely with closure under

functions. For example, if M1

M3

^
M0

M2 and M ′3 is the closure of M1 ∪M2

under the functions of M3, then M1

M ′3

^
M0

M2.

(4) Consider the class K0,∗ = (K,≤∗). By the existence of nonforking amal-
gamation, K0,∗ has amalgamation. K0,∗ also has arbitrarily large models
(by the presentation theorem and classical calculations of Hanf number
of infinitary languages). Moreover, any type does not fork over a “small”
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set. Combining this with the uniqueness property of nonforking amal-
gamation, this gives tameness. One can also show that the Löwenheim-
Skolem-Tarski number of K0,∗ satisfies the right conclusion. It is not clear
that K0,∗ has joint embedding, but one can partition it into subclasses
that each have joint embedding. One can pick a subclass K∗ that contains
arbitrarily large models. Then K∗ satisfies all the right properties, except
that...

(5) The biggest problem is that K∗ may not be an AEC: it may not satisfy
the smoothness axiom: if 〈Mi : i < δ〉 is ≤∗-increasing and Mi ≤∗ N for
all i < δ, then it is not clear that

⋃
i<δMi ≤∗ N .

(6) Shelah has shown that failure of smoothness implies that K∗ must have
2λ-many models for any sufficiently big regular cardinal λ. Thus if K is
categorical in a regular cardinal we are done. However if not we have to
do more work.

(7) In Section 16.5, we show that any witness to the failure of smoothness
〈Mi : i < δ〉, N can be copied into a tree 〈Mη : η ∈ ≤δλ〉, where each of the
branches are isomorphic to 〈Mi : i < δ〉 a {N} and the branches are “as

independent as possible”. So for example for any η ∈ <δλ, Mηa0

M

^
Mη

Mηa1,

whereM is some model containing the entire tree (which can also be shown
to exist). Constructing such a tree is quite technical, as we have to see that
the induction can continue at limits without violating smoothness. This
uses that ^ plays very well with the closure operator of the universal class,
hence giving some weak version of smoothness for sequences independent
of each other in a suitable sense.

(8) Once the tree is built, we can obtain many types from it, contradicting
(essentially, but there are additional difficulties because K∗ is not an AEC)
that K∗ should be stable below the categoricity cardinal.

�

We finish by sketching the proof of the categoricity theorem. For the full proof,
see Theorem 11.3.8.

Proof of Theorem 1.5.5. We proceed in several steps. We assume without
loss of generality that all the models of K have size at least LS(K) (this can be
achieved by replacing K with K≥LS(K)).

(1) K is stable (in terms of counting the number of Galois types) in every
cardinal. [Why? See the proof of the connecting lemma.]

(2) For every M ∈ K, there exists N ∈ K such that N is universal over M
and N has the same size as M . [Why? Using the argument that Shelah
used to prove that model-homogeneous is equivalent to saturated.]

(3) The model in any categoricity cardinal is saturated. [Why? See the proof
of the connecting lemma.]

(4) For µ ≥ LS(K) and M ≤K N both in K≥µ, let us say that a (Galois)
type p over N µ-splits over M if there exists N1, N2 ∈ Kµ with M ≤K

N1 ≤K N , M ≤K N2 ≤K N , and an automorphism f of C fixing M and
sending N1 to N2 such that f(p � N1) 6= p � N2.

When p does not µ-split over M , one can think that p is, in a weak
sense, “determined” by p � M . As in the first-order superstable case, we
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want an approximation to “every type is determined/does not fork over a
finite set”. To this end, let us say that K has no long splitting chains in µ
if for every δ < µ+, every increasing continuous 〈Mi : i ≤ δ〉 and every p
over Mδ, if Mi+1 is universal over Mi for all i < δ, then there exists i < δ
such that p does not µ-split over Mi.

(5) Let µ > LS(K) be a categoricity cardinal. Then K has no long splitting
chains in µ. [Why? One way is to use a theorem of Shelah and Villaveces
[SV99, 2.2.1], an axiomatization of which is given in Chapter 20 here.
Alternatively (this is Lemma 19.4.12), note that any increasing continuous
chain 〈Mi : i ≤ δ〉 in Kµ must consist of saturated models only (including
at limits i). So let p be a type over Mδ, assume for a contradiction that
it µ-splits over every Mi, i < δ. There are witnesses fi, N

1
i , N

2
i to this

splitting. Using tameness we can find smaller witnesses M1
i ,M

2
i (i.e. of

size LS(K)). Let N be a substructure of Mδ containing all the witnesses
and of size δ + LS(K). Now without loss of generality δ = cf δ < µ (if
δ = µ and µ is regular, it is known [She99, 3.3(1)] that there must exist
N0 ∈ KLS(K) such that p does not µ-split over N0, and then one can pick
i < δ such that p does not µ-split over Mi). Thus since Mδ is saturated,
p � N is realized in Mδ, say by b. There is i < δ such that b ∈ Mi. This
ends up contradicting the splitting of p over Mi.]

(6) Fix categoricity cardinals µ and λ such that LS(K) < µ < λ. ForM ≤K N
both in Kλ and p a type over N , say that p does not µ-fork over M if
there exists M0 ∈ Kµ such that M0 ≤K M and p does not µ-split over
M0. Then µ-nonforking induces what Shelah calls a good µ-frame. This
means that it has several of the basic properties of forking in a superstable
first-order theory: monotonicity, invariance, every type has a nonforking
extension, the nonforking extension is unique, nonforking has a certain
symmetry property, and the following local character property: for any
increasing continuous chain 〈Mi : i ≤ δ〉, p a type over Mδ, there exists
i < δ such that p does not µ-fork over Mi (note that as opposed to before,
we do not require that Mi+1 be universal over Mi).

[Why does nonforking have all these properties? This is proven in
Chapter 4. Extension and uniqueness can be established using tameness
together with the weak extension and uniqueness properties of splitting
proven by VanDieren in [Van06, I.4.10, I.4.12]. Symmetry is because
otherwise one would get the order property, contradicting stability. The
local character property is proven by contradiction: failure of local char-
acter would contradict no long splitting chains in µ. We are using here
that all the models of cardinality λ are saturated, since λ is a categoricity
cardinal.]

(7) It is enough to show that K is categorical in λ+. [Why? Once we have
categoricity in λ+, we can apply a known upward categoricity transfer
from categoricity in a successor of Grossberg and VanDieren [GV06c,
GV06a]. Alternatively, we can repeat the argument for categoricity in
λ+ from categoricity in λ to get categoricity in λ++ from categoricity in
λ+, and so on, obtaining categoricity in λ+n for n < ω. Recalling from the
proof of the connecting lemma that the categoricity spectrum is closed, we
can continue past the limit cardinals and get categoricity in every λ′ ≥ λ.]
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(8) Assume for a contradiction that K is not categorical in λ+. Then there
exists M of cardinality λ and a suitable type p over M that is omitted in
an extension of M of cardinality λ+. [Why? Because non-categoricity in
λ+ implies the existence of a non-saturated model of cardinality λ+]

(9) Fix such M and p. Let K¬p be the class of models omitting p. We add
constant symbols for M to make the class closed under isomorphisms.
Then K¬p is an AEC. Moreover it is λ-tame and has primes over sets of the
form N ∪{a} (at this point, we do not claim that K¬p has amalgamation;
however there is a way to define prime models over M ∪ {a} without
assuming amalgamation, basically using Galois types to code how N ∪{a}
is embedded).

[Why? That it is an AEC is easy to check (closure under unions is
because any type realized in the union of a chain must be realized in one
of the elements of the chain). That it has primes is because if N ∪ {a}
is contained in any element of K¬p at all, then any model prime over it
(which exists in K) can be embedded inside N , hence must also be in
K¬p. That it is tame is because Galois types are the same in K and K¬p:
if gtp(a/N ;N1) = gtp(b/N ;N2) (in K), then there exists a map from the
prime model over N ∪ {a} inside N1 to the prime model over N ∪ {a}
inside N2 witnessing it. Thus gtp(a/N ;N1) = gtp(b/N ;N2) also in K¬p.
Conversely, if two types are equal in K¬p then they are equal in K.]

(10) K¬p has a good λ-frame (recall that this means there is a nice superstable-
like forking notion; moreover the class has amalgamation in λ, no max-
imal models in λ, and joint embedding in λ). [Why? This uses that p
was chosen “suitably” and some orthogonality calculus for good frames.
See Theorem 11.2.7. Roughly, by noncategoricity in λ+ there must exist
a type q that is “orthogonal” to p in the sense that one can realize it
independently of p. This helps controlling the behavior of nonforking and
amalgamation in K¬p.]

(11) If K is not categorical in λ+, K¬p above has arbitrarily large models.
[Why? It is known (by a result of Will Boney [Bon14a] combined

with Chapter 5) that in any AEC with a good λ-frame that is λ-tame
and has amalgamation, the good λ-frame transfers up to a good (≥ λ)-
frame (i.e. the nonforking notion extends and remains nice, and moreover
the class has no maximal models). By Theorem 8.4.16, it is also possible
to prove this result if the AEC only has weak amalgamation instead of
amalgamation. Weak amalgamation is a weakening of having primes, and
we know that K¬p has primes. Intuitively, what is happening is that we
can prove the extension property of nonforking at a cardinal θ using only
amalgamation below θ. Moreover having primes and knowing that all
types can be extended implies amalgamation. Thus amalgamation can be
proven by induction.

From our discussion, K¬p must have a good (≥ λ)-frame. This means
in particular that it has arbitrarily large models.

(12) For any θ > λ there is a model of cardinality θ omitting p. Thus there is a
non-saturated model in every cardinal, contradicting that K is categorical
in a proper class of cardinals above λ. [Why? Because we know that K¬p
has arbitrarily large models.]
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1.6. Thesis overview

The rest of this thesis contains the author’s papers. Some have already ap-
peared in refereed journals, but others are still under review. We have put the
material of Chapter 2 first, since it contains extensive preliminaries introducing our
notation and the basic concepts. We have put the material of Chapter 24 last (even
though it was written first) simply because it is not about AECs, so does not fit
with the overall topic of the thesis (the author chose to include it simply because
it is part of the work he did as a Ph.D. student). The other chapters are listed
roughly in the order in which they were written.

We have edited the chapters to try to make the style of the thesis uniform and
remove some redundancies but the differences compared with the original versions
of the papers (from February 2017) are otherwise small.

Below, we list each chapter with a reference to the paper (or preprint) it is
based on and a one sentence description of the material to be found there. Each
chapter has an abstract which the reader can consult for a more in-depth overview.
Note that several chapters are joint work. The author does NOT claim full credit
for the results proven in those chapters; credit should be shared between the authors.

• Chapter 2 is [Vas16c]. It gives the background and notation on AECs
used in this whole thesis and introduces Galois Morleyization, a way to
think of Galois types as sets of infinitary formulas. Applications (using
Shelah’s stability theory inside a model) include the equivalence between
stability in terms of Galois types and no order property in tame AECs,
as well as some results on the coheir independence notion.

• Chapter 3 is [BGKV16] (a joint work with Will Boney, Rami Grossberg,
and Alexei Kolesnikov). It presents a global framework for stable inde-
pendence in any AECs with a monster model, and shows canonicity of
forking in this setup. It also shows that symmetry of forking follows from
no order property.

• Chapter 4 is [Vas16b]. It gives a construction of a good frame from
tameness in a categorical AEC.

• Chapter 5 is [BVe] (a joint work with Will Boney). It studies independent
sequences in good frames and as application proves that good frames
can be extended using tameness, and that there is a natural notion of
dimension of types in this case (given by the size of a maximal independent
set of realizations).

• Chapter 6 is [Vas16a]. It axiomatizes the construction of independence
relation from previous chapters and shows how to build a global notion
as in Chapter 3.

• Chapter 7 is [BV17] (a joint work with Will Boney). It gives results on
when, in stable or superstable tame AECs, the union of a chain of λ-
saturated model is λ-saturated. Of particular interest is the development
of a theory of average types in this context.

• Chapter 8 is [Vasg]. It sets the fundamentals for the proof of Shelah’s
eventual categoricity conjecture in universal classes. However it does not
completely solve the problem of deriving amalgamation from categoricity
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in universal classes, and also the “high-enough” thresholds are improved
in later chapters.

• Chapter 9 is [GV] (a joint work with Rami Grossberg). It shows that
several definitions of superstability from the first-order context are also
equivalent in tame AECs.

• Chapter 10 is [VV17] (a joint work with Monica VanDieren). It studies
the symmetry property of splitting, both in tame and non-tame AECs,
and derives it from no order property (this is a more technical result than
in Chapter 3). Applications are given to construction of good frames and
chains of saturated models.

• Chapter 11 is [Vasf]. It proves that any tame AEC with amalgamation
and primes satisfies Shelah’s eventual categoricity conjecture. In Chap-
ter 8 this was proven assuming a stronger property than tameness (full
tameness and type-shortness).

• Chapter 12 is [Vasa]. It shows how to build primes in classes of saturated
models assuming the existence of a well-behaved independence notion.
This shows assuming a large cardinal axioms that having primes follows
from total categoricity.

• Chapter 13 is [BGL+16] (a joint work with Will Boney, Rami Grossberg,
Mike Lieberman, and Jǐŕı Rosický). It introduces µ-AECs, a generaliza-
tion of AECs, and generalizes some results from the theory of AECs to
this context. It also establishes that µ-AECs have an natural category-
theoretic analog: accessible categories whose morphisms are monomor-
phisms.

• Chapters 14 and 15 are based on the same paper, [Vas17a]. It proves a
general categoricity transfer for global good frames categorical in a suc-
cessor and gives improvements on the “high-enough” threshold of several
known categoricity transfers. An exposition of Shelah’s proof of the even-
tual categoricity conjecture in AECs with amalgamation (assuming some
unpublished work and the weak GCH) is also given.

• Chapter 16 is [Vas17c]. It completes the proof of the eventual categoricity
conjecture in universal classes by dealing with getting structure (most
especially amalgamation) from categoricity. The main ingredient turns
out to be a generalized symmetry lemma for independent, potentially
non-smooth, trees.

• Chapter 17 is [Vase]. It shows that in an AEC K with a amalgamation
and no maximal models categorical in λ > LS(K), the model of cardi-
nality λ is saturated. A downward solvability transfer is deduced and
several other applications, outlining the structure of the AEC below the
categoricity cardinal, are mentioned.

• Chapter 18 is [BVc] (a joint work with Will Boney). It investigates good
frames in the example of Hart and Shelah where categoricity holds at
ℵ0,ℵ1, . . . ,ℵn but fails at ℵn+1. In particular the example has a non-
weakly-successful good frame. The existence of such a frame was open.
The chapter also investigates general ways of building good frames in
“Hart-Shelah-like” setups.
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• Chapter 19 is [Vash]. It gives the beginning of a stability theory for tame
AECs, proving that superstability follows from stability on a tail and more
generally (assuming SCH) characterizing the eventual stability spectrum.

• Chapter 20 is [BGVV17] (a joint work with Will Boney, Rami Grossberg,
and Monica VanDieren). It gives an axiomatization of an argument of
Shelah and Villaveces deriving a form of superstability from categoricity.
The axiomatization gives more results and the proof fixes a gap in the
Shelah-Villaveces theorem.

• Chapter 21 is [Vasd]. It proposes the definition of a quasiminimal AEC
and shows that such classes correspond to Zilber’s quasiminimal prege-
ometry classes.

• Chapter 22 is [Vasc]. It proves the uniqueness property of nonforking in
a specific local context and derives equivalence between several definitions
of nonforking symmetry.

• Chapter 23 is [SV] (a joint work with Saharon Shelah). It proves, roughly
speaking, that ℵ0-stability implies ℵ0-superstability (just like in the first-
order case) and (< ℵ0,ℵ0)-tameness.

• Chapter 24 is [Vas17b]. It gives an alternate proof of the existence of
Morley sequences in simple theories that uses only principles from ordinary
mathematics.

Chapters 2 to 16 are based upon work done while the author was supported by
the Swiss National Science Foundation under Grant No. 155136. Chapters 3, 5, 7,
13, 18, and 20 are based upon work done while Will Boney was supported by the
United States National Science Foundation under Grant No. DMS-1402191. Chap-
ter 13 is based upon work done while Michael Lieberman and Jǐŕı Rosický were sup-
ported by the Grant Agency of the Czech Republic under the grant P201/12/G028.
Chapter 23 is based upon work done while Saharon Shelah was supported by the
Israel Science Foundation (Grant No. 242/03).





CHAPTER 2

Infinitary stability theory

This chapter is based on [Vas16c]. I thank Will Boney for thoroughly reading
this chapter and providing invaluable feedback. I also thank Alexei Kolesnikov for
valuable discussions on the idea of thinking of Galois types as formulas. I thank
John Baldwin, Jonathan Kirby, and a referee for valuable comments.

Abstract

We introduce a new device in the study of abstract elementary classes (AECs):
Galois Morleyization, which consists in expanding the models of the class with a
relation for every Galois (orbital) type of length less than a fixed cardinal κ. We
show:

Theorem 2.0.1 (The semantic-syntactic correspondence). An AEC K is fully
(< κ)-tame and type short if and only if Galois types are syntactic in the Galois
Morleyization.

This exhibits a correspondence between AECs and the syntactic framework of
stability theory inside a model. We use the correspondence to make progress on
the stability theory of tame and type short AECs. The main theorems are:

Theorem 2.0.2. Let K be a LS(K)-tame AEC with amalgamation. The fol-
lowing are equivalent:

(1) K is Galois stable in some λ ≥ LS(K).
(2) K does not have the order property (defined in terms of Galois types).
(3) There exist cardinals µ and λ0 with µ ≤ λ0 < i(2LS(K))+ such that K is

Galois stable in any λ ≥ λ0 with λ = λ<µ.

Theorem 2.0.3. Let K be a fully (< κ)-tame and type short AEC with amalga-
mation, κ = iκ > LS(K). If K is Galois stable, then the class of κ-Galois saturated
models of K admits an independence notion ((< κ)-coheir) which, except perhaps
for extension, has the properties of forking in a first-order stable theory.

2.1. Introduction

Abstract elementary classes (AECs) are sometimes described as a purely se-
mantic framework for model theory. It has been shown, however, that AECs are
closely connected with more syntactic objects. See for example Shelah’s presenta-
tion theorem [She87a, Lemma 1.8], or Kueker’s [Kue08, Theorem 7.2] showing
that an AEC with Löwenheim-Skolem number λ is closed under L∞,λ+ -elementary
equivalence.

29
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Another framework for non-elementary model theory is stability theory inside a
model (introduced in Rami Grossberg’s 1981 master thesis and studied for example1

in [Gro91a, Gro91b] or [She87b, Chapter I], see [She09b, Chapter V.A] for a
more recent version). There the methods are very syntactic but it is believed (see
for example the remark on p. 116 of [Gro91a]) that they can help the resolution
of more semantic questions, such as Shelah’s categoricity conjecture for Lω1,ω.

In this chapter, we establish a correspondence between these two frameworks.
We show that results from stability theory inside a model directly translate to re-
sults about tame abstract elementary classes. Recall that an AEC is (< κ)-tame if
its Galois (i.e. orbital) types are determined by their restrictions to domains of size
less than κ. Tameness as a property of AEC was first isolated (from an argument
in [She99]) by Grossberg and VanDieren [GV06b] and used to prove an upward
categoricity transfer [GV06a, GV06c]. Boney [Bon14b] showed that tameness
follows from the existence of large cardinals. Combined with the categoricity trans-
fers of Grossberg-VanDieren and Shelah [She99], this showed assuming a large
cardinal axiom that Shelah’s eventual categoricity conjecture holds if the categoric-
ity cardinal is a successor.

The basic idea of the translation is the observation (appearing for example in
[Bon14b, p. 15] or [Lie11b, p. 206]) that in a (< κ)-tame abstract elementary class,
Galois types over domains of size less than κ play a role analogous to first-order
formulas. We make this observation precise by expanding the language of such an
AEC with a relation symbol for each Galois type over the empty set of a sequence
of length than κ, and looking at Lκ,κ-formulas in the expanded language. We call
this expansion the Galois Morleyization2 of the AEC. Thinking of a type as the set
of its small restrictions, we can then prove the semantic-syntactic correspondence
(Theorem 2.3.15): Galois types in the AEC correspond to quantifier-free syntactic
types in its Galois Morleyization.

The correspondence gives us a new method to prove results in tame abstract
elementary classes:

(1) Prove a syntactic result in the Galois Morleyization of the AEC (e.g. using
tools from stability theory inside a model).

(2) Translate to a semantic result in the AEC using the semantic-syntactic
correspondence.

(3) Push the semantic result further using known (semantic) facts about
AECs, maybe combined with more hypotheses on the AEC (e.g. amal-
gamation).

As an application, we prove Theorem 2.0.2 in the abstract (see Theorem 2.4.15),
which gives the equivalence between no order property and stability in tame AECs
and generalizes one direction of the stability spectrum theorem of homogeneous
model theory ([She70, Theorem 4.4], see also [GL02, Corollary 3.11]). The syn-
tactic part of the proof is not new (it is a straightforward generalization of Shelah’s
first-order proof [She90, Theorem 2.10]) and we are told by Rami Grossberg that
proving such results was one of the reason tameness was introduced (in fact theo-
rems with the same spirit appear in [GV06b]). However we believe it is challenging

1The definition of a model being stable appears already in [She78, Definition I.2.2] but (as

Shelah notes in the introduction to [She87b, Chapter I]) this concept was not pursued further

there.
2We thank Rami Grossberg for suggesting the name.
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to give a transparent proof of the result using Galois types only. The reason is that
the classical proof uses local types and it is not clear how to naturally define them
semantically.

The method has other applications: Theorem 2.5.15 (formalizing Theorem 2.0.3
from the abstract) shows that in stable fully tame and short AECs, the coheir
independence relation has some of the properties of a well-behaved independence
notion. This is used in Chapter 6 to build a global independence notion from
superstability. In Chapter 7, we also use syntactic methods to investigate chains of
Galois-saturated models.

Precursors to this work include Makkai and Shelah’s study of classes of models
of an Lκ,ω theory for κ a strongly compact cardinal [MS90]: there they prove
[MS90, Proposition 2.10] that Galois and syntactic Σ1(Lκ,κ)-types are the same
(so in particular those classes are (< κ)-tame). One can see the results of this
chapter as a generalization to tame AECs. Also, the construction of the Galois
Morleyization when κ = ℵ0 (so the language remains finitary) appears in [HK16,
Section 2.4]. Moreover it has been pointed out to us3 that a device similar to Galois
Morleyization is used in [Ros81, Section 3] to present any concrete category as a
class of models of an infinitary theory. However the use of Galois Morleyization to
translate results of stability theory inside a model to AECs is new.

This chapter is organized as follows. In section 2.2, we review some prelimi-
naries. In section 2.3, we introduce functorial expansions4 of AECs and the main
example: Galois Morleyization. We then prove the semantic-syntactic correspon-
dence. In section 2.4, we investigate various order properties and prove Theorem
2.0.2. In section 2.5, we study the coheir independence relation. Several of these
sections have global hypotheses which hold until the end of the section: see Hy-
potheses 2.3.9, 2.4.1, and 2.5.1.

We end with a note on how AECs compare to some other non first-order frame-
work like homogeneous model theory (see [She70]). There is an example (due to
Marcus, see [Mar72]) of an Lω1,ω-axiomatizable class which is categorical in all
uncountable cardinals but does not have an ℵ1-sequentially-homogeneous model.
For n < ω, an example due to Hart and Shelah (see [HS90, BK09]) has amal-
gamation, no maximal models, and is categorical in all ℵk with k ≤ n, but no
higher. By [GV06c], the example cannot be ℵk-tame for k < n. However if κ is
a strongly compact cardinal, the example will be fully (< κ)-tame and type short
by the main result of [Bon14b]. The discussion on p. 74 of [Bal09] gives more
non-homogeneous examples.

In general, classes from homogeneous model theory or quasiminimal pregeome-
try classes (see [Kir10]) are special cases of AECs that are always fully (< ℵ0)-tame
and type short. In this chapter we work with the much more general assumption
of (< κ)-tameness and type shortness for a possibly uncountable κ.

2.2. Preliminaries

We review some of the basics of abstract elementary classes and fix some no-
tation. The reader is advised to skim through this section quickly and go back to
it as needed.

3By Jonathan Kirby.
4These were called “abstract Morleyizations” in an early version of this chapter. We thank

John Baldwin for suggesting the new name.
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2.2.1. Set theoretic terminology.

Definition 2.2.1. Let κ be an infinite cardinal.

(1) Let κr be the least regular cardinal greater than or equal to κ. That is,
κr is κ+ if κ is singular and κ if κ is regular.

(2) Let κ− be κ if κ is limit or the unique κ0 such that κ+
0 = κ if κ is a

successor.
(3) Let REG denote the class of regular cardinals.

We will often use the following function (see the notation in [Bal09, 4.24]) :

Definition 2.2.2 (Hanf function). For λ an infinite cardinal, define h(λ) :=
i(2λ)+ . Also define h∗(λ) := h(λ−). When K is a fixed AEC (see Definition 2.2.14),
write H1 for h(LS(K)) and H2 for h(H1).

Note that for λ infinite, λ = iλ if and only if for all µ < λ, h(µ) < λ.

2.2.2. Syntax. The notation of this chapter is standard, but since we will
work with infinitary objects and need to be precise, we review the basics. We will
often work with the logic Lκ,κ, see [Dic75] for the definition and basic results.

Definition 2.2.3. An infinitary vocabulary is a vocabulary where we also allow
relation and function symbols of infinite arity. For simplicity, we require the arity
to be an ordinal. An infinitary vocabulary is (< κ)-ary if all its symbols have arity
strictly less than κ. A finitary vocabulary is a (< ℵ0)-ary vocabulary.

For τ an infinitary vocabulary, φ an Lκ,κ(τ)-formula and x̄ a sequence of vari-
ables, we write φ = φ(x̄) to emphasize that the free variables of φ appear among x̄
(recall that a Lκ,κ-formula must have fewer than κ-many free variables, but not all
elements of x̄ need to appear as free variables in φ, so we allow `(x̄) ≥ κ). We use
a similar notation for sets of formulas. When ā is an element in some τ -structure
and φ(x̄, ȳ) is a formula, we often abuse notation and say that ψ(x̄) = φ(x̄, ā) is a
formula (again, we allow `(ā) ≥ κ). We say φ(x̄, ā) is a formula over A if ā ∈ <∞A.

Definition 2.2.4. For φ a formula over a set, let FV(φ) denote an enumeration
of the free variables of φ (according to some canonical ordering on all variables).
That is, fixing such an ordering, FV(φ) is the smallest sequence x̄ such that φ =
φ(x̄). Let `(φ) := `(FV(φ)) (it is an ordinal, but by permutting the variables we
can usually assume without loss of generality that it is a cardinal), and domφ be
the smallest set A such that φ is over A. Define similarly the meaning of FV(p),
`(p), and dom p on a set p of formulas.

Definition 2.2.5. For τ an infinitary vocabulary, M a τ -structure, A ⊆ |M |,
b̄ ∈ <∞|M |, and ∆ a set of τ -formulas (in some logic), let5:

tp∆(b̄/A;M) := {φ(x̄; ā) | φ(x̄, ȳ) ∈ ∆, ā ∈ `(ȳ)A, and M |= φ[b̄, ā]}

We will most often work with ∆ = qf-Lκ,κ, the set of quantifier-free Lκ,κ-
formulas.

5Of course, we have in mind a canonical sequence of variables x̄ of order type `(b̄) that should
really be part of the notation but (as is customary) we always omit this detail.
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Definition 2.2.6. For M a τ -structure, ∆ a set of τ -formulas, A ⊆ |M |, α an
ordinal or ∞, let

S<α∆ (A;M) := {tp∆(b̄/A;M) | b̄ ∈ <α|M |}
Define similarly the variations for ≤ α, α, etc. We write S∆(A;M) instead of

S1
∆(A;M).

2.2.3. Abstract classes. We review the definition of an abstract elementary
class. Abstract elementary classes (AECs) were introduced by Shelah in [She87a].
The reader unfamiliar with AECs can consult [Gro02] for an introduction.

We first review more general objects that we will sometimes use. Abstract
classes are already defined in [Gro], while µ-abstract elementary classes are intro-
duced in Chapter 13. We will mostly use them to deal with functorial expansions
and classes of saturated models of an AEC.

Definition 2.2.7. An abstract class (AC for short) is a pair K = (K,≤K),
where:

(1) K is a class of τ -structure, for some fixed infinitary vocabulary τ (that we
will denote by τ(K)). We say (K,≤K) is (< µ)-ary if τ is (< µ)-ary.

(2) ≤K is a partial order (that is, a reflexive and transitive relation) on K.
(3) If M ≤K N are in K and f : N ∼= N ′, then f [M ] ≤K N ′ and both are in

K.
(4) If M ≤K N , then M ⊆ N .

Remark 2.2.8. We do not always strictly distinguish between K and K =
(K,≤K). In particular we will often write M ∈ K when we really mean M ∈ K.

Notation 2.2.9. For K an abstract class, M,N ∈ K, we write M <K N when
M ≤K N and M 6= N .

Definition 2.2.10. For K an abstract class and λ a cardinal, write I(K, λ) for
the number of non-isomorphic models of cardinality λ in K. If I(K, λ) = 1, we say
that K is categorical in λ.

Definition 2.2.11. Let K be an abstract class. A sequence 〈Mi : i < δ〉 of
elements of K is R-increasing if for all i < j < δ, MiRMj . Strictly increasing
means that in addition Mi 6= Mj for i < j. 〈Mi : i < δ〉 is continuous if for all limit
i < δ, Mi =

⋃
j<iMj . When R is omitted, we mean R =≤K.

Notation 2.2.12. For K an abstract class, we use notations such as Kλ, K≥λ,
K<λ, KF for the restriction of the class to models in K of size λ, ≥ λ, < λ,
contained in the set F , respectively.

Definition 2.2.13. Let (I,≤) be a partially-ordered set.

(1) We say that I is µ-directed provided for every J ⊆ I if |J | < µ then there
exists r ∈ I such that r ≥ s for all s ∈ J (thus ℵ0-directed is the usual
notion of directed set)

(2) Let K be an abstract class. An indexed system 〈Mi : i ∈ I〉 of models in
K is µ-directed if I is a µ-directed set and i < j implies Mi ≤K Mj .

Definition 2.2.14. Let µ be a regular cardinal and let K be a (< µ)-ary
abstract class. We say that K is a µ-abstract elementary class (µ-AEC for short)
if:
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(1) Coherence: If M0,M1,M2 ∈ K satisfy M0 ≤K M2, M1 ≤K M2, and
M0 ⊆M1, then M0 ≤K M1;

(2) Tarski-Vaught axioms: Suppose 〈Mi ∈ K : i ∈ I〉 is a µ-directed system.
Then:
(a)

⋃
i∈IMi ∈ K and, for all j ∈ I, we have Mj ≤K

⋃
i∈IMi.

(b) If there is some N ∈ K so that for all i ∈ I we have Mi ≤K N , then
we also have

⋃
i∈IMi ≤K N .

(3) Löwenheim-Skolem-Tarski axiom: There exists a cardinal λ = λ<µ ≥
|τ(K)|+µ such that for any M ∈ K and A ⊆ |M |, there is some M0 ≤K M
such that A ⊆ |M0| and ‖M0‖ ≤ |A|<µ + λ. We write LS(K) for the
minimal such cardinal6.

When µ = ℵ0, we omit it and simply call K an abstract elementary class (AEC
for short).

In any abstract class, we can define a notion of embedding:

Definition 2.2.15. Let K be an abstract class. We say a function f : M → N
is a K-embedding if M,N ∈ K and f : M ∼= f [M ] ≤K N . For A ⊆ |M |, we write
f : M −→

A
N to mean that f fixes A pointwise. Unless otherwise stated, when we

write f : M → N we mean that f is an embedding.

Here are three key structural properties an abstract class can have:

Definition 2.2.16. Let K be an abstract class.

(1) K has amalgamation if for any M0 ≤K M` in K, ` = 1, 2, there exists
N ∈ K and f` : M` −−→

M0

N .

(2) K has joint embedding if for any M` in K, ` = 1, 2, there exists N ∈ K
and f` : M` → N .

(3) K has no maximal models if for any M ∈ K there exists N ∈ K with
M <K N .

2.2.4. Galois types. Let K be an abstract class. There is a well-known a
semantic notion of types for K, Galois types, that was first introduced by Shelah
in [She87b, Definition II.1.9]. While Galois types are usually only defined over
models, here we allow them to be over any set. This is not harder and is often
notationally convenient7. Note however that Galois types over sets are in general
not too well-behaved. For example, they can sometimes fail to have an extension
(in the sense that if we have N,N ′ ∈ K, A ⊆ |N | ∩ |N ′| and p a Galois type over
A realized in N , then we may not be able to extend p to a type over N ′) if their
domain is not an amalgamation base.

Definition 2.2.17.

(1) Let K3 be the set of triples of the form (b̄, A,N), where N ∈ K, A ⊆ |N |,
and b̄ is a sequence of elements from N .

(2) For (b̄1, A1, N1), (b̄2, A2, N2) ∈ K3, we say (b̄1, A1, N1)Eat(b̄2, A2, N2) if
A := A1 = A2, and there exists f` : N` −→

A
N such that f1(b̄1) = f2(b̄2).

6Pedantically, LS(K) really depends on µ but µ will always be clear from context.
7For example, types over the empty sets are used here in the definition of the Galois Morley-

ization. They appear implicitly in the definition of the order property in [She99, Definition 4.3]

and explicitly in [GV06b, Notation 1.9]. They are also used in [HK06].
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(3) Note that Eat is a symmetric and reflexive relation on K3. We let E be
the transitive closure of Eat.

(4) For (b̄, A,N) ∈ K3, let gtp(b̄/A;N) := [(b̄, A,N)]E . We call such an
equivalence class a Galois type. We write gtpK(b̄/A;N) when K is not
clear from context.

(5) For p = gtp(b̄/A;N) a Galois type, define8 `(p) := `(b̄) and dom p := A.

We can go on to define the restriction of a type (if A0 ⊆ dom p, I ⊆ `(p), we
will write pI � A0 when the realizing sequence is restricted to I and the domain is
restricted to A0), the image of a type under an isomorphism, or what it means for
a type to be realized. Just as in [She09a, Observation II.1.11.4], we have:

Fact 2.2.18. If K has amalgamation, then E = Eat.

Note that the proof goes through, even though we only have amalgamation
over models, not over all sets.

Remark 2.2.19. To gain further insight into the difference between E and Eat,
consider the following situation. Let K be an AEC that does not have amalgama-
tion and assume we are given M ≤K N , a1, a2 ∈ |M |, and A ⊆ |M |. Suppose we
know that (a1, A,M)Eat(a2, A,M). Then because (a`, A,N)Eat(a`, A,M) for ` =
1, 2, we have that (a1, A,N)E(a2, A,N), but we may not have that (a1, A,N)Eat(a2, A,N).

We also have the basic monotonicity and invariance properties [She09a, Ob-
servation II.1.11], which follow directly from the definition:

Proposition 2.2.20. Let K be an abstract class. Let N ∈ K, A ⊆ |N |, and
b̄ ∈ <∞|N |.

(1) Invariance: If f : N ∼=A N
′, then gtp(b̄/A;N) = gtp(f(b̄)/A;N ′).

(2) Monotonicity: If N ≤K N ′, then gtp(b̄/A;N) = gtp(b̄/A;N ′).

Monotonicity says that when N ≤K N ′, the set of Galois types (over a fixed
set A) realized in N ′ is at least as big as the set of Galois types over A realized in
N (using the notation below, gS(A;N) ⊆ gS(A;N ′)). When A = M for M ≤K N
(or A = ∅), we can further define the class gS(A) of all Galois types over A in the
natural way. Assuming the existence of a monster model C containing A, this is
the same as the usual definition: all types over A realized in C.

Definition 2.2.21.

(1) Let N ∈ K, A ⊆ |N |, and α be an ordinal. Define:

gSα(A;N) := {gtp(b̄/A;N) | b̄ ∈ α|N |}
(2) For M ∈ K and α an ordinal, let:

gSα(M) := {p | ∃N ∈ K : M ≤K N and p ∈ gSα(M ;N)}
(3) For α an ordinal, let:

gSα(∅) :=
⋃
N∈K

gSα(∅;N)

When α = 1, we omit it. Similarly define gS<α, where α is allowed to be ∞.

8It is easy to check that this does not depend on the choice of representatives.
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Remark 2.2.22. When α is an ordinal, gSα(M) and gSα(∅) could a priori
be proper classes. However in reasonable cases (e.g. when K is a µ-AEC) they
are sets. For example when K is a µ-AEC, an upper bound for | gSα(M)| is

2(‖M‖+α+LS(K))<µ .

Next, we recall the definition of tameness), a locality property of types. Tame-
ness was introduced by Grossberg and VanDieren in [GV06b] and used to get
an upward stability transfer (and an upward categoricity transfer in [GV06c]).
Later on, Boney showed in [Bon14b] that it followed from large cardinals and also
introduced a dual property he called type shortness.

Definition 2.2.23 (Definitions 3.1 and 3.3 in [Bon14b]). Let K be an abstract
class and let Γ be a class (possibly proper) of Galois types in K. Let κ be an infinite
cardinal.

(1) K is (< κ)-tame for Γ if for any p 6= q in Γ, if A := dom p = dom q, then
there exists A0 ⊆ A such that |A0| < κ and p � A0 6= q � A0.

(2) K is (< κ)-type short for Γ if for any p 6= q in Γ, if α := `(p) = `(q), then
there exists I ⊆ α such that |I| < κ and pI 6= qI .

(3) κ-tame means (< κ+)-tame, similarly for type short.
(4) We usually just say “short” instead of “type short”.
(5) Usually, Γ will be a class of types over models only, and we often specify

it in words. For example, (< κ)-short for types of length α means (< κ)-
short for

⋃
M∈K gSα(M).

(6) We say K is (< κ)-tame if it is (< κ)-tame for types of length one.
(7) We say K is fully (< κ)-tame if it is (< κ)-tame for

⋃
M∈K gS<∞(M),

similarly for short.

We review the natural notion of stability in this context. The definition here
is slightly unusual compared to the rest of the litterature: we define what it means
for a model to be stable in a given cardinal, and get a local notion of stability that
is equivalent (in AECs) to the usual notion if amalgamation holds, but behaves
better if amalgamation fails. Note that we count the number of types over an
arbitrary set, not (as is common in AECs) only over models. In case the abstract
class has a Löwenheim-Skolem number and we work above it this is equivalent,
as any type in gS<α(A;N) can be extended9 to gS<α(B;N) when A ⊆ B, so
| gS<α(A;N)| ≤ | gS<α(B;N)|.

Definition 2.2.24 (Stability). Let K be an abstract class. Let α be a cardinal,
µ be a cardinal. A model N ∈ K is (< α)-stable in µ if for all A ⊆ |N | of size
≤ µ, | gS<α(A;N)| ≤ µ. Here and below, α-stable means (< (α+))-stable. We say
“stable” instead of “1-stable”.

K is (< α)-stable in µ if every N ∈ K is (< α)-stable in µ. K is (< α)-stable
if it is (< α)-stable in unboundedly many cardinals.

Define similarly syntactically stable for syntactic types (in this chapter the
quantifier-free Lκ,κ-types, where κ is clear from context).

The next fact spells out the connection between stability for types of different
lengths and tameness.

Fact 2.2.25. Let K be an AEC and let µ ≥ LS(K).

9Note that this does not use any amalgamation because we work inside the same model N .
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(1) [Bon17, Theorem 3.1]: If K is stable in µ, Kµ has amalgamation, and
µα = µ, then K is α-stable in µ.

(2) [GV06b, Corollary 6.4]10: If K has amalgamation, is µ-tame, and stable
in µ, then K is stable in all λ such that λµ = λ.

(3) If K has amalgamation, is µ-tame, and is stable in µ, then K is α-stable
(in unboundedly many cardinals), for all cardinals α.

Proof of (3). Given cardinals λ0 ≥ LS(K) and α, let λ := (λ0)
α+µ

. Com-
bining the first two statements gives us that K is α-stable in λ. �

Finally, we review the natural definition of saturation using Galois types. Note
that we again give the local definitions (but they are equivalent to the usual ones
assuming amalgamation).

Definition 2.2.26. Let K be an abstract class, M ∈ K and µ be an infinite
cardinal.

(1) For N ≥K M , M is µ-saturated11 in N if for any A ⊆ |M | of size less
than µ, any p ∈ gS<µ(A;N) is realized in M .

(2) M is µ-saturated if it is µ-saturated in N for all N ≥K M . When µ =
‖M‖, we omit it.

(3) We write Kµ-sat for the class of µ-saturated models of K≥µ (ordered by
the ordering of K).

Remark 2.2.27.

(1) We defined saturation also when µ ≤ LS(K). This is why we look at types
over sets and not only over models. In an AEC, when µ > LS(K), this
is equivalent to the usual definition (see also the remark before Definition
2.2.24).

(2) We could similarly define what it means for a set to be saturated in a
model (this is useful in Chapter 7).

(3) It is easy to check that if K is an AEC with amalgamation and µ >
LS(K), then Kµ-sat is a µr-AEC (recall Definitions 2.2.1 and 2.2.14) with
LS(Kµ-sat) ≤ LS(K)<µr .

2.3. The semantic-syntactic correspondence

2.3.1. Functorial expansions and the Galois Morleyization.

Definition 2.3.1. K̂—see functorial expansion Let K be an abstract class. A

functorial expansion of K is a class K̂ satisfying the following properties:

(1) K̂ is a class of τ̂ -structures, where τ̂ is a fixed (possibly infinitary) vocab-
ulary extending τ(K).

(2) The map M̂ 7→ M̂ � τ(K) is a bijection from K̂ onto K. For M ∈ K, we

will write M̂ for the unique element of K̂ whose reduct is M . When we

write “M̂ ∈ K̂”, it is understood that M = M̂ � τ(K).

(3) Invariance: For M,N ∈ K, if f : M ∼= N , then f : M̂ ∼= N̂ .

10The result we want can easily be seen to follow from the proof there: see [Bal09, Theorem

12.10].
11Pedantically, we should really say “Galois-saturated” to differentiate this from being syn-

tactically saturated. In this chapter, we will only discuss Galois saturation.
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(4) Monotonicity: If M ≤K N are in K, then M̂ ⊆ N̂ .

We say a functorial expansion K̂ is (< κ)-ary if τ(K̂) is (< κ)-ary.

Example 2.3.2.

(1) For K an abstract class, K is a functorial expansion of K itself. This is
because ≤K must extend ⊆.

(2) Let K be an abstract class with τ := τ(K) and let κ be an infinite car-
dinal. Add a (< κ)-ary predicate P to τ , forming a language τ̂ . Expand

each M ∈ K to a L̂-structure by defining P M̂ (ā) (where P M̂ is the in-

terpretation of P inside M̂) to hold if and only if ā is the universe of a
≤K-submodel of M (this is more or less what Shelah does in [She09a,

Definition IV.1.9.1]). Then the resulting class K̂ is a functorial expansion
of K.

(3) Let T be a complete first-order theory in a vocabulary τ . Let K :=
(Mod(T ),�). It is common to expand τ to τ̂ by adding a relation symbol

for every first-order τ -formula. We then expand T (to T̂ ) and every model

M of T in the expected way (to some M̂) and obtain a new theory in which
every formula is equivalent to an atomic one (this is commonly called the

Morleyization of the theory). Then K̂ := Mod(T̂ ) is a functorial expansion
of K.

(4) Let T be a first-order complete theory. Expanding each model M of T
to its canonical model M eq of T eq (see [She90, III.6]) also describes a
functorial expansion.

(5) The canonical structures of [CHL85] also induce a functorial expansion.

The main example of functorial expansion used in this chapter is the Galois
Morleyization:

Definition 2.3.3. Let K be an abstract class and let κ be an infinite cardinal.
Define an expansion τ̂ of τ(K) by adding a relation symbol Rp of arity `(p) for each

p ∈ gS<κ(∅). Expand each N ∈ K to a τ̂ -structure N̂ by specifying that for each

ā ∈ <κ|N̂ |, RN̂p (ā) (where RN̂p is the interpretation of Rp inside N̂) holds exactly

when gtp(ā/∅;N) = p. We call K̂ the (< κ)-Galois Morleyization of K.

Remark 2.3.4. Let K be an AEC and κ be an infinite cardinal. Let K̂ be the (<

κ)-Galois Morleyization of K. Then |τ(K̂)| ≤ | gS<κ(∅)|+ |τ(K)| ≤ 2<(κ+LS(K)+).

It is straightforward to check that the Galois Morleyization is a functorial
expansion. We include a proof here for completeness.

Proposition 2.3.5. Let K be an abstract class and let κ be an infinite cardinal.
Let K̂ be the (< κ)-Galois Morleyization of K. Then K̂ is a functorial expansion
of K.

Proof. Let τ := τ(K) be the vocabulary of K. Looking at Definition 2.3.1,
there are four properties to check:

(1) By definition of the Galois Morleyization, K̂ is a class of τ̂ -structure, for
a fixed vocabulary τ̂ .

(2) The map M̂ 7→ M̂ � τ is a bijection: It is a surjection by definition of the

Galois Morleyization. It is an injection: Assume that M ′ := M̂ � τ = N̂ �
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τ but M̂ 6= N̂ . Then there must exist a p ∈ gS(∅) and an ā ∈ <κ|M ′| such
that gtp(ā/∅;M ′) = p but gtp(ā/∅;M ′) 6= p. Thus p 6= p, a contradiction.

(3) Let M,N ∈ K and f : M ∼= N . We have to see that f : M̂ ∼= N̂ .

Let p ∈ gS(∅) and let ā ∈ <κ|M |. Assume that M̂ |= Rp(ā). Then
by definition p = gtp(ā/∅;M). Therefore by Proposition 2.2.20.(1), p =

gtp(f(ā)/∅;N). Hence N̂ |= Rp(f(ā)). The steps can be reversed to
obtain the converse.

(4) Let M ≤K N be in K. We want to see that M̂ ⊆ N̂ . So let p ∈ gS(∅), ā ∈
<κ|M |. Assume first that M̂ |= Rp(ā). Then p = gtp(ā/∅;M). Therefore

by Proposition 2.2.20.(2), p = gtp(ā/∅;N). Therefore N̂ |= Rp(ā). The
steps can be reversed to obtain the converse.

�

Note that a functorial expansion can naturally be seen as an abstract class:

Definition 2.3.6. Let K = (K,≤K) be an abstract class and let K̂ be a

functorial expansion of K. Define an ordering ≤K̂ on K̂ by M̂ ≤K̂ N̂ if and only if

M ≤K N . Let K̂ be the abstract class (K̂,≤K̂).

The next propositions are easy but conceptually interesting.

Proposition 2.3.7. Let K = (K,≤K) be an abstract class with τ := τ(K).

Let K̂ be a functorial expansion of K and let τ̂ := τ(K̂).

(1) K̂ is an abstract class.

(2) If every chain in K has an upper bound, then every chain in K̂ has an
upper bound.

(3) Galois types are the same in K and K̂: gtpK(ā1/A;N1) = gtpK(ā2/A;N2)

if and only if gtpK̂(ā1/A; N̂1) = gtpK̂(ā2/A; N̂2).

(4) Assume K is a µ-AEC and K̂ is a (< µ)-ary Morleyization of K. Then K̂

is a µ-AEC with LS(K̂) = LS(K) + |τ̂ |<µ.

(5) Let τ ⊆ τ̂ ′ ⊆ τ̂ . Then K̂ � τ̂ ′ := {M̂ � τ̂ ′ | M̂ ∈ K̂} is a functorial
expansion of K.

(6) If
̂̂
K is a functorial expansion of K̂, then

̂̂
K is a functorial expansion of

K.

Proof. All are straightforward. As an example, we show that if K is a µ-AEC,

K̂ is a (< µ)-ary functorial expansion of K, and 〈M̂i : i ∈ I〉 is a µ-directed system

in K̂, then letting M :=
⋃
i∈IMi, we have that

⋃
i∈I M̂i = M̂ (so in particular⋃

i∈I M̂i ∈ K̂). Let R be a relation symbol in τ̂ of arity α. Let ā ∈ α|M̂ |. Assume

M̂ |= R[ā]. We show
⋃
i∈I M̂i |= R[ā]. The converse is done by replacing R by ¬R,

and the proof with function symbols is similar. Since τ̂ is (< µ)-ary, α < µ. Since I
is µ-directed, ā ∈ α|Mj | for some j ∈ I. Since Mj ≤K M , the monotonicity axiom

implies M̂j ⊆ M̂ . Thus M̂j |= R[ā], and this holds for all j′ ≥ j. Thus by definition

of the union,
⋃
i∈I M̂i |= R[ā]. �

Remark 2.3.8. A word of warning: if K is an AEC and K̂ is a functorial

expansion of K, then K and K̂ are isomorphic as categories. In particular, any

directed system in K̂ has a colimit. However, if τ(K̂) is not finitary the colimit of
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a directed system in K̂ may not be the union: relations may need to contain more
elements.

2.3.2. Formulas and syntactic types. From now on until the end of the
section, we assume:

Hypothesis 2.3.9. K is an abstract class with τ := τ(K), κ is an infinite

cardinal, K̂ is an arbitrary (< κ)-ary functorial expansion of K with vocabulary

τ̂ := τ(K̂).

At the end of this section, we will specialize to the case when K̂ is the (< κ)-
Galois Morleyization of K. Recall from Section 2.2.2 that the set qf-Lκ,κ(τ̂) denotes
the quantifier-free Lκ,κ(τ̂) formulas.

Proposition 2.3.10. Let φ(x̄) be a quantifier-free Lκ,κ(τ̂) formula, M ∈ K,

and ā ∈M . If f : M → N , then M̂ |= φ[ā] if and only if N̂ |= φ[f(ā)].

Proof. Directly from the invariance and monotonicity properties of functorial
expansions. �

In general, Galois types (computed in K) and syntactic types (computed in K̂)
are different. However, Galois types are always at least as fine as quantifier-free
syntactic types (this is a direct consequence of Proposition 2.3.10 but we include a
proof for completeness).

Lemma 2.3.11. Let N1, N2 ∈ K, A ⊆ |N`| for ` = 1, 2. Let b̄` ∈ N`. If

gtp(b̄1/A;N1) = gtp(b̄2/A;N2), then tpqf-Lκ,κ(τ̂)(b̄1/A; N̂1) = tpqf-Lκ,κ(τ̂)(b̄2/A; N̂2).

Proof. By transitivity of equality, it is enough to show that if (b̄1, A,N1)Eat(b̄2, A,N2),

then tpqf-Lκ,κ(τ̂)(b̄1/A; N̂1) = tpqf-Lκ,κ(τ̂)(b̄2/A; N̂2). So assume (b̄1, A,N1)Eat(b̄2, A,N2).

Then there exists N ∈ K and f` : N` −→
A

N such that f1(b̄1) = f2(b̄2). Let φ(x̄)

be a quantifier-free Lκ,κ(τ̂) formula over A. Assume N̂1 |= φ[b̄1]. By Proposi-

tion 2.3.10, N̂ |= φ[f1(b̄1)], so N̂ |= φ[f2(b̄2)], so by Proposition 2.3.10 again,

N̂2 |= φ[b̄2]. Replacing φ by ¬φ, we get the converse, so tpqf-Lκ,κ(τ̂)(b̄1/A; N̂1) =

tpqf-Lκ,κ(τ̂)(b̄2/A; N̂2). �

Note that this used that the types were quantifier-free. We have justified the
following definition:

Definition 2.3.12. For a Galois type p, let ps be the corresponding quantifier-
free syntactic type in the functorial expansion. That is, if p = gtp(b̄/A;N), then

ps := tpqf-Lκ,κ(τ̂)(b̄/A; N̂).

Proposition 2.3.13. Let N ∈ K, A ⊆ |N |. Let α be an ordinal. The map

p 7→ ps from gSα(A;N) to Sαqf-Lκ,κ(τ̂)(A; N̂) (recall Definition 2.2.6) is a surjection.

Proof. If tpqf-Lκ,κ(τ̂)(b̄/A; N̂) = q ∈ Sαqf-Lκ,κ(τ̂)(A; N̂), then by definition(
gtp(b̄/A;N)

)s
= q. �

Remark 2.3.14. To investigate formulas with quantifiers, we could define a
different version of Galois types using isomorphisms rather than embeddings, and
remove the monotonicity axiom from the definition of a functorial expansion. As
we have no use for it here, we do not discuss this approach further.
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2.3.3. On when Galois types are syntactic. We have seen in Proposition
2.3.13 that p 7→ ps is a surjection, so Galois types are always at least as fine as
quantifier-free syntactic type in the expansion. It is natural to ask when they are

the same, i.e. when p 7→ ps is a bijection. When K̂ is the (< κ)-Galois Morleyization
of K (see Definition 2.3.3), we answer this using shortness and tameness (Definition
2.2.23). Note that we make no hypothesis on K. In particular, amalgamation is
not needed.

Theorem 2.3.15 (The semantic-syntactic correspondence). Assume K̂ is the
(< κ)-Galois Morleyization of K.

Let Γ be a family of Galois types. The following are equivalent:

(1) K is (< κ)-tame and short for Γ.
(2) The map p 7→ ps is a bijection from Γ onto Γs := {ps | p ∈ Γ}.

Proof.

• (1) implies (2): By Lemma 2.3.11, the map p 7→ ps with domain Γ is
well-defined and it is clearly a surjection onto Γs. It remains to see it is
injective. Let p, q ∈ Γ be distinct. If they do not have the same domain
or the same length, then ps 6= qs, so assume that A := dom p = dom q
and α := `(p) = `(q). Say p = gtp(b̄/A;N), q = gtp(b̄′/A;N ′). By
the tameness and shortness hypotheses, there exists A0 ⊆ A and I ⊆
α of size less than κ such that p0 := pI � A0 6= qI � A0 =: q0. Let
ā0 be an enumeration of A0, and let b̄0 := b̄ � I, b̄′0 := b̄′ � I. Let
p′0 := gtp(b̄0ā0/∅;N), and let φ := Rp′0(x̄0, ā0), where x̄0 is a sequence of

variables of type I. Since b̄0 realizes p0 in N , N̂ |= φ[b̄0], and since b̄′0
realizes q0 in N ′ and q0 6= p0, N̂ ′ |= ¬φ[b̄′0]. Thus φ(x̄0) ∈ ps, ¬φ(x̄0) ∈ qs.
By definition, φ(x̄0) /∈ q so ps 6= qs.

• (2) implies (1): Let p, q ∈ Γ be distinct with domain A and length α. Say

p = gtp(b̄/A;N), q = gtp(b̄′/A;N ′). By hypothesis, ps 6= qs so there
exists φ(x̄) over A such that (without loss of generality) φ(x̄) ∈ p but
¬φ(x̄) ∈ q. Let A0 := domφ, x̄0 := FV(φ) (note that A0 and x̄0 have
size strictly less than κ). Let b̄0, b̄′0 be the corresponding subsequences
of b̄ and b̄′ respectively. Let p0 := gtp(b̄0/A0;N), q0 := gtp(b̄′0/A0;N ′).
Then it is straightforward to check that φ ∈ ps0, ¬φ ∈ qs0, so ps0 6= qs0 and
hence (by Lemma 2.3.11) p0 6= q0. Thus A0 and I witness tameness and
shortness respectively.

�

Remark 2.3.16. The proof shows that (2) implies (1) is valid when K̂ is any
functorial expansion of K.

Corollary 2.3.17. Assume K̂ is the (< κ)-Galois Morleyization of K.

(1) K is fully (< κ)-tame and short if and only if for any M ∈ K the map
p 7→ ps from gS<∞(M) to S<∞qf-Lκ,κ(τ̂)(M) is a bijection12.

(2) K is (< κ)-tame if and only if for any M ∈ K the map p 7→ ps from
gS(M) to Sqf-Lκ,κ(τ̂)(M) is a bijection.

12We have set S<∞
qf- Lκ,κ(τ̂)

(M) :=
⋃
N≥KM

S<∞
qf- Lκ,κ(τ̂)

(M ; N̂). Similarly define

Sqf- Lκ,κ(τ̂)(M).
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Proof. By Theorem 2.3.15 applied to Γ :=
⋃
M∈K gS<∞(M) and Γ :=

⋃
M∈K gS(M)

respectively. �

Remark 2.3.18. For M ∈ K, p, q ∈ gS(M), say pE<κq if and only if p � A0 =
q � A0 for all A0 ⊆ |M | with |A0| < κ. Of course, if K is (< κ)-tame, then E<κ
is just equality. More generally, the proof of Theorem 2.3.15 shows that if K̂ is
the (< κ)-Galois Morleyization of K, then pE<κq if and only if ps = qs. Thus in
that case quantifier-free syntactic types in the Morleyization can be seen as E<κ-
equivalence classes of Galois types. Note that E<κ appears in the work of Shelah,
see for example [She99, Definition 1.8].

2.4. Order properties and stability spectrum

In this section, we start applying the semantic-syntactic correspondence (The-
orem 2.3.15) to prove new structural results about AECs. In the introduction, we
described a three-step general method to prove a result about AECs using syntactic
methods. In the proof of Theorem 2.4.15, Corollary 2.4.13 gives the first step, The-
orem 2.3.15 gives the second, while Facts 2.4.7 (AECs have a Hanf number for the
order property) and 2.2.25 (In tame AECs with amalgamation, stability behaves
reasonably well) are keys for the third step.

Throughout this section, we work with the (< κ)-Galois Morleyization of a
fixed AEC K:

Hypothesis 2.4.1.

(1) K is an abstract elementary class.
(2) κ is an infinite cardinal.

(3) K̂ is the (< κ)-Galois Morleyization of K (recall Definition 2.3.3). Set

τ̂ := τ(K̂).

2.4.1. Several order properties. The next definition is a natural syntactic
extension of the first-order order property. A related definition appears already in
[She72] and has been well studied (see for example [GS86b, GS]).

Definition 2.4.2 (Syntactic order property). Let α and µ be cardinals with

α < κ. A model M̂ ∈ K̂ has the syntactic α-order property of length µ if there

exists 〈āi : i < µ〉 inside M̂ with `(āi) = α for all i < µ and a quantifier-free

Lκ,κ(τ̂)-formula φ(x̄, ȳ) such that for all i, j < µ, M̂ |= φ[āi, āj ] if and only if i < j.

Let β ≤ κ be a cardinal. M̂ has the syntactic (< β)-order property of length

µ if it has the syntactic α-order property of length µ for some α < β. M̂ has the
syntactic order property of length µ if it has the syntactic (< κ)-order property of
length µ.

K̂ has the syntactic α-order of length µ if some M̂ ∈ K̂ has it. K̂ has the
syntactic order property if it has the syntactic order property for every length.

We emphasize that the syntactic order property is always considered inside the

Galois Morleyization K̂ and must be witnessed by a quantifier-free formula. Also,
since any such formula has fewer than κ free variables, nothing would be gained by
defining the (α)-syntactic order property for α ≥ κ. Thus we talk of the syntactic
order property instead of the (< κ)-syntactic order property.

Arguably the most natural semantic definition of the order property in AECs
appears in [She99, Definition 4.3].
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Definition 2.4.3. Let α, κ, and µ be cardinals. A model M ∈ K has the
Galois (α, κ)-order property of length µ if there exists 〈āi : i < µ〉 inside M with
`(āi) = α for all i < µ and a set A ⊆ |N | with |A| ≤ κ such that for any i0 < j0 < µ
and i1 < j1 < µ, gtp(āi0 āj0/A;N) 6= gtp(āj1 āi1/A;N).

When κ = 0 (as will be the case in this chapter), we drop it. We usually
drop the “Galois” and define variations such as “K has the α-order property” as
in Definition 2.4.2.

Remark 2.4.4. If M has the (α, κ)-order property of length µ, then it has the
(α+ κ)-order property of length µ.

Remark 2.4.5. For T a first-order theory and K its corresponding AEC of
models, the following are equivalent:

(1) T is unstable.
(2) K has the (α, 0)-order property, for some α < ℵ0.
(3) K has the (α, κ)-order property, for some cardinals α and κ.

Notice that the definition of the Galois α-order property is more general than
that of the syntactic α-order property, since α is not required to be less than κ.
However the next result shows that the two properties are equivalent when α < κ.
Notice that this does not use any tameness.

Proposition 2.4.6. Let α, µ, and λ be cardinals with α < κ. Let N ∈ K.

(1) If N̂ has the syntactic α-order property of length µ, then N has the α-
order property of length µ.

(2) Conversely, let χ := | gSα+α(∅)|, and assume that µ ≥
(
2λ+χ

)+
. If N

has the α-order property of length µ, then N̂ has the syntactic α-order
property of length λ.

In particular, K has the α-order property if and only if K̂ has the syntactic
α-order property.

Proof.

(1) This is a straightforward consequence of Proposition 2.3.1013.
(2) Let 〈āi : i < µ〉 witness that N has the Galois α-order property of

length µ. By the Erdős-Rado theorem used on the coloring (i < j) 7→
gtp(āiāj/∅;N), we get that (without loss of generality), 〈āi : i < λ〉 is such

that whenever i < j, gtp(āiāj/∅;N) = p ∈ gSα+α(∅). But then (since by
assumption gtp(āiāj/∅;N) 6= gtp(āj āi/∅;N)), φ(x̄, ȳ) := Rp(x̄, ȳ) wit-

nesses that N̂ has the syntactic α-order property of length λ.

�

We will see later (Theorem 2.4.15) that assuming some tameness, even when
α ≥ κ, the α-order property implies the syntactic order property.

In the next section, we heavily use the assumption of no syntactic order property
of length κ. We now look at how that assumption compares to the order property
(of arbitrary long length). Note that Proposition 2.4.6 already tells us that the
(< κ)-order property implies the syntactic order property of length κ. To get an
equivalence, we will assume κ is a fixed point of the Beth function. The key is:

13We are using that everything in sight is quantifier-free. Note that this part works for any

functorial expansion K̂ of K.
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Fact 2.4.7. Let α be a cardinal. If K has the α-order property of length µ for
all µ < h(α+ LS(K)), then K has the α-order property.

Proof. By the same proof as [She99, Claim 4.5.3]. �

Corollary 2.4.8. Assume iκ = κ > LS(K). Then K̂ has the syntactic order
property of length κ if and only if K has the (< κ)-order property.

Proof. If K̂ has the syntactic order property of length κ, then for some α < κ,

K̂ has the syntactic α-order property of length κ, and thus by Proposition 2.4.6 the
α-order property of length κ. Since κ = iκ, h(|α|+ LS(K)) < κ, so by Fact 2.4.7,
K has the α-order property.

Conversely, if K has the (< κ)-order property, Proposition 2.4.6 implies that

K̂ has the syntactic order property, so in particular the syntactic order property of
length κ. �

For completeness, we also discuss the following semantic variation of the syntac-
tic order property of length κ that appears in [BG, Definition 4.2] (but is adapted
from a previous definition of Shelah, see there for more background):

Definition 2.4.9. For κ > LS(K), K has the weak κ-order property if there
are M ∈ K<κ, N ≥K M , types p 6= q ∈ gS<κ(M), and sequences 〈āi : i < κ〉,
〈b̄i : i < κ〉 from N so that for all i, j < κ:

(1) i ≤ j implies gtp(āib̄j/M ;N) = p.
(2) i > j implies gtp(āib̄j/M ;N) = q.

Lemma 2.4.10. Let κ > LS(K).

(1) If K has the (< κ)-order property, then K has the weak κ-order property.

(2) If K has the weak κ-order property, then K̂ has the syntactic order prop-
erty of length κ.

In particular, if κ = iκ, then the weak κ-order property, the (< κ)-order
property of length κ, and the (< κ)-order property are equivalent.

Proof.

(1) Assume K has the (< κ)-order property. To see the weak order property,
let α < κ be such that K has the α-order property. Fix an N ∈ K such
that N has a long-enough α-order property. Pick any M ∈ K<κ with
M ≤K N . By using the Erdős-Rado theorem twice, we can assume we
are given 〈c̄i : i < κ〉 such that whenever i < j < κ, gtp(c̄ic̄j/M ;N) = p,
and gtp(c̄j c̄i/M ;N) = q, for some p 6= q ∈ gS(M).

For l < κ, let jl := 2l, and kl := 2l + 1. Then jl, kl < κ, and l ≤ l′

implies jl < kl′ , whereas l > l′ implies jl > kl′ . Thus the sequences
defined by āl := c̄jl , b̄l := c̄kl are as required.

(2) Assume K has the weak κ-order property and let M,N, p, q, 〈āi : i < κ〉,
〈b̄i : i < κ〉 witness it. For i < κ, Let c̄i := āib̄i and φ(x̄1x̄2; ȳ1ȳ2) :=

Rp(ȳ1, x̄2). This witnesses the syntactic order property of length κ in K̂.

The last sentence follows from Proposition 2.4.6 and Corollary 2.4.8. �
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2.4.2. Order property and stability. We now want to relate stability in
terms of the number of types (see Definition 2.2.24) to the order property and use
this to find many stability cardinals.

Note that stability in K (in terms of Galois types, see Definition 2.2.24) coin-

cides with syntactic stability in K̂ given enough tameness and shortness (see Theo-
rem 2.3.15). In general, they could be different, but by Proposition 2.3.10, stability
always implies syntactic stability (and so syntactic unstability implies unstability).
This contrasts with the situation with the order properties, where the syntactic and
regular order property are equivalent without tameness (see Proposition 2.4.6).

The basic relationship between the order property and stability is given by:

Fact 2.4.11. If K has the α-order property and µ ≥ |α| + LS(K), then K is

not α-stable in µ. If in addition α < κ, then K̂ is not even syntactically α-stable
in µ.

Proof. [She99, Claim 4.8.2] is the first sentence. The proof (see Fact 3.5.12)
generalizes (using the syntactic order property) to get the second sentence. �

This shows that the order property implies unstability and we now work towards
a syntactic converse. The key is [She09b, Theorem V.A.1.19], which shows that
if a model does not have the (syntactic) order property of a certain length, then it
is (syntactically) stable in certain cardinals. Here, syntactic refers to Shelah’s very
general context, where any subset ∆ of formulas from any abstract logic is allowed.
Shelah assumes that the vocabulary is finitary but the proof goes through just as
well with an infinitary vocabulary (the proof only deals with formulas, which are
allowed to be infinitary). Thus specializing the result to the context of this chapter
(working with the logic Lκ,κ(τ̂) and ∆ = qf-Lκ,κ(τ̂)), we obtain:

Fact 2.4.12. Let N̂ ∈ K̂. Let α < κ. Let χ ≥ (|τ̂ | + 2)<κ be a cardinal. If

N̂ does not have the syntactic order property of length χ+, then whenever λ =

λχ + i2(χ), N̂ is (syntactically) (< κ)-stable in λ.

The next corollary does not need any amalgamation or tameness. Intuitively,
this is because every property involved ends up being checked inside a single model

(for example, K̂ syntactically stable in some cardinal means that all of its models
are syntactically stable in the cardinal).

Corollary 2.4.13. The following are equivalent:

(1) For every κ0 < κ and every α < κ, K̂ is syntactically α-stable in some
cardinal greater than or equal to LS(K) + κ0.

(2) K does not have the (< κ)-order property.
(3) There exist14 cardinals µ and λ0 with µ ≤ λ0 < h∗(κ + LS(K)+) (recall

Definition 2.2.2) such that K̂ is syntactically (< κ)-stable in any λ ≥ λ0

with λ<µ = λ. In particular, K̂ is syntactically (< κ)-stable.

Proof. (3) says in particular that K̂ is syntactically (< κ)-stable in a proper
class of cardinals, so it clearly implies (1). (1) implies (2): We prove the contra-
positive. Assume that K has the (< κ)-order property. In particular, K has the
(< κ)-order property of length h(κ + LS(K)). By definition, this means that for

14The cardinal µ is closely related to the local character cardinal κ̄ for nonsplitting. See for
example [GV06b, Theorem 4.13].
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some α < κ, K has the α-order property of length h(κ + LS(K)). By Fact 2.4.7,

K has the α-order property. By Fact 2.4.11, K̂ is not syntactically α-stable in any

cardinal above LS(K) + |α| (that is, for each λ ≥ LS(K) + |α|, there is N̂ ∈ K̂ such

that N̂ is not syntactically α-stable in λ). Thus taking κ0 := |α|, we get that (1)
fails.

Finally (2) implies (3). Assume K does not have the (< κ)-order property. By
the contrapositive of Fact 2.4.7, for each α < κ, there exists µα < h(|α|+LS(K)) ≤
h∗(κ + LS(K)+) such that K does not have the α-order property of length µα.

Since 2<(κ+LS(K)+) < h∗(κ + LS(K)+), we can without loss of generality assume

that 2<(κ+LS(K)+) ≤ µα for all α < κ. Let χ := supα<κ µα. Then K does not have

the (< κ)-order property of length χ. Now if κ is a successor (say κ = κ+
0 ), then

χ = µκ0
< h(κ0) ≤ h∗(κ + LS(K)+). Otherwise h∗(κ + LS(K)+) = h(κ + LS(K))

and cf h(κ+ LS(K)) = (2κ+LS(K))+ > κ, so χ < h∗(κ + LS(K)+). Let µ := χ+

and λ0 := i2(χ). It is easy to check that µ ≤ λ0 < h∗(κ + LS(K)+). Finally,

note that by Remark 2.3.4, |τ̂ | ≤ 2<(κ+LS(K)+), so χ ≥ (|τ̂ | + 2)<κ. Now apply

Fact 2.4.12 to each N̂ ∈ K̂ (note that by definition of λ0, if λ = λχ ≥ λ0, then
λ = λχ + i2(χ)). �

Remark 2.4.14. Shelah [Shec, Theorem 3.3] claims (without proof) a version
of (1) implies (3).

Assuming (< κ)-tameness for types of length less than κ, we can of course
convert the above result to a statement about Galois types. To replace “(< κ)-
stable” by just “stable” (recall that this means stable for types of length one) and
also get away with only tameness for types of length one, we will use amalgamation
together with Fact 2.2.25.

Theorem 2.4.15. Assume K has amalgamation and is (< κ)-tame. The fol-
lowing are equivalent:

(1) K is stable in some cardinal greater than or equal to LS(K) + κ− (recall
Definition 2.2.1).

(2) K does not have the order property.
(3) K does not have the (< κ)-order property.
(4) There exist cardinals µ and λ0 with µ ≤ λ0 < h∗(κ + LS(K)+) (recall

Definition 2.2.2) such that K is stable in any λ ≥ λ0 with λ<µ = λ.

In particular, K is stable if and only if K does not have the order property.

Proof. Clearly, (4) implies (1) and (2) implies (3). (1) implies (2): If K has
the α-order property, then by Fact 2.4.11 it cannot be α-stable in any cardinal
above LS(K) + |α|. By Fact 2.2.25.(3), K is not stable in any cardinal greater than
or equal to κ−+LS(K), so (1) fails. Finally, (3) implies (4) by combining Corollary
2.4.13 and Corollary 2.3.17. �

Proof of Theorem 2.0.2. Set κ := LS(K)+ in Theorem 2.4.15. Note that
in that case κ− = LS(K) (Definition 2.2.1) and h∗(κ+ LS(K)+) = h∗(LS(K)+) =
h(LS(K)) by Definition 2.2.2. �

2.5. Coheir

We look at the natural generalization of coheir (introduced in [LP79] for first-
order logic) to the context of this chapter. A definition of coheir for classes of models
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of an Lκ,ω theory was first introduced in [MS90] and later adapted to general AECs
in [BG]. We give a slightly more conceptual definition here and show that coheir
has several of the basic properties of forking in a stable first-order theory. This
improves on [BG] which assumed that coheir had the extension property.

Hypothesis 2.5.1.

(1) K0 is an AEC with amalgamation.
(2) κ > LS(K0) is a fixed cardinal.

(3) K :=
(
K0
)κ-sat

is the class of κ-saturated models of K0.

(4) K̂ is the (< κ)-Galois Morleyization of K. Set τ̂ := τ(K̂).

The reader can see K̂ as the class in which coheir is computed syntactically,
while K is the class in which it is used semantically.

For the sake of generality, we do not assume stability or tameness yet. We
will do so in parts (2) and (3) of Theorem 2.5.15, the main theorem of this section.
After the proof of Theorem 2.5.15, we give a proof of Theorem 2.0.3 in the abstract.

Note that by Remark 2.2.27, K is a κr-AEC (see Definition 2.2.14). Moreover
by saturation the ordering has some elementarity. More precisely, let Σ1(Lκ,κ(τ̂))
denote the set of Lκ,κ(τ̂)-formulas of the form ∃x̄ψ(x̄; ȳ), where ψ is quantifier-free.
We then have:

Proposition 2.5.2. If M,N ∈ K and M ≤K N , then M̂ �Σ1(Lκ,κ(τ̂)) N̂ .

Proof. Assume that N̂ |= ∃x̄ψ(x̄; ā), where ā ∈ <κ|M | and ψ is a quantifier-

free Lκ,κ(τ̂)-formula. Let A be the range of ā. Let b̄ ∈ <κ|N | be such that N̂ |=
ψ[b̄, ā]. Since M is κ-saturated, there exists b̄′ ∈ <κ|M | such that gtp(b̄′/A;M) =

gtp(b̄/A;N). Now it is easy to check using Proposition 2.3.11 that M̂ |= ψ[b̄′; ā]. �

Also note that if κ is suitably chosen and K0 is stable, then we have a strong

failure of the order property in K̂:

Proposition 2.5.3. If κ = iκ and K0 is stable (in unboundedly many cardi-

nals, see Definition 2.2.24), then K̂ does not have the syntactic order property of
length κ.

Proof. By Fact 2.2.25, K0 is (< κ)-stable in unboundedly many cardinals.
By Fact 2.4.11, K0 does not have the (< κ)-order property.

Let K̂0 be the (< κ)-Galois Morleyization of K0. By Corollary 2.4.8, K̂0 does
not have the syntactic order property of length κ.

Now note that Galois types are the same in K and K0: for N ∈ K, A ⊆ |N |,
and b̄, b̄′ ∈ <∞|N |, gtpK0(b̄/A;N) = gtpK0(b̄′/A;N) if and only if gtpK(b̄/A;N) =
gtpK(b̄′/A;N)15. To see this, use amalgamation together with the fact that every
model in K0 can be ≤K-extended to a model in K.

It follows that K̂ ⊆ K̂0. By definition of the syntactic order property, this

means that also K̂ does not have the syntactic order property of length κ, as
desired. �

Definition 2.5.4. Let N̂ ∈ K̂, A ⊆ |N̂ |, and p be a set of formulas (in some

logic) over N̂ .

15Recall that gtpK denotes Galois types as computed in K and gtpK0 Galois types computed

in K0 (see Definition 2.2.17).
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(1) p is a (< κ)-heir over A if for any formula φ(x̄; b̄) ∈ p over A, there exists
ā ∈ <κA such that φ(x̄; ā) ∈ p � A.

(2) p is a (< κ)-coheir over A in N̂ if for any φ(x̄) ∈ p there exists ā ∈ <κA

such that N̂ |= φ[ā]. When N̂ is clear from context, we drop it.

Remark 2.5.5. Here, κ is fixed (Hypothesis 2.5.1), so we will just remove it
from the notation and simply say that p is a (co)heir over A.

Remark 2.5.6. In this section, p will be tpqf-Lκ,κ(τ̂)(c̄/B; N̂) for a fixed B such

that A ⊆ B ⊆ |N̂ |.

Remark 2.5.7. Working in N̂ ∈ K̂, let c̄ be a permutation of c̄′, and A,B be

sets. Then tpqf-Lκ,κ(τ̂)(c̄/B; N̂) is a coheir over A if and only if tpqf-Lκ,κ(τ̂)(c̄
′/B; N̂)

is a coheir over A. Similarly for heir. Thus we can talk about tpqf-Lκ,κ(τ̂)(C/B; N̂)

being a heir/coheir over A without worrying about the enumeration of C.

We will mostly look at coheir, but the next proposition tells us how to express
one in terms of the other.

Proposition 2.5.8. tpqf-Lκ,κ(τ̂)(ā/Ab̄; N̂) is a heir overA if and only if tpqf-Lκ,κ(τ̂)(b̄/Aā; N̂)
is a coheir over A.

Proof. Straightforward. �

It is convenient to see coheir as an independence relation:

Notation 2.5.9. WriteA
N

^
M
B ifM,N ∈ K, M ≤K N , and tpqf-Lκ,κ(τ̂)(A/|M |∪

B; N̂) is a coheir over |M | in N̂ . We also say16 that gtp(A/B;N) is a coheir over
M .

Remark 2.5.10. The definition of ^ depends on κ but we hide this detail.

Interestingly, Definition 2.5.4 is equivalent to the semantic definition of Boney
and Grossberg [BG, Definition 3.2]:

Proposition 2.5.11. Let N ∈ K. Then p ∈ gS<∞(B;N) is a coheir over
M ≤K N if and only if for any I ⊆ `(p) and any B0 ⊆ B, if |I0|+ |B0| < κ, pI � B0

is realized in M .

Proof. Straightforward �

For completeness, we show that the definition of heir also agrees with the
semantic definition of Boney and Grossberg [BG, Definition 6.1].

Proposition 2.5.12. Let M0 ≤K M ≤K N be in K, ā ∈ <∞|N̂ |.
Then tpqf-Lκ,κ(τ̂)(ā/M ; N̂) is a heir over M0 if and only if for all (< κ)-sized

I ⊆ `(ā) and (< κ)-sized M−0 ≤K M0, M−0 ≤K M− ≤K M (where we also
allow M−0 to be empty), there is f : M− −−→

M−0

M0 such that gtp(ā/M ;N) extends

f(gtp((ā � I)/M−;N)).

16It is easy to check this does not depend on the choice of representatives.
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Proof. Assume first tpqf-Lκ,κ(τ̂)(ā/M ; N̂) is a heir over M0 and let I ⊆ `(ā),

M−0 ≤K M− ≤K M be (< κ)-sized, with M−0 possibly empty. Let p := gtp((ā �
I)/M−;N). Let b̄0 be an enumeration of M−0 and let b̄ be an enumeration of
|M−|\|M−0 |. Let q := gtp((ā � I)b̄0b̄/∅;N). Consider the formula φ(x̄; b̄; b̄0) :=

Rq(x̄; b̄; b̄0), where x̄ are the free variables in tpqf-Lκ,κ(τ̂)(ā/M ; N̂) and we assume

for notational simplicity that the I-indiced variables are picked out by Rq(x̄, b̄, b̄0).

Then φ is in tpqf-Lκ,κ(τ̂)(ā/M ; N̂). By the syntactic definition of heir, there is c̄ ∈
<κ|M0| such that φ(x̄; c̄; b̄0) is in tpqf-Lκ,κ(τ̂)(ā/M0; N̂). By definition of the (< κ)-

Galois Morleyization this means that gtp((ā � I)b̄b̄0/∅;N) = gtp((ā � I)c̄b̄0/∅;N).
By definition of Galois types and amalgamation (see Fact 2.2.18), there exists

N ′ ≥K N and g : N → N ′ such that g((ā � I)b̄b̄0) = (ā � I)c̄b̄0. Let f :=
g � M−. Then from the definitions of b̄0, b̄, and c̄, we have that f : M− −−→

M−0

M0. Moreover, f(gtp((ā � I)/M−;N)) = gtp(ā � I/f [M−];N), which is clearly
extended by gtp(ā/M ;N).

The converse is similar. �

Remark 2.5.13. The notational difficulties encountered in the above proof and
the complexity of the semantic definition of heir show the convenience of using a
syntactic notation rather than working purely semantically.

We now investigate the properties of coheir. For the convenience of the reader,
we explicitly prove the uniqueness property (we have to slightly adapt the proof of
(U) from [MS90, Proposition 4.8]). For the others, they are either straightforward
or we can just quote.

Lemma 2.5.14. Let M,N,N ′ ∈ K with M ≤K N , M ≤K N ′. Assume M̂ does
not have the syntactic order property of length κ. Let ā ∈ <∞|N |, ā′ ∈ <∞|N ′|,
b̄ ∈ <∞|M | be given such that:

(1) tpqf-Lκ,κ(τ̂)(ā/M ; N̂) = tpqf-Lκ,κ(τ̂)(ā
′/M ; N̂ ′)

(2) tpqf-Lκ,κ(τ̂)(ā/Mb̄; N̂) is a coheir over M .

(3) tpqf-Lκ,κ(τ̂)(b̄/Mā′; N̂ ′) is a coheir over M .

Then tpqf-Lκ,κ(τ̂)(ā/Mb̄; N̂) = tpqf-Lκ,κ(τ̂)(ā
′/Mb̄; N̂ ′).

Proof. We suppose not and prove that M̂ has the syntactic order property

of length κ. Assume that tpqf-Lκ,κ(τ̂)(ā/Mb̄; N̂) 6= tpqf-Lκ,κ(τ̂)(ā
′/Mb̄; N̂ ′) and pick

φ(x̄, ȳ) a formula over M witnessing it:

(1) N̂ |= φ[ā; b̄] but N̂ ′ |= ¬φ[ā′; b̄]

(note that we can assume without loss of generality that `(ā) + `(b̄) < κ).
Define by induction on i < κ āi, b̄i in M such that for all i, j < κ:

(1) M̂ |= φ[āi, b̄].

(2) M̂ |= φ[āi, b̄j ] if and only if i ≤ j.
(3) N̂ |= ¬φ[ā, b̄i].

Note that since b̄i ∈ <κ|M |, (3) is equivalent to N̂ ′ |= ¬φ[ā′, b̄i].
This is enough: Then χ(x̄1, ȳ1, x̄2, ȳ2) := φ(x̄1, ȳ2) ∧ x̄1ȳ1 6= x̄2ȳ2 together with

the sequence 〈āib̄i : i < κ〉 witness the syntactic order property of length κ.
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This is possible: Suppose that āj , b̄j have been defined for all j < i. Note that
by the induction hypothesis and (1) we have:

N̂ |=
∧
j<i

φ[āj , b̄] ∧
∧
j<i

¬φ[ā, b̄j ] ∧ φ[ā, b̄]

Since tpqf-Lκ,κ(τ̂)(ā/Ab̄; N̂) is a coheir over M , there is ā′′ ∈ <κ|M | such that:

N̂ |=
∧
j<i

φ[āj , b̄] ∧
∧
j<i

¬φ[ā′′, b̄j ] ∧ φ[ā′′, b̄]

Note that all the data in the equation above is in M , so as M ≤K N , the

monotonicity axiom of functorial expansions implies M̂ ⊆ N̂ , so M̂ also models

the above. By monotonicity again, N̂ ′ models the above. We also know that

N̂ ′ |= ¬φ[ā′, b̄]. Thus we have:

N̂ ′ |=
∧
j<i

φ[āj , b̄] ∧
∧
j<i

¬φ[ā′′, b̄j ] ∧ φ[ā′′, b̄] ∧ ¬φ[ā′, b̄]

Since tpqf-Lκ,κ(τ̂)(b̄/Mā′; N̂) is a coheir over M , there is b̄′′ ∈ <κ|M | such that:

N̂ ′ |=
∧
j<i

φ[āj , b̄
′′] ∧

∧
j<i

¬φ[ā′′, b̄j ] ∧ φ[ā′′, b̄′′] ∧ ¬φ[ā′, b̄′′]

Let āi := ā′′, b̄i := b̄′′. It is easy to check that this works. �

Theorem 2.5.15 (Properties of coheir).

(1) (a) Invariance: If f : N ∼= N ′ and A
N

^
M
B, then f [A]

N ′

^
f [M ]

f [B].

(b) Monotonicity: If A
N

^
M
B and M ≤K M ′ ≤K N0 ≤K N , A0 ⊆ A,

B0 ⊆ B, |M ′| ⊆ B, A0 ∪B0 ⊆ |N0|, then A0

N0

^
M ′
B0.

(c) Normality: If A
N

^
M
B, then A ∪ |M |

N

^
M
B ∪ |M |.

(d) Disjointness: If A
N

^
M
B, then A ∩B ⊆ |M |.

(e) Left and right existence: A
N

^
M
M and M

N

^
M
B.

(f) Left and right (< κ)-set-witness: A
N

^
M
B if and only if for all A0 ⊆ A

and B0 ⊆ B of size less than κ, A0

N

^
M
B0.

(g) Strong left transitivity: If M1

N

^
M0

B and A
N

^
M1

B, then A
N

^
M0

B.

(2) If K̂ does not have the syntactic order property of length κ, then17:

(a) Symmetry: A
N

^
M
B if and only if B

N

^
M
A.

17Note that (by Proposition 2.5.3) this holds in particular if κ = iκ and K0 is stable.
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(b) Strong right transitivity: If A
N

^
M0

M1 and A
N

^
M1

B, then A
N

^
M0

B.

(c) Set local character: For all cardinals α, all p ∈ gSα(M), there exists

M0 ≤K M with ‖M0‖ ≤ µα := (α+ 2)
<κr such that p is a coheir

over M0.
(d) Syntactic uniqueness: If M0 ≤K M ≤K N` for ` = 1, 2, |M0| ⊆ B ⊆
|M |. q` ∈ S<∞qf-Lκ,κ(τ̂)(B; N̂`), q1 � M0 = q2 � M0 and q` is a coheir

over M0 in N̂` for ` = 1, 2, then q1 = q2.

(e) Syntactic stability: For α a cardinal, K̂ is syntactically α-stable in
all λ ≥ LS(K0) such that λµα = λ.

(3) If K̂ does not have the syntactic order property of length κ and K0 is
(< κ)-tame and short for types of length less than α, then:
(a) Uniqueness: If p, q ∈ gS<α(M) are coheir over M0 ≤K M and p �

M0 = q �M0, then p = q.
(b) Stability: For all β < α, K0 is β-stable in all λ ≥ LS(K0) such that

λµβ = λ.

Proof. Observe that (except for part (3)), one can work in K̂ and prove the
properties there using purely syntactic methods (so amalgamation is never needed
for example). More specifically, (1) is straightforward. As for (2), symmetry is ex-
actly as in18 [Pil82, Proposition 3.1] (Lemma 2.5.14 is not needed here), strong right
transitivity follows from strong left transitivity and symmetry, syntactic uniqueness
is by symmetry and Lemma 2.5.14, and set local character is as in the proof of (B)µ
in [MS90, Proposition 4.8]. Note that the proofs in [MS90] and [Pil82] use that
the ordering has some elementarity. In our case, this is given by Proposition 2.5.2.

The proof of stability is as in the first-order case. To get part (3), use the
translation between Galois and syntactic types (Theorem 2.3.15). �

Proof of Theorem 2.0.3. If the hypotheses of Theorem 2.0.3 in the abstract
hold for the AEC K0, then the hypothesis of each parts of Theorem 2.5.15 hold
(see Proposition 2.5.3). �

Remark 2.5.16. We can give more localized version of some of the above
results. For example in the statement of the symmetry property it is enough to

assume that M̂ does not have the syntactic order property of length κ. We could
also have been more precise and state the uniqueness property in terms of being
(< κ)-tame and short for {q1, q2}, where q1, q2 are the two Galois types we are
comparing.

Remark 2.5.17. We can use Theorem 2.5.15.(2e) to get another proof of the
equivalence between (syntactic) stability and no order property in AECs.

Remark 2.5.18. The extension property (given p ∈ gS<∞(M), N ≥K M , p
has an extension to N which is a coheir over M) seems more problematic. In
[BG], Boney and Grossberg simply assumed it (they also showed that it followed
from κ being strongly compact [BG, Theorem 8.2(1)]). Here we do not need to

18Note that a proof of symmetry of nonforking from no order property already appears in
[She78], but Pillay’s proof for coheir is the one we use here.
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assume it but are still unable to prove it. In Chapter 6, we prove it assuming a
superstability-like hypothesis and more locality19.

19A word of caution: In [HL02, Section 4], the authors give an example of an ω-stable class
that does not have extension. However, the extension property they consider is over all sets, not

only over models.



CHAPTER 3

Canonical forking in AECs

This chapter is based on [BGKV16] and is joint work with Will Boney, Rami
Grossberg, and Alexei Kolesnikov.

Abstract

Boney and Grossberg [BG] proved that every nice AEC has an independence
relation. We prove that this relation is unique: in any given AEC, there can exist
at most one independence relation that satisfies existence, extension, uniqueness
and local character. While doing this, we study more generally the properties of
independence relations for AECs and also prove a canonicity result for Shelah’s
good frames. The usual tools of first-order logic (like the finite equivalence relation
theorem or the type amalgamation theorem in simple theories) are not available
in this context. In addition to the loss of the compactness theorem, we have the
added difficulty of not being able to assume that types are sets of formulas. We
work axiomatically and develop new tools to understand this general framework.

3.1. Introduction

Let K be an abstract elementary class (AEC) which satisfies amalgamation,
joint embedding, and which does not have maximal models. These assumptions
allow us to work inside its monster model C. The main results of this chapter are:

(1) There is at most one independence relation satisfying existence, extension,
uniqueness and local character (Corollary 3.5.18).

(2) Under some reasonable conditions, the coheir relation of [BG] has local
character and is canonical (Theorems 3.6.3 and 3.6.6).

(3) Shelah’s weakly successful good λ-frames are canonical: an AEC can have
at most one such frame (Theorem 3.6.12).

To understand the relevance of the results, some history is necessary.
In 1970, Shelah discovered the notion “tp(ā/B) forks over A” (for A ⊆ B),

a generalization of Morley’s rank in ω-stable theories. Its basic properties were
published in [She78].

In 1974, Lascar [Las76, Theorem 4.9] established that for superstable theories,
any relation between ā, B, A satisfying the basic properties of forking is Shelah’s
forking relation. In 1984, Harnik and Harrington [HH84, Theorem 5.8] extended
Lascar’s abstract characterization to stable theories. Their main device was the
finite equivalence relation theorem. In 1997, Kim and Pillay [KP97, Theorem 4.2]
published an extension to simple theories, using the independence theorem (also
known as the type-amalgamation theorem).

This chapter deals with the characterization of independence relations in var-
ious non-elementary classes. An early attempt on this problem can be found in

53
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Kolesnikov’s [Kol05], which focuses on some important particular cases (e.g. ho-
mogeneous model theory and classes of atomic models). We work in a more general
context, and only rely on the abstract properties of independence. We cannot as-
sume that types are sets of formulas, so work only with Galois (i.e. orbital) types.

In [She87b, Chapter II] (which later appeared as [She09b, Chapter V.B]),
Shelah gave the first axiomatic definition of independence in AECs, and showed
that it generalized first-order forking. In [She09a, Chapter II], Shelah gave a
similar definition, localized to models of a particular size λ (the so-called “good λ-
frame”). Shelah proved that a good frame existed, under very strong assumptions
(typically, the class is required to be categorical in two consecutive cardinals).

Recently, working with a different set of assumptions (the existence of a monster
model and tameness), Boney and Grossberg [BG] gave conditions (namely a form
of Galois stability and the extension property for coheir) under which an AEC has
a global independence relation. This showed that one could study independence
in a broad family of AECs. The chapter is strongly motivated by both [She09a,
Chapter II] and [BG].

The chapter is structured as follows. In Section 3.2, we fix our notation, and
review some of the basic concepts in the theory of AECs. In Section 3.3, we
introduce independence relations, the main object of study of this chapter, as well
as some important properties they could satisfy, such as extension and uniqueness.
We consider two examples: coheir and nonsplitting.

In Section 3.4, we prove a weaker version of (1) (Corollary 3.4.14) that has
some extra assumptions. This is the core of the chapter.

In Section 3.5, we go back to the properties listed in Section 3.3 and investigate
relations between them. We show that some of the hypotheses in Corollary 3.4.14
are redundant. For example, we show that the symmetry and transitivity properties
follow from existence, extension, uniqueness, and local character. We conclude by
proving (1). Finally, in Section 3.6, we apply our methods to the coheir relation
considered in [BG] and to Shelah’s good frames, proving (2) and (3).

While we work in a more general framework, the basic results of Sections 3.2-3.3
often have proofs that are very similar to their first-order analogs. Readers feeling
confident in their knowledge of first-order nonforking can start reading directly from
Section 3.4 and refer back to Sections 3.2-3.3 as needed.

An early version of this chapter was circulated already in early 2014. Since
that time, Theorem 3.5.13 has been used to build a good frame from amalgama-
tion, tameness, and categoricity in a suitable cardinal (Chapter 4). We can also
use it to deduce a certain symmetry property for nonsplitting in classes with amal-
gamation categorical in a high-enough cardinal (Chapter 10), with consequences
on the uniqueness of limit models. The question of canonicity of forking in more
local setups (e.g. when the independence relation is only defined for certain types
over models of a certain size) is pursued further in Chapter 6. The latter preprint
addresses Questions 3.5.5, 3.6.13, 3.7.1, and 3.7.2 posed in this chapter.

3.2. Notation and prerequisites

We assume the reader is familiar with abstract elementary classes and the basic
related concepts. We briefly review what we need in this chapter, and set up some
notation.
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Hypothesis 3.2.1. We work in a fixed abstract elementary class K = (K,≤K)
which satisfies amalgamation and joint embedding, and has no maximal models.

3.2.1. The monster model.

Definition 3.2.2. Let µ > LS(K) be a cardinal. For models M ≤K N , we say
N is a µ-universal extension of M if for any M ′ ≥K M , with ‖M ′‖ < µ, M ′ can
be embedded inside N over M , i.e. there exists a K-embedding f : M ′ → N fixing
M pointwise. We say N is a universal extension of M if it is a ‖M‖+-universal
extension of M .

Definition 3.2.3. Let µ > LS(K) be a cardinal. We say a model N is µ-model
homogeneous if for any M ≤K N , N is a µ-universal extension of M . We say
M is µ-saturated if it is µ-model homogeneous (this is equivalent to the classical
definition by [She01a, Lemma 0.26]).

Definition 3.2.4 (Monster model). Since K has amalgamation and joint em-
bedding properties and has no maximal models, we can build a strictly increasing
continuous chain (Ci)i∈OR, where for all i, Ci+1 is universal over Ci. We call the
union C :=

⋃
i∈OR Ci the monster model1 of K.

Any model of K can be embedded inside the monster model, so we will adopt
the convention that any set or model we consider is a subset or a substructure of
C.

We write AutA(C) for the set of automorphisms of C fixing A pointwise. When
A = ∅, we omit it.

We will use the following without comments.

Remark 3.2.5. Let M , N be models. By our convention, M ≤K C and N ≤K

C, thus by the coherence axiom, M ⊆ N implies M ≤K N .

Definition 3.2.6. Let I be an index set. Let Ā := (Ai)i∈I , B̄ := (Bi)i∈I
be sequences of sets, and let C be a set. We write f : Ā ≡C B̄ to mean that
f ∈ AutC(C), and for all i ∈ I, f [Ai] = Bi. We write Ā ≡C B̄ to mean that
f : Ā ≡C B̄ for some f . When C is empty, we omit it.

We will most often use this notation when I has a single element, or when all
the sets are singletons. In the later case, we identify a set with the corresponding
singleton, i.e. if ā = (ai)i∈I and b̄ := (bi)i∈I are sequences, we write f : ā ≡C b̄
instead of f : Ā ≡C B̄, with Ai := {ai}, Bi := {bi}. We write gtp(ā/C) for the ≡C
equivalence class of ā. This corresponds to the usual notion of Galois types from
Definition 2.2.17.

Note that for sets A,B, we have f : A ≡C B precisely when there are enumer-
ations ā, b̄ of A and B respectively such that f : ā ≡C b̄.

3.3. Independence relations

In this section, we define independence relations, the main object of study of
this chapter. We then consider two examples: coheir and nonsplitting.

1Since C is a proper class, it is strictly speaking not an element of K. We ignore this detail,
since we could always replace OR in the definition of C by a cardinal much bigger than the size

of the models under discussion.
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3.3.1. Basic definitions.

Definition 3.3.1 (Independence relation). An independence relation ^ is a set
of triples of the form (A,M,N) where A is a set, M,N are models (i.e. M,N ∈ K),
M ≤K N . Write A^

M
N for (A,M,N) ∈^. When A = {a}, we may write a^

M
N

for A^
M
N . We require that ^ satisfies the following properties:

• (I) Invariance: Assume (A,M,N) ≡ (A′,M ′, N ′). Then A^
M
N if and

only if A′^
M ′
N ′.

• (M) Left and right monotonicity: If A^
M
N , A′ ⊆ A, M ≤K N ′ ≤K N ,

then A′^
M
N ′.

• (B) Base monotonicity: If A^
M
N , and M ≤K M ′ ≤K N , then A^

M ′
N .

We write ^
M

for ^ restricted to the base set M , and similarly for e.g. A^
M

.

In what follows, ^ always denotes an independence relation.

Remark 3.3.2. To avoid relying on a monster model, we could introduce an

ambient model N̂ as a fourth parameter in the above definition (i.e. we would write

A
N̂

^
M
N). This would match the approach in [She09b, Chapter V.B] and [She09a,

Chapter II] where the existence of a monster model is not assumed. We would

require that N̂ contains the other parameters A, M and N . To avoid cluttering
the notation, we will not adopt this approach, but generalizing most of our results
to this context should cause no major difficulty. Some simple cases will be treated
in the discussion of good frames in Section 3.6. In Chapter 6, many of the results
of this chapter are stated in a “monsterless” framework.

We will consider the following properties of independence2:

• (C)κ Continuity: If A /̂
M

N , then there exists A− ⊆ A, B− ⊆ N of size

strictly less than κ such that for all N0 ≥K M containing B−, A− /̂
M

N0.

• (T ) Left transitivity: If M1 ^
M0

N , and M2 ^
M1

N , with M0 ≤K M1 ≤K M2,

then M2 ^
M0

N .

• (T∗) Right transitivity: If A^
M0

M1, and A^
M1

M2, with M0 ≤K M1 ≤K

M2, then A^
M0

M2.

• (S) Symmetry: If A^
M
N , then there is M ′ ≥K M with A ⊆M ′ such that

N ^
M
M ′. If A is a model extending M , one can take M ′ = A 3.

• (U) Uniqueness: If A^
M
N , A′^

M
N , and f : A ≡M A′, then g : A ≡N A′

for some g so that g � A = f � A.

2Continuity, transitivity, uniqueness, existence and extension are adapted from [MS90].

Symmetry comes from [She09a, Chapter II].
3This second part actually follows from monotonicity and the first part.
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• (E) The following properties hold:
– (E0) Existence: for all sets A and models M , A^

M
M .

– (E1) Extension: Given a set A, and M ≤K N ≤K N ′, if A^
M
N , then

there is A′ ≡N A such that A′^
M
N ′.

• (L) Local character: κα(^) < ∞ for all α, where κα(^) := min{λ ∈
REG∪{∞} : for all µ = cf µ ≥ λ, all increasing, continuous chains 〈Mi :
i ≤ µ〉 and all sets A of size α, there is some i0 < µ so A ^

Mi0

Mµ}.

• (E+) Strong extension: A technical property used in the proof of canon-
icity. See Definition 3.4.4.

For (P ) a property that is not local character, and M a model, when we say ^
has (P )M , we mean ^

M
has (P ) (i.e. ^ has (P ) when the base is restricted to be

M). If P is either (T ) or (T∗), (P )M means we assume M0 = M in the definition.

Whenever we are considering two independence relations
(1)

^ and
(2)

^, we write

(P (1)) as a shorthand for “
(1)

^ has (P )”, and similarly for (P (2)).
Notice the following important consequence of (E):

Remark 3.3.3. Assume ^ has (E)M . Then for any A, and N ≥K M , there is
A′ ≡M A such that A′^

M
N (use (E0)M to see A^

M
M , and then use (E1)M ).

Assuming (T ∗)M , this last statement is actually equivalent to (E)M .

The property (E+) will be introduced and motivated later in the chapter. For
now, we note that there is an asymmetry in our definition of an independence
relation: the parameter on the left is allowed to be an arbitrary set, while the
parameter on the right must be a model extending the base. This is because we
have in mind the analogy “a^

M
N if and only if tp(a/N) does not fork over M”,

and in AECs, types over models are much better behaved than types over sets.
The price to pay is that the statement of symmetry is not easy to work with.

Assume for example we know an independence relation satisfies (T ) and (S). Should
it satisfy (T∗)? Surprisingly, this is not easy to show. We prove it in Lemma 3.5.9,
assuming (E). For now, we prepare the ground by showing how to extend an
independence relation to take arbitrary sets on the right hand side.

Definition 3.3.4 (Closure of an independence relation). We call ^ a closure

of ^ if ^ is a relation defined on all triples of the form (A,M,B), where M is a
model (but maybe M 6⊆ B). We require it satisfies the following properties:

• For all A, and all M ≤K N , A^
M
N if and only if A^MN .

• (I) Invariance: If (A,M,B) ≡ (A′,M ′, B′), then A^MB if and only if

A′^M ′B
′.

• (M) Left and right monotonicity: If A^MB and A′ ⊆ A, B′ ⊆ B, then

A′^MB
′.

• (B) Base monotonicity: If A^MB, and M ≤K M ′ ⊆ M ∪ B, then

A^M ′B.
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The minimal closure of ^ is the relation ^ defined by A^
M
C if and only if

there exists N ≥K M , with C ⊆ N , so that A^
M
N .

It is straightforward to check that the minimal closure of ^ is the smallest
closure of ^ but there might be others (and they also sometimes turn out to be
useful), see the coheir and explicit nonsplitting examples below.

We can adapt the list of properties to a closure ^.

Definition 3.3.5.

• We say ^ has (S) if for all sets A,B, A^MB if and only if B^MA.

• We say that ^ has (C)κ if whenever A /̂ oMB, there exists A− ⊆ A,

B− ⊆ B of size strictly less than κ such that A− /̂ oMB
−.

• We say that ^ has (E1) if whenever A^MC, and C ⊆ C ′, there exists

A′ ≡MC A such that A′^MC
′.

• We say that ^ has (U) if whenever A^MC, A′^MC, and f : A ≡M A′,
there is g : A ≡MC A′ with g � A = f � A.

• We say that ^ has (T ) if whenever M0 ≤K M1 ≤K M2, M2^M1
C, and

M1^M0
C, we have M2^M0

C.
• The statements of (T∗), (E0), (L) are unchanged. We will not need to use

(E+) on a closure.

For an arbitrary closure, we cannot say much about the relationship between

the properties satisfied by ^ and those satisfied by ^. The situation is different
for the minimal closure, but we defer our analysis to section 3.5.

Remark 3.3.6. Shelah’s notion of a good λ-frame introduced in [She09a,
Chapter II] is another axiomatic approach to independence in AECs. There are
several key differences with our framework. In particular, good λ-frames only op-
erate on λ-sized models and singleton sets. On the other hand, the theory of good
λ-frames is very developed; see e.g. [She09a, JS12, JS13].

An earlier framework which is closer to our own is the “Existential framework”
AxFr3 (see [She09b, Definition V.B.1.9]). The key differences are that AxFr3 only

defines M1

N̂

^
M
M2 when M ≤K M`, ` = 1, 2, AxFr3 (essentially) assumes (C)ℵ0

,

while we seldom need continuity, and local character (a property crucial to our
canonicity proof) is absent from the axioms of AxFr3.

3.3.2. Examples. Though so far developed abstractly, this framework in-
cludes many previously studied independence relations.

Definition 3.3.7 (Coheir, [BG]). Fix a cardinal κ > LS(K). We call a set
small if it is of size less than κ. For M ≤K N , define

A
(ch)

^
M
N ⇐⇒ for every small A− ⊆ A and N− ≤K N ,

there is B− ⊆M such that B− ≡N− A−.
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One can readily check that
(ch)

^ satisfies the properties of an independence re-

lation.
(ch)

^ was first studied in [BG], based on results of [MS90] and [Bon14b],
and generalizes the first-order notion of coheir. An alternative name for this no-
tion is (< κ) satisfiability. Sufficient conditions for this relation to be well-behaved
(i.e. to have most of the properties listed above) are given in [BG, Theorem 5.1],
reproduced here as Fact 3.3.16.

Definition 3.3.8. We define a natural closure for
(ch)

^ :

A
(c̄h)

^
M
C ⇐⇒ for every small A− ⊆ A and C− ⊆ C,

there is B− ⊆M such that B− ≡C− A−.

It is straightforward to check that
(c̄h)

^ is indeed a closure of
(ch)

^ , but it is not
clear at all that this is the minimal one. This closure will be useful in the proof

of local character (Theorem 3.6.3) Note that
(c̄h)

^ differs from the notion of coheir
given in [MS90]; there, types are consistent sets of formulas from a fragment of Lκ,κ
for κ strongly compact and the notion there (see [MS90, Definition 4.5]) allows
parameters from C and |M |.

Definition 3.3.9 (µ-nonsplitting, [She99]). Let µ ≥ LS(K). For M ≤K N ,

we say A
(µ-ns)

^
M

N if and only if for for all N1, N2 ∈ K≤µ with M ≤K N` ≤K N ,

` = 1, 2, if f : N1 ≡M N2, then there is g : N1 ≡AM N2 such that f � N1 = g � N1.

There is also a definition of nonsplitting that does not depend on a cardinal µ.

Definition 3.3.10 (Nonsplitting). For M ≤K N ,

A
(ns)

^
M
N ⇐⇒ A

(µ-ns)

^
M

N for all µ.

An equivalent definition of nonsplitting is given by the following.

Proposition 3.3.11. A
(ns)

^
M
N if and only if for all N1, N2 ∈ K with M ≤K

N` ≤K N , ` = 1, 2, if h : N1 ≡M N2, then f : A ≡N2
h[A] for some f with

f � A = h � A (equivalently, ā ≡N2
h(ā) for all enumerations ā of A).

The analog statement also holds for µ-nonsplitting.

Proof. Assume h : N1 ≡M N2, and f : A ≡N2
h[A] is such that f � A =

h � A. Let g := f−1 ◦ h. Then g � N1 = h � N1, and g fixes AM . In other
words, g : N1 ≡AM N2 is as needed. Conversely, assume h : N1 ≡M N2. Find
g : N1 ≡AM N2 such that h � N1 = g � N1. Then f := h◦g−1 is the desired witness
that A ≡N2 h[A]. �

Using Proposition 3.3.11 to check base monotonicity, it is easy to see that both
(ns)

^ and
(µ-ns)

^ are independence relations. These notions of splitting in AECs were
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first explored in [She99], but have seen a wide array of uses; see [SV99, Van06,
Van13, GVV16] or Chapter 4 for examples. µ-nonsplitting is more common
in the literature, but we focus on nonsplitting here. Using tameness, there is a
correspondence between the two:

Proposition 3.3.12. Let M ≤K N and µ ≥ LS(K). If K is µ-tame for
|A|-length types and µ′ ∈ [µ, ‖N‖], then

A
(µ-ns)

^
M

N =⇒ A
(µ′-ns)

^
M

N

Proof. We use the equivalence given by Proposition 3.3.11. Let µ′ ∈ [µ, ‖N‖],

and suppose A
(µ′-ns)

/̂
M

N . Then there are N` ∈ Kµ′ so M ≤K N` ≤K N for ` = 1, 2

and h : N1 ≡M N2, but ā 6≡N2
h(ā) for some enumeration ā of A. By tameness,

there is N−2 ∈ K≤µ so that ā 6≡N−2 h(ā). Without loss of generality, M ≤K N−2 .

Let N−1 := h−1[N−2 ]. Then N−1 and N−2 witness that A
(µ-ns)

/̂
M

N . �

A variant is explicit nonsplitting, which allows the Ni’s to be sets instead
of requiring models; this is based on explicit non-strong splitting from [She99,
Definition 4.11.2].

Definition 3.3.13 (Explicit Nonsplitting). For M ≤K N , we say A
(nes)

^
M

N if

and only if for for all C1, C2 ⊆ N , if f : C1 ≡M C2, then there is g : C1 ≡AM C2

such that f � C1 = g � C1.

From the definition, we see immediately that
(nes)

^ ⊆
(ns)

^ . Of course, the corre-

sponding version of Proposition 3.3.11 also holds for
(nes)

^ , so it is again straightfor-

ward to check that
(nes)

^ is an independence relation. One advantage of using
(nes)

^

over
(ns)

^ is that it has a natural closure:

Definition 3.3.14. We say A
(nes)

^
M

C if and only if for for all C1, C2 ⊆ C, if

f : C1 ≡M C2, then there is g : C1 ≡AM C2 such that f � C1 = g � C1.

Again, it is not clear this is the minimal closure. We will have no use for this
closure, so for most of the chapter we will stick with regular nonsplitting.

Nonsplitting will be used mostly as a technical tool to state and prove inter-
mediate lemmas, while coheir will be relevant only in Section 3.6.

3.3.3. Properties of coheir and nonsplitting. We now investigate the
properties satisfied by coheir and nonsplitting. Here is what holds in general:

Proposition 3.3.15. Let κ > LS(K).

(1)
(ch)

^ and
(c̄h)

^ have (C)κ, and (T ).

(2) If M is κ-saturated,
(ch)

^ and
(c̄h)

^ have (E0)M .
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(3)
(ns)

^ ,
(nes)

^ , and
(nes)

^ have (E0).

Proof. Just check the definitions. �

While extension and uniqueness are usually considered very strong assump-
tions, it is worth noting that nonsplitting satisfies a weak version of them, see
[Van06, Theorems I.4.10, I.4.12]. It is also well known that nonsplitting has local
character assuming tameness and stability (see e.g. [GV06b, Fact 4.6]). This will
not be used.

Regarding coheir, the following4 appears in [BG] :

Fact 3.3.16. Let κ > LS(K) be regular. Assume K is fully (< κ)-tame, fully

(< κ)-type short, has no weak κ-order property5 and
(ch)

^ has (E)6.

Then
(ch)

^ has (U) and (S).
Moreover, if κ is strongly compact, then the tameness and type-shortness hy-

potheses hold for free,
(ch)

^ has (E1), and “no weak κ order property” is implied by
“∃λ > κ so I(λ,K) < 2λ.”

As we will see, right transitivity (T∗) can be deduced either from symmetry
and (T ) (Lemma 3.5.9) or from uniqueness (Lemma 3.5.11). Local character will
be shown to follow from symmetry (Theorem 3.6.3).

3.4. Comparing two independence relations

In this section, we prove the main result of this chapter (Canonicity of fork-
ing), modulo some extra hypotheses that will be eliminated in Section 3.5. After
discussing some preliminary lemmas, we introduce a strengthening of the extension
property, (E+), which plays a crucial role in the proof. We then prove canonicity
using (E+) (Corollary 3.4.8). Finally, we show (E+) follows from some of the more
classical properties that we had previously introduced (Corollary 3.4.13), obtaining
the main result of this section (Corollary 3.4.14). We conclude by giving some
examples showing our hypotheses are close to optimal.

For the rest of this section, we fix two independence relations
(1)

^ and
(2)

^. Recall
from Definition 3.3.1 that this means they satisfy (I), (M) and (B). We aim to

show that if
(1)

^ and
(2)

^ satisfy enough of the properties introduced in Section 3.3,

then
(1)

^ =
(2)

^.
The first easy observation is that given some uniqueness, only one direction is

necessary7:

Lemma 3.4.1. Let M be a model. Assume:

(1)
(1)

^
M
⊆

(2)

^
M

4Since this chapter was first circulated, a stronger result has been proven (for example one

need not assume (E)). See Theorem 2.5.15.
5See [BG, Definition 4.2].
6All the properties mentioned in this Lemma are valid for models of size ≥ κ only.
7Shelah states as an exercise a variation of this lemma in [She09a, Exercise II.6.6.(1)].
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(2) (E(1))M , (U
(2))M

Then
(1)

^
M

=
(2)

^
M

.

Proof. Assume A
(2)

^
M
N . By (E(1))M , find A′ ≡M A so that A′

(1)

^
M
N . By

hypothesis (1), A′
(2)

^
M
N . By (U (2))M , A′ ≡N A. By (I(1))M , A

(1)

^
M
N . �

With a similar idea, one can relate an arbitrary independence relation to non-
splitting8:

Lemma 3.4.2. Assume (U)M . Then ^
M
⊆

(ns)

^
M

.

Proof. Assume A^
M
N . Let M ≤K N1, N2 ≤K N and h : N1 ≡M N2. By

monotonicity, A^
M
N` for ` = 1, 2. By invariance, h[A]^

M
N2. By (U)M , there is

f : A ≡N2
h[A] with f � A = h � A. By Proposition 3.3.11, A

(ns)

^
M
N . �

A similar result holds for
(nes)

^ , see Lemma 3.5.6.
The following consequence of invariance will be used repeatedly:

Lemma 3.4.3. Assume ^ satisfies (E1)M . Assume A^
M
N , and N ′ ≥K N .

Then there is N ′′ ≡N N ′ such that A^
M
N ′′.

Proof. By (E1)M , there is f : A′ ≡N A, A′^
M
N ′. Thus f : (A′, N ′) ≡N

(A, f [N ′]), so letting N ′′ := f [N ′] and applying invariance, we obtain A^
M
N ′′. �

Even though we will not use it, we note that an analogous result holds for left
extension, see Lemma 3.5.8.

We now would like to strengthen Lemma 3.4.3 as follows: suppose we are given

A, M ≤K N0 ≤K N , and assumeN is “very big” (e.g. it is
(
2|A|+‖N0‖

)+
-saturated),

but does not contain A. Can we find N ′0 ≡M N0 with A^
M
N ′0, and N ′0 ≤K N?

We give this property a name:

Definition 3.4.4 (Strong extension). An independence relation ^ has (E+)
(strong extension) if for any M ≤K N0 and any set A, there is N ≥K N0 such that
for all N ′ ≡N0

N , there is N ′0 ≡M N0 with A^
M
N ′0 and N ′0 ≤K N ′.

Intuitively, (E+) says that no matter which isomorphic copy N ′ of N we pick,
even if N ′ does not contain A, N ′ is so big that we can still find N ′0 inside N ′ with
the right property. This is stronger than (E) in the following sense:

Proposition 3.4.5. If ^ has (E+), ^ has (E0). If in addition ^ has (T∗),
then ^ has (E1). Thus if ^ has (E+) and (T∗), it has (E).

8Shelah gives a variation of this lemma in [She09a, Claim III.2.20.(1)].
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Proof. Use monotonicity and Remark 3.3.3. �

Remark 3.4.6. Example 3.4.15 shows (E+) does not follow from (E).

Strong extension allows us to prove canonicity:

Lemma 3.4.7. Assume (E
(1)
1 )M , (E

(2)
+ )M . Assume also that

(1)

^
M
⊆

(ns)

^
M

.

Then
(1)

^
M
⊆

(2)

^
M

.

Proof. Assume A
(1)

^
M
N0. We show A

(2)

^
M
N0. Fix N ≥K N0 as described by

(E
(2)
+ )M . By Lemma 3.4.3, we can find N ′ ≡N0

N such that A
(1)

^
M
N ′. By definition

of N , one can pick N ′0 ≡M N0 with N ′0 ≤K N ′ and A
(2)

^
M
N ′0.

We have A
(ns)

^
M
N ′, M ≤K N ′0, N0 ≤K N ′, and N ′0 ≡M N0, so by definition of

nonsplitting, N ′0 ≡AM N0. By invariance, A
(2)

^
M
N0, as needed. �

Corollary 3.4.8 (Canonicity of forking from strong extension). Assume:

• (U (1))M , (E
(1))M .

• (U (2))M , (E
(2)
+ )M .

Then
(1)

^
M

=
(2)

^
M

.

Proof. By Lemma 3.4.1, it is enough to see
(1)

^
M
⊆

(2)

^
M

. By Lemma 3.4.2,

(1)

^
M
⊆

(ns)

^
M

. The result now follows from Lemma 3.4.7. �

We now proceed to show that (E+) follows from (E), (T∗), (S) and (L). We
will use the following important concept:

Definition 3.4.9 (Independent sequence). Let I be a linearly ordered set.
A sequence of sets (Ai)i∈I is independent over a model M if there is a strictly
increasing continuous chain of models (Ni)i∈I such that for all i ∈ I:

(1) M ∪
⋃
j<iAj ⊆ Ni and N0 = M .

(2) Ai^
M
Ni.

This generalizes the notion of independent sequence from the first-order case.

The most natural definition would only require Ai^M

⋃
j<iAj (for some closure

^ of ^) but it turns out it is convenient to have a sequence of models (Ni)i∈I
witnessing the independence in a uniform way.

We note that very similar definitions appear already in the litterature. See
[JS12, Definition 3.2], [She09a, Section III.5], or [She09b, Definition V.D.3.15].
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Just like in the first-order case, the extension property allows us to build inde-
pendent sequences:

Lemma 3.4.10 (Existence of independent sequences). Assume (E)M . Let A be
a set, and let δ be an ordinal. Then there is a sequence (Ai)i<δ independent over
M so that Ai ≡M A for all i < δ, and A0 = A.

Proof. Define the (Ai)i<δ and the (Ni)i<δ witnessing the independence of the
sequence by induction on i < δ. Take N0 = M and A0 = A. Assume inductively
(Aj)j<i, (Nj)j<i have been defined. If i is a limit, let Ni :=

⋃
j<iNj . If i is a

successor, let Ni be any model containing M ∪
⋃
j<i(Aj∪Nj) and strictly extending

the previous Nj ’s. By (E)M , there is Ai ≡M A such that Ai^
M
Ni. Thus (Ai)i<δ

is as desired. �

The next result is key to the proof of (E+). It is adapted from [Bal88, Theorem
II.2.18].

Lemma 3.4.11. Assume ^ has (S), (T∗)M , (L). Let A be a set, and let µ :=
κ|A|(^). Then whenever (Mi)i<µ is an independent sequence over M with M ≤K

Mi for all i, there is i < µ with A^
M
Mi.

Proof. Let (Ni)i<µ witness independence of the Mi’s. Let Nµ :=
⋃
i<µNi.

By definition of µ, there is i < µ so that A^
Ni

Nµ. By (S), there is a model NA

with Ni ≤K NA, A ⊆ NA, and Nµ^
Ni

NA. By (M), Mi^
Ni

NA. Since the Mi’s

are independent, we also have Mi^
M
Ni. By (T∗)M , Mi^

M
NA. By (S) (recall that

M ≤K Mi), NA^
M
Mi. By (M), A^

M
Mi, as desired. �

Remark 3.4.12. The same proof works if we replace ^ by its minimal closure

^, and (Mi)i<µ by an arbitrary sequence (Bi)i<µ independent over M .

Corollary 3.4.13. Assume (E)M , (S), (T∗)M , and (L). Then (E+)M .

Proof. Fix A and N0 ≥K M . Let µ := κ|A|(^). By Lemma 3.4.10, there is
a sequence (Mi)i<µ independent over M such that Mi ≡M N0 for all i < µ, and
M0 = N0. Let (N ′i)i<µ witness independence of the Mi’s. We claim N :=

⋃
i<µN

′
i

is as required. By construction, N0 = M0 ≤K N .
Now let f : N ≡N0 N

′. Let M ′i := f [Mi]. Invariance implies (M ′i)i<µ is an
independent sequence over M inside N ′, with M ′i ≡M N0 for all i < µ. By Lemma
3.4.11, there is i < µ so that A^

M
M ′i , so N ′0 := M ′i is exactly as needed. �

Corollary 3.4.14. Assume:

• (E(1))M , (U
(1))M .

• (E(2))M , (U
(2))M , (L

(2)), (S(2)), (T
(2)
∗ )M .

Then
(1)

^
M

=
(2)

^
M

.

Proof. Combine Corollaries 3.4.8 and 3.4.13. �
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We will see (Corollary 3.5.17) that (S) and (T∗) follow from (E), (U), and
(L). We now argue that the other hypotheses are necessary. The following example
(versions of which appears at various places in the literature, e.g. [She09a, Ex-
ample II.6.4], [Adl09a, Example 6.6]) shows we cannot remove the local character
assumption from Corollary 3.4.14. In particular, (E+) does not follow from (E) and
(U) alone. The example also shows the AxFr3 framework (see [She09b, Definition
V.B.1.9]) is not canonical.

Example 3.4.15. Let Tind be the first-order theory of the random graph, and
let K be the class of models of Tind, ordered by first-order elementary substructure.
Define

• A
(1)

^
M
N iff A ∩N ⊆M , and there are no edges between A\M and N\M .

• A
(2)

^
M
N iff A∩N ⊆M , and all the possible cross edges between A\M and

N\M are present.

It is routine to check that both
(1)

^ and
(2)

^ are independence relations with (E),

(U), (S), (T ), (T∗), (C)ℵ0 . Yet
(1)

^ 6=
(2)

^, so one knows from Corollary 3.4.14 (or
from first-order stability theory) that K can have no independence relation which
in addition has (L) or (E+).

Of course, Tind is simple, so first-order nonforking will actually have (E+), local
character, transitivity and symmetry (but not uniqueness).

A concrete reason (E+) does not hold e.g. for
(1)

^ is that given M ≤K N0 one
can pick a 6∈ N0 such that there is an edge from a to any element of N0. Then for
any N ≥K N0, one can again pick N ′ ≡N0 N , disjoint from {a}∪ (N\N0) such that

there is an edge from a to any element of N ′. Then a
(1)

^
M
N ′0 for N ′0 ≤K N implies

N ′0 = M . Local character fails for a similar reason.

Example 3.4.16. It is also easy to see that (E(2)) and (U (2)) are neces-

sary in Corollary 3.4.14. Assume
(1)

^ has (E), (U), (S), (T∗), and (L). Then

the independence relation
(2)

^ defined by A
(2)

^
M
N for all A and M ≤K N satisfies

(E), (S), (T∗), (L), but not (U), so is distinct from
(1)

^.

Similarly define A
(2)

^
M
N if and only if M ≤K N and either both A

(1)

^
M
N and

‖M‖ ≥ LS(K)+, or M = N . Then
(2)

^ has (E0), (U), (S), (T∗) and (L), but does
not have (E1)M if M is a model of size LS(K). This last example was adapted
from [Adl09a, Example 6.4].

Remark 3.4.17. After the initial submission of the paper this chapter is based
on, it was shown in Lemma 6.9.1 that (E) can be removed from the hypotheses of
Corollary 3.4.14 (but one has to replace it by (C)κ) if one only wants the indepen-
dence relations to agree over sufficiently saturated models.
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3.5. Relationship between various properties

In this section, we investigate some of relations between the properties intro-
duced earlier. We first discuss the interaction between properties of an indepen-
dence relation and properties of its closures, and show how to obtain transitivity
from various other properties. We then show how to obtain symmetry from exis-
tence, extension, uniqueness, and local character (Corollary 3.5.17). This second
part has a stability-theoretic flavor and most of it does not depend on the first part.

Most of the material in the first part of this section is not used in the rest of the
chapter, but the concept of closure (Definition 3.3.4) felt unmotivated without it.
Our investigation remains far from exhaustive, and leaves a lot of room for further
work.

3.5.1. Properties of the minimal closure. Recall the notion of closure of
an independence relation (Definition 3.3.4). We would like to know when we can
transfer properties from an independence relation to its closures and vice-versa.

For an arbitrary closure, we can say little:

Lemma 3.5.1. Let ^ be a closure of ^. Then:

(1) A property in the following list holds for ^ if and only if it holds for ^:
(T∗)M , (E0)M , (L).

(2) If a property in the following list holds for ^, then it holds for ^: (C)κ,
(T )M , (E1)M , (U)M .

Proof.

(1) Because those properties have the same definition for ^ and ^.
(2) Straightforward from the definitions.

�

The minimal closure is more interesting. We start by generalizing Lemma 3.4.3:

Lemma 3.5.2. Assume ^ satisfies (E1)M . Let ^ be the minimal closure of

^. Assume A^MC, and let B be an arbitrary set. Then there is B′ ≡MC B such

that A^MB
′.

Proof. Let N be a model containing C and M such that A^
M
N . Let N ′ be

a model containing NB. By Lemma 3.4.3, there is N ′′ ≡N N ′ such that A^
M
N ′′.

Now use monotonicity to get the result. �

The next lemma tells us that the minimal closure is the only one that will keep
the extension property:

Lemma 3.5.3. Let ^ be a closure of ^ and let ^ be the minimal closure of

^. Assume ^ has (E1)M . Then ^M = ^
M

if and only if ^ has (E1)M .

Proof. Assume first ^M = ^
M

. Let C ⊆ C ′, and assume A^MC. Then

by definition of the minimal closure, there exists N ≥K M containing C such that
A^
M
N . Let N ′ be a model containing N and C ′. By (E1)M for ^, there is A′ ≡N A

so that A′^
M
N ′. By monotonicity, A′^MC

′, and since N contains C, A′^MC.



3.5. RELATIONSHIP BETWEEN VARIOUS PROPERTIES 67

Conversely, assume ^M has (E1)M . We know already that ^ ⊆^, so assume

A^MC. Let N be a model containing M and C. By Lemma 3.5.2, there is

N ′ ≡MC N so that A^MN
′, so A^

M
C, as needed. �

Lemma 3.5.4. Let ^ be the minimal closure of ^. Then

(1) (E)M holds for ^ if and only if it holds for ^.

(2) (S)M holds for ^ if and only if it holds for ^.

(3) If ^ has (E)M , then it has (U)M if and only if ^ does.

(4) If ^ has (E), then it has (T ) if and only if ^ does9.

Proof.

(1) By Lemmas 3.5.1 and 3.5.3.
(2) Straightforward from the definition of symmetry and monotonicity.
(3) One direction holds by Lemma 3.5.1. For the other direction, assume

^ has (E1)M and ^ has (U)M . Assume A^MC and A′^MC, with
f : A ≡M A′. Let N be a model containing MC such that A^

M
N .

By extension again, find h : A′ ≡MC A′′ such that A′′^
M
N . We know

h′ := h ◦ f : A ≡M A′′, so by uniqueness, there is h′′ : A ≡N ′ A′′, and
h′′ � A = h′ � A = (h ◦ f) � A, so f � A = (h−1 ◦ h′′) � A. Therefore
g := h−1 ◦ h′′ is the desired witness that A ≡MC A′.

(4) Let M0 ≤K M1 ≤K M2, and assume M1^M0
C, M2^M1

C. Let N be

an extension of M1 containing C such that M2^M1
N . Let χ be a big

cardinal, so that (Vχ,∈) reflects enough set theory and contains NM2.
Let N ′ be what Vχ believes is the monster model.

By Lemma 3.4.3, there is f : N ′′ ≡N N ′ such that M2 ^
M1

N ′′. Notice

that CM1 ⊆ N ⊆ N ′, so since we took χ big enough, we can apply the
definition of the minimal closure inside Vχ to get N ′0 ≤K N ′ containing M0

and C so that M1 ^
M0

N ′0. Let N0 := f [N ′0]. By invariance, M1 ^
M0

N0, and

N0 ≤K N ′′, so by monotonicity, M2 ^
M1

N0, so by (T )M0
for ^, M2 ^

M0

N0.

By monotonicity again, M2^M0
C.

�

The following remains to be investigated:

Question 3.5.5. Let ^ be the minimal closure of ^. Under what conditions

does (C)κ for ^ imply (C)κ for ^?

We can use Lemma 3.5.4 to prove a variation on Lemma 3.4.2.

Lemma 3.5.6. Assume ^ has (E)M and (U)M . Then ^
M
⊆

(nes)

^
M

.

9More precisely, if ^ has (E)M1
, and for M0 ≤K M1 ≤K M2, we have that M2^

M1

N ,

M1^
M0

N implies M2^
M0

N , then M2^M1
C, M1^M0

C implies M2^M0
C.
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Proof. Let ^ be the minimal closure of ^. By Lemma 3.5.4, ^ has (E)M
and (U)M .

Assume A^
M
N . Let C1, C2 ⊆ N , and h : C1 ≡M C2. By monotonicity,

A^MC` for ` = 1, 2. By invariance, h[A]^MC2. By (U)M , there is f : A ≡MC2

h[A] with f � A = h � A. By (the proof of) Proposition 3.3.11, A
(nes)

^
M

N . �

Question 3.5.7. Is the (E)M hypothesis necessary?

We can also obtain a left version of Lemma 3.4.3:

Lemma 3.5.8. Let ^ be a closure of ^. Assume ^ has (E)N , and ^ has
(T )M1

. Suppose that N ^
M1

M2, with N ≥K M1. Then for all N ′ ≥K N , there

exists N ′′ ≡N N ′ such that N ′′^
M1

M2.

In particular, this holds if ^ has (E) and (T ).

Proof. The last line follows from part (4) of Lemma 3.5.4 by taking ^ to be
the minimal closure of ^.

To see the rest, let N3 be a model containing M2N . By (E)N , there is N ′′ ≡N
N ′ such that N ′′^

N
N3. Since M2 ⊆ N3, N ′′^NM2. By hypothesis, N^M1

M2. So

since ^ has (T )M1
, N ′′^M1

M2. Since M2 ≥K M1, N ′′^
M1

M2. �

Finally, we can also use symmetry to translate between the transitivity prop-
erties:

Lemma 3.5.9. Assume ^ has (S). Then:

(1) If ^ has (T∗)M0 , then ^ has (T )M0 .
(2) If ^ has (T )M0 and (E), then it has (T∗)M0 .

Proof. Let M0 ≤K M1 ≤K M2. Let ^ be the minimal closure of ^. By

Lemma 3.5.4, ^ has (S).

(1) By Lemma 3.5.1, ^ has (T∗)M0
. Now use symmetry.

(2) By part (4) of Lemma 3.5.4, ^ has (T )M0
. Now use symmetry.

�

This gives us one way to obtain right transitivity for coheir:

Corollary 3.5.10. Assume
(ch)

^ has (S) and (E). Then
(ch)

^ has (T∗).

Proof. By Proposition 3.3.15,
(ch)

^ has (T ). Apply Lemma 3.5.9. �

Another way to obtain right transitivity from other properties appears in
[She09a, Claim II.2.18]:

Lemma 3.5.11. Assume ^ has (E1)M and (U). Then ^ has (T∗)M .

Proof. Let M0 ≤K M1 ≤K M2, and assume A^
M0

M1 and A^
M1

M2. By

(E1)M , there exists A′ ≡M1 A such that A′^
M0

M2. By base monotonicity, A′^
M1

M2.

By uniqueness, A ≡M2
A′. By invariance, A^

M0

M2. �
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3.5.2. Getting symmetry. We prove that symmetry follows from (E), unique-
ness and local character and deduce the main theorem of this chapter (Corollary
3.5.18). We start by assuming some stability. Recall the definition of the order
property (Definition 2.4.3). It is stronger than unstability:

Fact 3.5.12. Let α be a cardinal. If K has the α-order property, then K is
α-unstable.

Proof sketch. This is [She99, Claim 4.7.2]. Shelah’s proof is “Straight.”,
so we elaborate a little.

Let λ ≥ LS(K). We show K is α-unstable in λ. Let I ⊆ Î be linear orderings

such that ‖I‖ ≤ λ, ‖Î‖ > λ, and I is dense in Î. Combining Shelah’s presentation

theorem with Morley’s method, we can get a sequence Î :=
〈
āi | i ∈ Î

〉
with `(āi) =

α and i0 < j0, i1 < j1 implies āi0 āj0 6≡ āj1 āi1 . Let I := 〈āi | i ∈ I〉.
Now for any i < j in Î, āi 6≡I āj . Indeed, pick i < k < j with k ∈ I. Then

āiāk 6≡ āj āk by construction, so āi 6≡āk āj . This completes the proof that K is
α-unstable in λ. �

We are now ready to prove symmetry. The argument is similar to [She90,
Theorem III.4.13] or [She75a, Theorem 5.1].

Theorem 3.5.13 (Symmetry). Assume ^ has (E)M and ^
M
⊆

(nes)

^
M

. Assume

in addition that K does not have the order property. Then ^ has (S)M .

Proof. Let ^ be the minimal closure of ^. Recall that by Lemma 3.5.4, ^
has (S)M if and only if ^ has (S)M .

Assume for a contradiction ^ does not have (S)M . Pick A and M ≤K N such

that A^
M
N , but N /̂ oMA. Let λ be an arbitrary uncountable cardinal. We will

show that K has the (‖N‖ + |A|)-order property of length λ. This will contradict
the assumption that K does not have the order property.

We will build increasing continuous 〈Mα ∈ K : α < λ〉, and 〈Aα,M ′α, Nα : α <
λ〉 by induction so

(1) M0 ≥K N and A ⊆ |M0|.
(2) Nα ≡M N and Nα ≤K M ′α.
(3) Aα ≡N A and Aα ⊆Mα+1.
(4) Mα ≤K M ′α ≤K Mα+1.
(5) Nα^

M
Mα and Aα^

M
M ′α.

This is possible. Let M0 be any model containing AN . At α limits, let Mα :=⋃
β<αMβ . Now assume inductively that Mβ has been defined for β ≤ α, and Aβ ,

Nβ , M ′β have been defined for β < α. Use (E)M to find Nα ≡M N with Nα^
M
Mα.

Now pick M ′α ≥ Mα containing Nα. Now, by (E)M again, find Aα ≡N A with
Aα^

M
M ′α. Pick Mα+1 ≥K Mα containing Aα and M ′α.

This is enough. We show that for α, β < λ:

(1) If β < α, (A,N) 6≡M (Aβ , Nα).
(2) If β ≥ α, (A,N) ≡M (Aβ , Nα).
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For (1), suppose β < α. Since A ⊆M ≤K Mα, we have Nα^MA. Then we can

use the invariance of^ and the assumption of no symmetry to conclude (A,Nα) 6≡M

(A,N). On the other hand, we know that Nα
(nes)

^
M

Mα. Since A,Aβ ⊆ Mα and

A ≡M Aβ , we must have (A,Nα) ≡M (Aβ , Nα). Thus (A,N) 6≡M (Aβ , Nα).
To see (2), suppose β ≥ α and recall that (A,N) ≡M (Aβ , N). We also have

that Aβ
(nes)

^
M

M ′β . N ≡M Nα and N,Nα ⊆ M ′β , the definition of non explicit split-

ting implies that (Aβ , N) ≡M (Aβ , Nα). This gives us that (A,N) ≡M (Aβ , Nα) as
desired.

�

Remark 3.5.14. The same proof can be used to obtain symmetry in the good
frame framework. This is used in the construction of a good frame of Chapter 4.

Corollary 3.5.15. Assume K does not have the order property. Assume ^
has (E)M and (U)M . Then ^ has (S)M .

Proof. By Lemma 3.5.6, ^
M
⊆

(nes)

^
M

. Now apply Theorem 3.5.13. �

If in addition we assume local character, we obtain the “no order property”
hypothesis:

Lemma 3.5.16. Assume ^ has (U) and (L) (or just κ1(^) < ∞). Then K is
α-stable for all α. In particular, it does not have the order property.

Proof. That α-stability implies no α-order property is the contrapositive of
Fact 3.5.12. Now, assume (U) and let µ := κ1(^) < ∞. Fix a cardinal α ≥ 1.
We want to see K is α-stable. Since stability for types of length α implies stability
for types of length β when β < α, we can assume without loss of generality α ≥
µ+ LS(K).

Let λ := iα+ . Then:

(1) λ is strong limit.
(2) cf(λ) = α+ > µ+ LS(K).
(3) λα = supγ<λ γ

α = λ.

We claim that K is α-stable in λ. By Fact 2.2.25(1), it is enough to see it is 1-
stable in λ. Suppose not. Then there exists M ∈ Kλ, and {ai}i<λ+ such that i < j
implies ai 6≡M aj . Let (Mi)i<λ be increasing continuous such that M =

⋃
i<λMi

and ‖Mi‖ < λ. By definition of µ, for each i < λ+, there exists ki < λ such that
ai ^
Mki

M . By the pigeonhole principle, we can shrink {ai}i<λ+ to assume without

loss of generality that ki = k0 for all i < λ+. Since there are at most 2‖Mk0
‖ < λ

many types over Mk0 , there exists i < j < λ+ such that ai ≡Mk0
aj . By uniqueness,

ai ≡M aj , a contradiction. �

Corollary 3.5.17. Assume ^ has (E)M , (U) and (L) (or just κ1(^) <∞).
Then ^ has (S)M and (T∗)M .

Proof. Lemma 3.5.11 gives (T∗)M . Combine Lemma 3.5.16 and Corollary
3.5.15 to obtain (S)M . �
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Thus we obtain another version of the canonicity theorem:

Corollary 3.5.18 (Canonicity of forking). Let
(1)

^ and
(2)

^ be independence
relations. Assume:

• (E(1))M , (U
(1))M .

• (E(2))M , (U
(2)), (L(2)).

Then
(1)

^
M

=
(2)

^
M

.

In particular, there can be at most one independence relation satisfying exis-
tence, extension, uniqueness, and local character.

Proof. Combine Corollaries 3.4.14 and 3.5.17. �

3.6. Applications

3.6.1. Canonicity of coheir. Fix a regular κ > LS(K). Below, when we say
coheir has a given property, we mean that it has that property for base models in
K≥κ.

We are almost ready to show that coheir is canonical, but we first need to
show it has local character. We will use the following strengthening that deals with
subsets instead of chains of models:

Definition 3.6.1. Let ^ be an independence relation. For α a cardinal, let
κ̄α = κ̄α(^) be the smallest cardinal such that for all N , and all A with |A| = α,
there exists M ≤ N with ‖M‖ < κ̄α and A^

M
N . κ̄α = ∞ if there is no such

cardinal.

Remark 3.6.2. For all α, κα(^) ≤ κ̄α(^)+. Thus κ̄α(^) < ∞ implies
κα(^) <∞.

Theorem 3.6.3 (Local character for coheir). Assume
(ch)

^ has (S). Then

κ̄α(
(ch)

^ ) ≤ ((α+ 2)<κ)+. In particular,
(ch)

^ has (L).

The proof is similar to that of [Adl09b, Theorem 1.6]10. The key is that
(c̄h)

^
always satisfies a dual to local character:

Lemma 3.6.4. Let N,C be given. Then there is M ≤ N , ‖M‖ ≤ (|C|+ 2)<κ +

LS(K) such that N
(c̄h)

^
M
C.

Proof sketch. For each of the |C|<κ small subsets of C, look at the ≤ 2<κ

small types over that set (realized in N), and collect a realization of each in a set
A ⊆ |N |. Then pick M ≤K N to contain A and be of the appropriate size. �

We will also use the following application of the fact
(c̄h)

^ has (C)κ and a strong
form of base monotonicity.

10After proving the result, we noticed that a similar argument also appears in the proof of
(B)µ in [MS90, Proposition 4.8].
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Lemma 3.6.5. Let λ be such that cf λ ≥ κ. Let (Ai)i<λ, (Mi)i<λ, (Ci)i<λ be

(not necessarily strictly) increasing chains. Assume Ai
(c̄h)

^
Mi

Ci for all i < λ. Let

Aλ :=
⋃
i<λAi, and define Mλ, Cλ similarly. Then Aλ

(c̄h)

^
Mλ

Cλ.

Proof. From the definition of
(c̄h)

^ , we see that for all i < λ, Ai
(c̄h)

^
Mλ

Ci. Now

use the fact that
(c̄h)

^ has (C)κ (Proposition 3.3.15). �

Proof of Theorem 3.6.3. Fix α, and let A and N be given with |A| = α.
Let µ := (|A|+2)<κ. Inductively build (Mi)i≤µ, (Ni)i≤µ increasing continuous such
that for all i < µ:

(1) A ⊆ Ni.
(2) Mi ≤K N , ‖Mi‖ ≤ µ.
(3) Mi ≤K Ni+1.

(4) N
(c̄h)

^
Mi+1

Ni+1.

This is enough: By König’s lemma, cf µ ≥ κ so by Lemma 3.6.5, N
(c̄h)

^
Mµ

Nµ.

Moreover, by (2), (3) and the chain axioms, Mµ ≤K Nµ, N , and by (2), ‖Mκ‖ ≤ µ.

Thus N
(ch)

^
Mµ

Nµ, and one can apply (S) to get Nµ
(ch)

^
Mµ

N . By monotonicity, A
(ch)

^
Mµ

N ,

exactly as needed.
This is possible: Pick any A ⊆ N0 with ‖N0‖ ≤ µ (this is possible since µ ≥

|A|+ κ > LS(K)). Now, given i non-limit, (Nj)j≤i and (Mj)j<i, use Lemma 3.6.4

to find Mi ≤K N , ‖Mi‖ ≤ (‖Ni‖)<κ ≤ µ, such that N
(c̄h)

^
Mi

Ni. Then pick any Ni+1

extending both Mi and Ni, with ‖Ni+1‖ ≤ µ.
�

We finally have all the machinery to prove:

Theorem 3.6.6 (Canonicity of coheir). Assume K is fully (< κ)-tame, fully
(< κ)-type short, and has no weak κ-order property11.

Assume
(ch)

^ has (E). Then:

(1)
(ch)

^ has (C)κ, (T ), (T∗), (S), (U), and (L).

(2) Any independence relation satisfying (E) and (U) must be
(ch)

^ (for base
models in K≥κ).

Proof. By Proposition 3.3.15,
(ch)

^ has (C)κ and (T ). By Fact 3.3.16,
(ch)

^

has (U) and (S). By Corollary 3.5.10 (or Lemma 3.5.11),
(ch)

^ also has (T∗). By

11See [BG, Definition 4.2].
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Theorem 3.6.3,
(ch)

^ has (L). This takes care of (1). (2) follows from (1) and
Corollary 3.4.14. �

Corollary 3.6.7 (Canonicity of coheir, assuming a strongly compact). As-
sume κ is strongly compact, all models in K≥κ are κ-saturated, and there exists
λ > κ such that I(λ,K) < 2λ. Then:

(1)
(ch)

^ has (E), (C)κ, (T ), (T∗), (S), (U), and (L).

(2) Any independence relation satisfying (E) and (U) must be
(ch)

^ (for base
models in K≥κ).

Proof. By Proposition 3.3.15,
(ch)

^ has (E0). Thus by the moreover part of

Fact 3.3.16,
(ch)

^ has (E). Now apply Theorem 3.6.6. �

3.6.2. Canonicity of good frames. As has already been noted, the frame-
work AxFri3 defined in [She09b, Chapter V.B] is a precursor to our own, but
Example 3.4.15 shows it is not canonical. Shelah also investigated an extension
of AxFri3 axiomatizing primeness (the “primal framework”) but it is outside the
scope of this chapter.

We will however briefly discuss the canonicity of good frames. Good frames
were first defined in [She09a, Chapter II]. We will assume the reader is familiar
with their definition and basic properties. As already noted, the main difference
with our framework is that a good frame is local: For a fixed λ ≥ LS(K), a good

λ-frame assumes the existence of a nice independence relation ^ where only a
N̂

^
M
N

is defined, for a an element of N̂ and M ≤K N ≤K N̂ models of size λ.
In [She09a, Section II.6], Shelah shows that, assuming a technical condition

(that the frame is weakly successful), one can extend it uniquely to a non-forking

frame: basically an independence relation ^ where M1

N̂

^
M
M2 is defined for M ≤K

M` ≤K N̂ in Kλ, ` = 1, 2. For the rest of this section, we fix λ ≥ LS(K) and we do
not assume the existence of a monster model (Hypothesis 3.2.1). Recall however
that the definition of a good frame implies Kλ has some nice properties, i.e. it
has amalgamation, joint embedding, no maximal model, is stable12 in λ, and has a
superlimit model.

Fact 3.6.8. If s is a weakly successful good λ-frame, then it extends uniquely to
a non-forking frame (i.e. using Shelah’s terminology, there is a unique non-forking
frame NF that respects s).

Proof. Uniqueness is [She09a, Claim II.6.3] and existence is [She09a, Con-
clusion II.6.34]. �

As Shelah observed, Example 3.4.15 shows that a non-forking frame by itself
need not be unique: we need to know it comes from a good frame, or at least that
there is a good frame around. Shelah showed:

12Really only stable for basic types, but full stability follows (see [She09a, Claim II.4.2.1]).
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Fact 3.6.9. Assume that s is a good+ λ-frame and NF is a non-forking frame,
both with underlying AEC K. Then NF respects s.

Proof. See [She09a, Claim II.6.7]. �

Here, good+ is a technical condition asking for slightly more than just the
original axioms of a good frame.

We also have that a non-forking frame induces a good frame:

Fact 3.6.10. Assume Kλ has a superlimit, is stable in λ, and carries a non-
forking frame NF (so in particular it has amalgamation) with independence relation

(defined for models in Kλ) ^. Then the relation a
N̂

^
M
N holds iff there is N̂ ′ ≥K N̂

and M ≤K M ′ ≤K N̂ ′ with a ∈ M ′ so that M ′
N̂ ′

^
M
N defines a type-full (i.e. the

basic types are all the nonalgebraic types) good λ-frame t. If in addition NF comes
from a type-full weakly successful good λ-frame s, then s = t.

Proof. See [She09a, Claim II.6.36]. �

Thus we obtain the following canonicity result:

Corollary 3.6.11. Assume that s1 is a weakly successful good+ λ-frame and
s2 is a weakly successful good λ-frame in the same underlying AEC K. Assume
further s1 and s2 are type-full (i.e. their basic types are all the nonalgebraic types).
Then s1 = s2.

Proof. Using Fact 3.6.8, let NF` be the non-forking frame extending s` for
` = 1, 2. By Fact 3.6.9, NF2 respects s1, so NF1 = NF2. By Fact 3.6.10 (the
existence of a good frame implies the stability and superlimit hypotheses), we must
also have s1 = s2. �

The methods of this chapter can show slightly more: we can get rid of the
good+.

Theorem 3.6.12 (Canonicity of good frames). Let s1, s2 be weakly successful
good λ-frames with underlying AEC K and the same basic types. Then s1 = s2.

Proof sketch. Using Fact 3.6.8, let NF` be the non-forking frame extending

s` for ` = 1, 2. Let
(1)

^,
(2)

^ be the independence relations (for models in Kλ)
associated to NF1, NF2 respectively. By Fact 3.6.10, one can extend their domain
to allow a single element on the left hand side. Thus without loss of generality we

may assume s1 and s2 are type-full. Let M ≤K N ≤K N̂ and let a ∈ N̂ . Assume

a
(1),N̂

^
M

N0. We show a
(2),N̂

^
M

N0. The symmetric proof will show the converse is true,

and hence that s1 = s2.
First observe that stability, amalgamation, joint embedding and no maximal

model in λ implies we can build a saturated (hence model-homogeneous) modelM
of size λ+. Since (as we will show) the argument below only uses objects of size
λ, we can take M to be our monster model for this argument (i.e. we assume any

set we consider comes from M). Then we have a
(1),N̂

^
M

N0 if and only if a
(1),M

^
M

N0
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so below we drop M and only talk about a
(1)

^
M
N0, and similarly for

(2)

^. Note that

working inside M is not essential (we could always make the ambient model N̂
grow bigger as our proof proceeds) but simplifies the notation and lets us quote our
previous proofs verbatim.

Now, we observe that our proof of Corollary 3.4.14 is local-enough (i.e. it can
be carried out inside M). We sketch the details: First build a sequence (Mi)i<ω

independent (in the sense of
(2)

^) over M so that M0 = N0, Mi ≡M N0. Let
N :=

⋃
i<ω N

′
i , where N ′i witness the independence of the sequence. Notice that we

can take N ∈ Kλ, by cardinality considerations. By extension, find f : N ≡M N ′

so that a
(1)

^
M
N ′. Let M ′i := f [Mi]. By the proof of Lemma 3.4.11 (and recalling

that κ1(^) ≤ ω in good frames), there is i < ω such that a
(2)

^
M
M ′i (notice that Fact

3.6.10 is what makes the argument go through). Finally, use the proof of Lemma

3.4.7 to conclude that a
(2)

^
M
N0. �

We do not know whether one can say more, namely:

Question 3.6.13. Let s1 and s2 be good λ-frames with the same underlying
AEC and the same basic types. Is s1 = s2?

3.7. Conclusion

We have shown that an AEC with a monster model can have at most one
“forking-like” notion. On the other hand, we believe the question of when such a
forking-like notion exists is still poorly understood. For example, is there a natural
condition implying that coheir has extension in Fact 3.3.16? Even the following is
open:

Question 3.7.1. Assume K is fully (< κ)-tame, fully (< κ)-type short and
categorical in some high-enough λ > κ. Does K have an independence relation
with (E), (U) and (L)?

Using the good frames machinery, an approximation is proven in [Bon14a]
using some GCH-like hypotheses. However, the global assumptions of tameness
and a monster model gives us a lot more power than just the local assumptions
used to obtain a good frame.

It is also open whether such an independence relation has to be coheir (i.e. even
if coheir does not satisfy (E)):

Question 3.7.2. Assume ^ is an independence relation with (E), (U) and

(L). Let M be sufficiently saturated. Under what conditions does ^
M

=
(ch)

^
M

?

Finally, we note that while some of our results are local and can be adapted
to the good frames context (see e.g. Theorem 3.6.12), some are not (e.g. Theorem
3.5.13, Lemma 3.5.4.4). It would be interesting to know how much non-locality is
really necessary for such results. This would help us understand how much power
the globalness of our definition of independence relations really gives us.





CHAPTER 4

Forking and superstability in tame AECs

This chapter is based on [Vas16b]. I thank John T. Baldwin, Will Boney, Adi
Jarden, Alexei Kolesnikov, and the anonymous referee for valuable comments that
helped improve the presentation of this chapter.

Abstract

We prove that any tame abstract elementary class categorical in a suitable car-
dinal has an eventually global good frame: a forking-like notion defined on all types
of single elements. This gives the first known general construction of a good frame
in ZFC. We show that we already obtain a well-behaved independence relation as-
suming only a superstability-like hypothesis instead of categoricity. These methods
are applied to obtain an upward stability transfer theorem from categoricity and
tameness, as well as new conditions for uniqueness of limit models.

4.1. Introduction

In 2009, Shelah published a two volume book [She09a, She09b] on classifi-
cation theory for abstract elementary classes. The central new structural notion is
that of a good λ-frame (for a given abstract elementary class (AEC) K): a gen-
eralization of first-order forking to types over models of size λ in K (see Section
4.2.2 below for the precise definition). The existence of a good frame shows that
K is very well-behaved at λ and the aim was to use this frame to deduce more
on the structure of K above λ. Part of this program has already been accom-
plished through several hundreds of pages of hard work (see for example [She01a],
[She09a, Chapter 2 and 3], [JS12, JS13, JS, Jar]). Among many other results,
Shelah shows that good frames exist under strong categoricity assumptions and
additional set-theoretic hypotheses:

Fact 4.1.1 (Theorem II.3.7 in [She09a]). Assume 2λ < 2λ
+

< 2λ
++

and the
weak diamond ideal in λ+ is not λ++-saturated.

Let K be an abstract elementary class with LS(K) ≤ λ. Assume:

(1) K is categorical in λ and λ+.

(2) 0 < I(λ++,K) < µunif(λ
++, 2λ

+

)

Then K has a good λ+-frame.

It is a major open problem whether the set-theoretic hypotheses in Fact 4.1.1
are necessary. In this chapter, we show that if the class already has some global
structure, then good frames are much easier to build. For example we prove, in
ZFC (see Theorem 4.7.4):

77



78 4. FORKING AND SUPERSTABILITY IN TAME AECS

Theorem 4.1.2. Let K be an abstract elementary class with amalgamation
and no maximal models. Assume K is categorical in a high-enough1 successor λ+.
Then K has a type-full good λ-frame.

By the main theorem of [She99], the hypotheses of Theorem 4.1.2 imply K is
categorical in λ. On the other hand, we do not need any set-theoretic hypothesis and
we do not need to know anything about the number of models in λ++. Moreover,
the frame Shelah constructs typically defines a notion of forking only for a restricted
class of basic types (the minimal types). With a lot of effort, he then manages to
show [She09a, Section III.9] that under some set-theoretic hypotheses one can
always extend a frame to be type-full. In our frame, forking is directly defined
for every type. This is technically very convenient and closer to the first-order
intuition. Of course, we pay for this luxury by assuming amalgamation and no
maximal models2.

Our proof relies on two key properties of AECs. The first one is tameness (a
locality property of Galois types, see Definition 4.2.3), and assuming it lets us relax
the “high-enough successor” assumption in Theorem 4.1.2, see Theorem 4.7.3:

Theorem 4.1.3. Let K be an abstract elementary class with amalgamation
and no maximal models. Assume K is µ-tame and categorical in some cardinal λ
such that cf(λ) > µ. Then K has a type-full good ≥ λ-frame.

That is, not only do we obtain a good λ-frame, but we can also extend this frame
to any model of size ≥ λ (this last step essentially follows from earlier work of Boney
[Bon14a]). Hence we obtain a global forking notion above λ, although only defined
for 1-types. A forking notion for types of all lengths is obtained in [BG] (using
stronger tameness hypotheses than ours) but the authors assume the extension
property for coheir, and it is unclear when this holds, even assuming categoricity
everywhere. Thus our result partially answers Question 3.7.1 (which asked when
categoricity together with tameness implies the existence of a forking-like notion
for types of all lengths satisfying uniqueness, local character, and extension). We
also obtain new theorems whose statements do not mention frames:

Corollary 4.1.4. Let K be an abstract elementary class with amalgamation
and no maximal models. Assume K is µ-tame and categorical in some cardinal λ
such that cf(λ) > µ. Then K is stable everywhere.

Remark 4.1.5. Shelah already established in [She99] that categoricity in λ >
LS(K) implies stability below λ (assuming amalgamation and no maximal models).
The first upward stability transfer for tame AECs appeared in [GV06b]. Later,
[BKV06] gave some variations, showing for example ℵ0-stability and a strong form
of tameness implies stability everywhere. Our upward stability transfer improves
on [BKV06, Corollary 4.7] which showed that categoricity in a successor λ implies
stability in λ.

1In fact, λ can be taken to be above h(h(h(LS(K)))+), where h(µ) = i(2µ)+ .
2After submitting this chapter, we discovered that Shelah claims to build a good frame in

ZFC from categoricity in a high-enough cardinal in Chapter IV of [She09a]. We were unable to
fully check Shelah’s proof. At the very least, our construction using tameness is simpler and gives

much lower Hanf numbers.
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Corollary 4.1.6. Let K be an abstract elementary class with amalgamation
and no maximal models. Assume K is µ-tame and categorical in some cardinal λ
such that cf(λ) > µ. Then K has a unique limit model3 in every λ′ ≥ λ.

Remark 4.1.7. This is also new and complements the conditions for uniqueness
of limit models given in [She99], [Van06], and [GVV16].

The second key property in our proof is a technical condition we call local
character of µ-splitting for /-chains (see Definition 4.3.10). This follows from cate-
goricity in a cardinal of cofinality larger than µ and we believe it is a good candidate
for a definition of superstability, at least in the tame context. Under this hypothe-
sis, we already obtain a forking notion that is well-behaved for µ+-saturated base
models and can prove the upward stability transfer given by Corollary 4.1.4. Local
character of splitting already played a key role in other papers such as [SV99],
[Van06], and [GVV16].

Even if this notion of superstability fails to hold, we can still look at the length
of the chains for which µ-splitting has local character (analogous to the cardinal
κ(T ) in the first-order context). Using GCH, we can generalize one direction of the
first-order characterization of the stability spectrum (Theorem 4.7.6).

The chapter is structured as follows: In Section 4.2, we review background
in the theory of AECs and give the definition of good frames. In Section 4.3, we
fix a cardinal µ and build a µ-frame-like object named a skeletal frame. This is
done using the weak extension and uniqueness properties of splitting isolated by
VanDieren [Van02], together with the assumption of local character of splitting.
In Section 4.4, we show that some of the properties of our skeletal frame in µ lift
to cardinals above µ (and in fact become better than they were in µ). This is done
using the same methods as in [She09a, Section II.2].

In Section 4.5, we show assuming tameness that the other properties of the
skeletal frame lift as well and similarly become better, so that we obtain (if we
restrict ourselves to µ+-saturated models and so, assuming categoricity in the right
cardinal, to all models) all the properties of a good frame except perhaps symmetry.
This uses the ideas from [Bon14a]. Next in Section 4.6 we show how to get
symmetry by using more tameness together with the order property (this is where
we really use that we have structure properties holding globally and not only at a
few cardinals). Finally, we put everything together in Section 4.7. In Section 4.8,
we conclude.

At the beginning of Sections 4.3, 4.4, 4.5, and 4.6, we give hypotheses that are
assumed to hold everywhere in those sections. We made an effort to show clearly
how much of the structural properties (amalgamation, tameness, superstability,
etc.) are used at each step, but our construction is new even for the case of a
totally categorical AEC K with amalgamation, no maximal models, and LS(K)-
tameness. It might help the reader to keep this case in mind throughout.

4.2. Preliminaries

We will use the following facts about transfering basic properties of AECs across
cardinals:

Fact 4.2.1. Let F be an interval of cardinals as above.

3This holds even in the stronger sense of [SV99, Theorem 3.3.7], i.e. two limit models over
the same base are isomorphic over the base.
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(1) If Kµ has no maximal models for all µ ∈ F , then KF has no maximal
models.

(2) If Kµ has amalgamation for all µ ∈ F , then KF has amalgamation.

Proof. No maximal models is straightforward and amalgamation is [She09a,
Conclusion I.2.12]. �

We will also use:

Lemma 4.2.2. Let F = [λ, θ) be an interval of cardinals as above. If KF has
amalgamation and Kλ has joint embedding, then KF has joint embedding.

Proof sketch. Let M` ∈ KF , ` = 1, 2. Pick M ′` ≤K M` of size λ. Use joint
embedding on M ′1,M

′
2, then use amalgamation. �

We write gSna(M) for the set of nonalgebraic 1-types over M , that is:

gSna(M) := {gtp(a/M ;N) | a ∈ N\M,M ≤K N ∈ K}
We will use the following notation for tameness:

Definition 4.2.3 (Tameness). Let λ > κ ≥ LS(K). Let α be a cardinal.
We say that K is (κ, λ)-tame for α-length types if for any M ∈ K≤λ and any
p, q ∈ Sα(M), if p 6= q, then there exists M0 ∈ K≤κ with M0 ≤K M such that
p � M0 6= q � M0. We define similarly (κ,< λ)-tame, (< κ, λ)-tame, etc. When
λ =∞, we omit it. When α = 1, we omit it. We say that K is fully κ-tame if it is
κ-tame for all lengths.

Remark 4.2.4. If α < β, and K is β-stable in λ, then K is α-stable in λ.

The following follows from [Bon17, Theorem 3.1].

Fact 4.2.5. Let λ ≥ LS(K). Let α be a cardinal. Assume K is stable in λ and
λα = λ. Then K is α-stable in λ.

4.2.1. Universal and limit extensions.

Definition 4.2.6 (Universal and limit extensions). For M,N ∈ K, we say that
N is universal over M (written M <univ

K N) if and only if M < N and for any
M ′ ∈ K‖M‖ with M ′ ≥K M , M ′ can be embedded inside N over M . We also write

N >univ
K M for M <univ

K N .
For µ ≥ LS(K) and 0 < δ < µ+ an ordinal, we say that N is (µ,δ)-limit over

M (written M <µ,δK N) if and only if M,N ∈ Kµ, M ≤K N , and there is a <univ
K -

increasing chain (Mi)i≤δ with M0 = M , Mδ = N and Mδ =
⋃
i<δMi if δ is limit.

We also write N >µ,δK M for M <µ,δK N .
We say that a model N is limit if it is (‖N‖, γ)-limit over M for some M ≤K N

and some limit ordinal γ < µ+.

Definition 4.2.7. A modelN ∈ K is µ-model-homogeneous if for anyM ≤K N
with ‖M‖ < µ, we have M <univ

K N . N is model-homogeneous if it is ‖N‖-model-
homogeneous.

Fact 4.2.8. Let µ ≥ LS(K). Assume Kµ has amalgamation, no maximal
models, and is stable. For any M ∈ Kµ, there exists N ∈ Kµ such that M <univ

K N .
Therefore there is a model-homogeneous N ∈ Kµ+ with M <K N .
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Proof. The first part is by [She09a, Claim II.1.16.1(a)]. The second part
follows from iterating the first part µ+ many times. �

Remark 4.2.9. By [She01a, Lemma 0.26], for µ > LS(K), N is µ-model-
homogeneous if and only if it is µ-saturated.

The next proposition is folklore and the results appear in several places in the
literature (see for example [She99, Lemma 2.2]). For the convenience of the reader,
we have included the proofs.

Proposition 4.2.10. Let M0,M1,M2 ∈ Kµ, µ ≥ LS(K) and 0 < δ < µ+.
Then:

(1) M0 <
µ,δ
K M1 implies M0 <

univ
K M1.

(2) M0 <
univ
K M1 ≤K M2 implies M0 <

univ
K M2.

(3) Assume Kµ has amalgamation. Then M0 ≤K M1 <µ,δK M2 implies

M0 <
µ,δ
K M2.

(4) Assume Kµ has amalgamation, no maximal models, and is stable. Then

there exists M ′0 such that M0 <
µ,δ
K M ′0.

(5) Conversely, if for everyM0 ∈ Kµ there existsM ′0 ∈ Kµ such thatM0 <
univ
K

M ′0, then Kµ has amalgamation, no maximal models, and is stable.

Proof.

(1) Fix (Ni)i≤δ witnessing that M0 <
µ,δ
K M1. Let M ′0 ≥K M0 have size µ.

Since δ > 0, N1 is well defined, and is universal over N0 = M0, hence M ′0
can be embedded inside N1 over M0, and hence since N1 ≤K M1 can be
embedded inside M1 over M0.

(2) Let M ′0 ≥K M0 have size µ. Since M ′0 embed inside M1 over M0, it also
embeds inside M2 over M0.

(3) Let (Ni)i≤δ witness M0 <
µ,δ
K M1. We show that M0 <

univ
K N1. This is

enough since then M0 _ (Ni)0<i≤δ will witness that M0 <
µ,δ
K M2. Let

M ′0 ≥K M0 have size µ. By amalgamation, find M ′1 ≥K M1 and h :
M ′0 −−→

M0

M ′1. Now use universality of M2 over M1 to find g : M ′1 −−→
M1

M2.

Let f := g ◦ h. Then f : M ′0 −−→
M0

M2, as desired.

(4) Iterate Fact 4.2.8 δ many times.
(5) Let M0 ∈ Kµ and let M ′0 >

univ
K M0 be in Kµ. M ′0 witnesses that M0 is

not maximal in Kµ. Moreover, M0 is an amalgamation base, since any
two models of size µ extending M0 can amalgamated over M0 inside M ′0.
Finally, all types over M0 are realized in M ′0 which has size µ, there can
be at most µ many of them, so stability follows.

�

We give orderings satisfying the conclusion of Proposition 4.2.10 a name:

Definition 4.2.11 (Abstract universal ordering). An abstract universal order-
ing on Kµ is a binary relation / on Kµ satisfying the following properties. For any
M0,M1,M2 ∈ Kµ:

(1) M0 / M1 implies M0 <
univ
K M1.

(2) There exists N0 ∈ Kµ such that M0 / N0.
(3) M0 ≤K M1 / M2 implies M0 / M2.
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(4) Closure under isomorphism: if M0/M1 and f : M1
∼= M ′1, then f [M0]/M ′1.

Note that this implies that / is a strict partial ordering on Kµ extending <K.
For 0 < δ < µ+, a model M ∈ Kµ is (δ, /)-limit if there exists a /-increasing

chain (Mi)i<δ in Kµ such that M =
⋃
i<δMi. M is /-limit if there exists a limit δ

such that M is (δ, /)-limit.

Remark 4.2.12. Assume Kµ has amalgamation, no maximal models, and is

stable. Then by Proposition 4.2.10, for any 0 < δ < µ+, <µ,δK is an abstract uni-
versal ordering on Kµ. Moreover, the existence of any abstract universal ordering
on Kµ implies that <univ

K is an abstract universal ordering, and hence that Kµ has
amalgamation, no maximal models, and is stable.

Let LS(K) ≤ µ < λ. Even assuming stability everywhere, is is unclear whether
there should be any model-homogeneous model in λ (think for example of the case
cf(λ) = ω). The following tells us that we can at least get an approximation to one:
we can do the usual construction of special models in a cardinal λ if K is stable
below λ. This will be used in the proof of the superstability theorem (Theorem
4.5.6).

Lemma 4.2.13. Let LS(K) ≤ µ+ < λ. Assume K[µ,λ) has amalgamation, no
maximal models, and is stable in µ′ for unboundedly many µ < µ′ < λ (that is, for
any µ < µ′ < λ, there exists µ′ ≤ µ′′ < λ such that Kµ′′ is stable).

For any N0 ∈ K[µ,λ), there exists (Ni)i<λ <
univ
K -increasing continuous in K[µ,λ)

with each Ni+1 µ+-model-homogeneous. Moreover any M ∈ K[µ,λ] such that
N0 ≤K M can be embedded inside N :=

⋃
i<λNi over N0.

Proof. We build (Ni)i<λ by induction. N0 is already given and without loss
of generality ‖N0‖ ≥ µ+. Take unions at limits and for a given Ni, first take
N ′i ≥ Ni such that K‖N ′i‖ is stable, and iterate Fact 4.2.8 µ+-many times to pick

Ni+1 ∈ K‖N ′i‖ which is also µ+-model-homogeneous such that N ′i <
univ
K Ni+1 (and

so by Proposition 4.2.10 also Ni <
univ
K Ni+1).

Now given M ∈ K[µ,λ] with N0 ≤K M , let (Mi)i≤λ be an increasing continuous
resolution of M such that ‖Mi‖ < λ for all i < λ and M0 = N0. Inductively build
(fi)i≤λ an increasing continuous chain of K-embeddings such that for each i ≤ λ,
fi : Mi −−→

M0

Ni. This is easy since Ni+1 >
univ
K Ni for all i < λ. Then fλ embeds M

into N . �

4.2.2. Good frames. Good frames were first defined in [She09a, Chapter
II]. The idea is to provide a localized (i.e. only for base models of a given size λ)
axiomatization of a forking-like notion for (a “nice enough” set of) 1-types. Jarden
and Shelah (in [JS13]) later gave a slightly more general definition, not assuming
the existence of a superlimit model and dropping some of the redundant clauses.
We will use a slight variation here: we assume the models come from KF , for F
an interval, instead of just Kλ. We first adapt the definition of a pre-λ-frame from
[She09a, Definition III.0.2.1] to such an interval:

Definition 4.2.14 (Pre-frame). Let F be an interval of the form [λ, θ), where
λ is a cardinal, and θ > λ is either a cardinal or ∞.

A pre-F-frame is a triple s = (K,^, gSbs), where:
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(1) K is an abstract elementary class4 with λ ≥ LS(K), Kλ 6= ∅.
(2) gSbs ⊆

⋃
M∈KF gSna(M). ForM ∈ KF , we write gSbs(M) for gSbs ∩ gSna(M).

(3) ^ is a relation on quadruples of the form (M0,M1, a,N), where M0 ≤K

M1 ≤K N , a ∈ N , andM0, M1, N are all in KF . We write^(M0,M1, a,N)

or a
N

^
M0

M1 instead of (M0,M1, a,N) ∈^.

(4) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and a
N

^
M0

M1, then f(a)
N ′

^
f [M0]

f [M1]. If

gtp(a/M1;N) ∈ gSbs(M1), then gtp(f(a)/f [M1];N ′) ∈ gSbs(f [M1]).

(b) Monotonicity: If a
N

^
M0

M1, M0 ≤K M ′0 ≤K M ′1 ≤K M1 ≤K N ′ ≤K

N ≤K N ′′ with a ∈ N ′ and N ′′ ∈ KF , then a
N ′

^
M ′0

M ′1 and a
N ′′

^
M ′0

M ′1.

(c) Nonforking types are basic: If a
N

^
M
M , then gtp(a/M ;N) ∈ gSbs(M).

We write λ-frame instead of {λ}-frame, (≥ λ)-frame instead of [λ,∞)-frame.
We sometimes drop the F when it is clear from context.

A pre-frame is type-full if gSbs(M) = gSna(M) for all M ∈ KF .
For F ′ ⊆ F an interval, we let s � F ′ denote the pre-F ′-frame defined in the

obvious way by restricting the basic types and ^ to models in KF ′ . For λ′ ∈ F ,
we write s � λ′ instead of s � {λ′}.

By the invariance and monotonicity properties, ^ is really a relation on types.
This justifies the next definition.

Definition 4.2.15. If s = (K,^, gSbs) is a pre-F-frame, p ∈ gS(M1) is a type,

we say p does not s-fork over M0 if a
N

^
M0

M1 for some (equivalently any) a and N

such that p = gtp(a/M1;N).

Remark 4.2.16. A pre-frame defines an abstract notion of forking. That is, we
only know that the relation ^ satisfies some axioms but it could a-priori be defined
arbitrarily. Later in the chapter, we will study a specific definition of forking (based
on splitting). While the specific definition we will give will coincide (over sufficiently
saturated models) with first-order forking when the AEC is a class of models of a
first-order theory, the reader should remember that we are working in much more
generality than the first-order framework, hence most of the properties of first-order
forking need not hold here.

Remark 4.2.17. We could have started from (K,^) and defined the basic
types as those that do not fork over their own domain. The existence property of
good frames (see below) would then hold for free. Since we are sometimes interested
in studying frames that only satisfy existence over a certain class of models (like
the saturated models), we will not adopt this approach.

4In [She09a, Definition III.0.2.1], Shelah only asks that K contains the models of size F of
an AEC. For easy of exposition, we do not adopt this approach.
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Remark 4.2.18 (Monotonicity of s-forking). If s = (K,^, gSbs) is a pre-F-

frame, M0 ≤K M1 ≤K N1 ≤K N0 are in KF , and p ∈ gSbs(N0) does not s-fork
over M0, then by the monotonicity axiom, p � N1 does not s-fork over M1. We will
use this fact freely.

Definition 4.2.19 (Good frame). Let F be as above.

A good F-frame is a pre-F-frame (K,^, gSbs) satisfying in addition:

(1) KF has amalgamation, joint embedding, and no maximal model.

(2) bs-Stability: | gSbs(M)| ≤ ‖M‖ for all M ∈ KF .
(3) Density of basic types: If M <K N and M,N ∈ KF , then there is a ∈ N

such that gtp(a/M ;N) ∈ gSbs(M).

(4) Existence: If M ∈ KF and p ∈ gSbs(M), then p does not s-fork over M .
(5) Extension: If p ∈ gS(N) does not s-fork over M , and N ′ ∈ KF is such

that N ′ ≥K N , then there is q ∈ gS(N ′) extending p that does not s-fork
over M .

(6) Uniqueness: If p, q ∈ gS(N) do not s-fork over M and p � M = q � M ,
then p = q.

(7) Symmetry: If a1

N

^
M0

M2, a2 ∈ M2, and gtp(a2/M0;N) ∈ gSbs(M0), then

there is M1 containing a1 and there is N ′ ≥K N such that a2

N ′

^
M0

M1.

(8) Local character: If δ is a limit ordinal, (Mi)i≤δ is an increasing chain in

KF with Mδ =
⋃
i<δMi, and p ∈ gSbs(Mδ), then there exists i < δ such

that p does not s-fork over Mi.
(9) Continuity: If δ is a limit ordinal, (Mi)i≤δ is an increasing chain in KF

with Mδ =
⋃
i<δMi, p ∈ gS(Mδ) is so that p � Mi does not s-fork over

M0 for all i < δ, then p does not s-fork over M0.
(10) Transitivity5: If M0 ≤K M1 ≤K M2, p ∈ gS(M2) does not s-fork over M1

and p �M1 does not s-fork over M0, then p does not s-fork over M0.

For L a list of properties, a good−L F-frame is a pre-F-frame that satisfies all the
properties of good frames except possibly the ones in L. In this chapter, L will only
contain symmetry and/or bs-stability. We abbreviate symmetry by S, bs-stability

by St, and write good− for good−(S,St).
We say that K has a good F-frame if there is a good F-frame where K is the

underlying AEC (and similarly for good−).

Remark 4.2.20. Using F instead of a single cardinal λ is only a convenience:
just like an abstract elementary class K is determined by KLS(K), a good− F-frame

s is determined by s � λ, where λ := min(F). More precisely, if t is a good− F-
frame such that t � λ = s � λ, then the arguments from [She09a, Section II.2] show
that t = s.

Note that local character implies nonforking is always witnessed by a model of
small size:

Proposition 4.2.21. Assume F is an interval of cardinals with minimum λ.
Assume s = (K,^, gSbs) is a pre-F-frame satisfying local character and transitivity.

5This actually follows from uniqueness and extension, see [She09a, Claim II.2.18].
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If M ∈ KF and p ∈ gSbs(M), then there exists M ′ ∈ Kλ such that p does not s-fork
over M ′.

Proof. By induction on λ′ := ‖M‖. If λ′ = λ, then since local character
implies existence, we can take M ′ := M . Otherwise, λ′ > λ so we can take a
resolution (Mi)i<λ′ of M such that λ ≤ ‖Mi‖ < λ′ for all i < λ′. By local
character, there exists i < λ′ such that p does not s-fork over Mi. By monotonicity,
p � Mi does not s-fork over Mi, so must be basic. By the induction hypothesis,
there exists M ′ ∈ Kλ such that p � Mi does not s-fork over M ′. By transitivity, p
does not s-fork over M ′. �

4.3. A skeletal frame from splitting

Hypothesis 4.3.1.

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal. Kµ 6= ∅.
(2) Kµ has amalgamation.

In this section, we start our quest for a good frame. Note that we do not
assume that any abstract notion of forking is available to us at the start. Recall
the following variations on first-order splitting from [She99, Definition 3.2]:

Definition 4.3.2. For p ∈ gS(N), we say that p µ-splits over M if M ≤K N
and there exists N1, N2 ∈ Kµ so that M ≤K N` ≤ N for ` = 1, 2, and h : N1

∼=M N2

such that h(p � N1) 6= p � N2.
When µ is clear from context, we drop it.

Remark 4.3.3 (Monotonicity of splitting). If p ∈ gS(N) does not µ-split over
M and M ≤K M ′ ≤K N ′ ≤K N are all in Kµ, then p � N ′ does not µ-split over
M ′.

Remark 4.3.4. If s is a good− µ-frame, and p does not s-fork over M , then
p does not µ-split over M (this will not be used but follows from the uniqueness
property, see e.g. Lemma 3.4.2). Thus splitting can be seen as a first approximation
to a forking notion.

Our starting point will be the following extension and uniqueness properties
of splitting, first isolated by VanDieren [Van02, Theorem II.7.9, Theorem II.7.11].
Intuitively, they tell us that the usual uniqueness and extension property of a forking
notion hold of splitting provided we have enough room (concretely, the base model
has to be “shifted” by a universal extension).

Fact 4.3.5. Let M0 <
univ
K M ≤K N with M0,M,N ∈ Kµ. Then:

(1) Weak uniqueness: If p` ∈ gS(N) does not split over M0, ` = 1, 2, p1 �
M = p2 �M , then p1 = p2.

(2) Weak extension: If p ∈ gS(M) does not split over M0, then there exists
q ∈ gS(N) extending p that does not split over M0. Moreover, q can be
taken to be nonalgebraic if p is nonalgebraic.

Proof. See [Van06, Theorem I.4.12] for weak uniqueness. For weak exten-
sion, use universality to get h : N −−→

M0

M . Further extend h to an isomorphism

ĥ : N̂ ∼=M0 M̂ . So that M̂ contains a realization a of p. Let a′ := ĥ−1(a), and

let q := gtp(a/N ; N̂). The proof of [Van06, Theorem I.4.10] shows q is indeed an
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extension of p that does not split over M0. In addition if q is algebraic, a′ ∈ N so
a = h(a′) ∈M , so p is algebraic. �

We will mostly use those two properties instead of the exact definition of split-
ting. However, they characterize splitting in the following sense:

Proposition 4.3.6. Assume Kµ has amalgamation, no maximal models, and
is stable. Let s be a type-full pre-µ-frame with underlying AEC K. The following
are equivalent.

(1) For all M,N ∈ Kµ with M ≤K N and all types p ∈ gS(N), if p does not
s-fork over M , then for any M <univ

K M ′ ≤K N , p does not split over M ′.
(2) s-forking satisfies weak uniqueness and weak extension (i.e. the conclusion

of Fact 4.3.5 holds with “split” replaced by “fork”).

Proof. Chase the definitions (not used). �

We also obtain a weak transitivity property:

Proposition 4.3.7 (Weak transitivity of splitting). Let M0 ≤K M1 <univ
K

M ′1 ≤K M2 all be in Kµ. Let p ∈ gS(M2). If p � M ′1 does not split over M0 and p
does not split over M1, then p does not split over M0.

Proof. By weak extension, find q ∈ gS(M2) extending p �M ′1 and not splitting
over M0. By monotonicity, q does not split over M1. By weak uniqueness, p = q,
as needed. �

We now turn to building a forking notion that will satisfy a version of uniqueness
and extension (see Definition 4.2.19) in Kµ. The idea is simple enough: we want
to say that a type does not fork over M if there is a “small” substructure M0 of M
over which the type does not split. Fact 4.3.5 suggests that “small” should mean
“such that M is a universal extension of M0”, and this is exactly how we define it:

Definition 4.3.8 (µ-forking). Let M0 ≤K M ≤K N be models in Kµ. We say
p ∈ gS(N) explicitly does not µ-fork over (M0,M) if:

(1) M0 <
univ
K M ≤K N .

(2) p does not µ-split over M0.

We say p does not µ-fork over M if there exists M0 so that p explicitly does
not µ-fork over (M0,M).

The reader should note that the word “forking” is used in two different senses
in this chapter:

• In the sense of an “abstract notion”: this depends on a pre-F-frame s and
is called s-forking in Definition 4.2.15. This is defined for models of sizes
in F .

• In the concrete sense of Definition 4.3.8. This is called µ-forking and is
only defined for types over models of size µ. Later this will be extended
to models of sizes at least µ and we will get a (concrete) notion called
(≥ µ)-forking (Definition 4.4.2). Of course, the two notions will coincide
over models of size µ.

When we say that a type p explicitly does not µ-fork over (M0,M), we think
of M as the base, and M0 as the explicit witness to the µ-nonforking. It would



4.3. A SKELETAL FRAME FROM SPLITTING 87

be nice if we could get rid of the witness entirely and get that µ-nonforking sat-
isfies extension and uniqueness, but uniqueness seems to depend on the particular
witness.

Transitivity is also problematic: although we manage to get a weak version de-
pending on the particular witnesses, we still do not know how to prove the witness-
free version. This was stated as [Bal09, Exercise 12.9] but Baldwin later realized
[Bal] there was a mistake in his proof.

If instead we define “p does not µ-fork∗ over M” to mean “for all M0 <
univ
K M

both in Kµ there exists M ′0 in Kµ with M0 ≤K M ′0 <
univ
K M and p explicitly does

not µ-fork over (M ′0,M)” then extension and uniqueness (and thus transitivity)
hold, but local character (assuming local character of splitting) is problematic.
Thus it seems we have to carry along the witness in our definition of forking,
and this makes the resulting independence notion quite weak (hence the name
“skeletal”). However, we will see in the next sections that (assuming some tameness
and homogeneity) our skeletal µ-frame transfers to a much better-behaved frame
above µ. In particular, full uniqueness and transitivity will hold there.

Lemma 4.3.9 (Basic properties of µ-forking). Below, all models are in Kµ.

(1) Monotonicity: If p ∈ gS(N) explicitly does not µ-fork over (M0,M),
M0 ≤K M ′0 ≤K M ≤K M ′ ≤K N ′ ≤K N and M ′0 <

univ
K M ′, then p � N ′

explicitly does not µ-fork over (M ′0,M
′). In particular, if p ∈ gS(N) does

not µ-fork over M and M ≤K M ′ ≤K N ′ ≤K N , then p � N ′ does not
µ-fork over M ′.

(2) Extension: If p ∈ gS(N) explicitly does not µ-fork over (M0,M) and
N ′ ≥K N , then there is q ∈ gS(N ′) extending p that explicitly does not
µ-fork over (M0,M). If p is nonalgebraic, then q is nonalgebraic.

(3) Uniqueness: If p` ∈ gS(N) explicitly does not µ-fork over (M0,M), ` =
1, 2, and p1 �M = p2 �M , then p1 = p2.

(4) Transitivity: Let M1 ≤K M2 ≤K M3 and let p ∈ gS(M3). If p � M2

explicitly does not µ-fork over (M0,M1) and p explicitly does not µ-fork
over (M ′0,M2) for M0 ≤K M ′0, then p explicitly does not µ-fork over
(M0,M1).

(5) Nonalgebraicity: If p ∈ gS(N) does not µ-fork over M and p � M is not
algebraic, then p is not algebraic.

Proof. Monotonicity follows directly from the definition (and Proposition
4.2.10.(2)), extension and uniqueness are just restatements of Fact 4.3.5, and tran-
sitivity is a restatement of Proposition 4.3.7. For nonalgebraicity, assume p �M is
nonalgebraic. Then it has a nonalgebraic nonforking extension to N by extension,
and this extension must be p by uniqueness, so the result follows. �

Assuming some local character for splitting, we obtain weak versions of the
local character and continuity properties:

Definition 4.3.10. Let R be a binary relation on Kµ, and let κ be a regular
cardinal. We say that µ-splitting has κ-local character for R-increasing chains if
for any R-increasing (Mi)i≤δ with cf(δ) ≥ κ, Mδ =

⋃
i<δMi, and any p ∈ gS(Mδ),

there is i < δ so that p does not split over Mi.

Remark 4.3.11. If Kµ is stable, then by [GV06b, Fact 4.6] µ-splitting has
µ+-local character for ≤-increasing chains.
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Lemma 4.3.12. Let / be an abstract universal ordering on Kµ, and let κ be
a regular cardinal. Assume splitting has κ-local character for /-increasing chains.
Then:

(1) κ-local character for /-increasing chains: If (Mi)i≤δ is a /-increasing chain
in Kµ with cf(δ) ≥ κ, Mδ =

⋃
i<δMi and p ∈ gS(Mδ), then there exists

i < δ so that p explicitly does not µ-fork over (Mi,Mi+1).
(2) κ-continuity for /-increasing chains: If (Mi)i≤δ is a /-increasing chain in

Kµ with cf(δ) ≥ κ, Mδ =
⋃
i<δMi and p ∈ gS(Mδ) such that p � Mi

does not µ-fork over M0 for all i < δ, then p does not µ-fork over M0.
Moreover, if in addition p � Mi explicitly does not µ-fork over (M ′0,M0)
for all i < δ (i.e. the witness is always the same), then p explicitly does
not µ-fork over (M ′0,M0).

(3) Existence over (≥ κ, /)-limits: If M ∈ Kµ is (δ, /)-limit for some δ with
cf(δ) ≥ κ, then any p ∈ gS(M) does not µ-fork over M . In fact, if
p0, ..., pn−1 ∈ gS(M), n < ω, then there exists M0 <

univ
K M such that pi

explicitly does not µ-fork over (M0,M) for all i < n.

Proof.

(1) Follows from κ-local character of splitting for /-increasing chains.
(2) By κ-local character, there exists i < δ so that p explicitly does not µ-

fork over (Mi,Mi+1). By assumption, there exists M ′0 <
univ
K M0 so that

p � Mi+1 explicitly does not µ-fork over (M ′0,M0). Since M ′0 ≤K Mi,
we can apply transitivity to obtain that p explicitly does not µ-fork over
(M ′0,M0). The proof of the moreover part is similar.

(3) By local character and monotonicity.

�

Thus if splitting has ℵ0-local character for /-increasing chains for some abstract
universal ordering / and if all models in Kµ are /-limit (e.g. if Kµ is categorical),

then it seems we are very close to having a good−S µ-frame, but the witnesses must
be carried along, which as observed above is rather annoying. Also, local character
and continuity only hold for /-chains.

In the next sections, we show that these problems disappear when we transfer
our skeletal frame above µ. Note that Shelah’s construction of a good frame in
[She09a, Theorem II.3.7] already takes advantage of that phenomenon. A similar
idea is also exploited in the definition of a rooted minimal type in Grossberg and
VanDieren’s categoricity transfer from tameness [GV06a, Definition 2.6].

4.4. Going up without assuming tameness

Hypothesis 4.4.1.

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal. Kµ 6= ∅.
(2) / is an abstract universal ordering on Kµ. In particular (by Remark

4.2.12), Kµ has amalgamation, no maximal models, and is stable.

In [She09a, Section II.2], Shelah showed how to extend a good µ-frame to all
models in K≥µ. The resulting object will in general not be a good (≥ µ)-frame,
but several of the properties are nevertheless preserved. In this section, we apply
the same procedure on our skeletal µ-frame (induced by µ-forking defined in the
previous section) and show Shelah’s arguments still go through, assuming the base
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models are µ+-homogeneous. In the next section, we will assume tameness to prove
more properties of (≥ µ)-forking.

We define (≥ µ)-forking from µ-forking in exactly the same way Shelah extends
a good µ-frame to a (≥ µ)-frame:

Definition 4.4.2. Assume M,N ∈ K≥µ and p ∈ gSna(N). We say that p does
not (≥ µ)-fork over M if M ≤K N and there exists M ′ in Kµ with M ′ ≤K M such
that for all N ′ ∈ Kµ with M ′ ≤K N ′ ≤K N , p � N ′ does not µ-fork over M ′.

For technical reasons, we also need to define explicit (≥ µ)-forking over a model
of size µ:

Definition 4.4.3 (Explicit (≥ µ)-forking in K≥µ). Assume N ∈ K≥µ, M0 ≤K

M are in Kµ, and p ∈ gSna(N). We say that p explicitly does not (≥ µ)-fork over
(M0,M) if p does not µ-split over M0 and M0 <

univ
K M ≤K N . Equivalently, for

all N ′ ∈ Kµ with M ≤K N ′ ≤K N , we have p � N ′ explicitly does not µ-fork over
(M0,M) (see Definition 4.3.8).

Remark 4.4.4. The following easy propositions follow from the definitions. We
will use them without further comments in the rest of this chapter.

(1) The definitions of (≥ µ)-forking and µ-forking coincide over models of size
µ. That is, if M0,M,N ∈ Kµ and p ∈ gSna(N), then p does not µ-fork
over M if and only if p does not (≥ µ)-fork over M and p explicitly does
not (≥ µ)-fork over (M0,M) if and only if p explicitly does not µ-fork
over (M0,M).

(2) For M ≤K N both in K≥µ, p ∈ gSna(N) does not (≥ µ)-fork over M if
and only if there exists M0 ≤K M in Kµ such that p does not (≥ µ)-fork
over M0.

(3) For M ≤K N with M ∈ Kµ, N ∈ K≥µ, p ∈ gSna(N) does not (≥ µ)-fork
over M if and only if for all N ′ ≤K N with M ≤K N ′, p � N ′ does not
µ-fork over M .

Definition 4.4.5. We define a nonforking relation ^ on K≥µ by a
N̂

^
M
N if and

only if M,N, N̂ ∈ K≥µ, a ∈ N̂ , and gtp(a/N ; N̂) does not (≥ µ)-fork over M .

Proposition 4.4.6. s0 := (K,^, gSna) is a type-full pre-[µ,∞)-frame.

Proof. The properties to check follow directly from the definition of (≥ µ)-
nonforking. s0 is type-full since we defined the basic types to be all the nonalgebraic
types. �

In Kµ we had by definition that a type which does not µ-fork over M also
explicitly does not µ-fork over (M0,M) for some witness M0. This is not necessarily
the case for (≥ µ)-nonforking: take for example N ∈ K>µ and M ∈ Kµ and
assume p ∈ gS(N) does not (≥ µ)-fork over M . Then for all N ′ ∈ Kµ with
M ≤K N ′ ≤K N , p � N ′ does not µ-fork over M , i.e. there is a witness M ′0 such
that p � N ′ explicitly does not µ-fork over (M ′0,M), but there could be different
witnesses M ′0 for different N ′.

The next lemma shows that this can be avoided if we have enough homogeneity.
This is crucial to our proofs of transitivity, uniqueness, and extension.
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Lemma 4.4.7. Assume M ≤K N are both in K≥µ+ and M is µ+-model-
homogeneous. Assume p ∈ gS(N) does not (≥ µ)-fork over M . Then there exists
M ′0,M

′ ∈ Kµ with M ′0 ≤K M ′ ≤K M such that p explicitly does not (≥ µ)-
fork over (M ′0,M

′) (i.e. (≥ µ)-nonforking over M ′ is witnessed by the same M ′0
uniformly, see the discussion above).

Proof. By definition, there is M ′0 in Kµ with M ′0 ≤K M such that p does not
(≥ µ)-fork over M ′0. Since M is µ+-model-homogeneous, one can pick M ′ >univ

K M ′0
in Kµ with M ′ ≤K M . By monotonicity (Lemma 4.3.9.(1)), p explicitly does not
(≥ µ)-fork over (M ′0,M

′). �

Using Lemma 4.4.7, we can give a simpler definition of (≥ µ)-forking. This will
not be used but shows that our forking is the same as that defined in [She09a,
Definition III.9.5.2].

Proposition 4.4.8. Assume M ≤K N are both in K≥µ+ and M is µ+-model-
homogeneous. Let p ∈ gSna(N). Then p does not (≥ µ)-fork over M if and only if
there exists M0 ∈ Kµ such that M0 ≤K M and p does not µ-split over M0.

Proof. If p does not (≥ µ)-fork over M , use Lemma 4.4.7 to get M ′0,M
′ ∈ Kµ

with M0 ≤K M ′ ≤K M such that p explicitly does not (≥ µ)-fork over (M0,M
′).

By definition, this means that p does not µ-split over M0. Conversely, assume
M0 ∈ Kµ is such that M0 ≤K M and p does not µ-split over M0. Since M is
µ+-model-homogeneous, there exists M ′ ∈ Kµ such that M0 <univ

K M ′ ≤K M .
Thus p explicitly does not (≥ µ)-fork over (M0,M

′), so it does not (≥ µ)-fork over
M . �

Lemma 4.4.9 (Existence). Let M ∈ K≥µ+ be µ+-model-homogeneous. Then
p ∈ gSna(M) if and only if p does not (≥ µ)-fork over M .

Proof. If p does not fork over M , then p is nonalgebraic by definition. Now
assume p is nonalgebraic. By [GV06b, Fact 4.6], there is M ′0 ∈ Kµ with M ′0 ≤K M
such that p does not µ-split over M0. Pick M ′ ∈ Kµ with M ′ >univ

K M ′0 so that
M ′ ≤K M . This is possible by µ+-model-homogeneity. We have that p explicitly
does not (≥ µ)-fork over (M ′0,M

′), so does not (≥ µ)-fork over M ′, as needed. �

Lemma 4.4.10 (Transitivity). If M0 ≤K M1 ≤K M2 are all in K≥µ, M1 is
µ+-model-homogeneous, p ∈ gSna(M2) is such that p � M1 does not (≥ µ)-fork
over M0 and p does not (≥ µ)-fork over M1, then p does not (≥ µ)-fork over M0.

Proof. Find M ′0 ∈ Kµ with M ′0 ≤K M0 such that p �M1 does not (≥ µ)-fork
over M ′0. Using monotonicity and Lemma 4.4.7, we can also find M ′1,M

′′
1 ∈ Kµ

with M ′0 ≤K M ′1 <
univ
K M ′′1 ≤K M1 such that p explicitly does not (≥ µ)-fork over

(M ′1,M
′′
1 ). By transitivity in Kµ (Lemma 4.3.9.(4)), p does not (≥ µ)-fork over

M ′0, and hence over M0. �

Lemma 4.4.11 (Local character). Assume splitting has κ-local character for
/-increasing chains. If cf(δ) ≥ κ, (Mi)i≤δ is an increasing chain in K≥µ+ with
Mδ =

⋃
i<δMi, Mi is µ+-model-homogeneous for i < δ, and p ∈ gSna(Mδ), then

there is i < δ such that p does not (≥ µ)-fork over Mi.

Proof. Without loss of generality, δ is regular. If δ ≥ µ+, then Mδ is also µ+-
model-homogeneous so one can pick N∗ ∈ Kµ with N∗ ≤K Mδ witnessing existence
(use Lemma 4.4.9) and find i < δ with N∗ ≤K Mi, so p does not (≥ µ)-fork over Mi
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as needed. Now assume δ < µ+. We imitate the proof of [She09a, Claim II.2.11.5].
Assume the conclusion fails. Build (Ni)i≤δ /-increasing continuous in Kµ, (N ′i)i≤δ
≤K-increasing continuous in Kµ such that for all i < δ:

(1) Ni ≤Mi.
(2) Ni ≤ N ′i ≤Mδ.
(3) p � N ′i+1 explicitly µ-forks over (Ni, Ni+1).
(4)

⋃
j≤i(N

′
j ∩Mi+1) ⊆ |Ni+1|.

This is possible. For i = 0, let N0 ∈ Kµ be any model with N0 ≤ M0, and
let N ′0 := N0. For i limit, take unions. For the successor case, assume i = j + 1.
Choose Ni ≤ Mi satisfying (4) with Ni D Nj (possible since Mi is µ+-model-
homogeneous). By assumption, p (≥ µ)-forks over Mi, hence explicitly (≥ µ)-forks
over (Nj , Ni), and so by definition of forking and monotonicity there exists N ′i ∈ Kµ

with Mδ ≥K N ′i ≥K Ni, N
′
i ≥K N ′j , and p � N ′i explicitly µ-forking over (Nj , Ni).

It is as required.
This is enough. By local character in Kµ, there is i < δ such that p � Nδ

explicitly does not µ-fork over (Ni, Ni+1). By (2) and (4), N ′δ ≤K Nδ. Thus
p � N ′i+1 explicitly does not µ-fork over (Ni, Ni+1), contradicting (3).

�

Lemma 4.4.12 (Continuity). Assume splitting has κ-local character for /-increasing
chains. If cf(δ) ≥ κ, (Mi)i≤δ is an increasing chain in K≥µ+ with Mδ =

⋃
i<δMi,

Mi µ
+-model-homogeneous for i < δ, and p ∈ gS(Mδ) is so that p � Mi does not

(≥ µ)-fork over M0 for all i < δ, then pδ does not (≥ µ)-fork over M0.

Proof. In a type-full frame such as ours, this follows directly from κ-local
character and transitivity, see [She09a, Claim II.2.17.3]. �

Remark 4.4.13. In the statements of local character and continuity, we as-
sumed that Mi was µ+-model-homogeneous for all i < δ, but not that their union
Mδ was µ+-model-homogeneous.

4.5. A tame good frame, perhaps without symmetry

Boney showed in [Bon14a] that given a good µ-frame, tameness implies that
Shelah’s extension of the frame to ≥ µ is actually a good (≥ µ)-frame. In this
section, we apply the ideas of his proof (assuming the base models are µ+-model-
homogeneous) to our skeletal µ-frame.

More precisely, we fix a cardinal λ > µ, assume enough tameness, and build a
good−S λ-frame (i.e. we have all the properties of a good λ-frame except perhaps
symmetry). We will prove symmetry in the next section.

Hypothesis 4.5.1.

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal. Kµ 6= ∅.
(2) / is an abstract universal ordering on Kµ. In particular (by Remark

4.2.12), Kµ has amalgamation, no maximal models, and is stable.
(3) κ is the least regular cardinal such that splitting has κ-local character for

/-increasing chains in Kµ.
(4) λ > µ is such that:

(a) K is (µ, λ)-tame6.

6Recall (Definition 4.2.3) that this means that the Galois types over models of size at most

λ are determined by their restrictions to submodels of size µ.



92 4. FORKING AND SUPERSTABILITY IN TAME AECS

(b) K[µ,λ] has amalgamation.
(c) K[µ,λ) has no maximal models.

Remark 4.5.2. κ plays a similar role as the cardinal κ(T ) in the first-order
context. By Remark 4.3.11 and Hypothesis 4.5.1.(2), κ ≤ µ+. In the end, we will
be able to obtain a good frame only when κ = ℵ0, but studying the general case
leads to results on the stability spectrum.

Note that uniqueness is actually equivalent to (µ, λ)-tameness by [Bon14a,
Theorem 3.2]. The easiest case is when λ = µ+. Then we know a model-homogeneous
model exists in Kλ, and this simplifies some of the proofs.

Lemma 4.5.3 (Uniqueness). Let M ≤K N be models in K[µ,λ]. Let p, q ∈
gS(N). Assume p �M = q �M .

(1) If M ∈ Kµ and p, q explicitly do not (≥ µ)-fork over (M0,M) for some
M0 <

univ
K M , then p = q.

(2) If M ∈ K[µ+,λ] is µ+-model-homogeneous and p, q do not (≥ µ)-fork over
M , then p = q.

Proof. (1) follows from uniqueness in Kµ (Lemma 4.3.9.(3)) and tameness.
To see (2), use monotonicity and Lemma 4.4.7, to find M ′0,M

′ ∈ Kµ with M ′0 <
univ
K

M ′ ≤K M such that both p and q explicitly do not (≥ µ)-fork over (M ′0,M
′). Now

apply (1). �

Interestingly, we already have enough machinery to obtain a stability transfer
theorem. First recall:

Fact 4.5.4. Kµ+ is stable.

Proof. This could be done using the method of proof of Theorem 4.5.6, but
this is also [BKV06, Theorem 1]. �

Recall that κ is the local character cardinal, see Hypothesis 4.5.1.(3.

Lemma 4.5.5. Assume that λ > µ+, cf(λ) ≥ κ, and there are unboundedly (in
the same sense as in the statement of Lemma 4.2.13) many µ ≤ λ′ < λ such that
Kλ′ is stable. Then Kλ is stable.

Proof. Let M ∈ Kλ. By Lemma 4.2.13, M can be embedded inside some

M̂ ∈ Kλ which can be written as
⋃
i<λMi, with (Mi)i<λ an increasing chain7 of µ+-

model-homogeneous models in K[µ+,λ). From amalgamation, we know that Galois

types can be extended, so | gS(M)| ≤ | gS(M̂)|, and so we can assume without loss

of generality that M = M̂ . Let (pj)j<λ+ be types in gS(M). By κ-local character,
for each j < λ+ there is ij < λ such that pj does not (≥ µ)-fork over Mij . By
the pigeonhole principle, we may assume ij = i0 for all j < λ+. Taking i0 bigger
if necessary, we may assume that K‖Mi0

‖ is stable. Thus | gS(Mi0)| ≤ ‖Mi0‖ ≤ λ,

so by the pigeonhole principle again, we can assume that there is q ∈ gS(Mi0) such
that pj � Mi0 = q for all j < λ+. By uniqueness, pj = pj′ for each j, j′ < λ+, so
the result follows. �

7Explicitly, we take (Ni)i<λ as given by Lemma 4.2.13 for some N0 ≤K M in Kµ+ , and let

Mi := Ni+1. Note that the chain (Mi)i<λ will not be continuous.
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We can now prove that stability transfers up if the locality cardinal κ of Hy-
pothesis 4.5.1.(3) is ℵ0. Recall that λ is the cardinal above µ fixed in Hypothesis
4.5.1.(4). Recall also that we already have stability in µ by Hypothesis 4.5.1.(2).

Theorem 4.5.6 (The superstability theorem). If κ = ℵ0, then Kλ is stable.

Proof. We work by induction on λ. If λ = µ+, this is Fact 4.5.4 and if λ > µ+

this is given by Lemma 4.5.5 and the induction hypothesis. �

Assuming the generalized continuum hypothesis (GCH), we can also say some-
thing for arbitrary κ (this will not be used):

Theorem 4.5.7. Assume GCH. If λ<κ = λ, then Kλ is stable.

Proof. By induction on λ. If λ = µ+, this is Fact 4.5.4, so assume λ > µ+.
By König’s theorem, cf(λ) ≥ κ. If λ is successor, then λµ = λ by GCH, so by
[GV06b, Corollary 6.4], K is stable in λ. If λ is limit there exists a sequence of
successor cardinals (λi)i<cf(λ) increasing cofinal in λ with λ0 ≥ µ+. Since without

loss of generality κ ≤ µ+ (Remark 4.3.11), GCH implies that λ<κi = λi, so by the
induction hypothesis, K is stable in λi for all i < cf(λ). Apply Lemma 4.5.5 to
conclude. �

We now prove extension. This follows from compactness in the first-order case,
but we make crucial use of the superstability hypothesis κ = ℵ0 in the general case
(recall from the hypotheses of this section that κ is the local character cardinal for
µ-splitting).

Lemma 4.5.8. Assume κ = ℵ0. Let δ < λ+ be a limit ordinal. Assume (Mi)i≤δ
is an increasing continuous sequence in K[µ,λ) with M0 ∈ Kµ. Let (pi)i<δ be an
increasing continuous sequence of types with pi ∈ gS(Mi) for all i < δ, and pi
explicitly does not (≥ µ)-fork over (M ′0,M0). Assume that one of the following
holds:

(1) (Mi)i<δ is /-increasing in Kµ.
(2) For all i < δ, Mi+1 is µ+-model-homogeneous.

Then there exists a unique pδ ∈ gS(Mδ) extending each pi and explicitly not
(≥ µ)-forking over (M ′0,M0).

Proof. This is similar to the argument in [GV06a, Corollary 2.22], but we
give some details. We focus on (1) (the proof of the other case is completely similar).
Build by induction (fi,j)i<j<δ, (ai)i<δ, and increasing continuous (Ni)i<δ such that
for all i < j < δ:

(1) Mi ≤K Ni, ai ∈ Ni.
(2) fi,j : Ni → Nj .
(3) For j < k < δ, fj,k ◦ fi,j = fi,k.
(4) fi,j fixes Mi.
(5) fi,j(ai) = aj .
(6) pi = gtp(ai/Mi;Ni).

This is enough. Let (Nδ, (fi,δ))i<δ be the direct limit of the system (Ni, fi,j)i<j<δ,
and let aδ := f0,δ(a0), pδ := gtp(aδ/Mδ;Nδ). One easily checks that pδ extends
each pi, i < δ, and so using continuity for /-increasing chains (Lemma 4.3.12.(2)),
explicitly does not (≥ µ)-fork over (M ′0,M0). Finally, pδ is unique by Lemma 4.5.3.
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This is possible. For i = 0, we take a0 and N0 so that gtp(a0/M0;N0) = p0. For
i limit, we let (Ni, fi0,i)i0<i be the direct limit of the system (Ni0 , fi0,j0)i0<j0<i, and
let ai := f0,i(a0). By continuity for /-increasing chains, gtp(ai/Mi;Ni) explicitly
does not (≥ µ)-fork over (M ′0,M0), and so by uniqueness, it must equal pi. For
i = i0 + 1 successor, find ai and N ′i ≥ Mi such that pi = gtp(ai/Mi;N

′
i). Since

pi � Mi0 = pi0 , we can use the definition of types to amalgamate Ni0 and N ′i over
Mi0 : there exists Ni ≥K N ′i and fi0,i : Ni0 −−→

Mi0

Ni so that fi0,i(ai0) = ai. Define

fi′0,i := fi0,i ◦ fi′0,i0 for all i′0 < i0. �

Lemma 4.5.9 (Extension). Assume κ = ℵ0. Let M ≤K N both be in K[µ+,λ]

with M and N µ+-model-homogeneous, and let p ∈ gSna(M). Then there is q ∈
gS(N) extending p that does not fork over M .

Proof. We imitate the proof of [Bon14a, Theorem 5.3]. By existence and
Lemma 4.4.7, there exists M ′0,M0 ∈ Kµ with M ′0 <

univ
K M0 ≤K M and p explicitly

(≥ µ)-nonforking over (M ′0,M0). Work by induction on λ. If N ∈ K<λ, use the
induction hypothesis, so assume N ∈ Kλ. There are two cases: either λ = µ+ or
λ > µ+.

Assume first λ > µ+. By transitivity and Lemma 4.2.13, we can assume without
loss of generality that N =

⋃
i<λNi, where (Ni)i≤λ is a <univ

K -increasing continuous
chain in K[µ+,λ), each Ni+1 is µ+-model-homogeneous, and N0 extends M0. Now
inductively build a ≤-increasing continuous (Mi)i≤λ with Mλ = M so that M0 ≤K

Mi ≤K Ni for all i < λ (we allow repetitions). Set pi := p � Mi and note that by
monotonicity, pi explicitly does not (≥ µ)-fork over (M ′0,M0).

We inductively build an increasing (qi)i≤λ with qi ∈ gS(Ni), pi ≤K qi, and qi
explicitly does not (≥ µ)-fork over (M ′0,M0). For i = 0, use extension in K<λ to
find q0 as needed. For i = j+ 1, use extension to find a (≥ µ)-nonforking extension
qi ∈ gS(Ni) of qj that explicitly does not (≥ µ)-fork over (M ′0,M0). By uniqueness,
qi ≥K pi. At limits, use Lemma 4.5.8 and uniqueness. q := qλ is as desired.

If λ = µ+, the construction is exactly the same except we use extension in Kλ

at successor steps and the first case of Lemma 4.5.8 at limit steps. Note that since
N is µ+-model-homogeneous, N =

⋃
i<µ+ Ni, where (Ni)i<µ+ is a /-increasing

continuous chain in Kµ. �

Definition 4.5.10. Let s := s0 � λ, where s0 is the pre-frame from Proposition
4.4.6.

Corollary 4.5.11. Assume:

(1) κ = ℵ0.
(2) Kµ has joint embedding.
(3) Kλ has no maximal models.
(4) All the models in Kλ are µ+-model-homogeneous.

Then s is a type-full good−S λ-frame.

Proof. It is easy to see s is a type-full pre-λ-frame. Kλ has amalgamation
and no maximal models by hypothesis. It has joint embedding since Kµ has joint
embedding and K[µ,λ] has amalgamation (see Lemma 4.2.2). Stability holds by
Theorem 4.5.6. Density of basic types is always true in a type-full frame. For the
other properties, see Lemmas 4.4.9, 4.4.10, 4.4.11, 4.4.12, 4.5.3, and 4.5.9 (note that



4.5. A TAME GOOD FRAME, PERHAPS WITHOUT SYMMETRY 95

the original statement of extension in Definition 4.2.19 follows from Lemma 4.5.9
and transitivity). �

Lemma 4.5.12. Assume K is categorical in λ and κ = ℵ0. Then:

(1) K[µ,λ] has joint embedding and Kλ (and hence K[µ,λ]) has no maximal
models.

(2) All the models in Kλ are µ+-model-homogeneous.

Proof. To see (2), assume first that Kλ has no maximal models. Use stability
to build (Mi)i≤µ+ <univ

K -increasing continuous with Mi ∈ Kλ for all i < µ+. Then
Mµ+ is µ+-model-homogeneous. If Kλ has a maximal model, then it is easy to
check directly that the maximal model is µ+-model-homogeneous.

For (1), Kλ has joint embedding by categoricity. Now since K[µ,λ) has no
maximal models, any M ∈ K[µ,λ) embeds into an element of Kλ, so joint embedding
for K[µ,λ] follows . To see Kλ has no maximal model, let N ∈ Kλ be given. First

assume λ = µ+. Build a /-increasing continuous chain (Mi)i≤µ+ , and a ∈ N such
that for all i < µ+:

(1) Mi ∈ Kµ, Mi ≤K N .
(2) a /∈M0.
(3) gtp(a/Mi;N) does not µ-fork over M0.

This is enough. Mµ+ ∈ Kλ+ . Moreover by Lemma 4.3.9.(5), a /∈ Mi for all
i < µ+, so a /∈Mµ+ . Thus Mµ+ <K N . By categoricity, the result follows.

This is possible. Pick a /-limit M0 ∈ Kµ with M0 ≤K N (this is possible
by model-homogeneity of N), and pick any a ∈ N\M0. At limits, take unions
and use continuity (Lemma 4.3.12.(2)) to see the requirements are maintained.
For a successor i = j + 1, use extension and some renaming. In details, pick an
arbitrary M ′i DMj with M ′i ≤K N (possible by model-homogeneity). By extension
(Lemma 4.3.9.(2)), there is q ∈ gS(M ′i) that does not µ-fork over M0 and extends
pj := gtp(a/Mj ;N). Since N is saturated, there is a′ ∈ N realizing q. Pick
N ≥K Ni ≥K M ′i containing a′ and a. By assumption, gtp(a′/Mj ;Ni) = pj =
gtp(a/Mj ;Ni). Thus there is N ′i ≥K Ni and f : Ni −−→

Mj

N ′i such that f(a′) = a

and without loss of generality N ′i ≤K N . Let Mi := f [M ′i ] and use invariance to
see it is as desired.

If λ > µ+, the proof is completely similar: if there is N1 >K N , we are done,
so assume not. Then amalgamation implies N must be model-homogeneous. Build
a <univ

K -increasing continuous (Mi)i≤λ and a ∈ N such that for all i < λ:

(1) Mi ∈ K[µ+,λ), Mi ≤K N .

(2) Mi+1 is µ+-model-homogeneous.
(3) gtp(a/Mi;N) does not (≥ µ)-fork over M0.

As before, this is possible and the result follows. �

Corollary 4.5.13. If K is categorical in λ and κ = ℵ0, then s is a type-full
good−S λ-frame.

Proof. Lemma 4.5.12 tells us all the hypotheses of Corollary 4.5.11 are satis-
fied. �

Note that categoricity in λ is not the only hypothesis giving that all models in
Kλ are µ+-model-homogeneous. For example:
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Fact 4.5.14 (Theorem 5.4 in [BG]). Assume K has amalgamation, is cate-
gorical in a cardinal θ so that Kθ has a µ+-model-homogeneous model (this holds
if e.g. θµ = θ). Then every member of K≥χ is µ+-model-homogeneous, where
χ := min(θ, supγ<µ i(2γ)+).

4.6. Getting symmetry

From Corollary 4.5.11, we obtain from reasonable assumptions a forking notion
that satisfies all the properties of a good λ-frame except perhaps symmetry. Note
that assuming more tameness, the frame can also be extended (see Fact 4.6.9) to
models of size above λ:

Fact 4.6.1. Let s = (K,^, gSbs) be a good−S λ-frame. Let θ > λ and let
F := [λ, θ). Assume KF has amalgamation and no maximal models, and K is

(λ,< θ)-tame. Then s can be extended to a good−S F-frame. If s is type-full, then
the extended frame will also be type-full.

Proof. Apply [Bon14a, Theorem 1.1]: its proof only uses the tameness for
2-types hypothesis to obtain symmetry. Note that if (as there) we start with a good
λ-frame, then no maximal models follows. Here we do not have symmetry, so we
assume it as an additional hypothesis. The proof of Lemma 4.4.11 gives us that
the extended frame is type-full if s is. �

We have justified:

Hypothesis 4.6.2. s = (K,^, gSbs) is a good− F-frame, where F is an interval
of cardinals of the form [λ, θ) for λ a cardinal and θ > λ either a cardinal or ∞.

In this section, we will prove that s also satisfies symmetry if θ is big-enough.
Note that we do not need to assume tameness since enough tameness for what we
want follows from the uniqueness and local character properties of s-forking, see
[Bon14a, Theorem 3.2].

Note that (see the definition of good− in 4.2.19) we do not assume s satisfies
bs-stability. It will hold in the setup of the previous sections, but the arguments
of this section work just as well without it. Note in passing that bs-stability and
stability are equivalent:

Fact 4.6.3 ([She09a], Claim II.4.2.1). For any λ′ ∈ F , s � λ′ satisfies bs-
stability if and only if K is stable in λ′.

Moreover, eventual stability will follow from the structural properties of forking:

Proposition 4.6.4.

(1) If 2λ ∈ F , then K is stable in 2λ.
(2) Assume χ0 ∈ F and K is stable in χ0. Then K is stable in every χ ≥ χ0

with χ ∈ F .

In particular, if χ is a cardinal with 2λ ≤ χ < θ, then K is stable in χ.

Proof.

(1) Let χ := 2λ. By Fact 4.6.3, it is enough to show that s � χ satisfies

bs-stability. Let M ∈ Kχ, and let (pi)i<χ+ be elements of gSbs(M).
Let (Mi)i<χ be a resolution of M . For each i < χ+, local character
implies there exists ji < χ such that pi does not s-fork over Mji . By
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the pigeonhole principle, we can assume without loss of generality that
ji = j0 for all i < χ+. By Proposition 4.2.21 and transitivity, there exists
M ′ ∈ Kλ such that M ′ ≤K Mj0 and pi does not s-fork over M ′ for all
i < χ+. We know that | gS(M ′)| ≤ 2λ = χ, so by the pigeonhole principle
again, we can assume that there is q ∈ gS(M ′) such that pi � M ′ = q
for all i < χ+. By uniqueness, pi = pi′ for all i, i′ < χ+, and the result
follows.

(2) By the proof of stability in Fact 4.6.1.

�

We would like to give conditions under which s has symmetry. A useful fact8

is that it is enough to look at s � λ:

Fact 4.6.5 (Theorem 5.6.8). s has symmetry if and only if s � λ has symmetry.

Since we are not assuming anything about how s is defined, we will work by
contradiction: We will show that if θ is big enough and symmetry fails, then we get
the order property, a nonstructure property which implies unstability. This is how
the symmetry property of forking was originally proven in the first-order context, see
[She90, Theorem III.4.13]. The same approach was later used in a non-elementary
setup in [She75a, Theorem 5.1], and generalized in Theorem 3.5.13. We will rely
on the proof of the latter.

Fact 4.6.6.

(1) If K has the (α, χ)-order property of length h(α + χ + LS(K)), then K
has the (α, χ)-order property.

(2) If K has the (α, χ)-order property, then it is α-unstable in χ′ for all χ′ ≥ χ.

Proof. This combines Fact 2.4.7 and 2.4.11. �

Fact 4.6.7. If s does not have symmetry, then K has the (2, λ)-order property
of length θ.

Proof. By Fact 4.6.5, s � λ does not have symmetry. The result now follows
by exactly the same proof as Theorem 3.5.13. �

Corollary 4.6.8. If θ ≥ h(λ), then s has symmetry.

Proof. If s does not have symmetry, then by Fact 4.6.7 and Fact 4.6.6.(1),
K has the (2, λ)-order property and hence by Fact 4.6.6.(2) is 2-unstable in 2λ.
By Theorem 4.2.5, K is unstable in 2λ, contradicting Proposition 4.6.4 (note that
2λ < h(λ) ≤ θ). �

Thus it seems quite a big gap between λ and θ is needed. On the other hand
the proof of Fact 4.6.1 tells us that with enough tameness we can make F bigger:

Fact 4.6.9. Let θ′ ≥ θ and let F ′ := [λ, θ′). Assume KF ′ has amalgamation
and no maximal models, and K is (λ, θ′)-tame. Then s can be extended to a good−

[λ, θ′)-frame. If s has bs-stability, the extended frame will also have bs-stability. If
s is type-full, then the extended frame will also be type-full.

Proof. By Remark 4.2.20, s is determined by s � λ. Now apply Fact 4.6.1. �

8This is not crucial to our argument, but enables us to obtain an explicit upper bound on
the amount of tameness needed.
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Remark 4.6.10. We could replace (λ, θ′)-tameness by (λ′, θ′)-tameness in the
above, where λ′ ∈ F . This turns out to be equivalent (at least if we consider
tameness for basic types) since the uniqueness property of s gives us (λ, λ′)-tameness
for basic types.

Corollary 4.6.11. Let F ′ := [λ, h(λ)). Assume KF ′ has amalgamation and
no maximal models, and K is (λ,< h(λ))-tame. Then s has symmetry.

Proof. Using Fact 4.6.9, we can extend s to assume without loss of generality
that θ ≥ h(λ). Now use Corollary 4.6.8. �

4.7. The main theorems

We finally have our promised good frame:

Theorem 4.7.1. Assume:

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal.
(2) Kµ 6= ∅ has joint embedding.
(3) / is an abstract universal ordering on Kµ. In particular (by Remark

4.2.12), Kµ has amalgamation, no maximal models, and is stable.
(4) Splitting has ℵ0-local character for /-increasing chains in Kµ.
(5) λ > µ is such that:

(a) K is (µ,< h(λ))-tame.
(b) K[µ,h(λ)) has amalgamation and no maximal models.

(c) All the models in Kλ are µ+-model-homogeneous.

Then K has a type-full good [λ, h(λ))-frame.

Proof. Corollary 4.5.11, gives us a good−S λ-frame s. By Corollary 4.6.11, s
also has symmetry. �

We can use categoricity to derive some of the hypotheses above. We will use:

Fact 4.7.2. Assume K has amalgamation and no maximal models. Assume K
is categorical in λ. Then:

(1) K is stable in all LS(K) ≤ µ < λ.
(2) For any LS(K) ≤ µ < cf(λ) and any limit δ < µ+, µ-splitting has ℵ0-local

character for /-chains, where / :=<µ,δK .
(3) Let h2 := h(h(LS(K))). Assume λ is a successor cardinal and λ > λ0 ≥ h2.

Then K is (h2, λ0)-tame and categorical in λ0. In addition, the model of
size λ0 is saturated.

Proof. (1) is [She99, Claim 1.7]. (2) is [She99, Lemma 6.3], and (3) were
originally stated (with a lower Hanf number) in [She99, Main Claim II.2.3] and
[She99, Theorem II.2.7]. A full proof (with discussion on whether it is possible to
lower the h2 bound) can be found in [Bal09, Chapter 14]. �

Theorem 4.7.3. Let K be an abstract elementary class and let λ be a cardinal
such that cf(λ) > µ ≥ LS(K). Let F := [λ, h(λ)), F ′ := [µ, h(λ)). Assume:

(1) KF ′ has amalgamation and no maximal models.
(2) Kλ is categorical.
(3) K is (µ,< h(λ))-tame.

Then K has a type-full good F-frame.
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Proof. First, Kλ 6= ∅ by categoricity. By Lemma 4.5.12, KF ′ has joint embed-
ding and all models in Kλ are µ+-model-homogeneous. By Fact 4.7.2, µ-splitting

has ℵ0-local character for /-chains, where / :=<λ,ωK . This shows all the hypotheses
of Theorem 4.7.1 are satisfied. �

Assuming categoricity in a high-enough successor, we obtain the tameness as-
sumption:

Theorem 4.7.4. Let K be an abstract elementary class. Let µ := h2 :=
h(h(LS(K))). Let λ := µ+. Assume K has amalgamation, joint embedding, and is
categorical in some successor θ ≥ h(λ).

Let F := [λ, θ). Then there is a type-full good F-frame with underlying AEC
K.

Proof. Since θ ≥ h(LS(K)), K has arbitrarily large models and so using joint
embedding K has no maximal models. By Fact 4.7.2, K is categorical in λ and K
is (µ,< h(λ))-tame. Apply Theorem 4.7.3. �

Notice that one also obtains that categoricity (at a cardinal of high-enough
cofinality) and tameness implies stability everywhere. This improves on [BKV06,
Corollary 4.7]:

Theorem 4.7.5. Let K be an abstract elementary class with amalgamation
and no maximal models. Assume K is categorical in some λ such that cf(λ) > µ ≥
LS(K) and K is (µ, µ′)-tame. Then K is stable in all θ ∈ [LS(K), µ′]. In particular,
if µ′ =∞, then K is stable everywhere.

Proof. By Fact 4.7.2, µ-splitting has ℵ0-local character for /-chains, where
/ :=<µ,ωK and K is stable everywhere below and at µ. Apply Theorem 4.5.6 to see
K is stable everywhere in (µ, µ′]. �

This result is much more local than the other results of this section. For
example, we do not need to assume that µ′ ≥ h(µ). Moreover, as Theorem 4.5.6
shows, the categoricity hypothesis can be replaced by µ-splitting having ℵ0-local
character for /-chains, for some abstract universal ordering / on Kµ.

Assuming the generalized continuum hypothesis (GCH), we obtain a more gen-
eral stability spectrum theorem:

Theorem 4.7.6. Assume GCH. Let K be an abstract elementary class with
amalgamation and no maximal models. Assume K is µ-tame for µ ≥ LS(K), /
is an abstract universal ordering on Kµ, and µ-splitting has κ-local character for
/-increasing chains. Then K is stable in all λ ≥ µ with λ = λ<κ.

Proof. K is stable in µ since we have an abstract universal ordering on Kµ.
If λ > µ, the result follows from Theorem 4.5.7. �

Remark 4.7.7. If K is the class of models of a complete first-order theory,
the conditions for stability given by Corollary 4.7.6 are very close9 to optimal (see
[She90, Corollary III.3.8]).

9The least regular cardinal κ such that splitting has κ-local character will be at most the
successor of κ(T ).
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Remark 4.7.8. Let K be an abstract elementary class with amalgamation and
no maximal models. Assume K is χ-tame and stable in some µ ≥ h(χ). Then
[GV06b, Theorem 4.13] shows that for some κ < h(χ), µ-splitting has κ-local
character. Thus we have:

Corollary 4.7.9. Assume GCH. Let K be an abstract elementary class with
amalgamation and no maximal models. Assume K is χ-tame and stable in some
µ ≥ LS(K). Then there is κ < h(χ) such that K is stable in all λ ≥ µ with λ<κ = λ.

Proof. If µ < h(χ), then by [GV06b, Corollary 6.4] one can take κ := µ+, so
assume µ ≥ h(χ). By the previous remark, there is κ < h(χ) such that µ-splitting
has κ-local character. The result now follows from Theorem 4.7.6. �

Remark 4.7.10. In Chapter 2, we use different methods to prove Corollary
4.7.9 in ZFC. We do not know whether Corollary 4.7.6 also holds in ZFC (although
it is clear from the proof that much less than GCH is needed).

We can also apply our good frame to the question of uniqueness of limit models:

Theorem 4.7.11 (Uniqueness of limit models). Assume the hypotheses of The-
orem 4.7.3 hold. Then K has a unique limit model in any µ′ ∈ F . In fact, if
M0 ∈ Kµ′ and M` is (µ′, δl)-limit over M0 for ` = 1, 2 and δl a limit ordinal, then
M1
∼=M0

M2.
In particular, if K has amalgamation and no maximal models, is categorical

in λ and is µ-tame for some µ < cf(λ), then K has a unique limit model in any
µ′ ≥ λ.

Proof. By Theorem 4.7.3, K has a good F-frame s. In particular, K is
stable in µ′, so one can iterate Fact 4.2.8 to build a (µ′, δ)-limit model for any

desired δ < (µ′)
+

. To see uniqueness, apply [She09a, Lemma II.4.8] (see [Bon14a,
Theorem 9.2] for a detailed proof of that result). �

We see this theorem as an encouraging approximation to generalizing the up-
ward categoricity transfer result of [GV06a] (which assumes categoricity in a suc-
cessor cardinal) to categoricity in a limit cardinal.

Remark 4.7.12. Uniqueness of limit models of cardinality µ was asserted to
follow from categoricity in some λ+ > µ already in [SV99]. However, an error was
found by VanDieren in 1999. VanDieren [Van06, Van13] proves uniqueness with
the additional assumption that unions of amalgamation bases are amalgamation
bases (but does not use tameness). It is still open whether uniqueness of limit
models follows from categoricity only. In [GVV16], it is shown that uniqueness of
limit models follows from a superstability-like assumption akin to ℵ0-local character
of µ-splitting, amalgamation, and a unidimensionality assumption (the authors
initially claimed to prove the result without unidimensionality but the claim was
later retracted).

Remark 4.7.13. A variation on Theorem 4.7.11 is [BG, Corollary 6.18], which
uses stronger locality assumptions but manages to obtain uniqueness of limit models
below the categoricity cardinal without any cofinality restriction.



4.8. CONCLUSION AND FURTHER WORK 101

4.8. Conclusion and further work

Assuming amalgamation, joint embedding, no maximal models, and tameness,
we have given superstability-like conditions under which an abstract elementary
class has a type-full good frame s, i.e. a forking-like notion for 1-types. These argu-
ments would work just as well to get a notion of independence for all n-types, with
n < ω. The proof of extension breaks down, however, for types of infinite length
(difficulties in obtaining the extension property in the absence of compactness is
one of the reasons10 it was assumed as an axiom in [BG]).

Shelah’s approach around this in [She09a, Chapter II] is to show that if the
frame is weakly successful (a uniqueness condition for certain kinds of amalgama-
tions), then it has a notion of forking for types of models. In [She09a, Chapter
III], Shelah has several hundreds of pages of approximations on when weak success-
fulness can be transferred across cardinals (many of his difficulties come from the
fact he is not assuming amalgamation or no maximal models), but even assuming
s � λ is weakly successful for every λ, it is not clear how we can get a good forking
notion for models of different sizes. This is one direction further work could focus
on.

Another (non-orthogonal) direction would be to find applications for such a
forking notion. As mentioned in the previous section, we believe it could be useful
in proving categoricity transfer theorems. Moreover, the frame built in Section 4.5
is only well-behaved for µ+-saturated models, and it would be interesting to know
when the class of µ+-saturated models is an AEC. This calls for tools to deal with
unions of saturated models and we plan to explore this further in future work11.

10Another reason was Shelah’s example (see [HL02, Section 4]) of an ℵ0-stable non-simple

diagram, but we have shown that we do not get into trouble as long as we restrict the base of our

types to be sufficiently saturated models.
11Since this chapter was first circulated, several extensions have been written. In Chapter 6,

the argument here is axiomatized, the cofinality assumption on the categoricity cardinal is removed
and a global independence relation (for types of all lengths) is built (assuming more hypotheses).

This is used to prove an approximation to Shelah’s categoricity conjecture. In Chapter 7, it is

shown that it follows from ℵ0-local character of splitting and tameness that, for all high-enough
cardinals λ, the union of a chain of λ-model-homogeneous models is λ-model-homogeneous. All

these works ultimately rely on the methods of this chapter.





CHAPTER 5

Tameness and frames revisited

This chapter is based on [BVe] and is joint work with Will Boney. The authors
would like to thank the referee for their helpful report that greatly assisted the
clarity and presentation of this paper.

Abstract

We study the problem of extending an abstract independence notion for types
of singletons (what Shelah calls a good frame) to longer types. Working in the
framework of tame abstract elementary classes, we show that good frames can
always be extended to types of independent sequences. As an application, we show
that tameness and a good frame imply Shelah’s notion of dimension is well-behaved,
complementing previous work of Jarden and Sitton. We also improve a result of
Boney on extending a frame to larger models.

5.1. Introduction

Good λ-frames are an axiomatic notion of independence in abstract elementary
classes (AECs) introduced by Shelah [She09a, Chapter II]. They are one of the
main tools in the classification theory of AECs. They describe a relation “p does
not fork over M” for certain types of singletons over models of size λ. The frame’s
nonforking relation is required to satisfy properties akin to those of forking in
a first-order superstable theory. The definition can be generalized to that of a
good (< α, [λ, θ))-frame, where instead of types of singletons one allows types of
sequences of less than α-many elements, and instead of the models being of size λ,
one allows their size to lie in the interval [λ, θ).

There are at least two questions one can ask about frames: first, under what
hypotheses do they exist? Second, can we extend them? That is, assuming there is
a frame can we extend it to give a nonforking definition for larger models or longer1

types?
Shelah tackles these problems in [She09a, Chapters II and III], but the an-

swers use strong model-theoretic hypotheses (typically categoricity in two succes-
sive cardinals λ and λ+ together with few models in λ++), as well as set-theoretic

hypotheses (like the weak generalized continuum hypothesis, 2λ < 2λ
+

)2.
Recently, the two questions above have been studied in the framework of

tame AECs. Tameness is a locality property of AECs isolated by Grossberg and
VanDieren [GV06b] from an argument in [She99]. Grossberg and VanDieren
have shown [GV06c, GV06a] that Shelah’s eventual categoricity conjecture from

1The length of a type is the length or indexing set of a tuple that satisfies it.
2Shelah also looks at the existence problem in a more global setup and in ZFC in [She09a,

Chapter IV] but does not study the extension problem there.
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a successor holds in tame AECs, and Boney [Bon14b] (building on work of Makkai-
Shelah [MS90]) has shown that tameness follows from a large cardinal axiom. Many
examples of interest are also known to be tame.

Under tameness, we have shown that frames exist in ZFC assuming a reasonable
categoricity hypothesis (Chapter 4), and Boney has shown [Bon14a] that frames
can be extended to larger models under the assumption of tameness for types of
length two. In this chapter, we further study the frame extension question in tame
AECs. We look at the problem of elongating the frame: extending it to longer
types.

Let us give discuss a natural approach to the problem and its shortcomings. In
stable first-order theories, we have that ab^

A
B if and only if a^

A
B and b^

Aa
Ba.

One might think that this allows us to define forking for types of all lengths if we
have a definition of forking for singleton types (as in [GL00]). However, this turns
out not to work in full generality, as good frames only define forking over models3.
We might want to say that ab^

M
N if and only if there are M ≺ M ′ ≺ N ′ with

N ≺ N ′ and a ∈M ′ such that a^
M
N and b ^

M ′
N ′. This means that a choice must

be made for the models N ′ and, especially, M ′ and this choice can cause problems.
In particular, if M ′ is too big, then uniqueness of nonforking extensions can fail.
This does not cause issues in the first-order context essentially because there is a
prime/minimal set containing A and a (namely Aa).

There are two options to work around this issue. The first option is to assume
the existence of a unique prime/minimal extension of Ma; Shelah says that the
frame is weakly successful [She09a, Definition III.1.1] if this is the case. Shelah
proved [She09a, Section II.6] that weakly successful frames can be elongated as
desired without any assumption of tameness. Shelah has also shown [She09a, II.5]
that a good λ-frame is weakly successful when the underlying AEC has few models
in λ++ and certain set-theoretic hypotheses hold. It is not known whether being
weakly successful follows from tameness4.

The second option is to strengthen the condition on nonforking, essentially
setting ab^

A
B if and only if a^

A
B and b^

A
Ba (the noncanonical choice of a cover

for Ba is less important). This loses some information about nonforking, so only
works for certain kinds of types: types of independent sequences. As we show, this
has the advantage of working in a larger class of AECs, i.e. those with frames that
are not weakly successful, although we do assume tameness to prove the symmetry
property.

This brings us to the precise statement of the main result of this chapter.

Theorem 5.1.1. Let K be an AEC with amalgamation and F = [λ, θ) be an
interval of cardinals.

(1) Assume s satisfies the axioms of a good F-frame, except possibly symme-
try. Then s can be extended to a certain frame s<θ which satisfies the
axioms of a good (< θ,F)-frame, except possibly for symmetry.

3Note that an example of Shelah (see [HL02, Section 4]) shows that there exists a superstable
homogeneous diagram where extension (over sets) fails for any reasonable independence notion.

4After the initial circulation of the paper this chapter is based on, it has been shown that
being weakly successful follows from a stronger locality property: full tameness and shortness, see
Section 6.11.
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(2) If K is λ-tame, then both s and s<θ also satisfy symmetry.

The following two questions are open.

Question 5.1.2.

• If s is a good frame in a tame AEC, must s be weakly successful?
• Is there an example of a good λ-frame (necessarily not weakly successful)

that has no better extension to longer types than independent sequences?

As has already been alluded to, in Theorem 5.1.1 the frame s is elongated by use
of independent sequences (see Definition 5.4.1 here, or Shelah [She09a, Definition
III.5.2]). Independent sequences in that context have been previously studied by
Shelah [She09a, III.5] and Jarden and Sitton [JS12]. Throughout these studies,
several additional assumptions have appeared–such as s being weakly successful or
having continuity of serial independence5–that we are able to eliminate or replace
with the hypothesis of tameness.

We present two applications of Theorem 4.7. The first involves a natural notion
of dimension that Shelah introduced with the goal of building a theory of regular
types for AECs [She09a, Definition III.5.12]: Let us define the dimension of a type
p in an ambient model N , dim(p,N) to be the size of a maximal independent set
of realizations of p in N . In the first-order case, Shelah [She90, III.4.21.(2)] shows
that, under stability, every infinite maximal independent set of realizations of p has
the same size. In the AEC framework, Shelah [She09a, III.5.14] first showed that
this held when the frame is weakly successful, and Jarden and Sitton [JS12] have
refined these hypotheses. The analysis of this chapter allows us to show that the
dimension is well-behaved in any tame AEC with a good frame (see Corollary 5.6.1
and the surrounding discussion). This gives a natural nonelementary framework in
which a theory of regular types could be studied.

The second application involves the project of extending a frame to larger
models using tameness. As mentioned above, Boney has shown that this is possible
if one assumes tameness for types of length two. Analyzing the elongations of frames
allows us to give an aesthetic improvement: we remove this strange assumption and
replace it with only tameness for types of length one (see Corollary 5.6.9 and the
preceding discussions). While no example of an AEC that is tame for types of
length one and not for length two is known, thinking about this statement led us
to the main theorem of this chapter. Further, we are told that Rami Grossberg
conjectured Corollary 5.6.9 already in 2006 (he told it to Adi Jarden and John
Baldwin); our result proves Grossberg’s original conjecture.

Since this chapter was first circulated (June 2014), several applications of Corol-
lary 5.6.9 have been found. They include Shelah’s eventual categoricity conjecture
for universal classes (Chapters 8, 16), as well as a downward categoricity transfer
for tame AECs in Chapter 14 (the latter actually uses the theory of independent
sequences in good frames developped in Section 5.4). In Chapter 18, we show that
a natural good frame appearing in the Hart-Shelah example is not weakly success-
ful, and in [Vasd] we study an example of Shelah where a good frame cannot be
extended to all types. These examples show that this chapter strictly generalizes
Shelah’s study of independent sequences in [She09a, Section III.5].

The chapter is structured as follows. In Section 5.2, we review background
in the theory of AECs. In Section 5.3, we give the definition of good frames and

5This and other variations on continuity are defined and explored in Section 5.5.1.
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prove some easy general facts. In Section 5.4, we define independent sequences
and show how to use them to extend a frame for types of singletons to a frame for
longer types. We show all properties are preserved in the process, except perhaps
symmetry. In Section 5.5, we give conditions under which symmetry also transfers
and show how to use it to define a well-behaved notion of dimension. In Section
5.6, we prove the promised applications to dimension and tameness.

5.2. Preliminaries

If p ∈ gSα(M), we define `(p) := α and dom p := M . Note that α is an invariant
of the Galois type and is referred to as its length.

Say p = gtp(ā/M ;N) ∈ gSα(M), where ā = 〈ai : i < α〉. For X ⊆ α and
M0 ≤K M , write pX � M0 for gtp(āX/M0;N), where āX := 〈ai : i ∈ X〉. We say
p ∈ gSα,na(M) if ai /∈ M for all i < α, and similarly define gS<α,na(M) (it is easy
to check these definitions do not depend on the choice of ā and N).

We briefly review the notion of tameness. Although it appears implicitly (for
saturated models) in Shelah [She99], tameness as a property of AECs was first
introduced in Grossberg and VanDieren [GV06b] and used to prove a stability
spectrum theorem there.

Definition 5.2.1 (Tameness). Let θ > λ ≥ LS(K) and let G ⊆
⋃
M∈K gS<∞(M)

be a family of types. We say that K is (λ, θ)-tame for G if for any M ∈ K≤θ and
any p, q ∈ G ∩ gS<∞(M), if p 6= q, then there exists M0 ≤K M of size ≤ λ such
that p �M0 6= q �M0. We define similarly (λ,< θ)-tame, (< λ, θ)-tame, etc. When
θ = ∞, we omit it. (λ, θ)-tame for α-types means (λ, θ)-tame for

⋃
M∈K gSα(M),

and similarly for < α-types. When α = 1, we omit it and simply say (λ, θ)-tame.

5.2.1. Commutative Diagrams. Since a picture is worth a thousand words,
we make extensive use of commutative diagrams to illustrate the proofs. Most of
the notation is standard. When we write

M0
[a]

f // M1
[b̄]

g // M2

The functions f and g, typically written above arrows, are always K-embeddings;
that is, f : M0

∼= f [M0] ≤K M1. Writing no functions means that the K-embedding
is the identity. The elements in square brackets a and b̄, typically written below
arrows, are elements that exist in the target model, but not the source model; that
is, a ∈ M1 − f [M0]. Writing no element simply means that there are no elements
that we wish to draw the reader’s attention to in the difference. In particular, it does
not mean that the two models are isomorphic. We sometimes make a distinction
between embeddings appearing in the hypothesis of a statement (denoted by solid
lines), and those appearing in the conclusion (denoted by dotted lines).

5.3. Good frames

Good frames were first defined in [She09a, Chapter II]. The idea is to provide a
localized (i.e. only for base models of a given size λ) axiomatization of a forking-like
notion for a “nice enough” set of 1-types. These axioms are similar to the properties
of first-order forking in a superstable theory. Jarden and Shelah (in [JS13]) later
gave a slightly more general definition, not assuming the existence of a superlimit
model and dropping some of the redundant clauses. We give a slightly more general
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variation here: following Chapter 4, we assume the models come from KF , for F
an interval, instead of just Kλ. We also assume that the types could be longer
than just types of singletons. We first adapt the definition of a pre-λ-frame from
[She09a, Definition III.0.2.1]:

Definition 5.3.1 (Pre-frame). Let α be an ordinal and let F be an interval of
the form [λ, θ), where λ is a cardinal, and θ > λ is either a cardinal or ∞.

A pre-(< α,F)-frame is a triple s = (K,^, gSbs), where:

(1) K is an abstract elementary class with λ ≥ LS(K), Kλ 6= ∅.
(2) gSbs ⊆

⋃
M∈KF gS<α,na(M). For M ∈ KF and β an ordinal, we write

gSβ,bs(M) for gSbs ∩ gSβ,na(M) and similarly for gS<β,bs(M).
(3) ^ is a relation on quadruples of the form (M0,M1, ā, N), where M0 ≤K

M1 ≤K N , ā ∈ <αN , andM0, M1, N are all in KF . We write^(M0,M1, ā, N)

or ā
N

^
M0

M1 instead of (M0,M1, a,N) ∈^.

(4) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and ā
N

^
M0

M1, then f(ā)
N ′

^
f [M0]

f [M1]. If

gtp(ā/M1;N) ∈ gSbs(M1), then gtp(f(ā)/f [M1];N ′) ∈ gSbs(f [M1]).

(b) Monotonicity: If ā
N

^
M0

M1, ā′ is a subsequence of ā, M0 ≤K M ′0 ≤K

M ′1 ≤K M1 ≤K N ′ ≤K N ≤K N ′′ with ā′ ∈ N ′, and N ′′ ∈ KF ,

then ā′
N ′

^
M ′0

M ′1 and ā′
N ′′

^
M ′0

M ′1. If gtp(ā/M1;N) ∈ gSbs(M1) and ā′ is a

subsequence of ā, then gtp(ā′/M1;N) ∈ gSbs(M1).

(c) Nonforking types are basic: If ā
N

^
M
M , then gtp(ā/M ;N) ∈ gSbs(M).

A pre-(≤ α,F)-frame is a pre-(< (α + 1),F)-frame. When α = 1, we drop it.
We write pre-(< α, λ)-frame instead of pre-(< α, {λ})-frame or pre-(< α, [λ, λ+))-
frame; and pre-(< α, (≥ λ))-frame instead of pre-(< α, [λ,∞))-frame. We some-
times drop the (< α,F) when it is clear from context.

For s a pre-(< α,F)-frame, β ≤ α, and F ′ ⊆ F an interval, we let s<βF ′ denote
the pre-(< β,F ′)-frame defined in the obvious way by restricting the basic types
and ^ to models in KF ′ and elements of length < β. If F ′ = F or β = α, we omit

it. For λ′ ∈ F , we write s<βλ′ instead of s<β{λ′}.

Remark 5.3.2. Note that, following Shelah’s original definition, we have de-
fined nonforking (in the sense of frames) only for nonalgebraic types. However, this
restriction is inessential: We could expand the definition of nonforking to algebraic
types by saying that an algebraic p ∈ S(M) does not fork over M0 if and only if
p � M0 is algebraic. This change would not affect whether or not a frame satisfies
the properties given6.

Remark 5.3.3. The reader might wonder about the reasons for having a special
class of basic types. Following Shelah [She09a, Definition III.9.2], let us call a pre-
frame type-full if the basic types are all the nonalgebraic types. It can be shown

6In the statement of the extension property, we would need to require that the nonforking
extension of a nonalgebraic type is nonalgebraic.
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[She09a, III.9.6] that any weakly successful good frame can be extended to a
type-full one. Furthermore, there are no known examples of a good λ-frame which
which cannot be extended to a type-full one. However Shelah’s initial construction
[She09a, II.3] builds a non type-full good frame and it is not clear that it can
be extended to a type-full one until after Shelah shows that the frame is weakly
successful. Thus it can be easier to build a good frame than to build a type-full
one, and most results about frame already hold in the non-type-full context. In this
chapter, we will set the basic types to be the independent sequences, hence getting
another natural example of a non type-full good frame.

Notation 5.3.4. If s = (K,^, gSbs) is a pre-(< α,F)-frame, then αs := α,

Fs := F , Ks := K, ^
s

:= ^, and gSbs
s := gSbs. If F = [λ, θ), then let λs := λ,

θs := θ.

By the invariance and monotonicity properties, ^ is really a relation on types.
This justifies the next definition.

Definition 5.3.5. If s = (K,^, gSbs) is a pre-(< α,F)-frame, p ∈ gS<α(M1)

is a type, we say p does not fork over M0 if ā
N

^
M0

M1 for some (equivalently any) ā

and N such that p = gtp(ā/M1;N). If s is not clear from context, we add “with
respect to s”.

Remark 5.3.6. We could have started from (K,^) and defined the basic types
as those that do not fork over their own domain. Since we are sometimes interested
in studying frames that only satisfy existence over a certain class of models (like
the saturated models), we will not adopt this approach.

Remark 5.3.7. We could also have specified only KF or even only Kλ instead
of the full AEC K. This is completely equivalent since, by [She09a, Section II.2],
Kλ fully determines K.

Definition 5.3.8 (Good frame). Let α, F be as above.

A good (< α,F)-frame is a pre-(< α,F)-frame (K,^, gSbs) satisfying in addi-
tion:

(1) KF has amalgamation, joint embedding, and no maximal models.

(2) bs-Stability: | gS1,bs(M)| ≤ ‖M‖ for all M ∈ KF .
(3) Density of basic types: If M <K N are in KF , then there is a ∈ N such

that gtp(a/M ;N) ∈ gSbs(M).

(4) Existence of nonforking extension: If p ∈ gSbs(M), N ≥K M is in KF ,

and β < α is such that `(p) ≤ β, then there is some q ∈ gSβ,bs(N) that
does not fork over M and extends p, i.e. qβ �M = p.

(5) Uniqueness: If p, q ∈ gS<α(N) do not fork over M and p � M = q � M ,
then p = q.

(6) Symmetry: If ā1

N

^
M0

M2, ā2 ∈ <αM2, and gtp(ā2/M0;N) ∈ gSbs(M0), then

there is M1 containing ā1 and N ′ ≥K N such that ā2

N ′

^
M0

M1.

(7) Local character: If δ is a regular cardinal, 〈Mi ∈ KF : i ≤ δ〉 is increasing

continuous, and p ∈ gSbs(Mδ) is such that `(p) < δ, then there exists
i < δ such that p does not fork over Mi.
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(8) Continuity: If δ is a limit ordinal, 〈Mi ∈ KF : i ≤ δ〉 and 〈αi < α : i ≤ δ〉
are increasing and continuous, and pi ∈ gSαi,bs(Mi) for i < δ are such

that j < i < δ implies pj = p
αj
i �Mj , then there is some p ∈ gSαδ,bs(Mδ)

such that for all i < δ, pi = pαi � Mi. Moreover, if each pi does not fork
over M0, then neither does p.

(9) Transitivity: If M0 ≤K M1 ≤K M2, p ∈ S(M2) does not fork over M1

and p �M1 does not fork over M0, then p does not fork over M0.

We will sometimes refer to “existence of nonforking extension” as simply “ex-
istence”.

For L a list of properties7, a good−L (< α,F)-frame is a pre-(< α,F)-frame
that satisfies all the properties of good frames except possibly the ones in L. In
this chapter, L will only contain symmetry and/or bs-stability. We abbreviate

symmetry by S, bs-stability by St, and write good− for good−(S,St).
We say that K has a good (< α,F)-frame if there is a good (< α,F)-frame

where K is the underlying AEC (and similarly for good−).

Remark 5.3.9. Transitivity follows directly from existence and uniqueness by
[She09a, Claim II.2.18].

Remark 5.3.10. The obvious monotonicity properties hold: If s is a good

(< α,F)-frame, β ≤ α, and F ′ is a subinterval of F , then s<βF ′ is a good (< β,F ′)
frame (and similarly for good−).

Remark 5.3.11. If T is a superstable first-order theory, then forking induces
a good (≥ |T |)-frame on the class of models of T ordered by elementary submodel.
In the non-elementary context, Shelah showed in [She09a, Theorem II.3.7] how to
build a good frame from local categoricity hypotheses and GCH-like assumptions,
while we (Chapter 4) showed how to build a good frame in ZFC from categoricity,
tameness, and a monster model. Note that a family of examples due to Hart and
Shelah [HS90] demonstrates that, in the absence of tameness, an AEC could have
a good λ-frame but no good (≥ λ)-frame (see [Bon14a, Section 10] for a detailed
writeup).

Note that for types of finite length, local character implies that nonforking is
witnessed by a model of small size:

Proposition 5.3.12. Let α ≤ ω. Assume s = (K,^, gSbs) is a pre-(< α,F)-

frame satisfying local character and transitivity. If M ∈ KF and p ∈ gSbs(M),
then there exists M ′ ∈ Kλ such that p does not fork over M ′.

Proof. Same proof as Proposition 4.2.21 (there α = 1 but this does not change
the proof). �

We conclude this section with an easy variation on the existence property that
will be used later.

Lemma 5.3.13. Assume s = (K,^, gSbs) is a pre-(< α,F)-frame with amal-
gamation, existence, and transitivity. Suppose M ≤K M0 ≤K M1 are in KF and
f : M0 →M2 is given with M2 ∈ KF . Assume also that we have ā ∈M1 such that

ā
M1

^
M
M0.

7This notation was already used in Definition 4.2.19.
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There is N ≥K M2 and g : M1 → N extending f such that g(ā)
N

^
g[M ]

M2. A

diagram is below.

M1 g
// N

M0

[ā]

OO

f
// M2

OO

M

=={{{{{{{

Proof. Extend f to an L(K)-isomorphism f̂ with range M2. By existence,

there is some q ∈ gSbs(f̂−1[M2]) that extends gtp(ā/M0;M1) and does not fork over

M0. Realize q as gtp(b̄/f̂−1[M2];N+). Since gtp(ā/M0;M1) = gtp(b̄/M0;N+),
there is N++ ≥K N+ and h : M1 −−→

M0

N++ such that h(ā) = b̄. Then, since N++

extends f̂−1[M2], we can find an L(K)-isomorphism f̂+ that extends f̂ such that

N++ is the domain of f̂+. Set N := f̂+[N++] and g := f̂+ ◦ h. Some nonforking
calculus shows that this works. �

5.4. Independent sequences form a good− frame

In this section, we show how to make a good−S F-frame longer (i.e. extend
the nonforking relation to longer sequences). This is done by using independent
sequences, introduced by Shelah [She09a, Definition III.5.2] and also studied by
Jarden and Sitton [JS12], to define basic types and nonforking. Preservation of
the symmetry property will be studied in Section 5.5, and in Section 5.6 we will
review how to make the frame larger (i.e. extend the nonforking relation to larger
models).

Note that Shelah already claims many of the results of this section (for finite
tuples) in [She09a, Exercise III.9.4.1] but the proofs have never appeared anywhere.

Definition 5.4.1 (Independent sequence). Let α be an ordinal and let s be a
pre-F-frame.

(1) 〈ai : i < α〉, 〈Mi : i ≤ α〉 is said to be independent in (M,M ′, N) when:
(a) (Mi)i≤α is increasing continuous in KF .
(b) M ≤K M ′ ≤K M0 and M,M ′ ∈ KF .
(c) Mα ≤K N is in KF .

(d) For every i < α , ai
Mi+1

^
M

Mi.

〈ai : i < α〉, 〈Mi : i ≤ α〉 is said to be independent over M when it is
independent in (M,M0,Mα).

(2) ā := 〈ai : i < α〉 is said to be independent in (M,M ′, N) when for some
〈Mi : i ≤ α〉 we have that 〈ai : i < α〉, 〈Mi : i ≤ α〉 is independent in
(M,M ′, N).

(3) We say that 〈ai : i < α〉, 〈Mi : i ≤ α〉 is independent from M ′ over M in
N if it is independent in (M,M ′, N). We similarly define ā is independent
from M ′ over M in N . When N is clear from context, we drop it.
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Remark 5.4.2. If α = 1, then ā := 〈a0〉 is independent from M ′ over M in N
if and only if gtp(a0/M

′;N) does not fork over M .

This motivates the next definition:

Definition 5.4.3. Let s := (K,^, gSbs) be a pre-F-frame, where F = [λ, θ).

Let α ≤ θ. Define s<α := (K,
<α

^, gS<α,bs) as follows:

• For M0 ≤K M1 ≤K N in KF and ā := (ai)i<β in N with β < α,
<α

^(M0,M1, ā, N) if and only if ā is independent from M1 over M0 in N .

• For M ∈ KF and p ∈ gS<α(M), p ∈ gS<α,bs(M) if and only if there exists

N ≥K M and ā ∈ N such that p = gtp(ā/M ;N) and
<α

^(M,M, ā,N).

Lemma 5.4.4 (Invariance). Let s := (K,^, gSbs) be a pre-F-frame, where
F = [λ, θ). Let α ≤ θ. Assume KF has amalgamation. Given ā = 〈ai : i <
α〉 independent from M0 over M in M1 and M2 ≥K M0 containing b̄ such that
gtp(ā/M0;M1) = gtp(b̄/M0;M2), we have that b̄ is independent from M0 over M
in M2.

Proof. Straightforward.
�

Remark 5.4.5. When dealing with types rather than sequences, the N+ in the
definition can be avoided. That is, given p ∈ gSβ,bs(N) that does not fork over M ,
there is some 〈ai : i < β〉, 〈N i : i ≤ β〉 such that p = gtp(〈ai : i < β〉/N ;Nβ) that
witnesses that 〈ai : i < β〉 is independent from N over M in Nβ .

Lemma 5.4.6. Let s := (K,^, gSbs) be a pre-F-frame, where F = [λ, θ). Let
α ≤ θ. If KF has amalgamation, then s<α is a pre-(< α,F)-frame.

Proof. Invariance is Lemma 5.4.4. For monotonicity, one can also use invari-
ance to see that if ā is independent from M1 over M0 in N and N ′ ≥K N , then ā
is independent from M1 over M0 in N ′. The rest is straightforward. �

The next result shows that local character and existence are preserved when
elongating a frame:

Theorem 5.4.7. Assume s := (K,^, gSbs) is a good− F-frame, where F =
[λ, θ). Then:

(1) s<θ has local character. Moreover, if p ∈ gSα,bs(N) with α < θ, then
there exists M ≤K N in K≤λ+|α| such that p does not fork over M .

(2) s<θ has existence.

Proof.

(1) Assume p ∈ gSα,bs(N) and N =
⋃
i<δ Ni with α < δ < θ, δ a regular

cardinal. Then, there is some ā = 〈ai : i < α〉 and increasing, continuous
〈N i : i ≤ α〉 such that α < δ, p = gtp(ā/N ;Nα), and, for all i < α,

ai
Ni+1

^
N

N i. By Monotonicity for s, gtp(ai/N ;N i+1) ∈ gSbs(N). By Local

Character for s, for all i < α there is some ji < δ such that ai
Ni+1

^
Nji

N . By
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Transitivity for s, ai
Ni+1

^
Nji

N i. Set j∗ := supi<α ji; since δ = cf δ > α, we

have that j∗ < α. By Monotonicity for s, ai
Ni+1

^
Nj∗

N i for all i < α. This is

exactly what we need to conclude that ā is independent from N over Nj∗
in Nα. Thus p = gtp(ā/N ;Nα) does not fork over Nj∗ .

The moreover part is proved similarly: By Proposition 5.3.12, for each

i < α there exists M i ≤K N in Kλ such that N
Nα

^
Mi

ai. By Transitivity,

N i
Nα

^
Mi

ai. Now by the Löwenheim-Skolem axiom, there exists M ≤K N

in K≤λ+|α| such that
⋃
i<αM

i ≤K M . By Monotonicity, N i
Nα

^
M
ai, so ā is

independent from N over M in Nα, so p does not fork over M , as needed.
(2) We prove two extension results separately: extending the domain and

extending the length. Combining these two results shows that s<θ has
existence.

For extending the domain, let p ∈ gS<θ,bs(M) and N ≥K M . By
definition of this frame, there is some ā = 〈ai : i < β〉 and increasing,

continuous 〈M i : i ≤ β〉 such that ai
Mi+1

^
M

M i for all i < β. We wish to

construct increasing and continuous 〈N i : i ≤ β〉 and 〈fi : M i → N i : i ≤
β〉 such that
(a) f0 �M = id; and

(b) fi(ai)
Ni+1

^
M

N i.

This is done by induction by taking unions at limits and by using Lemma
5.3.13 at all successor steps. Since β < θ, N i is in KF at all steps and
the induction can continue. Then gtp(ā/M ;Mβ) = gtp(f(ā)/M ;Nβ)
as witnessed by f and f(ā) is independent in (M,N,Nβ). Thus, q =
gtp(f(ā)/N,Nβ) is as desired.

N // N i // N i+1 // Nβ

M

OO

// M i //

fi

OO

M i+1 //

fi+1

OO

Mβ

fβ

OO

To extend the length, suppose that β < α < θ and p ∈ gSβ,bs(N)
does not fork over M . This means that there is 〈ai : i < β〉, 〈N i : i ≤ β〉
independent in (M,N,Nβ) such that p = gtp(〈ai : i < β〉/N ;Nβ). We
will extend this sequence to be of length α by induction. At limit steps,
simply taking the union of the extensions works. If we have β ≤ γ < α
and have already extended to γ (i.e., 〈ai : i < γ〉, 〈N i : i ≤ γ〉 is defined),

then let r ∈ gSbs(M) be arbitrary (use no maximal models and density of

basic types). Let r+ ∈ gSbs(Nγ) be its nonforking extension. Thus, there
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is aγ ∈ Nγ+1 that realizes r+ such that aγ
Nγ+1

^
M

Nγ . Then 〈ai : i < γ+1〉,

〈N i : i ≤ γ + 1〉 is independent from N over M in Nγ+1, as desired.

�

The next technical lemma is key in showing that uniqueness and continuity
are preserved when making a frame longer. This allows us to put together two
independent sequences into one.

Lemma 5.4.8 (Amalgamation of independent sequences). Let s be a good−

F-frame, and β < θs. Suppose that p, q ∈ gSβ,bs(N) do not fork over M , that
p � M = q � M , and that there are witnessing sequences ā` = 〈ai` : i < β〉,
〈N i

` : i ≤ β〉 independent from N over M in Nβ
` for ` = 0, 1 with ā0 � p and ā1 � q.

Then, there are coherent, continuous, increasing (Ni, fj,i)j<i≤β and gi` : N i
` → Ni

such that, for all j < i < β,

N j
1

gj1   

// N i
1

gi1 ��

// Nβ
1

gβ1   
M // N

??��������

��?
??

??
??

? Nj
fj,i

// Ni
fi,β

// Nβ

N j
0

gj0

>>

// N i
0

gi0

??

// Nβ
0

gβ0

>>

commutes, gi+1
0 (ai0) = gi+1

1 (ai1), and8 gi+1
0 (ai0)

Ni+1

^
gi+1
0 [M ]

fi,i+1[Ni].

Proof. We will build:

(1) models {Ni,M i
` : i ≤ β, ` = 0, 1};

(2) embeddings {hi` : N i
` →M i

` , r
i
` : M i

` → Ni : i ≤ β, ` = 0, 1}; and

(3) coherent embeddings {fj,i : Nj → Ni, r̂
j,i
` : M j

` →M i
` : i ≤ β, ` = 0, 1}

such that, for i < β:

(1)

M i+1
0

ri+1
0

// Ni+1

Ni

OO

// M i+1
1

ri+1
1

OO

commutes;
(2)

N i+1
`

hi+1
`

// M i+1
`

N i
`

OO

hi`

// M i
`

ri`

// Ni

OO

commutes;

8Note that gi0[M ] = gi1[M ] by commutativity of the diagram.
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(3) M0
` = N0, r0

` = idN0
for ` = 0, 1, and

N0
0

h0
0

// N0

N

OO

// N0
1

h0
1

OO

commutes;

(4) hi+1
` (ai`)

Mi+1
`

^
hi+1
` [Ni` ]

Ni;

(5) ri+1
0 ◦ hi+1

0 (ai0) = ri+1
1 ◦ hi+1

1 (ai1); and

(6) (Ni, fj,i)j<i≤β and (M i
` , r̂

j,i
` )j<i≤β are continuous, coherent systems gen-

erated by r̂i,i+1
` = ri` and fi,i+1 = ri0 � Ni = ri1 � Ni.

Once these objects have been constructed we will have the following commu-
tative diagram for j < i ≤ β:

Ni

M i
0

ri0

>>||||||||
M i

1

ri1

aaBBBBBBBB

N i
0

hi0

>>}}}}}}}}
Nj

fj,i

OO

>>}}}}}}}}

``AAAAAAAA
N i

1

hi1

``AAAAAAAA

M j
0

r̂j,i0

OO

rj0

>>~~~~~~~
M j

1

r̂j,i1

OO

rj1

``@@@@@@@

N j
0

OO

hj0

>>~~~~~~~~
N j

1

hj1

``AAAAAAAA

OO

We can then take gi` := ri` ◦hi`. This gives the desired diagram by removing the
M i
` ’s. The function equality is given by (5) and the nonforking is given by applying

fi,i+1 to (4).
The construction proceeds by induction. At stage i, we will construct hi`, r

i
`,M

i
` ,

and Ni for ` = 0, 1. Also, at each stage, we implicitly extend the coherent system
by the rule given in (6) above (at successor steps) or by taking direct limits (at
limit steps).
i = 0: Amalgamate N0

0 , N
0
1 over N to get N0. Also set M0

` := N0 and r0
` := idN0

for ` = 0, 1.
i limit: Take direct limits and use continuity to see everything is preserved.
i = j + 1: Use Lemma 5.3.13 –replace (M,M0,M1, ā, f,M2) there with (M,N j

` , N
j+1
` , aj` , r

j
`◦

hj` , Nj) here–to get (hj+1
` ,M j+1

` ) here, written as (g,N) there; this gives (4):

hj+1
` (aj`)

Mj+1
`

^
hj+1
` [M ]

Nj
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By the commutative diagrams, hj+1
0 �M = hj+1

1 �M , so, since aj0 and aj1 have
the same type over M , we have that:

gtp(hj+1
0 (aj0)/hj+1

0 [M ];M j+1
0 ) = gtp(hj+1

1 (aj1)/hj+1
1 [M ];M j+1

1 )

By Uniqueness for s, these imply that:

gtp(hj+1
0 (aj0)/Nj ;M

j+1
0 ) = gtp(hj+1

1 (aj1)/Nj ;M
j+1
1 )

We can witness this with rj+1
` : M j+1

` → Nj+1 for ` = 0, 1; that is, rj+1
0 � Nj =

rj+1
1 � Nj and rj+1

0 ◦ hj+1
0 (aj0) = rj+1

1 ◦ hj+1
1 (aj1). �

Corollary 5.4.9. Let s = (K,^, gSbs) be a good− F-frame. Suppose M0 ≤K

M ≤K N are in KF and α ≤ β < θs are such that there are p ∈ gSα,bs(M) and

q ∈ gSβ,bs(N) such that qα � M = p and p, q do not fork over M0. If āp = 〈aip :

i < α〉, 〈N i
p : i ≤ α〉 is independent from M over M0 in Nα

p such that āp � p and

āq = 〈aiq : i < β〉, 〈N i
q : i ≤ β〉 is independent from N over M0 in Nβ

q such that

āq � q, then there is 〈M i
q : i ≤ β〉 and hi : N i

p →M i
q for i ≤ α such that:

(1) āq, 〈M i
q : i ≤ β〉 is independent from N over M0 in Mβ

q ;

(2) N i
q ≤K M i

q for all i ≤ β; and

(3) hi+1(aip) = aiq and idM ⊆ hi ⊆ hi+1.

Proof. First, extend the p-sequence to 〈aip : i < β〉, 〈N i
p : i ≤ β〉 independent

from M over M0 in Nβ
p (use that s<θs has existence). We can then amalgamate

these sequences over M using Lemma 5.4.8: there is (Ni, fj,i)j<i≤β and gix : N i
x →

Ni for x = p, q and i ≤ β as above. Since we have gβq : Nβ
q
∼= gβq [Nβ

q ] ≤K Nβ , we

can extend gβq to an L(K)-isomorphism h with Nβ in its range. Set M i
q := h−1[Ni]

for i ≤ β. Note that hi := h−1 ◦ giq : N i
q →M i

q is the identity. �

Corollary 5.4.10. Assume s := (K,^, gSbs) is a good− F-frame, where
F = [λ, θ). Then:

(1) s<θ has uniqueness.
(2) s<θ has continuity.

Proof.

(1) This follows directly from Lemma 5.4.8.
(2) We prove the moreover clause in the definition of continuity. For the main

clause, the M0’s appearing in this proof can be replaced by Mi or Mδ as
appropriate.

For all i < δ, there is some āi = 〈aki : k < αi〉, 〈Nk
i : k ≤ αi〉

independent from Mi over M0 in Nαi
i such that pi = gtp(āi/Mi;N

αi
i ).

We will construct 〈Mk
i : i < δ, k ≤ αi〉 and {fkj,i : Mk

j → Mk
i : k ≤

αj , j < i < αδ} such that
(a) Nk

i ≤K Mk
i and āi, 〈Mk

i : k < αi〉 is independent from Mi over M0

in Mαi
i ;
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(b) for each k ≤ αj , (Mk
i , f

k
l,i)j≤l≤i<αδ is a coherent, direct system such

that

Mi2
// Mk0

i2
// Mk1

i2

Mi1
//

OO

Mk0
i1

//

f
k0
i1,i2

OO

Mk1
i1

f
k1
i1,i2

OO

Mi0
//

OO

Mk0
i0

//

f
k0
i0,i1

OO

Mk1
i0

f
k1
i0,i1

OO
f
k1
i0,i2

VV

commutes; and
(c) fkj,i(a

k
j ) = aki .

This is possible: just apply Corollary 5.4.9 at successors and take
direct limits at limits.

This is enough. For each k < αδ, set (Mk
δ , f

k
i,δ)i<δ,k≤αi = lim−→(Mk

i , f
k
j,i).

Then 〈Mk
δ : k < αδ〉 is increasing and continuous because each 〈Mk

i : k <

αi〉 is. Set Mαδ
δ := ∪k<αδMk

δ . For k < αi, αj , we have that fk+1
i,δ (aki ) =

fk+1
j,δ (akj ). Thus, there is no confusion in setting akδ = fk+1

i,δ (aki ) for

some/any k < αi. Set p = gtp(āδ/Mδ,M
αδ
δ ).

Note that Mδ ≤K M0
δ ; indeed fki,δ � Mi is the identity for all k ≤ αi.

Thus, we have that

pi = gtp(āi/Mi;M
αi
i ) = gtp(〈akδ : k < αi〉/Mi;M

αδ
δ ) = pαi �Mi

Claim: For all k < αδ, a
k
δ

Mk+1
δ

^
M0

Mk
δ .

Proof of Claim: Given i < δ and k < αi, we have by construction

that aki

Mk+1
i

^
M0

Mk
i . Applying fki,δ to this, we get akδ

fk+1
i,δ (Mk+1

i )

^
M0

fki,δ(M
k
i ). By

construction,

Mk
δ =

⋃
i<δ

fki,δ(M
k
i ) and Mk+1

δ =
⋃
i<δ

fk+1
i,δ (Mk+1

i )

Thus, by Continuity for s, we have, for all i < δ, akδ

Mk+1
δ

^
M0

Mk
δ .

Thus, āδ, 〈Mk
δ : k ≤ αδ〉 is independent from Mδ over M0 in Mαδ

δ . So

p ∈ gSαδ,bs(Mδ) and extends each pi as desired.

�

Remark 5.4.11. Note that a special case (when F = [λ, λ+]) of the continu-
ity property above is Jarden’s λ+-continuity of serial independence (see [Jar16,
Definition 5.3]). This allows Jarden’s proof that symmetry transfers up ([Jar16,
Theorem 5.4]) to go through without any extra hypotheses. Another corollary of
continuity is what Jarden and Sitton call the finite continuity property (see [JS12,
Definition 8.2]). This is discussed in detail in Section 5.5.1.

Putting everything together, we obtain that all the property of a good− frame
transfer to the elongation; recall that good− frames are good frames except they
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might fail stability and/or symmetry. We will later see that symmetry transfers to
finite sequences and give conditions under which it transfers to all sequences.

Corollary 5.4.12. Assume s is a good− F-frame. Then s<θs is a good−

(< θs,F)-frame.

Proof. Set θ := θs. s<θs is a pre-(< θ,F)-frame by Lemma 5.4.6. Amalga-
mation, joint-embedding, no maximal models, and density of basic types hold since
they hold in s. Existence and local character hold by Theorem 5.4.7, uniqueness
and continuity hold by Corollary 5.4.10. Finally, transitivity follows from Remark
5.3.9. �

Note that bs-stability only mentions basic 1-types, so it transfers immediately.
Thus, the only property left is symmetry, which is discussed in the next two sections.

We conclude by proving a concatenation lemma for independent sequences.
This is already proved for good frames in [JS12, Proposition 4.1], but the proof
relies on [JS12, Proposition 2.6], which is proved as [JS13, Proposition 3.1.8] and
uses symmetry in an essential way. Here, we improve this to just requiring that s
is a pre-frame that also satisfies amalgamation, existence, continuity, and transi-
tivity. In particular, we avoid any use of symmetry or nonforking amalgamation.
This shows that the situation is somewhat similar to the first-order context, where
concatenation holds in any theory (see, e.g., [GIL02, Lemma 1.6]).

Theorem 5.4.13 (Concatenation). Assume s is a pre-F-frame with amalgama-
tion, existence, transitivity, and continuity. Let M ≤K M0 ≤K M1 ≤K M2 be such
that ā = 〈ai : i < α〉 is independent from M0 over M in M1 and b̄ = 〈bi : i < β〉 is
independent from M1 over M in M2. Then āb̄ is independent from M0 over M in
M2.

Proof. From the independence of ā from M0 over M in M1, there is a con-
tinuous, increasing 〈M i

0 : i ≤ α〉 and N+
0 such that

• M0 ≤K M i
0 ≤K N+

0 ;
• M1 ≤K N+

0 ; and

• ai
Mi+1

0

^
M

M i
0.

From the independence of b̄ from M1 over M in M2, there is a continuous,
increasing 〈M i

1 : i ≤ β〉 and N+
1 such that

• M1 ≤K M i
1 ≤K N+

1 ;
• M2 ≤K N+

1 ; and

• bi
Mi+1

1

^
M

M i
1.

Define increasing and continuous 〈N i
1 : i ≤ β〉 and 〈gi : M i

1 → Ni : i ≤ β〉 such
that:

• N+
0 ≺ N0

1 and g0 �M1 = idM1
; and

• For all i < β, gi+1(bi)
Ni+1

1

^
M

N i
1.

This can easily be constructed by inductions: amalgamate M0
1 and N+

0 over
M1 to get N0

1 and g0. At successor steps, apply Lemma 5.3.13 and take unions at
limit stages.
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After this construction, amalgamate N+
1 and Nβ

1 over Mβ
1 to get N++ and g

so the following diagram commutes for j < β:

N+
0

// N0
1

// N j
1

// N j+1
1

// N++

M0
0

// Mα
0

>>||||||||
M0

1

g0

OO

// M j
1

gj

OO

// M j+1
1

gj+1

OO

// N+
1

g

OO

M // M0

OO

// M1

OO

=={{{{{{{{
// M2

OO

Define the sequence 〈N i : i ≤ α+ β〉 by

N i :=

{
M i

0 if i < α

N j
1 if i = α+ j ∈ [α, β]

Claim: This sequences witnesses that c̄ := ā_g(b̄) is independent from M0

over M in N++.
Proof of Claim: It is easy to see that this sequence is of the proper type, i.e.

it is increasing and continuous and M0 ≤K N i ≤K N++ for all i ≤ α+ β.

If i < α, then we need to show that ci
Ni+1

^
M

N i, which is the same as ai

Mi+1
0

^
M

M i
0.

This just follows from independence of ā.

If i = α + j ≥ α, then we need to show that ci
Ni+1

^
M

N i, which is the same as

gj+1(bj)
Nj+1

1

^
M

N j
1 . This holds directly by the construction. †Claim

Notice that the map g shows that gtp(āg(b̄)/M0;Nβ
1 ) = gtp(āb̄/M0;M2). Thus,

by Invariance (Lemma 5.4.4), we have that āb̄ is independent from M0 over M In
M2. �

5.5. Symmetry in long frames

In this section, we discuss when symmetry transfers from a good frame to its
elongation. We do so by studying the following unordered version of independence:

Definition 5.5.1. A set I is said to be independent in (M,M0, N) if some
enumeration of I is independent in (M,M0, N). As usual, we say instead that I is
independent from M0 over M in N .

5.5.1. Several versions of continuity. The notion of a set being indepen-
dent gives rise to several notions of continuity. We gave a definition of continuity
for a pre-frame s, as well as continuity for the corresponding frame of independent
sequences s<θs (what Jarden calls the continuity of serial independence [Jar16,
Definition 5.3], see Remark 5.4.11). We can now study the corresponding continu-
ity properties for sets rather than sequences: for s a pre-F-frame, let us say that
s<θs has the unordered continuity property if for every increasing chain 〈Mα : α < δ〉
every N containing

⋃
α<δMα and every I ⊆ |N |, I is independent from

⋃
α<δMα

over M0 if I is independent from Mα over M0 for all α < δ (so the enumeration
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witnessing the independence is allowed to change each time). Confusingly, Jarden
and Sitton [JS12, Definition 5.5] call this the continuity property.

Another notion of continuity was also introduced by Jarden and Sitton. Let us
say that a set I is finitely independent (fromM0 overM inN) if every finite subset of
I is. Jarden and Sitton [JS12, Definition 8.2] say that the finite continuity property
holds when unordered continuity holds for the notion of finite independence. We
will refer to this as unordered finite continuity.

Jarden and Sitton show [JS12, Proposition 8.4] that unordered finite continuity

holds in good−St frames which satisfy the additional assumption of the conjugation
property and being weakly successful. Using the (ordered) continuity property
for independent sequences (Corollary 5.4.10), together with Fact 5.5.2 below, we

immediately obtain that the unordered finite continuity holds in any good−St frame.

Fact 5.5.2 (Theorem 4.2.(a) in [JS12]). Let s be a good−St F-frame. If ā
is a finite tuple independent from M ′ over M in N , then any permutation of ā is
independent from M ′ over M in N .

Implicit in this notion is a notion of independence being finitely witnessed
[JS12, Definition 3.4] which says that a set I is independent if and only if all
its finite subsets are. We give a more general parametrized definition here:

Definition 5.5.3. Let s be a pre-F-frame and µ ≤ θs be a cardinal. We say
that µ-independence in s is finitely witnessed if for any M0 ≤K M ≤K N in KF
and any I ⊆ N with |I| < µ, I is independent from M over M0 in N if and only if
all its finite subsets are independent from M over M0 in N .

If µ = θs, we omit it.

Remark 5.5.4. In [JS12, Theorem 9.3] shows that independence is finitely
witnessed in a good λ-frame assuming the conjugation property, categoricity in λ,
and density of uniqueness triples. Earlier, Shelah had proven the same result under
stronger hypotheses [She09a, Theorem III.5.4].

Remark 5.5.5. It is straightforward to see that if independence is finitely wit-
nessed and the finite unordered continuity property holds, then the unordered con-
tinuity property holds. Recall from the discussion above that the finite unordered
continuity property holds in any good−St-frame.

Our next goal is to show that if s<µ has symmetry then µ-independence is
finitely witnessed (Theorem 5.5.9). Together with Lemma 5.5.11 deducing symme-
try from the frame being sufficiently global, this will show (Corollary 5.6.10) that
tameness implies independence is finitely witnessed.

5.5.2. Symmetry implies being finitely witnessed. First we show that
symmetry is equivalent to showing that the order of enumeration does not matter.
The finite case is essentially Fact 5.5.2. To state the infinite case precisely, we
introduce new terminology:

Definition 5.5.6. Let s be a pre-F-frame and µ ≤ θs be a cardinal. We say
that s has µ-symmetry of independence if for any M0 ≤K M ≤K N in KF and any
I ⊆ N with |I| < µ, I is independent from M over M0 in N if and only if every
enumeration of I is independent from M over M0 in N .

If µ = θs, we omit it.
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Thus a restatement of Fact 5.5.2 is that any good−St frame has ℵ0-symmetry of
independence. The next theorem says that µ-symmetry of independence is equiva-
lent to s<µ having symmetry.

Theorem 5.5.7. Let s be a good− F-frame and let µ ≤ θs be a cardinal. The
following are equivalent:

(1) s<µ has symmetry.
(2) For any M0 ≤K M ≤K N in KF and āb̄ ∈ N such that `(āb̄) < µ, āb̄

is independent from M over M0 in N if and only if b̄ā is independent in
from M over M0 in N .

(3) s has µ-symmetry of independence.

Proof. We first show (1) is equivalent to (2). Assume s<µ has symmetry,
and let M0 ≤K M ≤K N in KF and āb̄ ∈ N be such that `(āb̄) < µ and āb̄
is independent from M over M0 in N . Then there exists 〈M i : i ≤ `(āb̄)〉 and

N+ ≥K N witnessing it. Say α := `(ā). Then ā ∈Mα, tp(ā/M ;Mα) ∈ gSα,bs(M0),

and b̄ is independent from Mα over M in N+, i.e. b̄
N+

^
M
Mα. By Symmetry, there

must exist a model M ′ containing b̄ and N++ ≥K N+ such that ā
N++

^
M

M ′. By

Monotonicity, ā
N++

^
M0

M , so by Transitivity, ā
N++

^
M0

M ′. By Monotonicity, b̄
M ′

^
M0

M .

By concatenation (Theorem 5.4.13), b̄ā
N++

^
M0

M and so by Monotonicity, b̄ā
N

^
M0

M ,

as needed. Conversely, assume (2). Assume ā1

N

^
M0

M2 with ā1 ∈ <µN , and ā2 ∈

<µM2 is such that gtp(ā2/M0;N) ∈ gS<µ,bs(M0). By existence, ā2

M2

^
M0

M0. By

concatenation, ā1ā2

N

^
M0

M0. By (2), ā2ā1

N

^
M0

M0. By definition of independent,

there exists M1 containing ā1 and N ′ ≥K N such that ā2

N ′

^
M0

M1, as needed.

Next, we show that (2) is equivalent to (3). It is clear that (3) implies (2), so
we assume (2) and we prove (3) as follows: we prove the following by induction on
α < µ:

(∗)α Let M0 ≤K M ≤K N be in KF and let I ⊆ |N | have size less than µ. If
I is independent from M over M0 in N , then every enumeration of I of
order type α is independent from M over M0 in N .

So let α < µ and assume (∗)β holds for all β < α. Suppose I as above is
independent from M over M0 in N and let 〈ai : i < α〉 be an enumeration of I of
type α.

First, suppose α is finite. Then I is finite so Fact 5.5.2 gives the result.
Second, suppose α = β + 1 is an infinite successor. Then 〈aβ〉_〈ai : i < β〉

has order type β and so (by (∗)β) is independent from M over M0 in N . Since (2)
implies (1), the original sequence must also be independent.

Finally, suppose that α is limit. By monotonicity, every subset of I is inde-
pendent from M over M0 in N . In particular, for each β < α {ai : i < β} is
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independent from M over M0 in N , and so by (∗)β 〈ai : i < β〉 is also indepen-
dent from M over M0 in N . Thus by continuity (Corollary 5.4.10) 〈ai : i < α〉 is
independent from M over M0 in N .

�

As a corollary, we manage to solve Exercise III.9.4.1 in [She09a]:

Corollary 5.5.8. Let s be a good [good−St] F-frame. Then s<ω is a good

[good−St] F-frame.

Proof. By Corollary 5.4.12, s<ω is a good− F-frame. By Fact 5.5.2, s has ℵ0-
symmetry of independence. By Theorem 5.5.7, s<ω has symmetry, as needed. Since
bs-stability only refers to basic 1-types, s satisfies it if and only if s<ω does. �

Unfortunately, we do not know whether in general ω above can be replaced
by a larger ordinal. To give a criteria on when this is possible, we show that
independence being finitely witnessed (see Definition 5.5.3) follows from symmetry.

Theorem 5.5.9. Let s be a good−St F-frame and let µ ≤ θs be a cardinal. If
s<µ has symmetry, then µ-independence in s is finitely witnessed.

Proof. By Theorem 5.5.7 s has µ-symmetry of independence, and by Corol-
lary 5.4.10 s<µ has continuity. Let M0 ≤K M ≤K N be in KF and let I ⊆ N be
such that |I| < µ. Assume that every finite subset of I is independent in from M
over M0 in N . Assume inductively that µ0-independence is finitely witnessed for
all µ0 < µ. Let µ0 := |I| and write {ai : i < µ0}. Let Ii := {ai : j < i}. By the
induction hypothesis, Ii is independent from M over M0 in N for all i < µ0. By
µ-symmetry of independence, the ordered sequence 〈aj : j < i〉 is independent from
M over M0 in N . By continuity of s<µ, 〈ai : i < µ0〉 is independent from M over
M0 in N . Thus I is independent from M over M0 in N , as desired. �

Remark 5.5.10. A similar proof shows that the ordered version of µ-independence
being finitely witnessed (that is, a sequence is independent if and only if all of its
finite subsequences are) is equivalent to symmetry in s<µ.

Next, we show symmetry indeed holds in the elongation if the original frame is
“sufficiently global” (this does not even use that s has symmetry):

Lemma 5.5.11. Assume s is a good− F-frame and F = [λ, θ). If θ ≥ i(2λ)+ ,

then s<λ
+

λ has symmetry.

Proof. Using uniqueness and local character, it is straightforward to see that
KF is stable in 2λ (for 1-types), see e.g. Proposition 4.6.4. By Fact 4.2.5 this means
KF is stable in 2λ for λ-types. Then the same nonstructure proof as Corollary 4.6.11
generalizes: if s does not have symmetry, then the same proof as Theorem 3.5.13
shows that KF has an order property, and this order property is enough to deduce
instability in 2λ for λ-types (see [She99, Section 4] or Fact 3.5.12 for a sketch). �

Note, by uniqueness and local character, if χ := tb1
λ := supM∈Kλ

| gS(M)|,
and s is a good− [λ, χ]-frame, then sχ will satisfy bs-stability (and hence be a

good−S-frame); see Proposition 4.6.3.
We now apply the lemma to the maximal elongation of a (≥ λ)-frame s, namely

s<∞ := ∪α∈ORs
<α.
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Corollary 5.5.12. Assume s is a good− (≥ λ)-frame. Then s<∞ has symme-
try.

Proof. Use Lemma 5.5.11 with each λ′ ∈ [λ,∞). �

Corollary 5.5.13. Assume s is a good−S [good−] (≥ λ)-frame. Then s<∞ is

a good [good−St] (<∞,≥ λ)-frame.

Proof. Combine Corollary 5.4.12 and Corollary 5.5.12. �

5.6. Applications

This section gives some applications of these results.

5.6.1. Dimension. In [She09a, Definition III.5.12], Shelah introduced a no-
tion of dimension based on a frame. In [She09a, Conclusion III.5.14], he shows
that this notion is well-behaved (in the sense of Corollary 5.6.1) from an assump-
tion that is a little stronger than s being weakly successful and Jarden and Sitton
[JS12, Theorem 1.1] reduce this assumption to just assuming the good−St λ-frame
has the unordered continuity property. A corollary of our results on symmetry and
independence being finitely witnessed is that we can remove any extra hypothesis.

Corollary 5.6.1. Let s be a good−St λ-frame and assume s<λ
+

has symmetry.
Let M ≤K M0 ≤K N be in Kλ. If:

(1) P ⊆ gSbs(M0)
(2) I1, I2 are each ⊆-maximal sets in

{I : I is independent from M0 over M in N and a ∈ I ⇒ gtp(a/M0;N) ∈ P}

(3) One of I1, I2 is infinite.

Then I1 and I2 are both infinite and |I1| = |I2|.

Proof. Since Symmetry holds, independence in s is finitely witnessed by The-
orem 5.5.9. Recalling Remark 5.5.5, the hypotheses of [JS12, Theorem 1.1] hold,
and the conclusion is this result. �

This dimension–defining dim(P,N) to be the single infinite size of a I1 from
Corollary 5.6.1–is used to develop the theory of regular types in [She09a, Section
III.10]. As it stands, there is no known example showing that symmetry is necessary
to develop a dimension theory (or a theory of regular types). In fact, there is no
known example of a good−-frame which fails to have symmetry (i.e. it is not known
whether symmetry follows from the other axioms of a good frame, although we
suspect it does not). However, the fact that this definition compares independent
sets rather than sequences implicitly assumes the symmetry of independence (see
Theorem 5.5.7).

5.6.2. Tameness and extending frames revisited. Recall the definition
of tameness from Definition 5.2.1. Boney [Bon14a] first studied the connection
between tameness and frames. As in [Bon14a, Theorem 3.2], having a frame that
spans multiple cardinals already gives some tameness.
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Proposition 5.6.2. Assume s := (K,^, gSbs) is a good− F-frame. Let F :=
[λ, θ).

For each α < θ, K is (λ + |α|, < θ)-tame for the basic types of s<θ of length
≤ α.

Proof. Let α < θ, and let p, q ∈ gS≤α,bs(M) be distinct. By the moreover
part of Theorem 5.4.7.(1), one can find M0 ≤K M in K≤λ+|α| such that both p
and q do not fork over M0. By uniqueness, we must have p � M0 6= q � M0, as
needed. �

In [Bon14a], the main concern was using λ-tameness to extend a λ-frame to
a (≥ λ)-frame. The definition of the extension and the preservation of several
properties were already done by Shelah.

Definition 5.6.3 (Going up, Definitions II.2.4 and II.2.5 of [She09a] ). Let

s := (K,^, gSbs) be a pre-(< α, λ)-frame, and let F = [λ, θ) be an interval of

cardinals as usual. Define sF := (K,^
F
, gSbs
F ) as follows:

• ForM0 ≤K M1 ≤K N in KF and ā ∈ <αN , ^
F

(M0,M1, ā, N) if and only if

there exists M ′0 ≤K M0 in Kλ such that for all M ′0 ≤K M ′1 ≤K N ′ ≤K N

with ā ∈ N ′, and M ′1, N ′ in Kλ, we have ā
N ′

^
M ′0

M ′1.

• For M ∈ KF and p ∈ gS<α(M), p ∈ gSbs
F (M) if and only if there exists

N ≥K M and ā ∈ N such that p = gtp(ā/M ;N) and ^
F

(M,M, ā,N).

Fact 5.6.4. Let s be a good− λ-frame, and let F = [λ, θ) be an interval of
cardinals as usual. Then sF satisfies all the properties of a good F-frame except
perhaps bs-stability, existence, uniqueness, and symmetry.

Proof. See [She09a, Section II.2]. �

Transferring the rest of the properties from a good λ-frame to a good [λ, λ+]-
frame was the project of the rest of [She09a, Section II] and involved combinatorial
set-theoretic hypotheses and shrinking the AEC under consideration. [Bon14a]
replaced these assumptions with tameness.

Fact 5.6.5 (Theorem 8.1 in [Bon14a]). Let s be a good− [good−S ] λ-frame,
and let F = [λ, θ) be an interval of cardinals where θ > λ can be ∞. If KF has
amalgamation and no maximal models, the following are equivalent:

(1) K is λ-tame for the basic types of sF .

(2) sF is a good− [good−S ] F-frame.

Moreover, if s has symmetry and K is (λ, θ)-tame for 2-length types, then sF
has symmetry. In this case, the no maximal models hypothesis is not needed.

A surprising feature of this result is that, although the frames involved only 1-
types, the proof required tameness for longer types. This is connected to an emerg-
ing divide in the literature on tameness: although Grossberg and VanDieren’s ini-
tial definition for tameness [GV06b] included the length of types, their categoricity
transfer [GV06c, GV06a] and several subsequent works (e.g. [BKV06, Lie13]))
required only tameness for 1-types. However, later works, beginning with Boney
and Grossberg [BG] and Vasey (see Chapter 6), began to use tameness for longer
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types (and stronger locality properties like type shortness) in essential ways. It
remains to be seen which version of tameness is the “proper one” for developing
classification theory (or indeed if they are the same under some reasonable hy-
pothesis). However, Fact 5.6.5 seemed to straddle this divide: it used more than
tameness for 1-types, but not much more and it was unclear if the use was essential.

By using the results of this chapter, we are able to remove the assumption of
tameness for 2-types in the proof of symmetry and show that the use was unneces-
sary. We know that the tameness for 1-types gives uniqueness for the extension sF ,
and that this uniqueness transfers to uniqueness for the elongation of sF . Thus, it
suffices to show that the 2-types considered in the proof of symmetry are basic in
this sense, which we do in Theorem 5.6.8. Before we do this, we must be careful
that the order does not matter, i. e., that extending and then elongating a frame
gives you the same result as elongating and then extending it. One direction is
easy.

Proposition 5.6.6. Let s := (K,^, gSbs) be a pre-λ-frame, and let F := [λ, θ)
be an interval of cardinals as usual. Assume KF has amalgamation. Then:

(sF )
<λ+

⊆
(
s<λ

+
)
F

Where ⊆ is taken componentwise.

Proof. Assume we know that ^
(sF )<λ+

(M0,M, ā,N). We show that ^
(s<λ+ )F

(M0,M, ā,N).

The proof of inclusion of the basic types is completely similar.
Let ā := 〈ai : i < β〉, for β < λ+. By assumption, ā is independent (with

respect to ^
F

) from M over M0 in N . Fix 〈M i : i ≤ β〉 and N+ witnessing the

independence. In particular, for every i < β, ^
F

(M0,M
i, ai, N

+). By definition

of ^
F

, this implies in particular that for each i < β, there exists M0
i ≤K M0 in

Kλ such that ^
F

(M0
i ,M

i, ai, N
+). Using the Löwenheim-Skolem axiom and the

fact that |β| ≤ λ, we can choose M∗ ≤K M0 in Kλ such that for all i < β,we have
M0
i ≤K M∗. Thus, ^

F
(M0,Mi, ai, N

+) for all i < β. In particular, ā is independent

(with respect to ^
F

) from M over M∗ in N .

Now fix any M ′0, N
′ ∈ Kλ such that ā ∈ N ′, M∗ ≤K M ′0 ≤K M , and M ′0 ≤K

N ′ ≤K N . We claim that ā is independent (with respect to ^) from M ′0 over M∗

in N ′, i.e.
<λ+

^ (M∗,M ′0, ā, N
′). To see this, construct 〈M ′i ∈ Kλ : i ≤ β〉 increasing

continuous such that for all i ≤ β, M∗ ≤K M ′i ≤K M i and ai ∈M ′i+1. Finally, pick
(N+)′ ∈ Kλ such that M ′β , N

′ ≤K (N+)′ ≤K N+. Then 〈M ′i : i ≤ β〉 and (N+)′

witness our claim. By definition, this means exactly that ^
(s<α)F

(M0,M, ā,N), as

needed. �

The converse needs more hypotheses and relies on Corollary 5.4.12:

Theorem 5.6.7. Let s := (K,^, gSbs) be a good− λ-frame, and let F := [λ, θ)
be an interval of cardinals as usual. Assume that sF is a good− F-frame. Then:

(sF )
<λ+

=
(
s<λ

+
)
F
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Proof. By Proposition 5.6.6 and existence, it is enough to show ^
(s<λ+ )F

⊆

^
(sF )<λ+

. Assume ^
(s<λ+ )F

(M,N, ā, N̂). By definition of ^
(s<α)F

and monotonicity, we

can assume without loss of generality that M ∈ Kλ. We know that for all N ′ ≤K N

and N̂ ′ ≤K N̂ in Kλ with M ≤K N ≤K N̂ ′ and ā ∈ N̂ ′, ā is independent (with

respect to ^) from N ′ over M in N̂ ′. We want to see that ā is independent (with

respect to ^
F

) from N Over M in N̂ .

Let µ ≥ λ be such that N, N̂ ∈ K≤µ. Work by induction on µ. We already have
what we want if µ = λ, so assume µ > λ. Let (Ni)i≤µ be an increasing continuous
resolution of N such that Nµ = N , N0 = M , ‖Ni‖ = λ+ |i|.

By the induction hypothesis and monotonicity, ā is independent (with respect to

^
F

) from Ni over M in N̂ for all i < µ. In other words, for any i < µ, gtp(ā/Ni; N̂))

does not fork (in the sense of (sF )
<λ+

) over M . By Corollary 5.4.12, we know that

(sF )
<λ+

has continuity. Thus gtp(ā/N ; N̂) also does not fork (in the sense of

(sF )
<λ+

) over M . This is exactly what we needed to prove. �

We can now prove an abstract symmetry transfer that does not mention tame-
ness.

Theorem 5.6.8. Assume s is a good− F-frame. Let F := [λ, θ).
Then s has symmetry if and only if sλ has symmetry.

Proof. Of course, symmetry for s implies in particular symmetry for sλ. Now
assume symmetry for sλ.

First note that s = (sλ)F . This is because by the methods of [She09a, Section
II.2] (see especially Claim 2.14 and the remark preceding it), there is at most one
good− F-frame extending sλ, and it is given by (sλ)F if it exists.

Let t := sλ := (K,^, gSbs). Thus s = tF . Recall that [Bon14a, Theorem
6.1] proves symmetry for s assuming (λ,< θ)-tameness for 2-types. We revisit this
proof and use the same notation.

Suppose ^
F

(M0,M2, a1,M3), a2 ∈ M2 with gtp(a2/M0;M3) ∈ gSbs
F (M0). Let

M0 ≤K M1 ≤K M3 be a model containing a1. By existence, there is M ′3 ≥K M3

and a′ ∈M ′3 such that ^
F

(M0,M1, a
′,M ′3) and gtp(a′/M0;M ′3) = gtp(a2/M0;M3).

Boney argues it is enough to see that p := gtp(a1a2/M0;M3) = gtp(a1a
′/M0;M ′3) =:

p′, shows that this equality holds for all restrictions to models of size λ, and then
uses tameness for 2-types. This is not part of our hypotheses, but by Proposition
5.6.2, it is enough to see that p, p′ are basic types of s≤2.

First, let us see that a1a2 is independent (with respect to ^
F

) from M0 over M0

in M3. The increasing chain (M0,M2,M3) witnesses that a2a1 is independent (with

respect to ^
F

again) from M0 over M0 in M3. Thus gtp(a2a1/M0;M3) ∈ gSbs
s≤2(M0),

and s≤2 = (tF )
≤2

=
(
t≤2
)
F by Theorem 5.6.7. Thus there exists M ′0 ≤K M0 in

Kλ such that for all M ′′0 ≥K M ′0 in Kλ with M ′′0 ≤K M3, gtp(a2a1/M
′′
0 ;M3)

does not fork (in the sense of t≤2) over M ′0. Since we have symmetry in t, we
have (by Fact 5.5.2) that also gtp(a1a2/M

′′
0 ;M3) does not fork over M ′0 for all

M ′′0 ≥K M ′0, M ′′0 ≤K M3 in Kλ. Thus by definition and Theorem 5.6.7 again, a1a2
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is independent (with respect to ^
F

) from M0 over M0 in M3, as needed. Similarly,

(M0,M1,M
′
3) witnesses that a1a

′ is independent from M0 over M0 in M ′3. Thus p
and p′ are basic types of s≤2, as needed. �

We can now prove the desired improvement.

Corollary 5.6.9. Let s := (K,^, gSbs) be a good λ-frame, and let F := [λ, θ)
be an interval of cardinals, where θ > λ is either a cardinal or ∞. Assume KF has
amalgamation and K is (λ,< θ)-tame. Then sF is a good F-frame.

Proof. By the proof of Fact 5.6.5, sF has all the properties of a good frame,
except perhaps no maximal models and symmetry. Symmetry follows from the
previous theorem and [Bon14a, Theorem 7.1] now gives us no maximal models. �

While we were writing up this chapter, Adi Jarden [Jar16] independently gave
this improvement, with the additional hypothesis that the frame was weakly suc-
cessful (which he used to get the λ+-continuity of serial independence property; see
Remark 5.4.11).

5.6.3. Conclusion. We conclude by summarizing what our results give from
a good frame, amalgamation, and tameness:

Corollary 5.6.10. Let s := (K,^, gSbs) be a good λ-frame. If K≥λ has
amalgamation and is λ-tame, then:

(1) s≥λ is a good (≥ λ)-frame, and in fact even t := (s≥λ)
<∞

is a good
(<∞,≥ λ)-frame.

(2) For all α, K is (λ+ |α|)-tame for the basic types of t of length ≤ α.

(3)
(
s<λ

+
)
≥λ

= (s≥λ)
<λ+

.

(4) t has symmetry of independence and independence in s≥λ is finitely wit-
nessed.

(5) We have a well-behaved notion of dimension: For M ≤K M0 ≤K N in
Kλ, if:
(a) P ⊆ gSbs(M0)
(b) I1, I2 are ⊆-maximal sets in

{I : I is independent from M0 over M in N and a ∈ I ⇒ gtp(a/M0;N) ∈ P}
(c) One of I1, I2 is infinite.

Then I1 and I2 are both infinite and |I1| = |I2|.

Proof.

(1) s≥λ is a good (≥ λ)-frame by Corollary 5.6.9. t is a good (<∞,≥ λ)-frame
by Corollary 5.5.13.

(2) By Proposition 5.6.2.
(3) By Theorem 5.6.7.
(4) By Theorem 5.5.7, Proposition 5.5.9, and Corollary 5.5.12.
(5) By Corollary 5.6.1.

�



CHAPTER 6

Building independence relations in abstract
elementary classes

This chapter is based on [Vas16a]. I thank Andrés Villaveces for sending his
thoughts on my results and Will Boney for carefully reading this chapter and giving
invaluable feedback. I thank the referee for a thorough report that greatly helped
to improve the presentation of this chapter.

Abstract

We study general methods to build forking-like notions in the framework of
tame abstract elementary classes (AECs) with amalgamation. We show that when-
ever such classes are categorical in a high-enough cardinal, they admit a good frame:
a forking-like notion for types of singleton elements.

Theorem 6.0.11 (Superstability from categoricity). Let K be a (< κ)-tame
AEC with amalgamation. If κ = iκ > LS(K) and K is categorical in a λ > κ,
then:

• K is stable in any cardinal µ with µ ≥ κ.
• K is categorical in κ.
• There is a type-full good λ-frame with underlying class Kλ.

Under more locality conditions, we prove that the frame extends to a global
independence notion (for types of arbitrary length).

Theorem 6.0.12 (A global independence notion from categoricity). Let K be
a densely type-local, fully tame and type short AEC with amalgamation. If K
is categorical in unboundedly many cardinals, then there exists λ ≥ LS(K) such
that K≥λ admits a global independence relation with the properties of forking in
a superstable first-order theory.

As an application, we deduce (modulo an unproven claim of Shelah) that She-
lah’s eventual categoricity conjecture for AECs (without assuming categoricity in
a successor cardinal) follows from the weak generalized continuum hypothesis and
a large cardinal axiom.

Corollary 6.0.13. Assume 2λ < 2λ
+

for all cardinals λ, as well as an unpub-
lished claim of Shelah. If there exists a proper class of strongly compact cardinals,
then any AEC categorical in some high-enough cardinal is categorical in all high-
enough cardinals.

6.1. Introduction

Independence (or forking) is a central notion of model theory. In the first-order
setup, it was introduced by Shelah [She78] and is one of the main devices of his

127
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book. One can ask whether there is such a notion in the nonelementary context.
In homogeneous model theory, this was investigated in [HL02] for the superstable
case and [BL03] for the simple and stable cases. Some of their results were later
generalized by Hyttinen and Kesälä [HK06] to tame and ℵ0-stable finitary ab-
stract elementary classes (AECs). For general1 AECs, the answer is still a work in
progress.

In [She99, Remark 4.9.1] it was asked whether there is such a notion as forking
in AECs. In his book on AECs [She09a], Shelah introduced the concept of good
λ-frames (a local independence notion for types of singletons) and some conditions
are given for their existence. Shelah’s main construction (see [She09a, Theorem
II.3.7]) uses model-theoretic and set-theoretic assumptions: categoricity in two suc-
cessive cardinals and principles like the weak diamond2. It has been suggested3 that
replacing Shelah’s strong local model-theoretic hypotheses by the global hypotheses
of amalgamation and tameness (a locality property for types introduced by Gross-
berg and VanDieren [GV06b]) should lead to better results with simpler proofs.
Furthermore, one can argue that any “reasonable” AEC should be tame and have
amalgamation, see for example the discussion in Section 5 of [BG], and the intro-
ductions of [Bon14b] or [GV06b]. In particular, they follow from a large cardinal
axiom and categoricity:

Fact 6.1.1. Let K be an AEC and let κ > LS(K) be a strongly compact
cardinal. Then:

(1) [Bon14b] K is (< κ)-tame (in fact fully (< κ)-tame and short).
(2) [MS90, Proposition 1.13]4 If λ > iκ+1 is such that K is categorical in λ,

then K≥κ has amalgamation.

Examples of the use of tameness and amalgamation include [BKV06] (an up-
ward stability transfer), [Lie11b] (showing that tameness is equivalent to a natural
topology on Galois types being Hausdorff), [GV06c] (an upward categoricity trans-
fer theorem, which can be combined with Fact 6.1.1 and the downward transfer of
Shelah [She99] to prove that Shelah’s eventual categoricity conjecture for a suc-
cessor follows from the existence of a proper class of strongly compact cardinals)
and [Bon14a, Jar16], Chapter 5, showing that good frames behave well in tame
classes.

Chapter 4 constructed good frames in ZFC using global model-theoretic hy-
potheses: tameness, amalgamation, and categoricity in a cardinal of high-enough
cofinality. However we were unable to remove the assumption on the cofinality of
the cardinal or to show that the frame was ω-successful, a key technical property
of frames. Both in Shelah’s book and in Chapter 4, the question of whether there
exists a global independence notion (for longer types) was left open. In this chapter,
we continue working in ZFC with tameness and amalgamation, and make progress
toward these problems. Regarding the cofinality of the categoricity cardinal, we

1For a discussion of how the framework of tame AECs compare to other non first-order

frameworks, see the introduction of Chapter 2.
2Shelah claims to construct a good frame in ZFC in [She09a, Theorem IV.4.10] but he has

to change the class and still uses the weak diamond to show his frame is ω-successful.
3The program of using tameness and amalgamation to prove Shelah’s results in ZFC is due

to Rami Grossberg and dates back to at least [GV06b], see the introduction there.
4This is stated there for the class of models of an Lκ,ω theory but Boney [Bon14b] argues

that the argument generalizes to any AEC K with LS(K) < κ.
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show that it is possible to take the categoricity cardinal to be high-enough: (The-
orem 6.10.16):

Theorem 6.10.16. Let K be a (< κ)-tame AEC with amalgamation. If
κ = iκ > LS(K) and K is categorical in a λ > κ, then there is a type-full good
λ-frame with underlying class Kλ.

As a consequence, the class K above has several superstable-like properties: for
all µ ≥ λ, K is stable5 in µ (this is also part of Theorem 6.10.16) and has a unique
limit model of cardinality µ (by e.g. Corollary 5.6.9 and Remark 6.2.15). Since K
is stable in λ, the model of size λ is saturated. Hence using Morley’s omitting type
theorem for AECs (see the proof of Theorem 6.10.16 for the details), we deduce a
downward categoricity transfer6:

Corollary 6.1.2. Let K be a (< κ)-tame AEC with amalgamation. If κ =
iκ > LS(K) and K is categorical in a λ > κ, then K is categorical in κ.

We emphasize that already [She99] deduced such results assuming that the
model of size λ is saturated (or just κ-saturated so when cf λ ≥ κ this follows). The
new part here is showing that it is saturated, even when cf λ < κ.

The construction of the good frame in the proof of Theorem 6.10.16 is similar to
that in Chapter 4 but uses local character of coheir (or (< κ)-satisfiability) rather
than splitting. A milestone study of coheir in the nonelementary context is [MS90],
working in classes of models of an Lκ,ω-sentence, κ a strongly compact cardinal.
Makkai and Shelah’s work was generalized to fully tame and short AECs in [BG],
and some results were improved in Chapter 2. Building on these works, we are able
to show that under the assumptions above, coheir has enough superstability-like
properties to apply the arguments of Chapter 4, and obtain that coheir restricted
to types of length one in fact induces a good frame.

Note that coheir is a candidate for a global independence relation. In fact,
one of the main result of Chapter 3 is that it is canonical: if there is a global
forking-like notion, it must be coheir. The chapter assumes additionally that coheir
has the extension property. Here, we prove that coheir is canonical without this
assumption (Theorem 6.9.3). We also obtain results on the canonicity of good
frames. For example, any two type-full good λ-frames with the same categorical
underlying AEC must be the same (Theorem 6.9.7). This answers several questions
from Chapter 3.

Using that coheir is global and (under categoricity) induces a good frame, we
can use more locality assumptions to get that the good frame is ω-successful:

Theorem 6.15.6. Let K be a fully (< κ)-tame and short AEC. If LS(K) <
κ = iκ < λ = iλ, cf λ ≥ κ, and K is categorical in a µ ≥ λ, then there exists an
ω-successful type-full good λ-frame with underlying class Kλ.

5The downward stability transfer from categoricity is an early result of Shelah [She99, Claim
1.7], but the upward transfer is new and improves on Theorem 4.7.5. In fact, the proof here is
new even when K is the class of models of a first-order theory.

6[MS90, Conclusion 5.1] proves a stronger conclusion under stronger assumptions (namely
that K is the class of models of an Lκ,ω sentence, κ a strongly compact cardinal).
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We believe that the locality hypotheses in Theorem 6.15.6 are reasonable: they
follow from large cardinals (Fact 6.1.1) and slightly weaker assumptions can be
derived from the existence of a global forking-like notion, see the discussion in
Section 6.15.

Theorem 6.15.6 can be used to build a global independence notion (Theorem
6.15.1 formalizes Theorem 6.0.12 from the abstract). We assume one more local-
ity hypothesis (dense type-locality) there. We suspect it can be removed, see the
discussion in Section 6.15. Without dense type-locality, one still obtains an inde-
pendence relation for types of length less than or equal to λ (see Theorem 6.15.6).
This improves several results from [BG] (see Section 6.16 for a more thorough
comparison).

These results bring us closer to solving one of the main test questions in the
classification theory of abstract elementary classes7:

Conjecture 6.1.3 (Shelah’s eventual categoricity conjecture). An AEC that
is categorical in a high-enough cardinal is categorical on a tail of cardinals.

The power of ω-successful frames comes from Shelah’s analysis in Chapter III
of his book. Unfortunately, Shelah could not prove the stronger results he had
hoped for. Still, in [She09a, Discussion III.12.40], he claims the following (a proof
should appear in a future publication [Sheb]):

Claim 6.1.4. Assume the weak generalized continuum hypothesis8 (WGCH).
Let K be an AEC such that there is an ω-successful good λ-frame with underlying

class Kλ. Write Kλ+ω-sat for the class of λ+ω-saturated models in K. Then Kλ+ω-sat

is categorical in some µ > λ+ω if and only if it is categorical in all µ > λ+ω.

Modulo this claim, we obtain the consistency of Shelah’s eventual categoricity
conjecture from large cardinals. This partially answers [She00, Question 6.14]:

Theorem 6.1.5. Assume Claim 6.1.4 and WGCH.

(1) Shelah’s categoricity conjecture holds in fully tame and short AECs with
amalgamation.

(2) If there exists a proper class of strongly compact cardinals, then Shelah’s
categoricity conjecture holds.

Proof. Let K be an AEC.

(1) Assume K is fully LS(K)-tame and short and has amalgamation. Pick κ
and λ such that LS(K) < κ = iκ < λ = iλ and cf λ ≥ κ. By Theorem
6.15.6, there is an ω-successful good λ-frame on Kλ. By Claim 6.1.4,

Kλ+ω-sat is categorical in all µ > λ+ω. By Morley’s omitting type theorem
for AECs (see [She99, II.1.10]), K is categorical in all µ ≥ i(2λ+ω )

+ .

(2) Let κ > LS(K) be strongly compact. By [Bon14b], K is fully (< κ)-
tame and short. By the methods of [MS90, Proposition 1.13], K≥κ has
amalgamation. Now apply the previous part to K≥κ.

�

7A version of Shelah’s categoricity conjecture already appears as [She90, Open problem
D.3(a)] and the statement here appears in [She09a, Conjecture N.4.2], see [Gro02] or the intro-

duction to [She09a] for history and motivation.
82λ < 2λ

+
for all cardinals λ.
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Remark 6.1.6. Previous works (e.g. [MS90, She99, GV06c, Bon14b]) all
assume categoricity in a successor cardinal, and this was thought to be hard to
remove. Here, we do not need to assume categoricity in a successor.

Note that [She09a, Theorem IV.7.12] is stronger than Theorem 6.1.5 (since
Shelah assumes only Claim 6.1.4, WGCH, and amalgamation): unfortunately we
were unable to verify Shelah’s proof. The statement contains an error as it contra-
dicts Morley’s categoricity theorem.

This chapter is organized as follows. In Section 6.2 we review some of the
background. In Sections 6.3-6.4, we introduce the framework with which we will
study independence. In Sections 6.5-6.8, we introduce the definition of a generator
for an independence relation and show how to use it to build good frames. In
Section 6.9, we use the theory of generators to prove results on the canonicity of
coheir and good frames. In Section 6.10, we use generators to study the definition
of superstability implicit in [SV99] (and further studied in [GVV16] and Chapter
4). We derive superstability from categoricity and use it to construct good frames.
In Section 6.11, we show how to prove a good frame is ω-successful provided it is
induced by coheir. In Sections 6.12-6.14, we show how to extend such a frame to
a global independence relation. In Section 6.15, some of the main theorems are
established. In Section 6.16, we give examples (existence of large cardinals, totally
categorical classes, and fully (< ℵ0)-tame and short AECs) where Theorem 6.0.12
can be applied to derive the existence of a global independence relation.

Since this chapter was first circulated (in December 2014), several improve-
ments and applications were discovered. Threshold cardinals for the construction
of a good frame are improved in Chapter 10. Global independence relations are
studied in the framework of universal classes in Chapter 8 and a categoricity trans-
fer is obtained there (later improved to the full eventual categoricity conjecture in
Chapter 16). Global independence can also be used to build prime models over sets
of the form Ma, for M a saturated models (Chapter 12). Several of the results of
this chapter are exposed in [BVd].

6.2. Preliminaries

We recall the definition of an abstract elementary class (AEC) in F , for F
an interval of cardinal. Localizing to an interval is convenient when dealing with
good frames and appears already (for F = {λ}) in [JS13, Definition 1.0.3.2]. Con-
fusingly, Shelah earlier on called an AEC in λ a λ-AEC (in [She09a, Definition
II.1.18]).

Definition 6.2.1. For F = [λ, θ) an interval of cardinals, we say an abstract
class K in F is an abstract elementary class (AEC for short) in F if it satisfies:

(1) Coherence: If M0,M1,M2 are in K, M0 ≤K M2, M1 ≤K M2, and |M0| ⊆
|M1|, then M0 ≤K M1.

(2) L(K) is finitary.
(3) Tarski-Vaught axioms: If 〈Mi : i < δ〉 is an increasing chain in K and

δ < θ, then Mδ :=
⋃
i<δMi is such that:

(a) Mδ ∈ K.
(b) M0 ≤K Mδ.
(c) If Mi ≤K N for all i < δ, then Mδ ≤K N .
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(4) Löwenheim-Skolem-Tarski axiom: There exists a cardinal µ ≥ |L(K)|+ℵ0

such that for any M ∈ K and any A ⊆ |M |, there exists M0 ≤K M
containing A with ‖M0‖ ≤ |A| + µ. We write LS(K) (the Löwenheim-
Skolem-Tarski number of K) for the least such cardinal.

When F = [0,∞), we omit it. We say K is an AEC in λ if it is an AEC in {λ}.

Recall that an AEC in F can be made into an AEC:

Fact 6.2.2 (Lemma II.1.23 in [She09a]). If K is an AEC in λ := LS(K), then
there exists a unique AEC K′ such that (K′)λ = K and LS(K′) = λ. The same
holds if K is an AEC in F , F = [λ, θ) (apply the previous sentence to Kλ).

Notation 6.2.3. Let K be an AEC in F with F = [λ, θ), λ = LS(K). Write
Kup for the unique AEC K′ described by Fact 6.2.2.

When studying independence, the following definition will be useful:

Definition 6.2.4. A coherent abstract class in F is an abstract class in F
satisfying the coherence property (see Definition 6.2.1).

We also define the following weakening of the existence of a Löwenheim-Skolem-
Tarski number:

Definition 6.2.5. An abstract class K is (< λ)-closed if for any M ∈ K and
A ⊆ |M | with |A| < λ, there exists M0 ≤K M which contains A and has size less
than λ. λ-closed means (< λ+)-closed.

Remark 6.2.6. An AEC K is (< λ)-closed in every λ > LS(K).

We will sometimes use the following consequence of Shelah’s presentation the-
orem:

Fact 6.2.7 (Conclusion I.1.11 in [She09a]). Let K be an AEC. If K≥λ 6= ∅
for every λ < h(LS(K)), then K has arbitrarily large models.

As in the preliminaries of Chapter 2, we can define a notion of embedding for
abstract classes and go on to define amalgamation, joint embedding, no maximal
models, Galois types, tameness, and type-shortness (that we will just call short-
ness). Recall also Fact 6.1.1 which says that under a large cardinal axiom any AEC
is fully tame and short.

The following fact tells us that an AEC with amalgamation is a union of AECs
with amalgamation and joint embedding. This a trivial observation from the defi-
nition of the diagram of an AEC [She09a, Definition I.2.2].

Fact 6.2.8 (Lemma 16.14 in [Bal09]). Let K be an AEC with amalgamation.
Then we can write K =

⋃
i∈I Ki where the Ki’s are disjoint AECs with LS(Ki) =

LS(K) and each Ki has joint embedding and amalgamation.

The following sums up all the results we will use about stability and the order
property:

Fact 6.2.9. Let K be an AEC.

(1) (Corollary 2.4.8) Let κ = iκ > LS(K). The following are equivalent:
(a) K has the weak κ-order property.
(b) K has the (< κ)-order property of length κ.
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(c) K has the (< κ)-order property.
(2) (Theorem 2.4.15) Assume K is (< κ)-tame and has amalgamation. The

following are equivalent:
(a) K is stable in some λ ≥ κ+ LS(K).
(b) There exists µ ≤ λ0 < h(κ + LS(K)) such that K is stable in any

λ ≥ λ0 with λ = λ<µ.
(c) K does not have the order property.
(d) K does not have the (< κ)-order property.

(3) [BKV06, Theorem 4.5] If K is LS(K)-tame, has amalgamation, and is
stable in LS(K), then it is stable in LS(K)+.

6.2.1. Universal and limit extensions.

Definition 6.2.10. Let K be an abstract class, λ be a cardinal.

(1) For M,N ∈ K, say M <univ
K N (N is universal over M) if and only if

M <K N and whenever we have M ′ ≥K M such that ‖M ′‖ ≤ ‖N‖, then
there exists f : M ′ −→

M
N . Say M ≤univ

K N if and only if M = N or

M <univ
K N .

(2) For M,N ∈ K, λ a cardinal and δ ≤ λ+, say M <λ,δK N (N is (λ, δ)-limit
over M) if and only if M ∈ Kλ, N ∈ Kλ+|δ|, M <K N , and there exists

〈Mi : i ≤ δ〉 increasing continuous such that M0 = M , Mi <
univ
K Mi+1 for

all i < δ, and Mδ = N if δ > 0. Say M ≤λ,δK if M = N or M <λ,δK N . We

say N ∈ K is a (λ, δ)-limit model if M <λ,δK N for some M . We say N
is λ-limit if it is (λ, δ)-limit for some limit δ < λ+. When λ is clear from
context, we omit it.

Remark 6.2.11. So for M,N ∈ Kλ, M <λ,0K N if and only if M <K N , while

M <λ,1K if and only if M <univ
K N .

Remark 6.2.12. Variations on <λ,δK already appear as [She99, Definition 2.1].
This chapter definition of being universal is different from the usual one (see e.g.
[Van06, Definition I.2.1.2]) because we ask only for ‖M ′‖ ≤ ‖N‖ rather than
‖M ′‖ = ‖M‖.

The next fact is folklore.

Fact 6.2.13. Let K be an AC with amalgamation, λ be an infinite cardinal,
and δ ≤ λ+. Then:

(1) M0 <
univ
K M1 ≤K M2 and ‖M1‖ = ‖M2‖ imply M0 <

univ
K M2.

(2) M0 ≤K M1 <
univ
K M2 implies M0 <

univ
K M2.

(3) If M0 ∈ Kλ, then M0 ≤K M1 <
λ,δ
K M2 implies M0 <

λ,δ
K M2.

(4) If δ < λ+, K is an AEC in λ = LS(K) with no maximal models and

stability in λ, then for any M0 ∈ K there exists M ′0 such that M0 <
λ,δ
K M ′0.

Proof. All are straightforward, except perhaps the last which is due to Shelah.
For proofs and references see Proposition 4.2.10. �

By a routine back and forth argument, we have:

Fact 6.2.14 (Fact 1.3.6 in [SV99]). Let K be an AEC in λ := LS(K) with
amalgamation. Let δ ≤ λ+ be a limit ordinal and for ` = 1, 2, let 〈M `

i : i ≤ δ〉 be
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increasing continuous with M0 := M1
0 = M2

0 and M `
i <

univ
K M `

i+1 for all i < δ (so

they witness M `
0 <

λ,δ
K M `

δ ).
Then there exists f : M1

δ
∼=M0 M

2
δ such that for all i < δ, there exists j < δ

such that f [M1
i ] ≤K M2

j and f−1[M2
i ] ≤K M1

j .

Remark 6.2.15. Uniqueness of limit models that are not of the same cofinality

(i.e. the statement M0 <
λ,δ
K M1, M0 <

λ,δ′

K M2 implies M1
∼=M0

M2 for any limit
δ, δ′ < λ+) has been argued to be an important dividing line, akin to superstability
in the first-order theory. See for example [SV99, Van06, Van13, GVV16]. It is
known to follow from the existence of a good λ-frame (see [She09a, Lemma II.4.8],
or [Bon14a, Theorem 9.2] for a detailed proof).

We could not find a proof of the next result in the literature, so we included
one here.

Lemma 6.2.16. Let K be an AEC with amalgamation. Let δ be a (not necessar-
ily limit) ordinal and assume (Mi)i≤δ is increasing continuous with Mi <

univ
K Mi+1

for all i < δ. Then Mi <
univ
K Mδ for all i < δ.

Proof. By induction on δ. If δ = 0, there is nothing to do. If δ = α+ 1 is a
successor, let i < δ. We know Mi ≤K Mα. By hypothesis, Mα <

univ
K Mδ. By Fact

6.2.13.(2), Mi <
univ
K Mδ. Assume now δ is limit. In that case it is enough to show

M0 <
univ
K Mδ. By the induction hypothesis, we can further assume that δ = cf δ.

Let N ≥K M0 be given such that µ := ‖N‖ ≤ ‖Mδ‖, and N , Mδ are inside a

common model N̂ . If µ < ‖Mδ‖, then there exists i < δ such that µ ≤ ‖Mi‖, and
we can use the induction hypothesis, so assume µ = ‖Mδ‖. We can further assume
µ > ‖M0‖, for otherwise N directly embeds into M1 over M0. The Mis show that
γ := cf µ ≤ δ. Let 〈Ni : i ≤ γ〉 be increasing continuous such that for all i < γ.

(1) N0 = M0.
(2) Nγ = N .
(3) ‖Ni‖ < µ.

This exists since γ = cf µ.
Build 〈fi : i ≤ γ〉, increasing continuous such that for all i < γ, fi : Ni −−→

M0

Mki

for some ki < δ. This is enough, since then fγ will be the desired embedding. This
is possible: For i = 0, take f0 := idM0 . At limits, take unions: since δ is regular
and γ ≤ δ, kj < δ for all j < i < γ implies ki := supj<i kj < δ.

Now given i = j + 1, first pick k = kj < δ such that fj [Nj ] ≤K Mk. Such a
k exists by the induction hypothesis. Find k′ > k such that ‖Ni‖ ≤ ‖Mk′‖. This
exists since ‖Ni‖ < µ = ‖Mδ‖. Now by the induction hypothesis, Mk <

univ
K Mk′ ,

so by Fact 6.2.13.(2), fj [Nj ] <
univ
K Mk′ . Hence by some renaming, we can extend

fi as desired. �

Remark 6.2.17. (K,≤univ
K ) is in general not an AEC as it may fail the Löwenheim-

Skolem-Tarski axiom, the coherence axiom, and (3c) in the Tarski-Vaught axioms
of Definition 6.2.1.

6.3. Independence relations

Since this section mostly lists definitions, the reader already familiar with inde-
pendence (in the first-order context) may want to skip it and refer to it as needed.
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We would like a general framework in which to study independence in abstract el-
ementary classes. One such framework is Shelah’s good λ-frames [She09a, Section
II.6]. Another is given by the definition of independence relation in Definition 3.3.1
(itself adapted from [BG, Definition 3.3] which can be traced back to the work of
Makkai and Shelah [MS90]). Both definitions describe a relation “p does not fork
over M” for p a Galois type over N and M ≤K N and require it to satisfy some
properties.

In Chapter 3, it is also shown how to “close” such a relation to obtain a relation
“p does not fork over M” when p is a type over an arbitrary set. We find that
starting with such a relation makes the statement of symmetry transparent, and
hence makes several proofs easier. Perhaps even more importantly, we can be very
precise9 when dealing with chain local character properties (see Definition 6.3.16).

The definition in Chapter 3 is not completely adequate for our purpose, how-
ever. There it is assumed that everything is contained inside a big homogeneous
monster model. While we will always assume amalgamation, assuming the exis-
tence of a monster model is still problematic when for example we want to study
independence over models of size λ only (the motivation for good λ-frames, note
that Shelah’s definition does not assume the existence of a monster model). We
also allow working inside more general classes than AECs: coherent abstract classes
(recall Definition 6.2.4). This is convenient when working with classes of saturated
models (see for example the study of weakly good independence relation in Section
6.7), but note that in general we may not be able to build a monster model there.

We also give a more general definition than in Chapter 3, as we do not as-
sume that everything happens in a big homogeneous monster model, and we allow
working inside coherent abstract classes (recall Definition 6.2.4) rather than only
abstract elementary classes. The later feature is convenient when working with
classes of saturated models.

This means that we always have to carry over an ambient model N that may
shrink or be extended as needed. Although this makes the notation slightly heavier,
it does not cause any serious technical difficulties. At first reading, the reader may
simply want to ignore N and assume everything takes place inside a monster model.

Because we quote extensively from [She09a], which deals with frames, and also
because it is sometimes convenient to “forget” the extension of the relation to arbi-
trary sets, we will still define frames and recall their relationship with independence
relations over sets.

6.3.1. Frames. Shelah’s definition of a pre-frame appears in [She09a, Defini-
tion III.0.2.1] and is meant to axiomatize the bare minimum of properties a relation
must satisfy in order to be a meaningful independence notions.

We make several changes: we do not mention basic types (we have no use
for them), so in Shelah’s terminology our pre-frames will be type-full . In fact, it
is notationally convenient for us to define our frame on every type, not just the
nonalgebraic ones. The disjointness property (see Definition 6.3.12) tells us that

9Assume for example that s is a good-frame on a class of saturated models of an AEC K. Let

〈Mi : i < δ〉 be an increasing chain of saturated models. Let Mδ :=
⋃
i<δMi and let p ∈ gS(Mδ).

We would like to say that there is i < δ such that p does not fork over Mi but we may not know
that Mδ is saturated, so maybe forking is not even defined for types over Mδ. However if the
forking relation were defined for types over sets, there would be no problem.
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the frame behaves trivially on the algebraic types. We do not require it (as it is
not required in Definition 3.3.1) but it will hold of all frames we consider.

We require that the class on which the independence relation operates has
amalgamation10, and we do not require that the base monotonicity property holds
(this is to preserve the symmetry between right and left properties in the definition.
All the frames we consider will have base monotonicity). Finally, we allow the size
of the models to lie in an interval rather than just be restricted to a single cardinal
as Shelah does. We also parametrize on the length of the types. This allows more
flexibility and was already the approach favored in Chapters 4 and 5.

Definition 6.3.1. Let F = [λ, θ) be an interval of cardinals with ℵ0 ≤ λ < θ,
α ≤ θ be a cardinal or ∞.

A type-full pre-(< α,F)-frame is a pair s = (K,^), where:

(1) K is a coherent abstract class in F (see Definition 6.2.4) with amalgama-
tion.

(2) ^ is a relation on quadruples of the form (M0, A,M,N), where M0 ≤K

M ≤K N are all in K, A ⊆ |N | is such that |A\|M0|| < α. We write

^(M0, A,M,N) or A
N

^
M0

M instead of (M0, A,M,N) ∈^.

(3) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and A
N

^
M0

M , then f [A]
N ′

^
f [M0]

f [M ].

(b) Monotonicity: Assume A
N

^
M0

M . Then:

(i) Ambient monotonicity: If N ′ ≥K N , then A
N ′

^
M0

M . If M ≤K

N0 ≤K N and A ⊆ |N0|, then A
N0

^
M0

M .

(ii) Left and right monotonicity: If A0 ⊆ A, M0 ≤K M ′ ≤K M ,

then A0

N

^
M0

M ′.

(c) Left normality: If A
N

^
M0

M , then11 AM0

N

^
M0

M .

When α or F are clear from context or irrelevant, we omit them and just say
that s is a pre-frame (or just a frame). We may omit the “type-full”. A (≤ α)-frame
is just a (< α+)-frame. We might omit α when α = 2 (i.e. s is a (≤ 1)-frame) and we
might talk of a λ-frame or a (≥ λ)-frame instead of a {λ}-frame or a [λ,∞)-frame.

Notation 6.3.2. For s = (K,^) a pre-(< α,F)-frame with F = [λ, θ), write
Ks := K, ^

s
:= ^, αs := α, Fs = F , λs := λ, θs := θ. Note that pedantically, α,

F , and θ should be part of the data of the frame in order for this notation to be
well-defined but we ignore this detail.

10This is required in Shelah’s definition of good frames, but not in his definition of pre-frames.
11For sets A and B, we sometimes write AB instead of A ∪B.
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Notation 6.3.3. For s = (K,^) a pre-frame, we write ^(M0, ā,M,N) or

ā
N

^
M0

M for ran(ā)
N

^
M0

M (similarly when other parameters are sequences). When

p ∈ gS<∞(M), we say p does not s-fork over M0 (or just does not fork over M0 if

s is clear from context) if ā
N

^
M0

M whenever p = gtp(ā/M ;N) (using monotonicity

and invariance, it is easy to check that this does not depend on the choice of
representatives).

Remark 6.3.4. In the definition of a pre-frame given in Definition 5.3.1, the
left hand side of the relation ^ is a sequence, not just a set. Here, we simply
assume outright that the relation is defined so that order does not matter.

Remark 6.3.5. We can go back and forth from this chapter’s definition of pre-
frame to Shelah’s. We sketch how. From a pre-frame s in our sense (with Ks an

AEC), we can let gSbs(M) be the set of nonalgebraic p ∈ gS(M) that do not s-fork
over M . Then restricting ^

s
to the basic types we obtain (assuming that s has base

monotonicity, see Definition 6.3.12) a pre-frame in Shelah’s sense. From a pre-frame

(K,^, gSbs) in Shelah’s sense (where K has amalgamation), we can extend ^ by
specifying that algebraic and basic types do not fork over their domains. We then
get a pre-frame s in our sense with base monotonicity and disjointness.

6.3.2. Independence relations. We now give a definition for an indepen-
dence notion that also takes sets on the right hand side.

Definition 6.3.6 (Independence relation). Let F = [λ, θ) be an interval of car-
dinals with ℵ0 ≤ λ < θ, α, β ≤ θ be cardinals or ∞. A (< α,F , < β)-independence
relation is a pair i = (K,^), where:

(1) K is a coherent abstract class in F with amalgamation.
(2) ^ is a relation on quadruples of the form (M,A,B,N), where M ≤K

N are all in K, A ⊆ |N | is such that |A\|M || < α and B ⊆ |N | is

such that |B\|M || < β. We write ^(M,A,B,N) or A
N

^
M
B instead of

(M,A,B,N) ∈^.
(3) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and A
N

^
M
B, then f [A]

N ′

^
f [M ]

f [B].

(b) Monotonicity: Assume A
N

^
M
B. Then:

(i) Ambient monotonicity: If N ′ ≥K N , then A
N ′

^
M
B. If M ≤K

N0 ≤K N and A ∪B ⊆ |N0|, then A
N0

^
M
B.

(ii) Left and right monotonicity: IfA0 ⊆ A, B0 ⊆ B, thenA0

N

^
M
B0.

(c) Left and right normality: If A
N

^
M
B, then AM

N

^
M
BM .
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We adopt the conventions described at the end of Definition 6.3.1. For exam-
ple, a (≤ α,F , < β)-independence relation is just a (< α+,F , < β)-independence
relation.

When β = θ, we omit it. More generally, when α, β are clear from context or
irrelevant, we omit them and just say that i is an independence relation.

Notation 6.3.7. We adopt the same notational conventions as for pre-frames:
Ki, ^

i
, αi, βi, Fi, λi, θi are defined as in Notation 6.3.2 and p does not i-fork over

M0 is defined as in 6.3.3.

Remark 6.3.8. It seems that in every case of interest β = θ (this will always
be the case in the next sections of this chapter). We did not make it part of the
definition to avoid breaking the symmetry between α and β (and hence make it
possible to define the dual independence relation and the left version of a property,
see Definitions 6.3.13 and 6.3.15). Note also that the case α = θ =∞ is of particular
interest in Section 6.14.

Before listing the properties independence relations and frames could have, we
discuss how to go from one to the other. The cl operation is called the minimal
closure in Definition 3.3.4.

Definition 6.3.9.

(1) Given a pre-frame s := (K,^), let cl(s) := (K,
cl

^), where
cl

^(M,A,B,N)
if and only if M ≤K N , |B| < θs, and there exists N ′ ≥K N , M ′ ≥K M
containing B such that ^(M,A,M ′, N ′).

(2) Given a (< α,F)-independence relation i = (K,^) let pre(i) := (K,
pre

^),

where
pre

^(M,A,M ′, N) if and only ifM ≤K M ′ ≤K N and^(M,A,M ′, N).

Remark 6.3.10.

(1) If i is a (< α,F)-independence relation, then pre(i) is a pre-(< α,F)-
frame.

(2) If s is a pre-(< α,F)-frame, then cl(s) is a (< α,F)-independence relation
and pre(cl(s)) = s.

Other properties of cl and pre are given by Proposition 6.4.1.

Remark 6.3.11. The reader may wonder why we do not assume that every
independence relation is the closure of a pre-frame, i.e. why we do not assume that

for any independence relation i = (K,^), if A
N

^
M
B, there exists N ′ ≥K N and

M ′ ≤K N ′ with M ≤K M ′ such that B ⊆ |M ′| and A
N ′

^
M
M ′ (this can be written

abstractly as i = cl(pre(i))? This would allow us to avoid the redundancies be-
tween the definition of an independence relation and that of a pre-frame. However,
several interesting independence notions do not satisfy that property (see Section
3.3.2). Further, it is not clear that the property i = cl(pre(i)) transfers upward (see
Definition 6.6.3). Therefore we prefer to be agnostic and not require it.

Next, we give a long list of properties that an independence relation may or may
not have. Most are classical and already appear for example in Chapter 3. We give
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them here again both for the convenience of the reader and because their definition
is sometimes slightly modified compared to Chapter 3 (for example, symmetry
there is called right full symmetry here, and some properties like uniqueness and
extensions are complicated by the fact we do not work in a monster model). They
will be used throughout this chapter (for example, Section 6.4 discusses implications
between the properties).

Definition 6.3.12 (Properties of independence relations). Let i := (K,^) be
a (< α,F , < β)-independence relation.

(1) i has disjointness if A
N

^
M
B implies A ∩B ⊆ |M |.

(2) i has symmetry if A
N

^
M
B implies that for all12 B0 ⊆ B of size less than α

and all A0 ⊆ A of size less than β, B0

N

^
M
A0.

(3) i has right full symmetry if A
N

^
M
B implies that for all B0 ⊆ B of size

less than α and all A0 ⊆ A of size less than β, there exists N ′ ≥K N ,

M ′ ≥K M containing A0 such that B0

N ′

^
M
M ′.

(4) i has right base monotonicity if A
N

^
M
B and M ≤K M ′ ≤K N , |M ′| ⊆

B ∪ |M | implies A
N

^
M ′
B.

(5) i has right existence if A
N

^
M
M for any A ⊆ |N | with |A| < α.

(6) i has right uniqueness if whenever M0 ≤K M ≤K N`, ` = 1, 2, |M0| ⊆
B ⊆ |M |, q` ∈ gS<α(B;N`), q1 �M0 = q2 �M0, and q` does not fork over
M0, then q1 = q2.

(7) i has right extension if whenever p ∈ gS<α(MB;N) does not fork over
M and B ⊆ C ⊆ |N | with |C| < β, there exists N ′ ≥K N and q ∈
gS<α(MC;N ′) extending p such that q does not fork over M .

(8) i has right independent amalgamation if α > λ, β = θ, and13 whenever
M0 ≤K M` are in K, ` = 1, 2, there exists N ∈ K and f` : M` −−→

M0

N

such that f1[M1]
N

^
M0

f2[M2].

(9) i has the right (< κ)-model-witness property if wheneverM ≤K M ′ ≤K N ,

||M ′|\|M || < β, A ⊆ |N |, and A
N

^
M
B0 for all B0 ⊆ |M ′| of size less than

κ, then A
N

^
M
M ′. i has the right (< κ)-witness property if this is true when

12Why not just take B0 = B? Because the definition of ^ requires that the left hand side

has size less than α. Similarly for right full symmetry.
13Note that even though the next condition is symmetric, the condition on α and β make

the left version of the property different from the right.
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M ′ is allowed to be an arbitrary set. The λ-[model-]witness property is
the (< λ+)-[model-]witness property.

(10) i has right transitivity if whenever M0 ≤K M1 ≤K N , A
N

^
M0

M1 and A
N

^
M1

B

implies A
N

^
M0

B. Strong right transitivity is the same property when we do

not require M0 ≤K M1.
(11) i has right full model-continuity if K is an AEC in F , α > λ, β = θ, and

whenever 〈M `
i : i ≤ δ〉 is increasing continuous with δ limit, ` ≤ 3, for all

i < δ, M0
i ≤K M `

i ≤K M3
i , ` = 1, 2, ‖M1

δ ‖ < α, and M1
i

M3
i

^
M0
i

M2
i for all

i < δ, then M1
δ

M3
δ

^
M0
δ

M2
δ .

(12) Weak chain local character is a technical property used to generate weakly
good independence relations, see Definition 6.6.6.

Whenever this makes sense, we similarly define the same properties for pre-
frames.

Note that we have defined the right version of the asymmetric properties. One
can define a left version by looking at the dual independence relation.

Definition 6.3.13. Let i := (K,^) be a (< α,F , < β)-independence relation.

Define the dual independence relation id := (K,
d

^) by
d

^(M,A,B,N) if and only
if ^(M,B,A,N).

Remark 6.3.14.

(1) If i is a (< α,F , < β)-independence relation, then id is a (< β,F , < α)-

independence relation and
(
id
)d

= i.
(2) Let i be a (< α,F , < α)-independence relation. Then i has symmetry if

and only if i = id.

Definition 6.3.15. For P a property, we will say i has left P if id has right P .
When we omit left or right, we mean the right version of the property.

Definition 6.3.16 (Locality cardinals). Let i = (K,^) be a (< α,F)-independence
relation, F = [λ, θ). Let α0 < α be such that |α0|+ < θ.

(1) Let κ̄α0(i) be the minimal cardinal µ ≥ |α0|+ + λ+ such that for any
M ≤K N in K, any A ⊆ |N | with |A| ≤ α0, there exists M0 ≤K M in

K<µ with A
N

^
M0

M . When µ does not exist, we set κ̄α0
(i) =∞.

(2) For R a binary relation on K, Let κα0(i, R) be the minimal cardinal
µ ≥ |α0|+ + ℵ0 such that for any regular δ ≥ µ, any R-increasing (re-
call Definition 2.2.11) 〈Mi : i < δ〉 in K, any N ∈ K extending all the

Mi’s, and any A ⊆ |N | of size ≤ α0, there exists i < δ such that A
N

^
Mi

Mδ.
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Here, we have set14 Mδ :=
⋃
i<δMi. When R =≤K, we omit it. When µ

does not exist or µr ≥ θ, we set κα0
(i) =∞.

When K is clear from context, we may write κ̄α0
(^). For α0 ≤ α, we also let

κ̄<α0
(i) := supα′0<α0

κ̄α′0(i). Similarly define κ<α0
.

We similarly define κ̄α0(s) and κα0(s) for s a pre-frame (in the definition of
κα0(s), we require in addition that Mδ be a member of K).

We will use the following notation to restrict independence relations to smaller
domains:

Notation 6.3.17. Let i be a (< α,F , < β)-independence relation.

(1) For α0 ≤ α, β0 ≤ β, let i<α0,<β0 denotes the (< α0,F , < β0)-independence
relation obtained by restricting the types to have length less than α0 and
the right hand side to have size less than β0 (in the natural way). When
β0 = β, we omit it.

(2) For K′ a coherent sub-AC of Ki, let i � K′ be the (< α,F , < β)-
independence relation obtained by restricting the underlying class to K′.
When i is a (< α,F)-independence relation and F0 ⊆ F is an interval of
cardinals, F0 = [λi, θ0), we let iF0

:= i<min(α,θ0) � (Ki)F0
be the restric-

tion of i to models of size in F0 and types of appropriate length.

We end this section with two examples of independence relations. The first is
coheir. In first-order logic, coheir was first defined in [LP79]15. A definition of
coheir for classes of models of an Lκ,ω sentence appears in [MS90] and was later
adapted to general AECs in [BG]. In Chapter 2, we gave a more conceptual (but
equivalent) definition and improved some of the results of Boney and Grossberg.
Here, we use Boney and Grossberg’s definition but rely on Chapter 2.

Definition 6.3.18 (Coheir). Let K be an AEC with amalgamation and let
κ > LS(K).

Define iκ-ch(K) := (Kκ-sat,^) by ^(M,A,B,N) if and only if M ≤K N are
in Kκ-sat, A∪B ⊆ |N |, and for any ā ∈ <κA and B0 ⊆ |M | ∪B of size less than κ,
there exists ā′ ∈ <κ|M | such that gtp(ā/B0;N) = gtp(ā′/B0;M).

Fact 6.3.19 (Theorem 2.5.15). Let K be an AEC with amalgamation and let
κ > LS(K). Let i := iκ-ch(K).

(1) i is a (< ∞, [κ,∞))-independence relation with disjointness, base mono-
tonicity, left and right existence, left and right (< κ)-witness property,
and strong left transitivity.

(2) If K does not have the (< κ)-order property of length κ, then:
(a) i has symmetry and strong right transitivity.

(b) For all α, κ̄α(i) ≤
(
(α+ 2)

<κr
)+

.

(c) IfM0 ≤K M ≤K N` for ` = 1, 2, |M0| ⊆ B ⊆ |M |. q` ∈ gS<∞(B;N`),
q1 � M0 = q2 � M0, q` does not i-fork over M0 for ` = 1, 2, and K is
(< κ)-tame and short for {q1, q2}, then q1 = q2.

14Recall that K is only a coherent abstract class, so may not be closed under unions of chains
of length δ. Thus we think of Mδ as a set.

15The equivalence of nonforking with coheir (for stable theories) was already established by
Shelah in the early seventies and appears in Section III.4 of [She78], see also [She90, Corollary
III.4.10].
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(d) If K is (< κ)-tame and short for types of length less than α, then
pre(i<α) has uniqueness. Moreover16 i<α[κ,α) has uniqueness.

Remark 6.3.20. The extension property17 seems to be more problematic. In
[BG], Boney and Grossberg simply assumed it (they also showed that it followed
from κ being strongly compact [BG, Theorem 8.2(1)]). From superstability-like
hypotheses, we will obtain more results on it (see Theorem 6.10.16, Theorem 6.15.1,
and Theorem 6.15.6).

We now consider another independence notion: splitting. This was first de-
fined for AECs in [She99, Definition 3.2]. Here we define the negative property
(nonsplitting), as it is the one we use the most.

Definition 6.3.21 (λ-nonsplitting). Let K be a coherent abstract class with
amalgamation.

(1) For λ an infinite cardinal, define sλ-ns(K) := (K,^) by ā
N

^
M0

M if and only

if M0 ≤K M ≤K N , A ⊆ |N |, and whenever M0 ≤K N` ≤K M , N` ∈
K≤λ, ` = 1, 2, and f : N1

∼=M0 N2, then f(gtp(ā/N1;N)) = gtp(ā/N2;N).
(2) Define sns(K) to have underlying AEC K and forking relation defined

such that p ∈ gS<∞(M) does not sns(K)-fork over M0 ≤K M if and only
if p does not sλ-ns(K)-fork over M0 for all infinite λ.

(3) Let iλ-ns(K) := cl(sλ-ns(K)), ins(K) := cl(sns(K)).

Fact 6.3.22. Assume K is a coherent AC in F = [λ, θ) with amalgamation.
Let s := sns(K), s′ := sλ-ns(K).

(1) s and s′ are pre-(< ∞,F)-frame with base monotonicity, left and right
existence. If K is λ-closed, s′ has the right λ-model-witness property.

(2) If K is an AEC in F and is stable in λ, then κ̄<ω(s′) = λ+.
(3) If t is a pre-(<∞,F)-frame with uniqueness and Kt = K, then ^

t
⊆^

s
.

(4) Always, ^
s
⊆^

s′
. Moreover if K is λ-tame for types of length less than α,

then s<α = (s′)<α.
(5) Let M0 <

univ
K M ≤K N with ‖M‖ = ‖N‖.

(a) Weak uniqueness: If p` ∈ gSα(N), ` = 1, 2, do not s-fork over M0

and p1 �M = p2 �M , then p1 = p2.
(b) Weak extension: If p ∈ gS<∞(M) does not s-fork over M0 and f :

N −−→
M0

M , then q := f−1(p) is an extension of p to gS<∞(N) that

does not s-fork over M0. Moreover q is algebraic if and only if p is
algebraic.

Proof.

(1) Easy.
(2) By [She99, Claim 3.3.1] (see also [GV06b, Fact 4.6]).
(3) By Lemma 3.4.2.
(4) By Proposition 3.3.12.

16Of course, this is only interesting if α ≤ κ.
17A word of caution: In [HL02, Section 4], the authors give Shelah’s example of an ω-stable

class that does not have extension. However, the extension property they consider is over all sets,

not only over models.
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(5) By [Van06, Theorem I.4.10, Theorem I.4.12] (the moreover part is easy
to see from the definition of q).

�

Remark 6.3.23. Fact 6.3.22.(3) tells us that any reasonable independence re-
lation will be extended by nonsplitting. In this sense, nonsplitting is a maximal
candidate for an independence relation18.

6.4. Some independence calculus

We investigate relationships between properties and how to go from a frame
to an independence relation. Most of it appears already in Chapter 3 and has a
much longer history, described there. The following are new: Lemma 6.4.5 gives
a way to get the witness properties from tameness, partially answering Question
3.5.5. Lemmas 6.4.8 and 6.4.7 are technical results used in the last sections.

The following proposition investigates what properties are preserved by the
operations cl and pre (recall Definition 6.3.9). This was done already in Section
3.5.1, so we cite from there.

Proposition 6.4.1. Let s be a pre-(< α,F)-frame and let i be a (< α,F)-
independence relation.

(1) For P in the list of properties of Definition 6.3.12, if i has P , then pre(i)
has P .

(2) For P a property in the following list, i has P if (and only if) pre(i) has
P : existence, independent amalgamation, full model-continuity.

(3) For P a property in the following list, cl(s) has P if (and only if) s has P :
disjointness, full symmetry, base monotonicity, extension, transitivity.

(4) If pre(i) has extension, then cl(pre(i)) = i if and only if i has extension.
(5) The following are equivalent:

(a) s has full symmetry.
(b) cl(s) has symmetry.
(c) cl(s) has full symmetry.

(6) If pre(i) has uniqueness and i has extension, then i has uniqueness.
(7) If pre(i) has extension and i has uniqueness, then i has extension.
(8) 19 κ̄<α(i) = κ̄<α(pre(i)).
(9) κ<α(pre(i)) ≤ κ<α(i). If Ki is an AEC, then this is an equality.

Proof. All are straightforward. See Lemmas 3.5.3 and 3.5.4. �

To what extent is an independence relation determined by its corresponding
frame? There is an easy answer:

18Moreover, (< κ)-coheir is a minimal candidate in the following sense: Let us say an

independence relation i = (K,^) has the strong (< κ)-witness property if whenever A
N

/̂
M

B, there

exists ā0 ∈ <κA and B0 ⊆ |M | ∪B of size less than κ such that gtp(ā′0/B0;N) = gtp(ā0/B0;N)

implies ā0

N

/̂
M

B. Intuitively, this says that forking is witnessed by a formula (and this could be

made precise using the notion of Galois Morleyization, see Chapter 2). It is easy to check that

(< κ)-coheir has this property, and any independence relation with strong (< κ)-witness and left
existence must extend (< κ)-coheir.

19Note that maybe α = ∞. However we can always apply the proposition to s<α0 for an

appropriate α0 ≤ α.
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Lemma 6.4.2. Let i and i′ be independence relations with pre(i) = pre(i′). If i
and i′ both have extension, then i = i′.

Proof. By Proposition 6.4.1.(4), i = cl(pre(i)) and i′ = cl(pre(i′)) = cl(pre(i)) =
i. �

The next proposition gives relationships between the properties. We state most
results for frames, but they usually have an analog for independence relations that
can be obtained using Proposition 6.4.1.

Proposition 6.4.3. Let i be a (< α,F)-independence relation with base mono-
tonicity. Let s be a pre-(< α,F)-frame with base monotonicity.

(1) If i has full symmetry, then it has symmetry. If i has the (< κ)-witness
property, then it has the (< κ)-model-witness property. If i [s] has strong
transitivity, then it has transitivity.

(2) If s has uniqueness and extension, then it has transitivity.
(3) For α > λ, if s has extension and existence, then s has independent

amalgamation. Conversely, if s has transitivity and independent amalga-
mation, then s has extension and existence. Moreover if s has uniqueness
and independent amalgamation, then it has transitivity.

(4) If min(κ<α(s), κ̄<α(s)) <∞, then s has existence.
(5) κ<α(s) ≤ κ̄<α(s).
(6) If Ks is λs-closed, κ̄<α(s) = λ+

s and s has transitivity, then s has the right
λ-model-witness property.

(7) If Ks does not have the order property (Definition 2.4.3), any chain in
Ks has an upper bound, θ = ∞, and s has uniqueness, existence, and
extension, then s has full symmetry.

Proof.

(1) Easy.
(2) As in the proof of [She09a, Claim II.2.18].
(3) The first sentence is easy, since independent amalgamation is a particular

case of extension and existence. Moreover to show existence it is enough
by monotonicity to show it for types of models. The proof of transitivity
from uniqueness and independent amalgamation is as in (2).

(4) By definition of the local character cardinals.
(5) Let δ = cf δ ≥ κ̄<α(s) and 〈Mi : i < δ〉 be increasing in K, N ≥K Mi

for all i < δ and A ⊆ |N | with |A| < α. Assume Mδ :=
⋃
i<δMi is in K.

By definition of κ̄<α there exists N ≤K Mδ of size less than κ̄α0
(i) such

that p does not fork over N . Now use regularity of δ to find i < δ with
N ≤K Mi.

(6) Let λ := λs, say s = (K,^). Let M0 ≤K M ≤K N and assume A
N

^
M0

B for

all B ⊆ |M | with |B| ≤ λ. By definition of κ̄<α(s), there exists M ′0 ≤K M

of size λ such that A
N

^
M ′0

M . By λ-closure and base monotonicity, we

can assume without loss of generality that M0 ≤K M ′0. By assumption,

A
N

^
M0

M ′0, so by transitivity, A
N

^
M0

M .

(7) As in Corollary 3.5.17.
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�

Remark 6.4.4. The precise statement of Corollary 3.5.17 shows that Propo-
sition 6.4.3.(7) is local in the sense that to prove symmetry over the base model
M , it is enough to require uniqueness and extension over this base model (i.e. any
two types that do not fork over M , have the same domain, and are equal over M
are equal over their domain, and any type over M can be extended to an arbitrary
domain so that it does not fork over M).

Lemma 6.4.5. Let i = (K,^) be a (< α,F)-independence relation. If i has
extension and uniqueness, then:

(1) If K is (< κ)-tame for types of length less than α, then K has the right
(< κ)-model-witness property.

(2) If K is (< κ)-tame and short for types of length less than θi, then K has
the right (< κ)-witness property.

(3) If K is (< κ)-tame and short for types of length less than κ+α and i has
symmetry, then K has the left (< κ)-witness property.

Proof.

(1) Let M ≤K M ′ ≤K N be in K, A ⊆ |N | have size less than α. Assume

A
N

^
M
B0 for all B0 ⊆ |M ′| of size less than κ. We want to show that

A
N

^
M
M ′. Let ā be an enumeration of A, p := gtp(ā/M ;N). Note that

(taking B0 = ∅ above) normality implies p does not fork over M . By
extension, let q ∈ gS<α(M ′) be an extension of p that does not fork over
M . Using amalgamation and some renaming, we can assume without loss
of generality that q is realized in N . Let p′ := gtp(ā/M ′;N). We claim
that p′ = q, which is enough by invariance. By the tameness assumption,
it is enough to check that p′ � B0 = q � B0 for all B0 ⊆ |M ′| of size
less than κ. Fix such a B0. By assumption, p′ � B0 does not fork over
M . By monotonicity, q � B0 does not fork over M . By uniqueness,
p′ � B0 = q � B0, as desired.

(2) Similar to before, noting that forM ≤K N , gtp(ā/Mb̄;N) = gtp(ā′/Mb̄;N)
if and only if gtp(āb̄/M ;N) = gtp(ā′b̄/M ;N).

(3) Observe that in the proof of the previous part, if the set on the right
hand side has size less than κ, it is enough to require (< κ)-tameness and
shortness for types of length less than (α+ κ). Now use symmetry.

�

Having a nice independence relation makes the class nice. The results below
are folklore:

Proposition 6.4.6. Let i = (K,^) be a (< α,F)-independence relation with
base monotonicity. Assume K is an AEC in F with LS(K) = λi.

(1) If i has uniqueness, and κ := κ̄<α(i) <∞, then K is (< κ)-tame for types
of length less than α.

(2) If i has uniqueness and κ := κ̄<α(i) < ∞, then K is (< α)-stable in any
infinite µ such that µ = µ<κ.
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(3) If i has uniqueness, µ > LS(K), K is (< α)-stable in unboundedly many
µ0 < µ, and cf µ ≥ κ<α(i), then K is (< α)-stable in µ.

Proof.

(1) See [GK, p. 15], or the proof of [Bon14a, Theorem 3.2].
(2) Let µ = µ<κ be infinite. Let M ∈ K≤µ, 〈pi : i < µ+〉 be elements in

gS<α(M). It is enough to show that for some i < j, pi = pj . For each
i < λ+, there exists Mi ≤K M in K<κ such that pi does not fork over Mi.
Since µ = µ<κ, we can assume without loss of generality that Mi = M0 for
all i < µ+. Also, | gS<α(M0)| ≤ 2<κ ≤ µ<κ = µ so there exists i < j < λ+

such that pi �M0 = pj �M0. By uniqueness, pi = pj , as needed.
(3) As in the proof of Lemma 4.5.5.

�

The following technical result is also used in the last sections. Roughly, it gives
conditions under which we can take the base model given by local character to be
contained in both the left and right hand side.

Lemma 6.4.7. Let i = (K,^) be a (< α,F)-independence relation, F = [λ, θ),
with α > λ. Assume:

(1) K is an AEC with LS(K) = λ.
(2) i has base monotonicity and transitivity.
(3) µ is a cardinal, λ ≤ µ < θ.
(4) i has the left (< κ)-model-witness property for some regular κ ≤ µ.
(5) κ̄µ(i) = µ+.

Let M0 ≤K M ` ≤K N be in K, ` = 1, 2 and assume M1
N

^
M0

M2. Let A ⊆ |M1|,

be such that |A| ≤ µ. Then there exists N1 ≤K M1 and N0 ≤K M0 such that:

(1) A ⊆ |N1|, A ∩ |M0| ⊆ |N0|.
(2) N0 ≤K N1 are in K≤µ.

(3) N1
N

^
N0

M2.

Proof. For ` = 0, 1, we build 〈N `
i : i ≤ κ〉 increasing continuous in K≤µ such

that for all i < κ and ` = 0, 1:

(1) A ⊆ |N1
0 |, A ∩ |M0| ⊆ |N0

0 |.
(2) N `

i ≤K M `.
(3) N0

i ≤K N1
i .

(4) N1
i

N

^
N0
i+1

M2.

This is possible. Pick any N0
0 ≤K M0 in K≤µ containing A ∩ |M0|. Now fix

i < κ and assume inductively that 〈N0
j : j ≤ i〉, 〈N1

j : j < i〉 have been built. If i

is a limit, we take unions. Otherwise, pick any N1
i ≤K M1 in K≤µ that contains

A, N1
j for all j < i and N0

i . Now use right transitivity and κ̄µ(i) = µ+ to find

N0
i+1 ≤K M0 such that N1

i

N

^
N0
i+1

M2. By base monotonicity, we can assume without

loss of generality that N0
i ≤K N0

i+1.
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This is enough. We claim that N ` := N `
κ are as required. By coherence, N0 ≤K

N1 and since κ ≤ µ they are in K≤µ. Since A ⊆ |N1
0 |, A ⊆ |N1|. It remains to see

N1
N

^
N0

M2. By the left witness property20, it is enough to check it for every B ⊆ |N1|

of size less than κ. Fix such a B. Since κ is regular, there exists i < κ such that

B ⊆ |N1
i |. By assumption and monotonicity, B

N

^
N0
i+1

M2. By base monotonicity,

B
N

^
N0
κ

M2, as needed. �

With a similar proof, we can clarify the relationship between full model conti-
nuity and local character. Essentially, the next lemma says that local character for
types up to a certain length plus full model-continuity implies local character for
all lengths. It will be used in Section 6.14.

Lemma 6.4.8. Let i = (K,^) be a (< θi,F)-independence relation, F = [λ, θ).
Assume:

(1) K is an AEC with LS(K) = λ.
(2) i has base monotonicity, transitivity, and full model continuity.
(3) i has the left (< κ)-model-witness property for some regular κ ≤ λ.
(4) For all cardinals µ ≤ λ, κ̄µ(i) = λ+.

Then for all cardinals µ < θ, κ̄µ(i) = λ+ + µ+.

Proof. By induction on µ. If µ ≤ λ, this holds by hypothesis, so assume
µ > λ. Let δ := cf µ.

Let M0 ≤K M1 be in K and let A ⊆ |M1| have size µ. We want to find

M ≤K M0 such that A
N

^
M
M0 and ‖M‖ ≤ µ. Let 〈Ai : i ≤ δ〉 be increasing

continuous such that A = Aδ and |Ai| < µ for all i < δ.
For ` = 0, 1, we build 〈N `

i : i ≤ δ〉 increasing continuous such that for all i < δ
and ` = 0, 1:

(1) Ni ∈ K<µ.
(2) Ai ⊆ |N1

i |, Ai ∩ |M0| ⊆ |N0
i |.

(3) N `
i ≤K M `.

(4) N0
i ≤K N1

i .

(5) N1
i

M1

^
N0
i+1

M0.

This is possible. By (3) and (4), we have M1
M1

^
M0

M0. Now proceed as in the

proof of Lemma 6.4.7.

20Note that we do not need to use full model continuity, as we only care about chains of
cofinality ≥ κ.
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This is enough. As in the proof of Lemma 6.4.7, for any i < δ of cofinality at

least κ we have N1
i

M1

^
N0
i

M0. Thus by full model continuity (applied to the sequences

〈N `
i : i < δ, cf i ≥ κ〉), N1

δ

M1

^
N0
δ

M0. Since A = Aδ ⊆ |N1
δ |, M := N0

δ is as needed. �

6.5. Skeletons

We define what it means for an abstract class K′ to be a skeleton of an abstract
class K. The main examples are classes of saturated models with the usual ordering
(or even universal or limit extension). Except perhaps for Lemma 6.5.7, the results
of this section are either easy or well known, we simply put them in the general
language of this chapter.

We will use skeletons to generalize various statements of chain local character
(for example in [GVV16] and Chapter 4) that only ask that if 〈Mi : i < δ〉 is an
increasing chain with respect to some restriction of the ordering of K (usually being
universal over) and the Mis are inside some subclass of K (usually some class of
saturated models), then any p ∈ gS(

⋃
i<δMi) does not fork over some Mi. Lemma

6.6.8, is they key upward transfer of that property. Note that Lemma 6.6.7 shows
that one can actually assume that skeletons have a particular form. However the
generality is still useful when one wants to prove the local character statement.

Definition 6.5.1. For (K,≤K) an abstract class, we say K′ = (K ′,E) is a
sub-AC of K if K ′ ⊆ K, K′ is an AC, and M E N implies M ≤K N . We similarly
define sub-AEC, etc. When E=≤K� K′, we omit it (or may abuse notation and
write (K ′,≤K)).

Definition 6.5.2. For (K,≤K) an abstract class, we say a set S ⊆ K is dense
in (K,≤K) if for any M ∈ K there exists M ′ ∈ S with M ≤K M ′.

Definition 6.5.3. An abstract class (K ′,E) is a skeleton of (K,≤K) if:

(1) (K ′,E) is a sub-AC of (K,≤K).
(2) K ′ is dense in (K,≤K).
(3) If 〈Mi : i < α〉 is a ≤K-increasing chain in K ′ (α not necessarily limit)

and there exists N ∈ K ′ such that Mi <K N for all i < α, then we can
choose such an N with Mi / N for all i < α.

Remark 6.5.4. The term “skeleton” is inspired from the term “skeletal” in
Chapter 4, although there “skeletal” is applied to frames. The intended philosoph-
ical meaning is the same: K′ has enough information about K so that for several
purposes we can work with K′ rather than K.

Remark 6.5.5. Let (K,≤K) be an abstract class. Assume (K ′,E) is a dense
sub-AC of (K,≤K) with no maximal models satisfying in addition: If M0 ≤K

M1 / M2 are in K′, then M0 / M2. Then (K ′,E) is a skeleton of (K,≤K). This
property of the ordering already appears in the definition of an abstract universal
ordering in Definition 4.2.11. In the terminology there, if (K,≤K) is an AEC and /
is an (invariant) universal ordering on Kλ, then (Kλ,E) is a skeleton of (Kλ,≤K).

Example 6.5.6. Let K be an AEC. Let λ ≥ LS(K). Assume that Kλ has
amalgamation, no maximal models and is stable in λ. Let K′ be dense in Kλ and
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let δ < λ+. Then (K ′,≤λ,δK ) (recall Definition 6.2.10) is a skeleton of (Kλ,≤K) (use
Fact 6.2.13 and Remark 6.5.5).

The next lemma is a useful tool to find extensions in the skeleton of an AEC
with amalgamation:

Lemma 6.5.7. Let (K ′,E) be a skeleton of (K,≤K). Assume K is an AEC in
F := [λ, θ) with amalgamation. If M ≤K N are in K′, then there exists N ′ ∈ K′

such that M E N ′ and N E N ′.

Proof. If N is not maximal (with respect to either of the orderings, it does
not matter by definition of a skeleton), then using the definition of a skeleton with
α = 2 and the chain 〈M,N〉, we can find N ′ ∈ K′ such that N / N ′ and M / N ′,
as needed.

Now assume N is maximal. We claim that M E N , so N ′ := N is as desired.
Suppose not. Let µ := ‖N‖.

We build 〈Mi : i < µ+〉 and 〈fi : Mi −→
M

N : i < µ+〉 such that:

(1) 〈Mi : i < µ+〉 is a strictly increasing chain in (K ′,E) with M0 = M .
(2) 〈fi : i < µ+〉 is a strictly increasing chain of K-embeddings.

This is enough. Let Bµ+ :=
⋃
i<µ+ |Mi| and fµ+ :=

⋃
i<µ+ fi (Note that it

could be that µ+ = θ, so Bµ+ is just a set and we do not claim that fµ+ is a
K-embedding). Then fµ+ is an injection from Bµ+ into |N |. This is impossible
because |Bµ+ | ≥ µ+ > µ = ‖N‖.

This is possible. Set M0 := M , f0 := idM . If i < µ+ is limit, let M ′i :=⋃
j<iMj ∈ K. By density, find M ′′i ∈ K′ such that M ′i ≤K M ′′i . We have that

Mj <K M ′′i for all j < i. By definition of a skeleton, this means we can find
Mi ∈ K′ with Mj / Mi for all j < i. Let f ′i :=

⋃
j<i fj . Using amalgamation and

the fact that N is maximal, we can extend it to fi : Mi −→
M

N . If i = j + 1 is

successor, we consider two cases:

• If Mj is not maximal, let Mi ∈ K′ be a /-extension of Mj . Using amal-
gamation and the fact N is maximal, pick fi : Mi −→

M
N an extension of

fj .
• If Mj is maximal, then by amalgamation and the fact both N and Mj are

maximal, we must have N ∼=M Mj . However by assumption M0 EMj so
M = M0 E N , a contradiction.

�

Thus we get that several properties of a class transfer to its skeletons.

Proposition 6.5.8. Let (K,≤K) be an AEC in F and let (K ′,E) be a skeleton
of K.

(1) (K,≤K) has no maximal models if and only if (K ′,E) has no maximal
models.

(2) If (K,≤K) has amalgamation, then:
(a) (K ′,E) has amalgamation.
(b) (K,≤K) has joint embedding if and only if (K ′,E) has joint embed-

ding.
(c) Galois types are the same in (K,≤K) and (K ′,E): For any N ∈ K′,

A ⊆ |N |, b̄, c̄ ∈ α|N |, gtpK(b̄/A;N) = gtpK(c̄/A;N) if and only if
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gtpK′(b̄/A;N) = gtpK′(c̄/A;N). Here, by gtpK we denote the Galois
type computed in (K,≤K) and by gtpK′ the Galois type computed
in (K ′,E).

(d) (K,≤K) is α-stable in λ if and only if (K ′,E) is α-stable in λ.

Proof.

(1) Directly from the definition.
(2) (a) Let M0 E M` be in K′, ` = 1, 2. By density, find N ∈ K′ and

f` : M` −−→
M0

N K-embeddings. By Lemma 6.5.7, there exists N1 ∈
K′ such that N E N1, f1[M1] E N1. By Lemma 6.5.7 again, there
exists N2 ∈ K′ such that N1 E N2, f2[M2] E N2. Thus we also have
f1[M1] E N2. It follows that f` : M` −→

M
N2 is a E-embedding.

(b) If (K ′,E) has joint embedding, then by density (K,≤K) has joint
embedding. The converse is similar to the proof of amalgamation
above.

(c) Note that by density any Galois type (in K) is realized in an element
of K′. Since (K ′,E) is a sub-AC of (K,≤K), equality of the types
in K′ implies equality in K (this doesn’t use amalgamation). Con-
versely, assume gtpK(b̄/A;N) = gtpK(c̄/A;N). Fix N ′ ≥K N in K
and a K-embedding f : N −→

A
N ′ such that f(b̄) = c̄. By density,

we can assume without loss of generality that N ′ ∈ K′. By Lemma
6.5.7, find N ′′ ∈ K′ such that N E N ′′, N ′ E N ′′. By Lemma 6.5.7
again, find N ′′′ ∈ K′ such that f [N ] E N ′′′, N ′′ E N ′′′. By transi-
tivity, N E N ′′′ and f : N −→

A
N ′′′ witnesses equality of the Galois

types in (K ′,E).
(d) Because Galois types are the same in K and K′.

�

We end with an observation concerning universal extensions that will be used
in the proof of Lemma 6.6.7.

Lemma 6.5.9. Let K be an AEC in λ := LS(K). Assume K has amalgamation,
no maximal models, and is stable in λ. Let (K ′,E) be a skeleton of K. For any
M ∈ K′, there exists N ∈ K′ such that both M / N and M <univ

K N . Thus
(K ′,E ∩ ≤univ

K ) is a skeleton of K.

Proof. For the last sentence, let E′:=E ∩ ≤univ
K . Note that if 〈Mi : i < α〉 is

a E′-increasing chain in K′ and M ∈ K′ is such that Mi <K M for all i < α, then
by definition of a skeleton we can take M so that Mi /M for all i < α. If we know
that there exists N ∈ K′ with M / N and M <univ

K N , then for all i < α, Mi / N
by transitivity, and Mi <

univ
K N by Lemma 6.2.16.

Now let M ∈ K′. By Fact 6.2.13, there exists N ∈ K with M <univ
K N . By

density (note that if N ′ ≥K N is in K, then M <univ
K N ′) we can take N ∈ K′. By

Lemma 6.5.7, there exists N ′ ∈ K′ such that M E N ′ and N E N ′. Thus (using
Fact 6.2.13 again) M <univ

K N ′, as desired. �

6.6. Generating an independence relation

In [She09a, Section II.2], Shelah showed how to extend a good λ-frame to a pre-
(≥ λ)-frame. Later, [Bon14a] (with improvements in Chapter 5) gave conditions
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under which all the properties transferred. Similar ideas are used in Chapter 4
to directly build a good frame. In this section we adapt Shelah’s definition to
this chapter’s more general setup. It is useful to think of the initial λ-frame as a
generator21 for a (≥ λ)-frame, since in case the frame is not good we usually can
only get a nice independence relation on λ+-saturated models (and thus cannot
really extend the good λ-frame to a good (≥ λ)-frame). Moreover, it is often useful
to work with the independence relation being only defined on a dense sub-AC of
the original AEC.

Definition 6.6.1. (K, i) is a λ-generator for a (< α)-independence relation if:

(1) α is a cardinal with 2 ≤ α ≤ λ+. λ is an infinite cardinal.
(2) K is an AEC in λ = LS(K)
(3) i is a (< α, λ)-independence relation.
(4) (Ki,≤K) is a dense sub-AC (recall Definitions 6.5.1, 6.5.2) of22 (K,≤K).
(5) Kup (recall Definition 6.2.3) has amalgamation.

Remark 6.6.2. We could similarly define a λ-generator for a (< α)-independence
relation below θ, where we require θ ≥ λ++ and only Kup

F has amalgamation (so
when θ =∞ we recover the above definition). We will not adopt this approach as
we have no use for the extra generality and do not want to complicate the notation
further. We could also have required less than “K is an AEC in λ” but again we
have no use for it.

Definition 6.6.3. Let (K, i) be a λ-generator for a (< α)-independence rela-
tion. Define (K, i)

up
:= (Kup,^

up
) by ^

up
(M,A,B,N) if and only if M ≤K N

are in Kup and there exists M0 ≤K M in Ki such that for all B0 ⊆ B with |B0| ≤ λ
and all N0 ≤K N in Ki with A∪B0 ⊆ |N0|, M0 ≤K N0, we have ^

i
(M0, A,B0, N0).

When K = Ki, we write iup for (K, i)
up

.

Remark 6.6.4. In general, we do not claim that (K, i)
up

is even an indepen-
dence relation (the problem is that given A ⊆ |N | with N ∈ Kup and |A| ≤K λ,
there might not be any M ∈ Ki with M ≤K N and A ⊆ |M | so the monotonicity
properties can fail). Nevertheless, we will abuse notation and use the restriction
operations on it.

Lemma 6.6.5. Let (K, i) be a λ-generator for a (< α)-independence relation.
Then:

(1) If K = Ki, then iup := (K, i)
up

is an independence relation.

(2) (K, i)
up � (Kup)

λ+-sat
is an independence relation.

Proof. As in [She09a, Claim II.2.11], using density and homogeneity in the
second case. �

The case (1) of Lemma 6.6.5 has been well studied (at least when α = 2): see
[She09a, Section II.2] and [Bon14a], Chapter 5. We will further look at it in the
last sections. We will focus on case (2) for now. It has been studied (implicitly) in

21In Chapter 4, we called a generator a skeletal frame (and in earlier version a poor man’s
frame) but never defined it precisely.

22Why not be more general and require only (Ki,E) to be a skeleton of K (for some ordering
E)? Because some examples of skeletons do not satisfy the coherence axiom which is required by
the definition of an independence relation.
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Chapter 4 when i is nonsplitting and satisfies some superstability-like assumptions.
We will use the same arguments as there to obtain more general results. The
generality will be used, since for example we also care about what happens when i
is coheir.

The following property of a generator will be very useful in the next section.
The point is that

⋃
i<λ+ Mi below is usually not a member of Ki so forking is not

defined on it.

Definition 6.6.6. Let (K, i) be a λ-generator for a (< α)-independence rela-
tion.

(K, i) has weak chain local character if there exists E such that (Ki,E) is
a skeleton of K and whenever 〈Mi : i < λ+〉 is E-increasing in Ki and p ∈
gS<α(

⋃
i<λ+ Mi), there exists i < λ+ such that p �Mi+1 does not fork over Mi.

The following technical lemma shows that local character in a skeleton implies
local character in a bigger class with the universal ordering:

Lemma 6.6.7. Let (K, i) be a λ-generator for a (< α)-independence relation.
Assume that K has amalgamation, no maximal models, and is stable in λ.

Assume i has base monotonicity. Let (K ′,E) be a skeleton of (Ki,≤K) and let
i′ := i � (K ′,≤K). Then:

(1) κ<α(i,≤univ
K ) ≤ κ<α(i′,E).

(2) If (K, i′) has weak chain local character, then (K, i) has it and it is wit-
nessed by <univ

K .

Proof.

(1) By Lemma 6.5.9, we can (replacing E by E ∩ ≤univ
K ) assume without

loss of generality that E is extended by ≤univ
K . Let 〈Mi : i < δ〉 be

≤univ
K -increasing in Ki, δ = cf δ ≥ κ<α(i′,E), δ < λ+. Without loss of

generality, 〈Mi : i < δ〉 is <univ
K -increasing. Let Mδ :=

⋃
i<δMi and let

p ∈ gS<α(Mδ).
By density, pick M ′0 ∈ K′ such that M0 <

univ
K M ′0. Now build 〈M ′i :

i < δ〉 /-increasing in K′. Let M ′δ :=
⋃
i<δM

′
i . By Fact 6.2.14, there

exists f : M ′δ
∼=M0

Mδ such that for every i < δ there exists j < δ with
f [M ′i ] ≤K Mj , f

−1[Mi] ≤K M ′j . By definition of κ<α(i′,E), there exists

i < δ such that f−1(p) does not i′-fork over M ′i . Let j < δ be such that
f [M ′i ] ≤K Mj . By invariance, p does not i′-fork over f [Mi], so does not
i-fork over f [Mi]. By base monotonicity, p does not i-fork over Mj , as
desired.

(2) Similar.

�

The last lemma of this section investigates what properties directly transfer up.

Lemma 6.6.8. Let (K, i) be a λ-generator for a (< α)-independence relation.

Let i′ := (K, i)
up � (Kup)

λ+-sat
.

(1) If i has base monotonicity, then i′ has base monotonicity.
(2) Assume i has base monotonicity and (K, i) has weak chain local character.

Then:
(a) κ̄<α(i′) = λ++.
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(b) If E is an ordering such that (Ki,E) is a skeleton of K, then for any
α0 < α, κα0(i′) ≤ κα0(i,E).

Proof.

(1) As in [She09a, Claim II.2.11.(3)]
(2) This is a generalization of the proof of Lemma 4.4.11 (itself a variation on

[She09a, Claim II.2.11.(5)]) but we have to say slightly more so we give
the details. Let E0 be an ordering witnessing weak chain local character.
We first prove (2b). Fix α0 < α, and assume κα0

(i,E) < ∞. Then by
definition κα0

(i,E) ≤ λ. Let δ = cf δ ≥ κα0
(i,E).

Let 〈Mi : i < δ〉 be increasing in Kλ+-sat and write Mδ :=
⋃
i<δMi

(note that we do not claim Mδ ∈ Kλ+-sat. However, Mδ ∈ K≥λ). Let
p ∈ gSα0(Mδ). We want to find i < δ such that p does not fork over Mi.
There are two cases:
• Case 1: δ < λ+:

We imitate the proof of [She09a, Claim II.2.11.(5)]. Assume the
conclusion fails. Build 〈Ni : i < δ〉 E-increasing in Ki, 〈N ′i : i < δ〉
≤K-increasing in Ki such that for all i < δ:

(a) Ni ≤K Mi.
(b) Ni ≤K N ′i ≤K Mδ.
(c) p � N ′i i-forks over Ni.
(d)

⋃
j<i(|N ′j | ∩ |Mj |) ⊆ |Ni|.

This is possible. Assume Nj and N ′j have been constructed for
j < i. Choose Ni ≤K Mi satisfying (2d) so that Nj E Ni for all j < i
(This is possible: use that Mi is λ+-saturated and that in skeletons
of AECs, chains have upper bounds). By assumption, p i′-forks over
Mi, and so by definition of forking there exists N ′i ≤K Mδ in Ki such
that p � N ′i forks over Ni. By monotonicity, we can of course assume
N ′i ≥K Ni, N

′
i ≥K N ′j for all j < i.

This is enough. Let Nδ :=
⋃
i<δ Ni, N

′
δ :=

⋃
i<δ N

′
i . By local

character for i, there is i < δ such that p � Nδ does not fork over Ni.
By (2b) and (2d), N ′δ ≤K Nδ. Thus by monotonicity p � N ′i does not
i-fork over Ni, contradicting (2c).
• Case 2: δ ≥ λ+: Assume the conclusion fails. As in the previous case

(in fact it is easier), we can build 〈Ni : i < λ+〉 E0-increasing in Ki

such that Ni ≤K Mδ and p � Ni+1 i-forks over Ni. Since i has weak
chain local character, there exists i < λ+ such that p � Ni+1 does not
i-fork over Ni, contradiction.

For (2a), assume not: then there existsM ∈ Kλ+-sat and p ∈ gS<α(M)

such that for all M0 ≤K M in Kλ+-sat
λ+ , p i′-forks over M0. By stability,

for any A ⊆ |M | with |A| ≤ λ, there exists M0 ≤K M containing A which
is λ+-saturated of size λ+. As in case 2 above, we build 〈Ni : i < λ+〉
E0-increasing in Ki such that Ni ≤K M and p � Ni+1 i-fork over Ni.
This is possible (for the successor step, given Ni, take any M0 ≤K M sat-
urated of size λ+ containing Ni. By definition of i′ and the fact p i′-forks
over M0, there exists N ′i+1 ≤K M in Ki witnessing the forking. This can
further extended to Ni+1 which is as desired). This is enough: we get a
contradiction to weak chain local character.
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�

6.7. Weakly good independence relations

Interestingly, nonsplitting and (< κ)-coheir (for a suitable choice of κ) are
already well-behaved if the AEC is stable. This raises the question of whether there
is an object playing the role of a good frame (see the next section) in AECs that
are stable but not superstable (whatever the exact meaning of superstability should
be in this context, see Section 6.10). Note that Chapter 3 proves the canonicity of
independence relations that satisfy much less than the full properties of good frames,
so it is reasonable to expect existence of such an object. The next definition comes
from extracting all the properties we are able to prove from the construction of a
good frame in Chapter 4 assuming only stability.

Definition 6.7.1. Let i = (K,^) be a (< α,F)-independence relation, F =
[λ, θ). i is weakly good23 if:

(1) K is nonempty, is λ-closed (Recall Definition 6.2.5), and every chain in K
of ordinal length less than θ has an upper bound.

(2) K is stable in λ.
(3) i has base monotonicity, disjointness, existence, and transitivity.
(4) pre(i) has uniqueness.
(5) i has the left λ-witness property and the right λ-model-witness property.
(6) Local character: For all α0 < min(λ+, α), κ̄α0(i) = λ+.

(7) Local extension and uniqueness: i<λ
+

λ has extension and uniqueness.

We say a pre-(< α,F)-frame s is weakly good if cl(s) is weakly good. i is
pre-weakly good if pre(i) is weakly good.

Remark 6.7.2. By Propositions 6.4.3.(4), 6.4.3.(6), existence and the right
λ-witness property follow from the others.

Our main tool to build weakly good independence relations will be to start
from a λ-generator (see Definition 6.6.1) which satisfies some additional properties:

Definition 6.7.3. (K, i) is a λ-generator for a weakly good (< α)-independence
relation if:

(1) (K, i) is a λ-generator for a (< α)-independence relation.
(2) K is nonempty, has no maximal models, and is stable in λ.

(3) (Kup)
λ+-sat

is λ-tame for types of length less than α.
(4) i has base monotonicity, existence, and is extended by λ-nonsplitting:

whenever p ∈ gS<α(M) does not i-fork over M0 ≤K M , then p does not
sλ-ns(Ki)-fork over M0.

(5) (K, i) has weak chain local character.

Both coheir and λ-nonsplitting induce a generator for a weakly good indepen-
dence relation:

23The name “weakly good” is admittedly not very inspired. A better choice may be to re-

name good independence relations to superstable independence relations and weakly independence
relations to stable independence relations. We did not want to change Shelah’s terminology here

and wanted to make the relationship between “weakly good” and “good” clear.
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Proposition 6.7.4. Let K be an AEC with amalgamation and let λ ≥ LS(K)
be such that Kλ is nonempty, has no maximal models, and K is stable in λ. Let
2 ≤ α ≤ λ+.

(1) Let LS(K) < κ ≤ λ. Assume that K is (< κ)-tame and short for types of

length less than α. Let i := (iκ-ch(K))
<α

.
(a) If K does not have the (< κ)-order property of length κ, κ<α(i) ≤ λ+,

and Kκ-sat
λ is dense in Kλ, then (Kλ, iλ) is a λ-generator for a weakly

good (< α)-independence relation.
(b) If κ = iκ, (α0 + 2)<κr ≤ λ for all α0 < α, then (Kλ, iλ) is a λ-

generator for a weakly good (< α)-independence relation.

(2) Assume α ≤ ω and Kλ+-sat is λ-tame for types of length less than α.

Then
(
Kλ, (iλ-ns(Kλ))

<α)
is a λ-generator for a weakly good (< α)-

independence relation.

(3) Let K′ be a dense sub-AC of K such that Kλ+-sat ⊆ K′ and let i be
a (< α,≥ λ)-independence relation with Ki = K′, such that pre(i) has
uniqueness, i has base monotonicity, and κ̄<α(i) = λ+. If K′λ is dense in
Kλ, then (Kλ, iλ) is a λ-generator for a weakly good (< α)-independence
relation.

Proof.

(1) (a) By Fact 6.3.19, i has base monotonicity, existence, and uniqueness.
By Fact 6.3.22.(3), coheir is extended by λ-nonsplitting. The other
properties are easy. For example, weak chain local character follows
from κ<α(i) ≤ λ+ and monotonicity.

(b) We check that K and i satisfy all the conditions of the previous part.
By Fact 6.2.9, K does not have the (< κ)-order property of length κ.
By (the proof of) Proposition 6.4.3.(5) and Fact 6.3.19:

κ<α(i) ≤ κ̄<α(i) ≤ sup
α0<α

(
(α0 + 2)<κr

)+ ≤ λ+

Since K is stable in λ, if κ < λ then Kκ-sat
λ is dense in Kλ. If κ = λ,

then κ = 2<κr so is regular, hence strongly inaccessible, so κ = κ<κ

so again it is easy to check that Kκ-sat
λ is dense in Kλ.

(2) Let i := (sλ-ns(K))<α. By Fact 6.3.22.(2) and Proposition 6.4.3.(5),
κ<α(i) = λ+. By monotonicity, weak chain local character follows. The
other properties are easy to check.

(3) By Fact 6.3.22.(3), i is extended by λ-nonsplitting. Weak chain character

follows from κ<α(i) = λ+. By (the proof of) Proposition 6.4.6, Kλ+-sat is
λ-tame for types of length less than α. The other properties are easy to
check.

�

The next result is that a generator for a weakly good independence relation
indeed induces a weakly good independence relation.

Theorem 6.7.5. Let (K, i) be a λ-generator for a weakly good (< α)-independence

relation. Then (K, i)
up � (Kup)

λ+-sat
is a pre-weakly good (< α,≥ λ+)-independence

relation.
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Proof. This follows from the arguments of Chapter 4, but we give some de-

tails. Let i′ := (K, i)
up � (Kup)

λ+-sat
. Let ^ := ^

i′
, s′ := pre(i′). We check the

conditions in the definition of a weakly good independence relation. Note that by
Remark 6.7.2 we do not need to check existence or the right λ+-witness property.

• i′ is a (< α,≥ λ+)-independence relation: By Lemma 6.6.5.
• Ki′ is stable in λ+: By Fact 6.2.9, Kup is stable in λ+. By stability, Ki′

is dense in K so by Proposition 6.5.8, Ki′ is stable in λ+.
• Ki′ 6= ∅ since it is dense in Kup

λ+ and Kup
λ = K is nonempty and has no

maximal models. Every chain 〈Mi : i < δ〉 in Ki′ has an upper bound: we
have Mδ :=

⋃
i<δMi ∈ K, and by density there exists M ≥K Mδ in Ki′ .

Ki′ is λ+-closed by an easy increasing chain argument, using stability in
λ+.

• Local character: κ̄<α(i′) = λ++ by Lemma 6.6.8.
• s′ has:

– Base monotonicity: By Lemma 6.6.8.
– Uniqueness: First observe that using local character, base mono-

tonicity, λ+-closure, and the fact that Ki′ is λ+-tame for types of
length less than α, it is enough to show uniqueness for (s′)λ+ . For
this imitate the proof of Lemma 4.5.3 (the key is weak uniqueness:
Fact 6.3.22.(5)).

– Local extension: Let p ∈ gS<α(M), M0 ≤K M ≤K N be in (Ki′)λ+

such that p does not fork over M0. Let M ′0 ≤K M0 be in Ki and
witness it. By homogeneity, M ′0 <

univ
K M so there exists f : N −−→

M ′0

M . Let q := f−1(p) � N . By invariance, q does not fork over M0 (as
witnessed by M ′0). Since λ-nonsplitting extends nonforking, p � M ′

does not sλ-ns(Ki)-fork over M ′0 whenever M ′0 ≤K M ′ ≤K M is such

that M ′ ∈ Ki. Let K′ := Ki ∪ Kλ+-sat. By (the proof of) Fact
6.3.22.(4), p does not sns(K

′)-fork over M ′0. By weak extension (Fact
6.3.22.(5), q extends p and is algebraic if and only if q is.

– Transitivity: Imitate the proof of Lemma 4.4.10.
– Disjointness: It is enough to prove it for types of length 1 so assume

α = 2. Assume a
N

^
M0

M (with M0 ≤K M ≤K N in Kλ+-mh) and

a ∈ M . We show a ∈ M0. Using local character, we can assume
without loss of generality that ‖M0‖ = λ+ and (by taking a submodel
of M containing a of size λ+) that also ‖M‖ = λ+. Find M ′0 ≤K M0

in Ki witnessing the nonforking. By the proof of local extension, we
can find p ∈ gS(M) extending p0 := gtp(a/M0;N) such that p0 is
algebraic if and only if p is. Since a ∈ N , we must have by uniqueness
that p is algebraic so p0 is algebraic, i.e. a ∈M0.

Now by Proposition 6.4.1, cl(s′) has the above properties.
• cl(s′) has the left λ-witness property: Because α ≤ λ+.

�

Interestingly, the generator can always be taken to have a particular form:

Lemma 6.7.6. Let (K, i) be a λ-generator for a weakly good (< α)-independence
relation. Let i′ := iλ-ns(K)<α. Then:
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(1) (K, i′) is a λ-generator for a weakly good (< α)-independence relation and
<univ

K is the ordering witnessing weak chain local character.

(2) pre((K, i)
up

) � (Kup)
λ+-sat

= pre((K, i′)
up

) � (Kup)
λ+-sat

.

Proof.

(1) By Lemma 6.6.7 (with K, i′, Ki here standing for K, i, K′ there), (K, i′)
has weak chain local character (witnessed by <univ

K ) and the other prop-
erties are easy to check.

(2) Let s := pre((K, i)
up

) � (Kup)
λ+-sat

, s′ := pre((K, i′)
up

) � (Kup)
λ+-sat

.
We want to see that ^

s
= ^

s′
. Since pre(i) is extended by λ-nonsplitting,

it is easy to check that ^
s
⊆^

s′
. By the proof of Lemma 3.4.1, ^

sλ+

= ^
s′
λ+

.

By the right λ-model-witness property, ^
s

= ^
s′

.

�

In Theorem 6.7.5, i′ := (K, i)
up � (Kup)

λ+-sat
is only pre-weakly good, not

necessarily weakly good: in general, only i′′ := cl(pre(i′)) will be weakly good. The
following technical lemma shows that i′ and i′′ agree on slightly more than pre(i′).

Lemma 6.7.7. Let (K, i) be a λ-generator for a weakly good (< α)-independence

relation. Let i′ := (K, i)
up � (Kup)

λ+-sat
and let i′′ := cl(pre(i′)). Let M ≤K N be

in Kup
≥λ+ with M ∈ Kλ+-sat (but maybe N /∈ Kλ+-sat). Assume Kup is λ-tame24

for types of length less than α. Let p ∈ gS<α(N).
If ‖N‖ = λ+ or i′′ has extension, then p does not i′-fork over M if and only if

p does not i′′-fork over M .

Proof. Assume p does not i′′-fork over M . Then by definition there exists an

extension of p to a model in Kλ+-sat that does not i′-fork over M so by monotonicity
p does not i′-fork over M . Assume now that p does not i′-fork over M . Note that
the proof of Theorem 6.7.5 (more precisely Lemma 4.5.3 implies that p is the unique
type over N that does not i′-fork over M .

Pick N ′ ≥K N in Kλ+-sat with ‖N ′‖ = ‖N‖. We imitate the proof of Lemma
3.4.1. By extension (or local extension if ‖N‖ = λ+, recall that i′′ is weakly good,
see Theorem 6.7.5), there exists q ∈ gS<α(N ′) that does not i′′-fork over M and
extends p �M . By the above, q does not i′-fork over M . By uniqueness, q extends
p, so q � N = p does not i′′-fork over M . �

Note that if the independence relation of the generator is coheir, then the
weakly good independence relation obtained from it is also coheir. We first prove
a slightly more abstract lemma:

Lemma 6.7.8. Let K be an AEC, λ ≥ LS(K). Let K′ be a dense sub-AC of K

such that Kλ+-sat ⊆ K′ and K′λ is dense in Kλ. Let i be a (< α,≥ λ)-independence
relation with base monotonicity and Ki = K′, 2 ≤ α ≤ λ+. Assume that i has base
monotonicity and the right λ-model-witness property.

24Note that the definition of a generator for a weakly good independence relation only requires

that (Kup)λ
+-sat be λ-tame for types of length less than α.
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Assume κ̄<α(i) = λ+ and (Kλ, iλ) is a λ-generator for a weakly good (< α)-

independence relation. Let i′ := (Kλ, iλ)
up � Kλ+-sat. Then pre(i′) = pre(i) �

Kλ+-sat.
Moreover if i has the right λ-witness property, then i′ = i � Kλ+-sat.

Proof. We prove the moreover part and it will be clear how to change the
proof to prove the weaker statement (just replace the use of the witness property
by the model-witness property).

Let M ≤K N be in Kλ+-sat, p ∈ gS<α(B;N). We want to show that p does not
i-fork over M if and only if there exists M0 ≤K M in K′λ so that for all B0 ⊆ B of
size ≤ λ, p � B0 does not i-fork over M0. Assume first that p does not i-fork over
M . Since κ̄<α(i) = λ+, there exists M0 ≤K M in Kλ such that p does not i-fork
over M0. By base monotonicity and homogeneity, we can assume that M0 ∈ K′λ. I
particular p � B0 does not i-fork over B0 for all B ⊆ B of size ≤ λ.

Conversely, assume p does not i′-fork over M , and let M0 ≤K M in K′λ witness
it. Then by the right λ-witness property, p does not i-fork over M0, so over M , as
desired.

�

Lemma 6.7.9. Let K be an AEC, LS(K) < κ ≤ κ′ ≤ λ. Let 2 ≤ α ≤ λ+. Let

i := (iκ-ch(K))
<α
≥λ � Kκ′-sat.

Assume κ̄<α(i) = λ+ and (Kλ, iλ) is a λ-generator for a weakly good (< α)-

independence relation. Let i′ := (Kλ, iλ)
up � Kλ+-sat. Then i′ = i � Kλ+-sat.

Proof. By Lemma 6.7.8 applied with K′ = Kκ′-sat. �

We end this section by showing how to build a weakly good independence rela-
tion in any stable fully tame and short AEC (with amalgamation and no maximal
models).

Theorem 6.7.10. Let K be a LS(K)-tame AEC with amalgamation and no
maximal models. Let κ = iκ > LS(K). Assume K is stable and (< κ)-tame and
short for types of length less than α, α ≥ 2.

If Kκ 6= ∅, then iκ-ch(K)<α � K(2κ)+-sat is a pre-weakly good (< α,≥ (2κ)+)-
independence relation. Moreover if α =∞, then it is weakly good.

Proof. Let λ := 2κ. By Fact 6.3.19, iκ-ch(K)<α � Kλ+-sat already has several
of the properties of a weakly good independence relation, and in particular has

the left λ-witness property so it is enough to check that i := iκ-ch(K)<(min(α,λ+)) �
Kλ+-sat is weakly good, so assume now without loss of generality that α ≤ λ+.
Note that by Fact 2.5.15, κ̄<α(i) ≤ (λκ)+ = λ+. By Lemma 6.7.9 it is enough to
check that (Kλ, iλ) is a λ-generator for a weakly good (< α)-independence relation.
From Fact 6.2.9, we get that K is stable in λ. Finally, note that Kλ 6= ∅. Now
apply Proposition 6.7.4.

If α = ∞, then by Fact 2.5.15, i has uniqueness. Since i is pre-weakly good,
pre(iλ) has extension, so by Proposition 6.4.1.(7), iλ also has extension. The other
properties of a weakly good independence relation follow from Fact 2.5.15. �

6.8. Good independence relations

Good frames were introduced by Shelah [She09a, Definition II.2.1] as a “bare
bone” definition of superstability in AECs. Here we adapt Shelah’s definition to
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independence relations. We also define a variation, being fully good. This is only
relevant when the types are allowed to have length at least λ, and asks for more
continuity (like in Chapter 5, but the continuity property asked for is different).
This is used to enlarge a good frame in the last sections.

Definition 6.8.1.

(1) A good (< α,F)-independence relation i = (K,^) is a (< α,F)-independence
relation satisfying:
(a) K is a nonempty AEC in F , LS(K) = λi, K has no maximal models

and joint embedding, K is stable in all cardinals in F .
(b) i has base monotonicity, disjointness, symmetry, uniqueness, exis-

tence, extension, the left λi-witness property, and for all α0 < α with
|α0|+ < θi, κα0(i) = |α0|+ + ℵ0 and κ̄α0(i) = |α0|+ + λ+

i .
(2) A type-full good (< α,F)-frame s is a pre-(< α,F)-frame so that cl(s) is

good.
(3) i is pre-good if pre(i) is good.

When we add “fully”, we require in addition that the frame/independence
relation satisfies full model-continuity.

Remark 6.8.2. This chapter’s definition is equivalent to that of Shelah [She09a,
Definition II.2.1] if we remove the requirement there on the existence of a super-
limit (as was done in almost all subsequent papers, for example in [JS13]) and
assume the frame is type-full (i.e. the basic types are all the nonalgebraic types).
For example, the continuity property that Shelah requires follows from κ1(s) = ℵ0

([She09a, Claim II.2.17.(3)]).

Remark 6.8.3. If i is a good (< α,F)-independence relation (except perhaps
for the symmetry axiom) then i is weakly good.

Definition 6.8.4. An AEC K is [fully] (< α,F)-good if there exists a [fully]
(< α,F)-good independence relation i with Ki = K. When α = ∞ and F =
[LS(K),∞), we omit them.

As in the previous section, we give conditions for a generator to induce a good
independence relation:

Definition 6.8.5. (K, i) is a λ-generator for a good (< α)-independence rela-
tion if:

(1) (K, i) is a λ-generator for a weakly good (< α)-independence relation.
(2) Kup is λ-tame.
(3) There exists µ ≥ λ such that Kup

µ has joint embedding.
(4) Local character: For all α0 < min(α, λ), there exists an ordering E such

that (Ki,E) is a skeleton of K and κα0(i,E) = |α0|+ + ℵ0.

Remark 6.8.6. If (K, i) is a λ-generator for a good (< α)-independence re-
lation, then it is a λ-generator for a weakly good (< α)-independence relation.
Moreover if α < λ+, the weak chain local character axiom follows from the local
character axiom.

As before, the generator can always be taken to be of a particular form:

Lemma 6.8.7. Let (K, i) be a λ-generator for a good (< α)-independence rela-
tion. Let i′ := iλ-ns(K)<α. Then:
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(1) (K, i′) is a λ-generator for a good (< α)-independence relation and <univ
K

is the ordering witnessing local character.

(2) pre((K, i)
up

) � (Kup)
λ+-sat

= pre((K, i′)
up

) � (Kup)
λ+-sat

.

Proof.

(1) By Lemma 6.6.7 (with K, i′, Ki here standing for K, i, K′′ there), (K, i′)
has the local character properties, witnessed by <univ

K , and the other prop-
erties are easy to check.

(2) By Lemma 6.7.6.

�

Unfortunately it is not strictly true that a generator for a good (< α)-independence
relation induces a good independence relation. For one thing, the extension prop-
erty is problematic when α > ω and this in turn creates trouble in the proof of

symmetry. Also, we are unable to prove Kλ+-sat is an AEC (although we suspect
it should be true, see also Fact 6.10.18). For the purpose of stating a clean result,
we introduce the following definition:

Definition 6.8.8. i is an almost pre-good (< α,F)-independence relation if:

(1) It is a pre-weakly good (< α,F)-independence relation.
(2) It satisfies all the conditions in the definition of a pre-good independence

relation except that:
(a) Ki is not required to be an AEC.
(b) cl(pre(i)) is not required to have extension or uniqueness, but we still

ask that pre(i<ω) has extension.
(c) cl(pre(i)) is not required to have symmetry, but we still require that

pre(i<ω) has full symmetry.
(d) We replace the condition on κα0

(cl(pre(i))) by:
(i) κ<(min(α,ω))(cl(pre(i))) = ℵ0.

(ii) For all α0 < α, κα0(i) = |α0|+ + ℵ0.

Theorem 6.8.9. Let (K, i) be a λ-generator for a good (< α)-independence
relation. Then:

(1) Kup has joint embedding and no maximal models.
(2) Kup is stable in every µ ≥ λ.

(3) i′ := (K, i)
up � (Kup)

λ+-sat
is an almost pre-good (< α,≥ λ+)-independence

relation.
(4) If α ≤ ω and µ ≥ λ+ is such that (Kup)

µ-sat
is an AEC with Löwenheim-

Skolem-Tarski number µ, then (i′)
<α � (Kup)

µ-sat
is a pre-good (< α,≥

µ)-independence relation.

Proof. Again, this follows from the arguments in Chapter 4, but we give some
details. We show by induction on θ ≥ λ+ that s′ := pre(i′)[λ+,θ] is a good frame,
except perhaps for symmetry and the conditions in Definition 6.8.8. This gives
(3) (use Proposition 6.4.3.(7) to get symmetry, the proof of Lemma 4.5.9 to get
extension for types of finite length, and Lemma 6.7.7 to get (2(d)i) in Definition
6.8.8), and (4) together with (1),(2) (use Proposition 6.5.8) follow.

• s′ is a weakly good (< α, [λ+, θ])-frame: By Theorem 6.7.5.
• Let µ ≥ λ be such that Kup

µ has joint embedding. By amalgamation,

Kup
≥µ has joint embedding. Once it is shown that Kup has no maximal
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models, it will follow that Kup has joint embedding (every model of size
≥ λ extends to one of size µ). Note that joint embedding is never used in
any of the proofs below.

• To prove that Kup
[λ,θ] has no maximal models, we can assume without loss

of generality that α = 2 and (by Lemma 6.8.7) that i = iλ-ns(K), with
κ1(i, <univ

K ) = ℵ0. By the induction hypothesis (and the assumption that
K has no maximal models), Kup

[λ,θ) has no maximal models. It remains

to see that Kup
θ has no maximal models. Assume for a contradiction that

M ∈ Kup
θ is maximal. Then it is easy to check that M ∈ (Kup)

θ-sat
θ . Build

〈Mi : i < θ〉 increasing continuous and a ∈ |M | such that for all i < θ:
(1) Mi ≤K M .
(2) Mi <

univ
K Mi+1.

(3) Mi ∈ Kup
<θ.

(4) a /∈ |Mi|.
This is enough. Let Mθ :=

⋃
i<θMi. Note that ‖Mθ‖ = θ and a ∈

|M |\|Mθ|, so Mθ <K M . By Lemma 6.2.16, M0 <
univ
K Mθ. Thus there

exists f : M −−→
M0

Mθ and since M is maximal f is an isomorphism.

However M is maximal whereas M witnesses that Mθ is not maximal, so
M cannot be isomorphic to Mθ, a contradiction.

This is possible. Imitate the proof of Lemma 4.5.12 (this is where it
is useful that the generator is nonsplitting and the local character is wit-
nessed by <univ

K ).
• Kup is stable in all µ ∈ [λ+, θ]: Exactly as in the proof of Theorem 4.5.6.
• s′ has base monotonicity, disjointness, and uniqueness because it is weakly

good. For all α0 < α, κα0(i′) = |α0|+ + ℵ0, κ̄α0(s′) = |α0|+ + λ++ = λ++

by Lemma 6.6.8.

�

Remark 6.8.10. Our proof of no maximal models above improves on [She09a,
Conclusion 4.13.(3)], as it does not use the symmetry property.

6.9. Canonicity

In Chapter 3, we gave conditions under which two independence relations are
the same. There we strongly relied on the extension property, but coheir and
weakly good frames only have a weak version of it. In this section, we show that
if we just want to show two independence relations are the same over sufficiently
saturated models, then the proofs become easier and the extension property is not
needed. In addition, we obtain an explicit description of the forking relation. We
conclude that coheir, weakly good frames, and good frames are (in a sense made
precise below) canonical. This gives further evidence that these objects are not
ad-hoc and answers several questions in Chapter 3. The results of this section are
also used in Section 6.10 to show the equivalence between superstability and strong
superstability.

Lemma 6.9.1 (The canonicity lemma). Let K be an AEC with amalgamation
and let λ ≥ LS(K) be such that K is stable in λ. Let K′ be a dense sub-AC of K

such that Kλ+-sat ⊆ K′ and K′λ is dense in Kλ. Let i, i′ be (< α,≥ λ)-independence
relation with Ki = Ki′ = K′. Let α0 := min(α, λ+).
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If:

(1) pre(i) and pre(i′) have uniqueness.
(2) i and i′ have base monotonicity, the left λ-witness property, and the right

λ-model-witness property.
(3) κ̄<α0

(i) = κ̄<α0
(i′) = λ+.

Then pre(i) � Kλ+-sat = pre(i′) � Kλ+-sat, and if in addition both i and i′ have

the right λ-witness property, then i � Kλ+-sat = i′ � Kλ+-sat.

Moreover for M ≤K N in Kλ+-sat, p ∈ gS<α(N) does not i-fork over M if and
only if for all I ⊆ `(p) with |I| ≤ λ, there exists M0 ≤K M in K′λ such that pI does
not sλ-ns(K

′)-fork over M0.

Proof. By Fact 6.2.8, we can assume without loss of generality that K has
joint embedding. If Kλ+ = ∅, there is nothing to prove so assume Kλ+ 6= ∅.
Using joint embedding, it is easy to see that Kλ is nonempty and has no maximal
models. By the left λ-witness property, we can assume without loss of generality
that α ≤ λ+, i.e. α = α0. By Proposition 6.7.4, (K, i) and (K, i′) are λ-generators
for a weakly good (< α)-independence relation. By Lemma 6.7.6, pre((K, i)

up
) �

Kλ+-sat = pre((K, i′)
up

) � Kλ+-sat.

By Lemma 6.7.8, for x ∈ {i, i′}, pre((K, x)
up

) � Kλ+-sat = pre(x) � Kλ+-sat, so
the result follows (the definition of (K, x)≥λ and Lemma 6.7.6 also give the moreover
part). The moreover part of lemma 6.7.8 says that if x ∈ {i, i′} has the right λ-

witness property, then (K, x)
up � Kλ+-sat = x � Kλ+-sat, so in case both i and i′

have the right λ-witness property, we must have i � Kλ+-sat = i′ � Kλ+-sat. �

Remark 6.9.2. If K is an AEC with amalgamation, K′ is a dense sub-AC of K

such that Kλ+-sat ⊆ K′ and K′λ is dense in Kλ, and i is a (≤ 1,≥ λ)-independence
relation with Ki = K′ and base monotonicity, uniqueness, κ̄1(i) = λ+, then by the
proof of Proposition 6.4.6 and Lemma 6.5.8 K is stable in any µ ≥ LS(K) with
µ = µλ.

Theorem 6.9.3 (Canonicity of coheir). Let K be an AEC with amalgamation.
Let κ = iκ > LS(K). Assume K is (< κ)-tame and short for types of length less
than α, α ≥ 2.

Let λ ≥ κ be such that K is stable in λ and (α0 + 2)<κr ≤ λ for all α0 <
min(λ+, α). Let i be a (< α,≥ λ)-independence relation so that:

(1) Ki is a dense sub-AC of K so that Kλ+-sat ⊆ Ki and (Ki)λ is dense in
Kλ.

(2) pre(i) has uniqueness.
(3) i has base monotonicity, the left λ-witness property, and the right λ-model-

witness property.
(4) κ̄<min(λ+,α)(i) = λ+.

Then pre(i) � Kλ+-sat = pre(iκ-ch(K)<α) � Kλ+-sat. If in addition i has the

right λ-witness property, then i � Kλ+-sat = iκ-ch(K)<α � Kλ+-sat.

Proof. By Fact 6.2.8, we can assume without loss of generality that K has
joint embedding. If Kλ+ = ∅, there is nothing to prove so assume Kλ+ 6= ∅. By Fact
6.2.7, K has arbitrarily large models so no maximal models. Let i′ := iκ-ch(K)<α.
By the proof of Proposition 6.7.4, i′ � Ki satisfies the hypotheses of Lemma 6.9.1.
Moreover, it has the right (< κ)-witness property so the result follows. �
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Theorem 6.9.4 (Canonicity of weakly good independence relations). Let K
be an AEC with amalgamation and let λ ≥ LS(K). Let K′ be a dense sub-AC

of K such that Kλ+-sat ⊆ K′ and K′λ is dense in Kλ. Let i, i′ be weakly good
(< α,≥ λ)-independence relations with Ki = Ki′ = K′.

Then pre(i) � Kλ+-sat = pre(i′) � Kλ+-sat. If in addition both i and i′ have the

right λ-witness property, then i � Kλ+-sat = i′ � Kλ+-sat.

Proof. By definition of a weakly good independence relation, K′λ is stable in
λ. Therefore by Lemma 6.5.8 Kλ, and hence K, is stable in λ. Now apply Lemma
6.9.1. �

Theorem 6.9.5 (Canonicity of good independence relations). If i and i′ are
good (< α,≥ λ)-independence relations with the same underlying AEC K, then

i � Kλ+-sat = i′ � Kλ+-sat.

Proof. By Theorem 6.9.4 (with K′ := K), pre(i) � Kλ+-sat = pre(i′) �
Kλ+-sat. Since good independence relations have extension, Lemma 6.4.2 implies

i � Kλ+-sat = i′ � Kλ+-sat. �

Recall that Question 3.6.13 asked if two good λ-frames with the same under-
lying AEC should be the same. We can make progress toward this question by
slightly refining our arguments. Note that the results below can be further adapted
to work for not necessarily type-full frames (that is for two good frames, in Shelah’s
sense, with the same basic types and the same underlying AEC).

Lemma 6.9.6. Let s and s′ be good (< α, λ)-frames with the same underlying
AEC K and α ≤ λ. Let K′ be the class of λ-limit models of K (recall Definition
6.2.10). Then s � K′ = s′ � K′.

Proof sketch. By Remark 6.2.15, I(K′) = 1. Now refine the proof of Theo-
rem 6.9.5 by replacing λ+-saturated models by (λ, |β|+ +ℵ0)-limit models for each
β < α. Everything still works since one can use the weak uniqueness and extension
properties of nonsplitting (Fact 6.3.22.(5)). �

Theorem 6.9.7 (Canonicity of categorical good λ-frames). Let s and s′ be good
(< α, λ)-frames with the same underlying AEC K and α ≤ λ. If K is categorical
in λ, then s = s′.

Proof. By Fact 6.2.13, K has a limit model, and so by categoricity any model
of K is limit. Now apply Lemma 6.9.6. �

Remark 6.9.8. The proof also gives an explicit description of forking: For
M0 ≤K M with M0 a limit model, p ∈ gS(M) does not s-fork over M0 if and only
if there exists M ′0 <

univ
K M0 such that p does not sλ-ns-fork over M ′0. Note that this

is the definition of forking in Chapter 4.

Note that Shelah’s construction of a good λ-frame in [She09a, Theorem II.3.7]
relies on categoricity in λ, so Theorem 6.9.7 establishes that the frame there is
canonical. We are still unable to show that the frame built in Theorem 6.10.16 is
canonical in general, although it will be if λ is the categoricity cardinal or if it is
weakly successful (by Theorem 3.6.12).
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6.10. Superstability

Shelah has pointed out [She09a, p. 19] that superstability in abstract ele-
mentary classes suffers from schizophrenia, i.e. there are several different possible
definitions that are equivalent in elementary classes but not necessarily in AECs.
The existence of a good (≥ λ)-frame is a possible candidate but it is very hard to
check. Instead, one would like a simple definition that implies existence of a good
frame.

Shelah claims in chapter IV of his book that solvability25 ([She09a, Definition
IV.1.4]) is such a notion, but his justification is yet to appear (in [Sheb]). Essen-
tially, solvability says that certain EM models are superlimits. On the other hand
previous work (for example [She99, SV99, Van06, Van13, GVV16]) all rely on
a local character property for nonsplitting. This is even made into a definition of
superstability in [Gro02, Definition 7.12]. In Chapter 4 we gave a similar condi-
tion and used it with tameness to build a good frame. Shelah has shown [She99,
Lemma I.6.3] that categoricity in a cardinal of high-enough cofinality implies the
superstability condition.

We now aim to show the same conclusion under categoricity in a high-enough
cardinal of arbitrary cofinality. The following definition of superstability is implicit
in [SV99] and stated explicitly in [Gro02, Definition 7.12].

Definition 6.10.1 (Superstability). An AEC K is µ-superstable if:

(1) LS(K) ≤ µ.
(2) There exists M ∈ Kµ such that for any M ′ ∈ Kµ there is f : M ′ → M

with f [M ′] <univ
K M .

(3) κ1(sµ-ns(Kµ),≤univ
K ) = ℵ0.

We say K is µ-superstable+ if K≥µ is µ-superstable, has amalgamation, and is
µ-tame. We may omit µ, in which case we mean there exists a value such that the
definition holds, e.g. K is superstable if it is µ-superstable for some µ.

Remark 6.10.2. Using Fact 6.2.13, it is easy to check that Condition (2) above
is equivalent to “Kµ is nonempty, has amalgamation, joint embedding, no maximal
models, and is stable in µ”.

Remark 6.10.3. While Definition 6.10.1 makes sense in any AEC, here we focus
on tame AECs with amalgamation, and will not study what happens to Definition
6.10.1 without these assumptions (although this can be done, see [GVV16]). In
other words, we will study “superstable+” rather than just “superstable”.

For technical reasons, we will also use the following version that uses coheir
rather than nonsplitting.

Definition 6.10.4. An AEC K is κ-strongly µ-superstable if:

(1) LS(K) < κ ≤ µ.
(2) (2) in Definition 6.10.1 holds.
(3) K does not have the (< κ)-order property of length κ.
(4) Kκ-sat

µ is dense in Kµ.

(5) κ1(iκ-ch(K)µ,≤univ
K ) = ℵ0.

25One can ask whether there are any implications between this chapter’s definition of super-
stability and Shelah’s. We leave this to future work.
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As before, we may omit some parameters and say K is κ-strongly µ-superstable+

if there exists κ0 < κ such that K≥κ0 is κ-strongly µ-superstable, has amalgamation,
and is (< κ)-tame.

It is not too hard to see that a µ-superstable+ AEC induces a generator for a
good independence relation, but what if we have a generator of some other form

(assume for example that <univ
K is replaced by <µ,δK in the definition)? This is the

purpose of the next definition.

Definition 6.10.5. Let K be an AEC.

(1) K is (µ, i)-superstable+ if LS(K) ≤ µ and (Kµ, i) is a µ-generator for a
good (≤ 1)-independence relation.

(2) K is κ-strongly (µ, i)-superstable+ if:
(a) LS(K) < κ ≤ µ.
(b) There exists κ0 < κ such that K≥κ0

has amalgamation.
(c) K is (< κ)-tame.
(d) K does not have the (< κ)-order property of length κ.
(e) K is (µ, i)-superstable+.
(f) Ki ⊆ Kκ-sat

µ and i = iκ-ch(K)≤1 � Ki.

The terminology is justified by the next proposition which tells us that the
existence of any generator is equivalent to superstability. It makes checking that
superstability holds easier and we will use it freely.

Proposition 6.10.6. Let K be an AEC.

(1) K is µ-superstable+ if and only if there exists i such that K is (µ, i)-
superstable+.

(2) K is κ-strongly µ-superstable+ if and only if there exists i such that K is
κ-strongly (µ, i)-superstable+.

Proof.

(1) Assume first that K is µ-superstable+. Then one can readily check (using
Proposition 6.7.4 and Remark 6.10.2) that (Kµ, iµ-ns(K)≤1) is a genera-
tor for a good independence relation, where the local character axiom is
witnessed by ≤univ

K . Conversely, assume that K is (µ, i)-superstable+. By
definition, LS(K) ≤ µ and by definition of a generator K≥µ has amalga-
mation and is µ-tame. By Lemma 6.8.7, (Kµ, iµ-ns(K)≤1) is a µ-generator
for a good (≤ 1)-independence relation, and ≤univ

K is the ordering witness-

ing local character. Thus K is µ-superstable+.
(2) Assume first that K is κ-strongly µ-superstable+. Let κ0 < κ be such

that K≥κ0
has amalgamation. Assume without loss of generality that

κ0 = LS(K) and that K≥κ0 = K. By (the proof of) Proposition 6.7.4,
(Kµ, iκ-ch(K)≤1

µ ) is a µ-generator for a weakly good (≤ 1)-independence
relation. By the other conditions, it is actually a µ-generator for a good
(≤ 1)-independence relation. Conversely, assume that K is κ-strongly
(µ, i)-superstable+. We check the last two conditions in the definition of
strong superstability, the others are straightforward. We know that (Kµ, i)
is a generator and i = iκ-ch(K)≤1 � Ki. Thus Ki ⊆ Kκ-sat

µ is dense in Kµ,

so Kκ-sat
µ is dense in Kµ. By Lemma 6.6.7, κ1(iκ-ch(K)µ,≤univ

K ) ≤ κ1(i,E)

for any E such that (Ki,E) is a skeleton of Kµ (and hence of Kκ-sat
µ ). By
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assumption one can find such a E with κ1(i,E) = ℵ0. Thus

κ1(iκ-ch(K)µ,≤univ
K ) = ℵ0

�

Remark 6.10.7. Thus in Definitions 6.10.1 and 6.10.4, one can replace ≤univ
K

by ≤µ,δK for 1 ≤ δ < µ+.

The next result gives evidence that Definition 6.10.1 is a reasonable definition
of superstability, at least in tame AECs with amalgamation. Note that most of it
already appears implicitly in Chapter 4 and essentially restates Theorem 6.8.9.

Theorem 6.10.8. Assume K is a (µ, i)-superstable+ AEC. Then:

(1) K≥µ has joint embedding, no maximal models, and is stable in all λ ≥ µ.

(2) Let λ ≥ µ+ and let i′ := (Kµ, i)
up � Kµ+-sat

≥λ .

(a) i′ is an almost pre-good (≤ 1,≥ λ)-independence relation (recall Def-
inition 6.8.8).

(b) If in addition K is κ-strongly (µ, i)-superstable+, then pre(i′) =

pre(iκ-ch(K))≤1 � Kµ+-sat
≥λ . That is, the frame is (< κ)-coheir.

(c) If θ ≥ µ+ is such that K′ := Kθ-sat
≥λ is an AEC with LS(K′) = λ,

then i′ � K′ is a pre-good (≤ 1,≥ λ)-independence relation that will
be (< κ)-coheir if K is κ-strongly (µ, i)-superstable+.

Proof. Theorem 6.8.9 gives (1) and (2a), while (2c) follows from (2a) and

(2b). It remains to prove (2b). Let i′′ := iκ-ch(K))≤1 � Kµ+-sat
≥λ . By the proof of

Lemma 6.7.8, ^
i′
⊆ ^

i′′
. Now by (2a), pre(i′) has existence and extension and by

Fact 2.5.15, i′′ has uniqueness. By Lemma 3.4.1, pre(i′) = pre(i′′), as desired. �

Remark 6.10.9. Let T be a complete first-order theory and let K := (Mod(T ),�
). Then this chapter’s definitions of superstability and strong superstability coin-
cide with the classical definition. More precisely for all µ ≥ |T |, K is (strongly)
µ-superstable if and only if T is stable in all λ ≥ µ.

Note also that [strong] µ-superstability+ is monotonic in µ:

Proposition 6.10.10. If K is [κ-strongly] µ-superstable+ and µ′ ≥ µ, then K
is [κ-strongly] µ′-superstable+.

Proof. Say K is (µ, i)-superstable+. It is clearly enough to check that K is

µ′-superstable. Let i′ := (K, i)
up � Kµ+-sat

≥µ′ . By Theorem 6.10.8 and Proposition

6.7.4, (Kµ′ , i
′) is a generator for a good µ′-independence relation, so K is (µ′, i′)-

superstable. Similarly, if K is κ-strongly (µ, i)-superstable+ then K will be κ-
strongly (µ′, i′)-superstable. �

Theorem 6.10.8.(2b) is the reason we introduced strong superstability. While it
may seem like a detail, we are interested in extending our good frame to a frame for
types longer than one element and using coheir to do so seems reasonable. Using
the canonicity of coheir, we can show that superstability and strong superstability
are equivalent if we do not care about the parameter µ:
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Theorem 6.10.11. If K is µ-superstable+ and κ = iκ > µ, then K is κ-
strongly (2<κr )+-superstable+.

In particular a tame AEC with amalgamation is strongly superstable if and
only if it is superstable.

Proof. Let µ′ := (2<κr )+. We show that K is κ-strongly µ′-superstable+.
By Theorem 6.10.8, K≥µ has joint embedding, no maximal models and is stable
in all cardinals. By definition, K≥µ also has amalgamation. Also, K is µ-tame,
hence (< κ)-tame. By Fact 6.2.9, K does not have the (< κ)-order property of
length κ. Moreover we have already observed that Kµ′ is stable in µ′ and has joint
embedding and no maximal models. Also, Kκ-sat

µ′ is dense in Kµ′ by stability and

the fact µ′ > κ. It remains to check that κ1(iκ-ch(K)µ′ ,≤univ
K ) = ℵ0.

By Theorem 6.10.8, there is a (≤ 1,≥ µ+)-independence relation i′ such that

Ki′ = Kµ+-sat and i′ is good, except that Ki′ may not be an AEC. By Theorem 6.9.3
(with λ there standing for 2<κr here), pre(i′) � Kµ′-sat = pre(iκ-ch(K)≤1) � Kµ′-sat.
By the proof of Lemma 6.4.5, i′ has the right (< κ)-witness property for members

of K≥µ+ : If M ∈ K≥µ+ , M0 ≤K M is in Kµ+-sat, and p ∈ gS(M), then p does not
i-fork over M0 if and only if p � B does not i-fork over M0 for all B ⊆ |M | with
|B| < κ. Therefore by the proof of Theorem 6.9.3, we actually have that for any

M ∈ K≥µ′ and M0 ≤K M in Kµ′-sat, p ∈ gS(M) does not i′-fork over M0 if and
only if p does not iκ-ch(K)-fork over M0. In particular:

κ1(iκ-ch(K)µ′) = κ1(i′µ) = ℵ0

Therefore κ1(iκ-ch(K)µ′ ,≤univ
K ) = ℵ0, as needed.

�

We now arrive to the main result of this section: categoricity implies strong
superstability. We first recall several known consequences of categoricity.

Fact 6.10.12. Let K be an AEC with no maximal models, joint embedding,
and amalgamation. Assume K is categorical in a λ > LS(K). Then:

(1) [She99, Claim I.1.7] K is stable in all µ ∈ [LS(K), λ).
(2) [She99, Lemma 6.3] For LS(K) ≤ µ < cf λ, κ1(sµ-ns(Kµ),≤µ,ωK ) = ℵ0.
(3) [BG, Theorem 6.8] Assume K does not have the weak κ-order property

(see Definition 2.4.9) and LS(K) < κ ≤ µ < λ. Then:

κ1(iκ-ch(K)µ,≤univ
K ) = ℵ0

(4) [She99, Lemma II.1.5] If the model of size λ is µ-saturated for µ > LS(K),
then every member of K≥χ is µ-saturated, where χ := min(λ, supµ0<µ h(µ0)).

The next proposition is folklore: it derives joint embedding and no maximal
models from amalgamation and categoricity. We could not find a proof in the
literature, so we include one here.

Proposition 6.10.13. Let K be an AEC with amalgamation. If there exists
λ ≥ LS(K) such that Kλ has joint embedding, then there exists χ < h(LS(K))
such that K≥χ has joint embedding and no maximal models.

Proof. Write µ := h(LS(K)). If Kµ = ∅, then by Fact 6.2.7 there exists χ < µ
such that K≥χ = ∅, so it has has joint embedding and no maximal models. Now
assume Kµ 6= ∅. In particular, K has arbitrarily large models. By amalgamation,
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K≥λ has joint embedding, and so no maximal models. If λ < µ we are done so
assume λ ≥ µ. It is enough to show that there exists χ < µ such that K≥χ has no
maximal model since then any model of K≥χ embeds inside a model in K≥λ and
hence K≥χ has joint embedding.

By Fact 6.2.8, we can write K =
⋃
i∈I Ki where the Ki’s are disjoint AECs with

LS(Ki) = LS(K) and each Ki has joint embedding and amalgamation. Note that
|I| ≤ I(K,LS(K)) ≤ 2LS(K). For i ∈ I, let χi be the least χ < µ such that Ki

≥χ = ∅,
or LS(K) if Ki

µ 6= ∅. Let χ := supi∈I χi. Note that cf µ =
(
2LS(K)

)+
> 2LS(K) ≥ |I|,

so χ < µ.
Now let M ∈ K≥χ. Let i ∈ I be such that M ∈ Ki. M witnesses that Ki

χ 6= ∅
so by definition of χ, Ki has arbitrarily large models. Since Ki has joint embedding,
this implies that Ki has no maximal models. Therefore there exists N ∈ Ki ⊆ K
with M <K N , as desired. �

The next two results are simple consequences of Fact 6.10.12.(2).

Proposition 6.10.14. Let K be an LS(K)-tame AEC with amalgamation and
no maximal models. If K is categorical in a λ with cf λ > LS(K), then K is
LS(K)-superstable+.

Proof. By amalgamation, categoricity, and no maximal models, K has joint
embedding. By Fact 6.10.12.(1), K is stable in LS(K). Now apply Fact 6.10.12.(2)
and Proposition 6.10.6 (with Remark 6.10.7). �

Proposition 6.10.15. Let K be an LS(K)-tame AEC with amalgamation. If
K is categorical in a λ with cf λ ≥ h(LS(K)), then there exists µ < h(LS(K)) such
that K is µ-superstable+.

Proof. By Proposition 6.10.13, there exists µ < h(LS(K)) such that K≥µ
has joint embedding and no maximal models. Now apply Proposition 6.10.14 to
K≥µ. �

We now remove the restriction on the cofinality and get strong superstability.
The downside is that h(LS(K)) is replaced by a fixed point of the beth function
above LS(K).

Theorem 6.10.16. Let K be an AEC with amalgamation. Let κ = iκ >
LS(K) and assume K is (< κ)-tame. If K is categorical in a λ > κ, then:

(1) K is κ-strongly κ-superstable+.
(2) K is stable in all cardinals above or equal to h(LS(K)).
(3) The model of size λ is saturated.
(4) K is categorical in κ.

(5) For χ := min(λ, h(κ)), pre
(
iκ-ch(K)≤1

≥χ

)
is a good (≤ 1,≥ χ)-frame with

underlying AEC K≥χ.

Proof. Note that Kλ has joint embedding so by Proposition 6.10.13, there
exists χ0 < h(LS(K)) such that K≥χ0

(and thus K≥κ) has joint embedding and no
maximal models. By Fact 6.10.12.(1), K≥χ0

is stable everywhere below λ. Since
κ = iκ, Fact 6.2.9 implies that K does not have the (< κ)-order property of length
κ.

Let κ ≤ µ < λ. By Fact 6.10.12.(3), κ1(iκ-ch(K)µ,≤univ
K ) = ℵ0. Now using

Proposition 6.10.6, K is κ-strongly µ-superstable if and only if Kκ-sat
µ is dense in
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Kµ. If κ < µ, then Kκ-sat
µ is dense in Kµ (by stability), so K is κ-strongly µ-

superstable. However we want κ-strong κ-superstability. We proceed in several
steps.

First, we show K is µ-superstable for some µ < λ. If λ = κ+, then this follows
directly from Proposition 6.10.14 with µ = κ, so assume λ > κ+. Then by the
previous paragraph K is κ-strongly µ-superstable for µ := κ+.

Second, we prove (2). We have already observed K≥χ0
is stable everywhere

below λ. By Theorem 6.10.8, K is stable in every µ′ ≥ µ. In particular, it is stable
in and above λ, so (2) follows.

Third, we show (3). Since K is stable in λ, we can build a λ+
0 -saturated model

of size λ for all λ0 < λ. Thus the model of size λ is λ+
0 -saturated for all λ0 < λ,

and hence λ-saturated.
Fourth, we prove (4). Since the model of size λ is saturated, it is κ-saturated.

By Fact 6.10.12.(4), every model of size supκ0<κ h(κ0) = κ is κ-saturated. By
uniqueness of saturated models, K is categorical in κ.

Fifth, observe that since every model of size κ is saturated, Kκ-sat
κ = Kκ is

dense in Kκ. By the second paragraph above, K is κ-strongly κ-superstable so (1)
holds.

Finally, we prove (5). We have seen that the model of size λ is saturated, thus
κ+-saturated. By Fact 6.10.12.(4), every model of size ≥ χ is κ+-saturated. Now
use (1) with Theorem 6.10.8. �

Remark 6.10.17. If one just wants to get strong superstability from categoric-
ity, we suspect it should be possible to replace the iκ = κ hypothesis by something
more reasonable (maybe just asking for the categoricity cardinal to be above 2κ).
Since we are only interested in eventual behavior here, we leave this to future work.

As a final remark, we point out that it is always possible to get a good indepen-
dence relation from superstability (i.e. even without categoricity) if one is willing
to restrict the class to sufficiently saturated models:

Fact 6.10.18 (Corollary 7.3.5). Let K be an AEC. If K is κ-strongly µ-
superstable+, then whenever λ > (µ<κr )+, Kλ-sat is an AEC with LS(Kλ-sat) = λ.

Corollary 6.10.19. Let K be an AEC. If K is κ-strongly µ-superstable+, then

K(µ<κr )+2-sat is (≤ 1)-good. Moreover the good frame is induced by (< κ)-coheir.

Proof. Combine Theorem 6.10.8.(2c) and Fact 6.10.18. �

Remark 6.10.20. Let K be an AEC in λ := LS(K) with amalgamation, joint
embedding, and no maximal models. If Kλ-sat is a nonempty AEC in λ, then the
saturated model is superlimit (see [She09a, Definition 1.13]). Thus we even obtain
a good frame in the sense of [She09a, Chapter II].

6.11. Domination

Our next aim is to take a sufficiently nice good λ-frame (for types of length
1) and show that it can be extended to types of any length at most λ. To do
this, we will give conditions under which a good λ-frame is weakly successful (a
key technical property of [She09a, Chapter II], see Definition 6.11.4), and even
ω-successful (Definition 6.11.20).

The hypotheses we will work with are:
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Hypothesis 6.11.1.

(1) i = (K,^) is a (<∞,≥ µ)-independence relation.
(2) s := pre(i≤1) is a type-full good (≥ µ)-frame.
(3) λ > µ is a cardinal.
(4) For all n < ω:

(a) Kλ+n-sat is an AEC26 with Löwenheim-Skolem-Tarski number λ+n.
(b) κλ+n(i) = λ+n+1.

(5) i has base monotonicity, pre(i) has uniqueness.
(6) i has the left and right (≤ µ)-model-witness properties.

Remark 6.11.2. We could have given more local hypotheses (e.g. by replacing
∞ by θ or only assuming (4) for n below some fixed m < ω) and made some of the
required properties more precise (this is part of what should be done to improve
“short” to “diagonally tame” in the main theorem, see the discussion in Section
6.15).

The key is that we assume there is already an independence notion for longer
types. However, it is potentially weak compared to what we want. The next fact
shows that the hypotheses above are reasonable.

Fact 6.11.3. Assume K0 is a fully (< κ)-tame and short κ-strongly µ0-superstable

AEC with amalgamation. Then for any µ ≥
(
µ<κr0

)+2
and any λ > µ with

λ = λ<κr , Hypothesis 6.11.1 holds for K :=
(
K0
)µ-sat

and i := iκ-ch(K0) � K.

Proof. By Fact 6.10.18, for any µ′ ≥ µ, Kµ′-sat is an AEC with LS(Kµ′-sat) =
µ′. By Theorem 6.10.8.(2c), (< κ)-coheir induces a good (≥ µ)-frame for µ-
saturated models. The other conditions follow directly from the definition of strong
superstability and the properties of coheir (Fact 2.5.15). For example, the lo-

cal character condition holds because λ<κr = λ implies (λ+n)
<κr = λ+n for any

n < ω. �

The next technical property is of great importance in Chapter II and III of
[She09a]. The definition below follows [JS13, Definition 4.1.5] (but as usual, we
work only with type-full frames).

Definition 6.11.4. Let t be a type-full good λt-frame.

(1) For M0 ≤K M` in K, ` = 1, 2, an amalgam of M1 and M2 over M0 is a
triple (f1, f2, N) such that N ∈ Kt and f` : M` −−→

M0

N .

(2) Let (fx1 , f
x
2 , N

x), x = a, b be amalgams of M1 and M2 over M0. We
say (fa1 , f

a
2 , N

a) and (f b1 , f
b
2 , N

b) are equivalent over M0 if there exists
N∗ ∈ Kt and fx : Nx → N∗ such that f b◦f b1 = fa◦fa1 and f b◦f b2 = fa◦fa2 ,
namely, the following commutes:

26Thus we have a superlimit of size λ+n, see Remark 6.10.20.
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N b fb // N∗

M1

fb1

=={{{{{{{{
fa1
// Na

fa

OO

M0

OO

// M2

fb2

OO

fa2

=={{{{{{{{

Note that being “equivalent overM0” is an equivalence relation ([JS13,
Proposition 4.3]).

(3) Let K3,uq
t be the set of triples (a,M,N) such that M ≤K N are in K,

a ∈ |N |\|M | and for any M1 ≥K M in K, there exists a unique (up
to equivalence over M) amalgam (f1, f2, N1) of N and M1 over M such
that gtp(f1(a)/f2[M1];N1) does not fork over M . We call the elements of

K3,uq
t uniqueness triples.

(4) K3,uq
t has the existence property if for any M ∈ Kt and any nonalgebraic

p ∈ gS(M), one can write p = gtp(a/M ;N) with (a,M,N) ∈ K3,uq
t . We

also talk about the existence property for uniqueness triples.
(5) s is weakly successful if K3,uq

t has the existence property.

The uniqueness triples can be seen as describing a version of domination. They
were introduced by Shelah for the purpose of starting with a good λ-frame and
extending it to a good λ+-frame. The idea is to first extend the good λ-frame to a
forking notion for types of models of size λ (and really this is what interests us here,
since tameness already gives us a good λ+-frame). Now, since we already have an
independence notion for longer types, we can follow [MS90, Definition 4.21] and
give a more explicit version of domination that is exactly as in the first-order case.

Definition 6.11.5 (Domination). Fix N ∈ K. For M ≤K N , B,C ⊆ |N |, B

dominates C over M in N if for any N ′ ≥K N and any D ⊆ |N ′|, B
N ′

^
M
D implies

B ∪ C
N ′

^
M
D.

We say that B model-dominates C over M in N if for any N ′ ≥K N and any

M ≤K N ′0 ≤K N ′, B
N ′

^
M
N ′0 implies B ∪ C

N ′

^
M
N ′0.

Model-domination turns out to be the technical variation we need, but of course
if i has extension, then it is equivalent to domination. We start with two easy
ambient monotonicity properties:

Lemma 6.11.6. LetM ≤K N . LetB,C ⊆ |N | and assumeB [model-]dominates
C over M in N . Then:

(1) If N ′ ≥K N , then B [model-]dominates C over M in N ′.
(2) If M ≤K N0 ≤K N contains B ∪C, then B [model-]dominates C over M

in N0.

Proof. We only do the proofs for the non-model variation but of course the
model variation is completely similar.
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(1) By definition of domination.

(2) Let N ′ ≥K N0 and D ⊆ |N ′| be given such that B
N ′

^
M
D. By amalga-

mation, there exists N ′′ ≥K N and f : N ′ −−→
N0

N ′′. By invariance,

B
N ′′

^
M
f [D]. By definition of domination, B ∪ C

f [N ′]

^
M

f [D]. By invariance

again, B ∪ C
N ′

^
M
D, as desired.

�

The next result is key for us: it ties domination with the notion of uniqueness
triples:

Lemma 6.11.7. Assume M0 ≤K M1 are in Kλ, and a ∈ M1 model-dominates
M1 over M0 (in M1). Then (a,M0,M1) ∈ K3,uq

sλ .

Proof. Let M2 ≥K M0 be in Kλ. First, we need to show that there exists
(b,M2, N) such that gtp(b/M2;N) extends gtp(a/M0;M1) and gtp(b/M2;N) does
not fork over M0. This holds by the extension property of good frames.

Second, we need to show that any such amalgam is unique: Let (fx1 , f
x
2 , N

x),

x ∈ {a, b} be amalgams of M1 and M2 over M0 such that fx1 (a)
Nx

^
M0

fx2 [M2]. We want

to show that the two amalgams are equivalent: we wantN∗ ∈ Kλ and fx : Nx → N∗
such that f b ◦ f b1 = fa ◦ fa1 and f b ◦ f b2 = fa ◦ fa2 , namely, the following commutes:

N b fb // N∗

M1

fb1

=={{{{{{{{
fa1
// Na

fa

OO

M0

OO

// M2

fb2

OO

fa2

=={{{{{{{{

For x = a, b, rename fx2 to the identity to get amalgams ((fx1 )′, idM2
, (Nx)′)

of M1 and M2 over M0. For x = a, b, the amalgams ((fx1 )′, idM2
, (Nx)′) and

(fx1 , f
x
2 , N

x) are equivalent over M0, hence we can assume without loss of generality
that the renaming has already been done and fx2 = idM2

Thus we know that fx1 (a)
Nx

^
M0

M2 for x = a, b. By domination, fx1 [M1]
Nx

^
M0

M2.

Let M̄1 be an enumeration of M1. Using amalgamation, we can obtain the following
diagram:

Na

ga
// N ′

M1

fa1

OO

fb1

// N b

gb

OO
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This shows gtp(fa1 (M̄1)/M0;Na) = gtp(f b1(M̄1)/M0;N b). By uniqueness, gtp(fa1 (M̄1)/M2;Na) =
gtp(f b1(M̄1)/M2;N b). Let N∗ and fx : Nx −−→

M2

N∗ witness the equality. Since

fx2 = idM2
, f b ◦ f b2 = f b � M2 = idM2

= fa ◦ fa2 . Moreover, (f b ◦ f b1)(M̄1) =
f b(f b1(M̄1)) = fa(fa2 (M̄1)) by definition, so f b ◦ f b1 = fa ◦ fa1 . This completes the
proof. �

Remark 6.11.8. The converse holds if i has left extension.

Remark 6.11.9. The relationship of uniqueness triples with domination is al-
ready mentioned in [JS13, Proposition 4.1.7], although the definition of domination
there is different.

Thus to prove the existence property for uniqueness triples, it will be enough to
imitate the proof of [MS90, Proposition 4.22], which gives conditions under which
the hypothesis of Lemma 6.11.7 holds. We first show that we can work inside a
local monster model.

Lemma 6.11.10. Let M ≤K N and B ⊆ |N |. Let C ≥ N be ‖N‖+-saturated.
Then B model-dominates N over M in C if and only if for any M ′ ≤K C with

M ≤K M ′, B
C

^
M
M ′ implies N

C

^
M
M ′. Moreover if i has the right (≤ µ)-witness

property, we get an analogous result for domination instead of model-domination.

Proof. We prove the non-trivial direction for model-domination. The proof of
the moreover part for domination is similar. Assume C′ ≥ C and M ≤K M ′ ≤K C′

is such that B
C′

^
M
M ′. We want to show that N

C′

^
M
M ′. Suppose not. Then we

can use the (≤ µ)-model-witness property to assume without loss of generality
that ‖M ′‖ ≤ µ + ‖M‖, and so we can find N ≤K N ′ ≤K C′ containing M ′

with ‖N ′‖ = ‖N‖ and B
N ′

^
M
M ′, N

N ′

/̂
M

M ′. By homogeneity, find f : N ′ −→
N

C.

By invariance, B
f [N ′]

^
M

f [M ′] but N
f [N ′]

/̂
M

f [M ′]. By monotonicity, B
C

^
M
f [M ′] but

N
C

/̂
M

f [M ′], a contradiction. �

Lemma 6.11.11 (Lemma 4.20 in [MS90]). Let 〈Mi : i < λ+〉, 〈Ni : i < λ+〉
be increasing continuous in Kλ such that Mi ≤K Ni for all i < λ+. Let Mλ+ :=⋃
i<λ+ Mi, Nλ+ :=

⋃
i<λ+ Ni.

Then there exists i < λ+ such that Ni

Nλ+

^
Mi

Mλ+ .

Proof. For each i < λ+, let ji < λ+ be least such that Ni

Nλ+

^
Mji

Mλ+ (exists

since κλ(i) = λ+). Let i∗ be such that ji < i∗ for all i < i∗ and cf i∗ ≥ µ+. By

definition of ji and base monotonicity we have that for all i < i∗, Ni

Nλ+

^
Mi∗

Mλ+ . By

the left (≤ µ)-model-witness property, Ni∗
Nλ+

^
Mi∗

Mλ+ . �
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Lemma 6.11.12 (Proposition 4.22 in [MS90]). Let M ∈ Kλ be saturated. Let

C ≥K M be saturated of size λ+. Work inside C. Write A^
M
B for A

C

^
M
B.

• There exists a saturated N ≤K C in Kλ such that M ≤K N , N contains
a, and a model-dominates N over M (in C).

• In fact, if M∗ ≤K M is in K<λ, a ^
M∗

M , and r ∈ gS≤λ(M∗a), then N can

be chosen so that it realizes r.

Proof. Since κ̄1(s) = µ+ ≤ λ, it suffices to prove the second part. Assume it
fails.

Claim: For any saturated M ′ ≥K M in Kλ, if a^
M
M ′, then the second part

fails with M ′ replacing M .

Proof of claim: By transitivity, a ^
M∗

M ′. By uniqueness of saturated models,

there exists f : M ′ ∼=M∗ M , which we can extend to an automorphism of C. Thus
we also have f(a) ^

M∗
M . By uniqueness, we can assume without loss of generality

that f fixes a as well. Since the second part above is invariant under applying f−1,
the result follows.

We now construct increasing continuous chains 〈Mi : i ≤ λ+〉, 〈Ni : i ≤ λ+〉
such that for all i < λ+:

(1) M0 = M .
(2) Mi ≤K Ni.
(3) Mi ∈ Kλ is saturated.
(4) a ^

M0

Mi.

(5) Ni /̂
Mi

Mi+1.

This is enough: the sequences contradict Lemma 6.11.11. This is possible: take
M0 = M , and N0 any saturated model of size λ containing M0 and a and realizing r.
At limits, take unions (we are using that Kλ-sat is an AEC). Now assume everything
up to i has been constructed. By the claim, the second part above fails for Mi,
so in particular Ni cannot be model-dominated by a over Mi. Thus (implicitly
using Lemma 6.11.10) there exists M ′i ≥K Mi with a^

Mi

M ′i and Ni /̂
Mi

M ′i . By the

model-witness property, we can assume without loss of generality that ‖M ′i‖ ≤ λ,
so using extension and transitivity, we can find Mi+1 ∈ Kλ saturated containing
M ′i so that a^

Mi

Mi+1. By monotonicity we still have Ni /̂
Mi

Mi+1. Let Ni+1 ∈ Kλ

be any saturated model containing Ni and Mi+1. �

Theorem 6.11.13. sλ � Kλ-sat
λ is a weakly successful type-full good λ-frame.

Proof. Since sλ is a type-full good frame, sλ � Kλ-sat
λ also is. To show it is

weakly successful, we want to prove the existence property for uniqueness triples.
So let M ∈ Kλ-sat

λ and p ∈ gS(M) be nonalgebraic. Say p = gtp(a/M ;N ′). Let C
be a monster model with N ′ ≤K C. By Lemma 6.11.12, there exists N ≤K C in
Kλ-sat
λ such that M ≤K N , a ∈ |N |, and a dominates N over M in C. By Lemma

6.11.6, a dominates N over M in N . By Lemma 6.11.7, (a,M,N) ∈ K3,uq

sλ�Kλ-sat
λ

.

Now, p = gtp(a/M ;N ′) = gtp(a/M ;C) = gtp(a/M ;N), as desired. �
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The term “weakly successful” suggests that there must exist a definition of
“successful”. This is indeed the case:

Definition 6.11.14 (Definition 10.1.1 in [JS13]). A type-full good λt-frame t is
successful if it is weakly successful and ≤λ+

t
has smoothness: whenever 〈Ni : i ≤ δ〉

is a ≤λ+
t

-increasing continuous chain of saturated models in (Kup
t )λ+

t
, N ∈ (Kup

t )λ+
t

is saturated and i < δ implies Ni ≤λ+
t
N , then Nδ ≤λ+

t
N .

We will not define ≤λ+
t

(the interested reader can consult e.g. [JS13, Definition

6.14]). The only fact about it we will need is:

Fact 6.11.15 (Theorem 7.8 in [Jar16]). If t is a weakly successful type-full good

λt-frame, (Kup
t )[λt,λ

+
t ] has amalgamation and is λt-tame, then≤K� (Kup

t )
λ+
t -sat

λ+
t

=≤λ+
t

.

Corollary 6.11.16. sλ � Kλ-sat
λ is a successful type-full good λ-frame.

Proof. By Theorem 6.11.13, sλ � Kλ-sat
λ is weakly successful. To show it is

successful, it is enough (by Fact 6.11.15), to see that ≤K has smoothness. But this
holds since K is an AEC. �

For a good λt-frame t, Shelah also defines a λ+
t -frame t+ ([She09a, Definition

III.1.7]). He then goes on to show:

Fact 6.11.17 (Claim III.1.9 in [She09a]). If t is a successful good λt-frame,
then t+ is a good27 λ+

t -frame.

Remark 6.11.18. This does not use the weak continuum hypothesis.

Note that in our case, it is easy to check that:

Fact 6.11.19. (sλ)+ = sλ+ � Kλ+-sat
λ+ .

Definition 6.11.20 (Definition III.1.12 in [She09a]). Let t be a pre-λt-frame.

(1) By induction on n < ω, define t+n as follows:
(a) t+0 = t.
(b) t+(n+1) = (t+n)+.

(2) By induction on n < ω, define “t is n-successful” as follows:
(a) t is 0-successful if and only if it is a good λ-frame.
(b) t is (n + 1)-successful if and only if it is a successful good λ-frame

and t+ is n-successful.
(3) t is ω-successful if it is n-successful for all n < ω.

Thus by Fact 6.11.17, t is 1-successful if and only if it is a successful good
λt-frame. More generally a good λt-frame t is n-successful if and only if t+m is a
successful good λ+m

t -frame for all m < n.

Theorem 6.11.21. sλ � Kλ-sat
λ is an ω-successful type-full good λ-frame.

Proof. By induction on n < ω, simply observing that we can replace λ by
λ+n in Corollary 6.11.16. �

27Shelah proves that t+ is actually good+. There is no reason to define what this means
here.
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We emphasize again that we did not use the weak continuum hypothesis (as
Shelah does in [She09a, Chapter II]). We pay for this by using tameness (in Fact
6.11.3). Note that all the results of [She09a, Chapter III] apply to our ω-successful
good frame.

Recall that part of Shelah’s point is that ω-successful good λ-frames extend
to (≥ λ)-frames. However this is secondary for us (since tameness already implies
that a frame extends to larger models, see [Bon14a] and Chapter 5). Really, we
want to extend the good frame to longer types. We show that it is possible in the
next section.

6.12. A fully good long frame

Hypothesis 6.12.1. s = (K,^) is a weakly successful type-full good λ-frame.

This is reasonable since the previous section showed us how to build such a
frame. Our goal is to extend s to obtain a fully good (≤ λ, λ)-independence relation.
Most of the work has already been done by Shelah:

Fact 6.12.2 (Conclusion II.6.34 in [She09a]). There exists a relation NF ⊆ 4K
satisfying:

(1) NF(M0,M1,M2,M3) implies M0 ≤K M` ≤K M3 are in K for ` = 1, 2.
(2) NF(M0,M1,M2,M3) and a ∈ |M1|\|M2| implies gtp(a/M2;M3) does not

s-fork over M0.
(3) Invariance: NF is preserved under isomorphisms.
(4) Monotonicity: If NF(M0,M1,M2,M3):

(a) If M0 ≤K M ′` ≤K M` for ` = 1, 2, then NF(M0,M
′
1,M

′
2,M

′
3).

(b) If M ′3 ≤K M3 contains |M1| ∪ |M2|, then NF(M0,M1,M2,M
′
3).

(c) If M ′3 ≥K M3, then NF(M0,M1,M2,M
′
3).

(5) Symmetry: NF(M0,M1,M2,M3) if and only if NF(M0,M2,M1,M3).
(6) Long transitivity: If 〈Mi : i ≤ α〉, 〈Ni : i ≤ α〉 are increasing continuous

and NF(Mi, Ni,Mi+1, Ni+1) for all i < α, then NF(M0, N0,Mα, Nα).
(7) Independent amalgamation: If M0 ≤K M`, ` = 1, 2, then for some M3 ∈

K, f` : M` −−→
M0

M3, we have NF(M0, f1[M1], f2[M2],M3).

(8) Uniqueness: If NF(M `
0 ,M

`
1 ,M

`
2 ,M

`
3), ` = 1, 2, fi : M1

i
∼= M2

i for i =
0, 1, 2, and f0 ⊆ f1, f0 ⊆ f2, then f1 ∪ f2 can be extended to f3 : M1

3 →
M2

4 , for some M2
4 with M2

3 ≤K M2
4 .

Notation 6.12.3. We write M1

M3

^
M0

M2 instead of NF(M0,M1,M2,M3). If ā is

a sequence, we write ā
M3

^
M0

M2 for ran(ā)
M3

^
M0

M2, and similarly if sequences appear

at other places.

Remark 6.12.4. Shelah’s definition of NF ([She09a, Definition II.6.12]) is very
complicated. It is somewhat simplified in [JS13].

Remark 6.12.5. Shelah calls such an NF a nonforking relation which respects
s ([She09a, Definition II.6.1]). While there are similarities with this chapter’s
definition of a good (≤ λ)-frame, note that NF is only defined for types of models
while we would like to make it into a relation for arbitrary types of length at most
λ.
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We start by showing that uniqueness is really the same as the uniqueness prop-
erty stated for frames. We drop Hypothesis 6.12.1 for the next lemma.

Lemma 6.12.6. Let K be an AEC in λ and assume K has amalgamation. The
following are equivalent for a relation NF ⊆ 4K satisfying (1), (3), (4) of Fact
6.12.2:

(1) Uniqueness in the sense of Fact 6.12.2.(8).

(2) Uniqueness in the sense of frames: If M
N

^
M0

M1 and M ′
N ′

^
M0

M1 for models

M,M ′ ∈
K, ā and ā′ are enumerations ofM andM ′ respectively, p := gtp(ā/M1;N),
q := gtp(ā′/M1;N ′), and p �M0 = q �M0, then p = q.

Proof.

• (1) implies (2): Since p � M0 = q � M0, there exists N ′′ ≥K N ′ and

f : N −−→
M0

N ′′ such that f(ā) = ā′. Therefore by invariance, ā′
N ′′

^
M0

f [M1].

Let f0 := idM0
, f1 := f−1 � f [M1], f2 := idM ′ . By uniqueness, there

exists N ′′′ ≥K N ′′, g ⊇ f1 ∪ f2, g : N ′′ → N ′′′. Consider the map
h := g ◦ f : N → N ′′′. Then g � M1 = idM1 and h(ā) = g(ā′) = ā′, so h
witnesses p = q.

• (2) implies (1): By some renaming, it is enough to prove that whenever

M2

N

^
M0

M1 and M2

N ′

^
M0

M1, there exists N ′′ ≥K N ′ and f : N ′ −−−−−−−→
|M1|∪|M2|

N ′′. Let ā be an enumeration of M2. Let p := gtp(ā/M1;N), q :=
gtp(ā/M1;N ′). We have that p � M0 = gtp(ā/M1;M2) = q � M0. Thus
p = q, so there exists N ′′ ≥K N ′ and f : N −−→

M1

N ′′ such that f(ā) = ā.

In other words, f fixes M2, so is the desired map.

�

We now extend NF to take sets on the left hand side. This step is already made
by Shelah in [She09a, Claim III.9.6], for singletons rather than arbitrary sets. We
check that Shelah’s proofs still work.

Definition 6.12.7. Define NF′(M0, A,M,N) to hold if and only if M0 ≤K

M ≤K N are in K, A ⊆ |N |, and there exists N ′ ≥K N , NA ≥K M with

NA ≤K N ′ and NA
N ′

^
M0

M . We abuse notation and also write A
N

^
M0

M instead

of NF′(M0, A,M,N). We let t := (K,^).

Remark 6.12.8. Compare with the definition of cl (Definition 6.3.9).

Proposition 6.12.9.

(1) If M0 ≤K M` ≤K M3, ` = 1, 2, then NF(M0,M1,M2,M3) if and only if
NF′(M0,M1,M2,M3).

(2) t is a (type-full) pre-(≤ λ, λ)-frame.
(3) t has base monotonicity, full symmetry, uniqueness, existence, and exten-

sion.
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Proof. Exactly as in [She09a, Claim III.9.6]. Shelah omits the proof of
uniqueness, so we give it here. For notational simplicity, let us work in a local

monster model C ∈ Kλ+-sat
λ+ , and write A^

M0

M1 instead of A
C

^
M0

M1. Let α ≤ λ

and assume that p, q ∈ gSα(M) are given such that p = gtp(ā/M), q = gtp(ā′/M).
Assume that M0 ≤K M is such that both p and q do not fork over M0 (in the sense
of NF’). We want to see that p = q.

By definition, there exists Mā ∈ Kλ such that M0 ≤K Mā, ā ∈ α|Mā|, and
Mā^

M0

M . By symmetry for NF, M ^
M0

Mā. Similarly, there exists a model Mā′ ∈

Kλ containing ā′ such that M0 ≤K Mā′ and M ^
M0

Mā′ .

Since p � M0 = q � M0, there exists an automorphism f of C fixing M0 such
that f(ā) = ā′. By invariance, M ^

M0

Mā′ and f [M ] ^
M0

f [Mā], and both Mā′ and

f [Mā] contain ā′. By Lemma 6.12.6 and the proof of Lemma 3.5.4(3), we have that
(for some enumeration c̄ of M) gtp(c̄/M0ā

′) = gtp(f(c̄)/M0ā
′). Thus we can pick

an automorphism g of C fixing M0ā
′ and sending f(c̄) back to c̄. Now f ◦g−1 shows

that gtp(ā/M) = gtp(ā′/M), i.e. p = q as needed. �

We now turn to local character. The key is:

Fact 6.12.10 (Claim III.1.17 in [She09a]). Let δ ≤ λ+ be a limit ordinal.
Given 〈Mi : i ≤ δ〉 increasing continuous, we can build 〈Ni : i ≤ δ〉 increasing

continuous such that for all i ≤ j ≤ δ with j < λ+, Ni

Nj

^
Mi

Mj and Mδ <
univ
K Nδ.

Lemma 6.12.11. For all α < λ, κα(t) = |α|+ + ℵ0. Moreover if 〈Mi : i < λ+〉
is increasing in Kλ and p ∈ gSλ(

⋃
i<λ+ Mi), there exists i < λ+ such that p � Mj

does not fork over Mi for all j ≥ i.
Proof. Let α < λ. Let 〈Mi : i ≤ δ + 1〉 be increasing continuous with

δ = cf δ > |α|. Let A ⊆ |Mδ+1| have size ≤ α. Let 〈Ni : i ≤ δ〉 be as given
by Fact 6.12.10. By universality, we can assume without loss of generality that
Mδ+1 ≤K Nδ. Thus A ⊆ |Nδ| and by the cofinality hypothesis, there exists i < δ

such that A ⊆ |Ni|. In particular, A
Nδ

^
Mi

Mδ, so A
Mδ+1

^
Mi

Mδ, as needed. The proof of

the moreover part is completely similar. �

Remark 6.12.12. In [JS13] (and later in [JS12, Jar, Jar16]), the authors
have considered semi-good λ-frames, where the stability condition is replaced by
almost stability (| gS(M)| ≤ λ+ for all M ∈ Kλ), and an hypothesis called the
conjugation property is often added. Several of the above results carry through in
that setup but we do not know if Lemma 6.12.11 would also hold.

We come to the last property: disjointness. The situation is a bit murky: At
first glance, Fact 6.12.2.(2) seems to give it to us for free (since we are assuming s
has disjointness), but unfortunately we are assuming a /∈ |M2| there. We will obtain
it with the additional hypothesis of categoricity in λ (this is reasonable since if the
frame has a superlimit, see Remark 6.10.20, one can always restrict oneself to the
class generated by the superlimit). Note that disjointness is never used in a crucial
way in this chapter (but it is always nice to have, as it implies for example disjoint
amalgamation when combined with independent amalgamation).
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Lemma 6.12.13. If K is categorical in λ, then t has disjointness and t≤1 = s.

Proof. We have shown that t≤1 has all the properties of a good frame ex-
cept perhaps disjointness so by the proof of Theorem 6.9.7 (which never relied on
disjointness), s = t≤1. Since s has disjointness, t≤1 also does, and therefore t has
disjointness. �

What about continuity for chains? The long transitivity property seems to
suggest we can say something, and indeed we can:

Fact 6.12.14. Assume λ = λ+3
0 and there exists an ω-successful good λ0-frame

s′ such that s = (s′)+3.
Assume δ is a limit ordinal and 〈M `

i : i ≤ δ〉 is increasing continuous in Kλ,

` ≤ 3. If M1
i

M3
i

^
M0
i

M2
i for each i < δ, then M1

δ

M3
δ

^
M0
δ

M2
δ .

Proof. By [She09a, Claim III.12.2], all the hypotheses at the beginning of
each section of Chapter III in the book hold for s. Now apply Claim III.8.19 in the
book. �

Remark 6.12.15. Where does the hypothesis λ = λ+3
0 come from? Shelah’s

analysis in chapter III of his book proceeds on the following lines: starting with
an ω-successful frames s, we want to show s has nice properties like existence of
prime triples, weak orthogonality being orthogonality, etc. They are hard to show
in general, however it turns out s+ has some nicer properties than s (for example,
Ks+ is always categorical)... In general, s+(n+1) has even nicer properties than s+n;
and Shelah shows that the frame has all the nice properties he wants after going
up three successors.

We obtain:

Theorem 6.12.16.

(1) If K is categorical in λ, then t is a good (≤ λ, λ)-frame.
(2) If λ = λ+3

0 and there exists an ω-successful good λ0-frame s′ such that
s = (s′)+3, then t is a fully good (≤ λ, λ)-frame.

Proof. t is good by Proposition 6.12.9, Lemma 6.12.11, and Lemma 6.12.13.
The second part follows from Fact 6.12.14 (note that by definition of the successor
frame, K will be categorical in λ in that case). �

Remark 6.12.17. In Corollary 5.6.10, it is shown that λ-tameness and amal-
gamation imply that a good λ-frame extends to a good (<∞, λ)-frame. However,
the definition of a good frame there is not the same as it does not assume that
the frame is type-full (the types on which forking is defined are only the types of
independent sequences). Thus the conclusion of Theorem 6.12.16 is much stronger
(but uses more hypotheses).

6.13. Extending the base and right hand side

Hypothesis 6.13.1.

(1) i = (K,^) is a fully good (≤ λ, λ)-independence relation.
(2) K′ := Kup has amalgamation and is λ-tame for types of length less than

λ+.
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In this section, we give conditions under which i becomes a fully good (≤ λ,≥
λ)-independence relation. In the next section, we will make the left hand side bigger
and get a fully good (<∞,≥ λ)-independence relation.

Recall that extending a (≤ 1, λ)-frame to bigger models was investigated in
[She09a, Chapter II] and [Bon14a], Chapter 5. Here, most of the arguments are
similar but the longer types cause some additional difficulties (e.g. in the proof of
local character).

Notation 6.13.2. Let i′ := iup (recall Definition 6.6.3). Write s := pre(i),
s′ := pre(i′), K′ := Ki′ . We abuse notation and also denote ^

i′
by ^.

We want to investigate when the properties of i carry over to i′.

Lemma 6.13.3.

(1) i′ is a (≤ λ,≥ λ)-independence relation.
(2) K′ has joint embedding, no maximal models, and is stable in all cardinals.
(3) i′ has base monotonicity, transitivity, uniqueness, and disjointness.
(4) i′ has full model continuity.

Proof.

(1) By Proposition 6.6.5.
(2) By Corollary 5.6.9, (s′)≤1 is a good (≥ λ)-frame, so in particular K′ has

joint embedding, no maximal models, and is stable in all cardinals.
(3) See [She09a, Claim II.2.11] for base monotonicity and transitivity. Dis-

jointness is straightforward from the definition of i′, and uniqueness follows
from the tameness hypothesis and the definition of i′.

(4) Assume 〈M `
i : i ≤ δ〉 is increasing continuous in K′, ` ≤ 3, δ is regular,

M0
i ≤K M `

i ≤K M3
i for ` = 1, 2, ‖M1

δ ‖ < λ+ (recall the definition of full

model continuity), i < δ, and M1
i

M3
i

^
M0
i

M2
i for all i < δ. Let N := M3

δ .

By ambient monotonicity, M1
i

N

^
M0
i

M2
i for all i < δ. We want to see that

M1
δ

N

^
M0
δ

M2
δ . Since ‖M1

δ ‖ < λ+, M1
δ and M0

δ are in K. Thus it is enough

to show that for all M ′ ≤K M2
δ in K with M0

δ ≤K M ′, M1
δ

N

^
M0
δ

M ′. Fix

such an M ′. We consider two cases:
• Case 1: δ < λ+: Then we can find 〈M ′i : i ≤ δ〉 increasing continuous

in K (as opposed to just in K′) such that M ′δ = M ′ and for all i < δ,

M0
i ≤K M ′i ≤K M2

i . By monotonicity, for all i < δ, M1
i

N

^
M0
i

M ′i . By

full model continuity in K, M1
δ

N

^
M0
δ

M ′, as desired.

• Case 2: δ ≥ λ+: Since M0
δ ,M

1
δ ∈ K, the chains 〈M `

i : i ≤ δ〉 for
` = 0, 1 must be eventually constant, so we can assume without loss
of generality that M0

δ = M0
0 , M1

δ = M1
0 . Since δ is regular, there
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exists i < δ such that M ′ ≤K M2
i . By assumption, M1

0

N

^
M0

0

M2
i , so by

monotonicity, M1
0

N

^
M0

0

M ′, as needed.

�

We now turn to local character.

Lemma 6.13.4. Assume 〈Mi : i ≤ δ〉 is increasing continuous, p ∈ gSα(Mδ),
α < λ+ a cardinal and δ = cf δ > α.

(1) If α < λ, then there exists i < δ such that p does not fork over Mi.
(2) If α = λ and i has the left (< cf λ)-witness property, then there exists

i < δ such that p does not fork over Mi.

Proof.

(1) As in the proof of Lemma 6.6.8.(2b) Note that weak chain local character
holds for free because α < λ and κα(i) = α+ + ℵ0 by assumption.

(2) By the proof of Lemma 6.6.8.(2b) again, it is enough to see that i has
weak chain local character: Let 〈Mi : i < λ+〉 be increasing in K and let

Mλ+ :=
⋃
i<λ+ Mi. Let p ∈ gSλ(Mλ+). We will show that there exists

i < λ+ such that p does not fork over Mi. Say p = gtp(ā/Mλ+ ;N) and
let A := ran(ā). Write A =

⋃
j<cf λAj with 〈Aj : i < cf λ〉 increasing

continuous and |Aj | < λ. By the first part, for each j < cf λ there exists

ij < λ+ such that Aj
N

^
Mij

Mλ+ . Let i := supj<cf λ ij . We claim that

A
N

^
Mi

Mλ+ . By the (< cf λ)-witness property and the definition of i′ (here

we use that Mi ∈ K), it is enough to show this for all B ⊆ A of size less
than cf λ. But any such B is contained in an Aj , and so the result follows
from base monotonicity.

�

Lemma 6.13.5. Assume i′ has existence. Then i′ has independent amalgama-
tion.

Proof. As in, for example, the proof of [Bon14a, Theorem 5.3], using full
model continuity. �

Putting everything together, we obtain:

Theorem 6.13.6. If K is (< cf λ)-tame and short for types of length less than
λ+, then i′ is a fully pre-good (≤ λ,≥ λ)-independence relation.

Proof. We want to show that s′ is fully good. The basic properties are proven
in Lemma 6.13.3. By Lemma 6.4.5, i has the left (< cf λ)-witness property. Thus by
Lemma 6.13.4, for any α < λ+, κα(i′) = |α|+ + ℵ0. In particular, i′ has existence,
and thus by the definition of i′ and transitivity in i, κ̄α(i′) = λ+ = |α|+ + λ+.
Finally by Lemma 6.13.5, i′ has independent amalgamation and so by Proposition
6.4.3.(3), i′ has extension. �
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6.14. Extending the left hand side

We now enlarge the left hand side of the independence relation built in the
previous section.

Hypothesis 6.14.1.

(1) i = (K,^) is a fully good (≤ λ,≥ λ)-independence relation.
(2) K is fully λ-tame and short.

Definition 6.14.2. Define ilong = (K,^
long

) by setting ^
long

(M0, A,B,N) if

and only if for all A0 ⊆ A of size less than λ+, A0

N

^
M0

B.

Remark 6.14.3. The idea is the same as for Definition 5.4.3: we extend the
frame to have longer types. The difference is that ilong is type-full.

Remark 6.14.4. We could also have defined extension to types of length less
than θ for θ a cardinal or ∞ but this complicates the notation and we have no use
for it here.

Notation 6.14.5. Write i′ := ilong. We abuse notation and also write ^ for

^
long

.

Lemma 6.14.6.

(1) i′ is a (<∞,≥ λ)-independence relation.
(2) K has joint embedding, no maximal models, and is stable in all cardinals.
(3) i′ has base monotonicity, transitivity, disjointness, existence, symmetry,

the left and right λ-witness properties, and uniqueness.

Proof.

(1) Straightforward.
(2) Because i is good.
(3) Base monotonicity, transitivity, disjointness, existence, and the left and

right λ-witness property are straightforward (recall that i has the right
λ-witness property by Lemma 6.4.5). Uniqueness is by the shortness hy-
pothesis. Symmetry follows easily from the witness properties.

�

Lemma 6.14.7. Assume there exists a regular κ ≤ λ such that i has the left
(< κ)-model-witness property. Then i′ has full model continuity.

Proof. Let 〈M `
i : i ≤ δ〉, ` ≤ 3 be increasing continuous in K such that

M0
i ≤K M `

i ≤K M3
i , ` = 1, 2, and M1

i

M3
i

^
M0
i

M2
i . Without loss of generality, δ is

regular. Let N := M3
δ . We want to show that M1

δ

N

^
M0
δ

M2
δ . Let A ⊆ |M1

δ | have size

less than λ+. Write µ := |A|. By monotonicity, assume without loss of generality

that λ + κ ≤ µ. We show that A
N

^
M0
δ

M2
δ , which is enough by definition of i′. We

consider two cases.
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• Case 1: δ > µ: By local character in i there exists i < δ such thatA
N

^
M2
i

M2
δ .

By right transitivity, A
N

^
M0
i

M2
δ , so by base monotonicity, A

N

^
M0
δ

M2
δ .

• Case 2: δ ≤ µ: For i ≤ δ, let Ai := A ∩ |M1
i |. Build 〈Ni : i ≤ δ〉,

〈N0
i : i ≤ δ〉 increasing continuous in K≤µ such that for all i < δ:

(1) Ai ⊆ |Ni|.
(2) Ni ≤K M1

i , A ⊆ |Ni|.
(3) N0

i ≤K M0
i , N0

i ≤K Ni.

(4) Ni
N

^
N0
i

M2
i .

This is possible. Fix i ≤ δ and assume Nj , N
0
j have already been con-

structed for j < i. If i is limit, take unions. Otherwise, recall that we are

assuming M1
i

N

^
M0
i

M2
i . By Lemma 6.4.7 (with Ai ∪

⋃
j<i |Nj | standing for

A there, this is where we use the (< κ)-model-witness property), we can

find N0
i ≤K M0

i and Ni ≤K M1
i in K≤µ such that N0

i ≤K Ni, Ni
N

^
N0
i

M2
i ,

Ai ⊆ |Ni|, Nj ≤K Ni for all j < i, and N0
j ≤K N0

i for all j < i. Thus
they are as desired.

This is enough. Note that Aδ = A, so A ⊆ |Nδ|. By full model conti-

nuity in i, Nδ
N

^
N0
δ

M2
δ . By monotonicity, A

N

^
M0
δ

M2
δ , as desired.

�

Lemma 6.14.8. Assume there exists a regular κ ≤ λ such that i has the left
(< κ)-model-witness property. Then for all cardinals µ:

(1) κ̄µ(i′) = λ+ + µ+.
(2) κµ(i′) = ℵ0 + µ+.

Proof. By Lemma 6.14.7, i′ has full model continuity. By Lemma 6.4.8, (1)
holds. For (2), if µ ≤ λ, this holds because i is good and if µ > λ, this follows from
Proposition 6.4.3.(5) and (1). �

We now turn to proving extension. The proof is significantly more complicated
than in the previous section. We attempt to explain why and how our proof goes.
Of course, it suffices to show independent amalgamation (Proposition 6.4.3.(3)). We
work by induction on the size of the models but land in trouble when all models
have the same size. Suppose for example that we want to amalgamate M0 ≤K M `,
` = 1, 2 that are all in Kλ+ . If M1 (or, by symmetry, M2) had smaller size, we
could use local character to assume without loss of generality that M0 is in Kλ

and then imitate the usual directed system argument (as in for example the proof
of [Bon14a, Theorem 5.3]).

Here however it seems we have to take at least two resolutions at once so
we fix 〈M `

i : i < λ+〉, ` = 0, 1, satisfying the usual conditions. Letting p :=
gtp(M1/M0;M1) and its resolution pi := gtp(M1

i /M
0
i ;M1), it is natural to build

〈qi : i < λ+〉 such that qi is the nonforking extension of pi to M2. If everything
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works, we can take the direct limit of the qis and get the desired nonforking exten-
sion of p. However with what we have said so far it is not clear that qi+1 is even
an extension of qi! In the usual argument, this is the case since both pi and pi+1

do not fork over the same domain but we cannot expect it here. Thus we require

in addition that M1
i

M1

^
M0
i

M0 and this turns out to be enough for successor steps. To

achieve this extra requirement, we use Lemma 6.4.7. Unfortunately, we also do not
know how to go through limit steps without making one extra locality hypothesis:

Definition 6.14.9 (Type-locality).

(1) Let δ be a limit ordinal, and let p̄ := 〈pi : i < δ〉 be an increasing chain of
Galois types, where for i < δ, pi ∈ gSαi(M) and 〈αi : i ≤ δ〉 are increasing
continuous. We say p̄ is type-local if whenever p, q ∈ gSαδ(M) are such
that pαi = qαi = pi for all i < δ, then p = q.

(2) We say K is type-local if every p̄ as above is type-local.
(3) We say K is densely type-local above λ if for every λ0 > λ, M ∈ Kλ0 ,

p ∈ gSλ0(M), there exists 〈Ni : i ≤ δ〉 such that:
(a) δ = cf λ0.
(b) For all i < δ, Ni ∈ K<λ0 .
(c) 〈Ni : i ≤ δ〉 is increasing continuous.
(d) Nδ ≥K M is in Kλ0

.
(e) Letting qi := gtp(Ni/M ;Nδ) (seen as a member of gSαi(M), where

of course 〈αi : i ≤ δ〉 are increasing continuous), we have that qδ
extends p and 〈qj : j < i〉 is type-local for all limit i ≤ δ.

We say K is densely type-local if it is densely type-local above λ for
some λ.

Intuitively, the relationship between type-locality and locality (see [Bal09, Def-
inition 11.4]) is the same as the relationship between type-shortness and tameness
(in the later, we look at domain of types, in the former we look at length of types).
We suspect that dense type-locality should hold in our context, see the discussion
in Section 6.15 for more. The following lemma says that increasing the elements in
the resolution of the type preserves type-locality.

Lemma 6.14.10. Let δ be a limit ordinal. Assume p̄ := 〈pi : i < δ〉 is an
increasing chain of Galois types, pi ∈ gSαi(M) and 〈αi : i ≤ δ〉 are increasing
continuous. Assume p̄ is type-local and assume pδ ∈ gSαδ(M) is such that pαi = pi
for all i < δ. Say p = gtp(āδ/M ;N) and let āi := āδ � αi (so pi = gtp(āi/M ;N)).

Assume 〈b̄i : i ≤ δ〉 are increasing continuous sequences such that āδ = b̄δ
and āi is an initial segment of b̄i for all i < δ. Let qi := gtp(b̄i/M ;N). Then
q̄ := 〈qi : i < δ〉 is type-local.

Proof. Say b̄i is of type βi. So 〈βi : i ≤ δ〉 is increasing continuous and
αδ = βδ.

If q ∈ gSβδ(M) is such that qβi = qi for all i < δ, then qαi = (qi)
αi = pi for all

i < δ so by type-locality of p̄, p = q, as desired. �

Before proving Lemma 6.14.13, let us make precise what was meant above
by “direct limit” of a chain of types. It is known that (under some set-theoretic
hypotheses) there exists AECs where some chains of Galois types do not have an
upper bound, see [BS08, Theorem 3.3]. However a coherent chain of types (see
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below) always has an upper bound. We adapt Definition 5.1 in [Bon14a] (which
is implicit already in [She01a, Claim 0.32.2] or [GV06a, Lemma 2.12]) to our
purpose.

Definition 6.14.11. Let δ be an ordinal. An increasing chain of types 〈pi :
i < δ〉 is said to be coherent if there exists a sequence 〈(āi,Mi, Ni) : i < δ〉 and
maps fi,j : Ni → Nj , i ≤ j < δ, so that for all i ≤ j ≤ k < δ:

(1) fj,k ◦ fi,j = fi,k.
(2) gtp(āi/Mi;Ni) = pi.
(3) 〈Mi : i < δ〉 and 〈Ni : i < δ〉 are increasing.
(4) Mi ≤K Ni, āi ∈ <∞Ni.
(5) fi,j fixes Mi.
(6) fi,j(āi) is an initial segment of āj .

We call the sequence and maps above a witnessing sequence to the coherence
of the pi’s.

Given a witnessing sequence 〈(āi,Mi, Ni) : i < δ〉 with maps fi,j : Ni → Nj , we
can let Nδ be the direct limit of the system 〈Ni, fi,j : i ≤ j < δ〉, Mδ :=

⋃
i<δMi,

and āδ :=
⋃
i<δ fi,δ(āi) (where fi,δ : Ni → Nδ is the canonical embedding). Then

p := gtp(ā/Mδ;Nδ) extends each pi. Note that p depends on the witness but we
sometimes abuse language and talk about “the” direct limit (where really some
witnessing sequence is fixed in the background).

Finally, note that full model continuity also applies to coherent sequences. More
precisely:

Proposition 6.14.12. Assume i has full model continuity. Let 〈(āi,Mi, Ni) :
i < δ〉, 〈fi,j : Ni → Nj , i ≤ j < δ〉 be witnesses to the coherence of pi :=
gtp(āi/Mi;Ni). Assume that for each i < δ, āi enumerates a model M ′i and that
〈M0

i : i < δ〉 are increasing such that M0
i ≤K Mi, M

0
i ≤K M ′i , and pi does not fork

over M0
i . Let p be the direct limit of the pis (according to the witnessing sequence).

Then p does not fork over M0
δ :=

⋃
i<δM

0
i .

Proof. Use full model continuity inside the direct limit. �

Lemma 6.14.13. Assume K is densely type-local above λ, and assume there
exists a regular κ ≤ λ such that K is fully (< κ)-tame. Then i′ has extension.

Proof. By Lemma 6.4.5 and symmetry, i has the left (< κ)-model-witness
property. By Lemmas 6.14.7 and 6.14.8, i′ has full model continuity and the local
character properties. Let λ0 ≥ λ be a cardinal. We prove by induction on λ0 that
i′ has extension for base models in Kλ0 . By Proposition 6.4.3.(3), it is enough to
prove independent amalgamation.

Let M0 ≤K M `, ` = 1, 2 be in K with ‖M0‖ = λ0. We want to find q ∈
gSλ0(M2) a nonforking extension of p := gtp(M1/M0;M1). Let λ` := ‖M `‖ for
` = 1, 2.

Assume we know the result when λ0 = λ1 = λ2. Then we can work by induction
on (λ1, λ2): if they are both λ0, the result holds by assumption. If not, we can
assume by symmetry that λ1 ≤ λ2, find an increasing continuous resolution of M2,
〈M2

i ∈ K<λ2 : i < λ2〉 and do a directed system argument as in [Bon14a, Theorem
5.3] (using full model continuity and the induction hypothesis).

Now assume that λ0 = λ1 = λ2. If λ0 = λ, we get the result by extension in i,
so assume λ0 > λ. Let δ := cf λ0. By dense type-locality, we can assume (extending
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M1 if necessary) that there exists 〈Ni : i ≤ δ〉 an increasing continuous resolution
of M1 with Ni ∈ K<λ0 for i < δ so that 〈gtp(Nj/M

0;M1) : j < i〉 is type-local for
all limit i ≤ δ.

Step 1. Fix increasing continuous 〈M `
i : i ≤ δ〉 for ` < 2 such that for all i < δ,

` < 2:

(1) M ` = M `
δ .

(2) M `
i ∈ K<λ0 .

(3) Ni ≤K M1
i .

(4) M0
i ≤K M1

i .

(5) M1
i

M1

^
M0
i

M0.

This is possible by repeated applications of Lemma 6.4.7 (as in the proof of

Lemma 6.14.7), starting with M1
M1

^
M0

M0 which holds by existence.

Step 2. Fix enumerations of M1
i of order type αi such that 〈αi : i ≤ δ〉 is

increasing continuous, αδ = λ0 and i < j implies that M ′i appears as the initial
segment up to αi of the enumeration of M ′j . For i ≤ δ, let pi := gtp(M1

i /M
0
i ;M1)

(seen as an element of gSαi(M0
i )). We want to find q ∈ gSλ0(M2) extending p = pδ

and not forking over M0. Note that since for all j < δ, Nj ≤K M1
j , we have by

Lemma 6.14.10 that 〈gtp(M1
j /M

0;M1) : j < i〉 is type-local for all limit i ≤ δ.
Build an increasing, coherent 〈qi : i ≤ δ〉 such that for all i ≤ δ,
(1) qi ∈ gSαi(M2).
(2) qi �M0

i = pi.
(3) qi does not fork over M0

i .

This is enough: then qδ is an extension of p = pδ that does not fork over
M0
δ = M0.

This is possible: We work by induction on i ≤ δ. While we do not make
it explicit, the sequence witnessing the coherence is also built inductively in the
natural way (see also [Bon14a, Proposition 5.2]): at base and successor steps, we
use the definition of Galois types. At limit steps, we take direct limits.

Now fix i ≤ δ and assume everything has been defined for j < i.

• Base step: When i = 0, let q0 ∈ gSα0(M2) be the nonforking extension
of p0 to M2

0 (exists by extension below λ0).
• Successor step: When i = j+1, j < δ, let qi be the nonforking extension

(of length αi) of pi to M2. We have to check that qi indeed extends qj
(i.e. q

αj
i = qj). Note that qj � M0 does not fork over M0

j so by step 1

and uniqueness, qj � M0 = gtp(M1
j /M

0;M1). In particular, qj � M0
i =

gtp(M1
j /M

0
i ;M1). Since qi extends pi, qi � M0

i = gtp(M1
i /M

0
i ;M1) so

q
αj
i � M

0
i = gtp(M1

j /M
0
i ;M1) = qj � M0

i . By base monotonicity, qj does

not fork over M0
i so by uniqueness q

αj
i = qj . A picture is below.

pi // qi

pj

OO

// qj �M0
i

ccGGGGGGGGG
// qj

cc
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• Limit step: Assume i is limit. Let qi be the direct limit of the coherent
sequence 〈qj : j < i〉. Note that qi ∈ gSαi(M2) and by Proposition
6.14.12, qi does not fork over M0

i . It remains to see qi �M0
i = pi.

For j < i, let p′j ∈ gSαj (M0
i ) be the nonforking extension of pj to M0

i .

By step 1, p′j = gtp(M1
j /M

0
i ;M1). Thus 〈p′j : j < i〉 is type-local. By an

argument similar to the successor step above, we have that for all j < i,
p
αj
i = p′j . Moreover, for all j < i, q

αj
i �M

0
j = pj and qj does not fork over

M0
j so by uniqueness, q

αj
i � M

0
i = (qi � M0

i )αj = p′j . By type-locality, it

follows that qi �M0
i = pi, as desired.

�

Putting everything together, we get:

Theorem 6.14.14. If:

(1) For some regular κ ≤ λ, K is fully (< κ)-tame.
(2) K is densely type-local above λ.

Then i′ is a fully good (<∞,≥ λ)-independence relation.

Proof. Lemma 6.14.6 gives most of the properties of a good independence re-
lation. By Lemma 6.4.5 and symmetry, i has the left (< κ)-model-witness property.
By Lemma 6.14.7, i′ has full model continuity. By Lemma 6.14.8, it has the local
character properties. By Lemma 6.14.13, i′ has extension. �

We suspect that dense type-locality is not necessary, at least when i comes
from our construction (see the proof of Theorem 6.15.1). For example, by the proof
below, it would be enough to see that pre(i≤1

µ ) is weakly successful for all µ ≥ λ.
We delay a full investigation to a future work. For now, here is what we can say
without dense type-locality:

Theorem 6.14.15. Assume that for some regular κ ≤ λ, K is fully (< κ)-tame.
Then:

(1) i′ is a fully good independence relation, except perhaps for the extension
property. Moreover, it has the right λ-witness property.

(2) Assume that28 for all µ ≥ λ, (i′)≥µ satisfies Hypothesis 6.11.1. Then i′

has the extension property when the base is saturated.

Proof. The first part has been observed in the proof of Theorem 6.14.14 (see
also Lemma 6.14.6). To see the second part, let µ ≥ λ. By Theorem 6.11.13
and Theorem 6.12.16, there exists a good (≤ µ, µ)-independence relation i′′ with
underlying class Kµ-sat

µ . Using the witness properties and the arguments of Chapter

3 we have that (i′)≤µ � Kµ-sat
µ = i′′. By the proof of Lemma 6.14.13, i′ has extension

when the base model is in Kµ-sat
µ . �

6.15. The main theorems

Recall (Definition 6.8.4) that an AEC K is fully good if there is a fully good in-
dependence relation with underlying class K. Intuitively, a fully good independence
relation is one that satisfies all the basic properties of forking in a superstable first-
order theory. We are finally ready to show that densely type-local fully tame and

28If for example i′ is constructed as in the proof of Theorem 6.15.1, this will be the case.
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short superstable classes are fully good, at least on a class of sufficiently saturated
models29.

Theorem 6.15.1. Let K be a fully (< κ)-tame and short AEC with amalga-
mation. Assume that K is densely type-local above κ.

(1) If K is µ-superstable, κ = iκ > µ, and λ := (µ<κr )
+7

, then Kλ-sat is fully
good.

(2) If K is κ-strongly µ-superstable and λ := (µ<κr )
+6

, then Kλ-sat is fully
good.

(3) If κ = iκ > LS(K), and K is categorical in a µ > λ0 := (κ<κr )
+5

, then
K≥λ is fully good, where λ := min(µ, h(λ0)).

Proof. Given what has been proven already, the proofs are short. However to
help the reader reflect on all the ground that was covered, we start by giving a sum-
mary in plain language of what the main steps in the construction are. Assume for
example that K is categorical in a high-enough cardinal µ > κ = iκ > LS(K). By
the results of Section 6.10 (using results in [BG], which ultimately rely on [SV99]),
we get that K is κ-strongly κ-superstable (note that, as opposed to [She99], noth-
ing is assumed about the cofinality of µ). Thus coheir induces a good (≤ 1, λ)-frame
s with underlying class Kλ, for λ a high-enough cardinal. Moreover, coheir (seen
as a global independence relation) has the properties in Hypothesis 6.11.1. Thus
from the material of Section 6.11, we conclude that the good frame is well-behaved:
it is ω-successful.

By Section 6.12, this means that s can be extended to a good (≤ λ, λ)-frame
s′ (so forking is defined not only for types of length one but for all types of length
at most λ). With slightly more hypotheses on λ, we even can even make s′ a fully
good (≤ λ, λ)-frame, and by the “minimal closure” trick, into a fully good (≤ λ, λ)
independence relation i. By Section 6.13, i can be extended further to a fully good
(≤ λ,≥ λ)-independence relation i′ (that is, forking is not only defined over models
of size λ, but over models of all sizes at least λ). Finally, by Section 6.14, we
can extend i′ to types of any length (not just length at most λ), hence getting
the desired global independence relation (a fully good (< ∞,≥ λ)-independence
relation).

Now on to the actual proofs:

(1) By Theorem 6.10.11 and Proposition 6.10.10, K is κ-strongly (2<κr )+-
superstable. Now apply (2).

(2) By Fact 6.11.3, Hypothesis 6.11.1 holds for µ′ := (µ<κr )
+2

, λ there stand-

ing for (µ′)+ here, and K′ := Kµ′-sat. By Theorem 6.11.21, there is

an ω-successful type-full good (µ′)+-frame s on K(µ′)+-sat. By Theo-
rem 6.12.16, s+3 induces a fully good (≤ λ, λ)-independence relation i

on K(µ′)+4-sat = Kλ-sat. By Theorem 6.13.6, i′ := cl(pre(i≥λ)) is a fully
good (≤ λ,≥ λ)-independence relation on Kλ-sat. By Theorem 6.14.14,

(i′)
long

is a fully good (<∞,≥ λ)-independence relation on Kλ-sat. Thus
Kλ-sat is fully good.

29The number 7 in (1) is possibly the largest natural number ever used in a statement about
abstract elementary classes!
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(3) By Theorem 6.10.16, K is κ-strongly κ-superstable. By (2), Kλ+
0 -sat is

fully good. By Fact 6.10.12.(4), all the models in K≥λ are λ+
0 -saturated,

hence K
λ+

0 -sat
≥λ = K≥λ is fully good.

�

We now discuss the necessity of the hypotheses of the above theorem. It is easy
to see that a fully good AEC is superstable+. Moreover, the existence of a rela-
tion ^ with disjointness and independent amalgamation directly implies disjoint
amalgamation. An interesting question is whether there is a general framework in
which to study independence without assuming amalgamation, but this is out of
the scope of this chapter. To justify full tameness and shortness, one can ask:

Question 6.15.2. Let K be a fully good AEC. Is K fully tame and short?

If the answer is positive, we believe the proof to be nontrivial. We suspect
however that the shortness hypothesis of our main theorem can be weakened to
a condition that easily holds in all fully good classes. In fact, we propose the
following:

Definition 6.15.3. An AEC K is diagonally (< κ)-tame if for any κ′ ≥ κ,
K is (< κ′)-tame for types of length less than κ′. K is diagonally κ-tame if it is
diagonally (< κ+)-tame. K is diagonally tame if it is diagonally (< κ)-tame for
some κ.

It is easy to check that if i is a good (< ∞,≥ λ)-independence relation, then
Ki is diagonally λ-tame. Thus we suspect the answer to the following should be
positive:

Question 6.15.4. In Theorem 6.15.1, can “fully (< κ)-tame and short” be
replaced by “diagonally (< κ)-tame?

Finally, we believe the dense type-locality hypothesis can be removed30. In-
deed, chapter III of [She09a] has several results on getting models “generated” by
independent sequences. Since independent sequences exhibit a lot of finite character
(see also Chapter 5), we suspect the answer to the following should be positive.

Question 6.15.5. Is dense type-locality needed in Theorem 6.15.1?

The construction also gives a more localized independence relation if we do not
assume dense type-locality. Note that we can replace categoricity by superstability
or strong superstability as in the proof of Theorem 6.15.1.

Theorem 6.15.6. Let K be a fully (< κ)-tame and short AEC with amalga-
mation. Let λ, µ be cardinals such that:

LS(K) < κ = iκ < λ = iλ ≤ µ
Assume further that cf λ ≥ κ. If K is categorical in µ, then:

(1) There exists an ω-successful type-full good λ-frame s with Ks = Kλ.

Furthermore, the frame is induced by (< κ)-coheir: s = pre(iκ-ch(K)≤1
λ ).

(2) Kλ is (≤ λ, λ)-good.

30In fact, the result was initially announced without this hypothesis but Will Boney found a
mistake in our proof of Lemma 6.14.13. This is the only place where type-locality is used
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(3) Kλ+3-sat is fully (≤ λ+3)-good.

(4) Kλ+3-sat is fully good, except it may not have extension. Moreover it has
extension over saturated models.

(5) Let i := iκ-ch(Kλ+4-sat). Then i is fully good, except it may not have
extension. Moreover it has extension over saturated models.

Proof. By cardinal arithmetic, λ = λ<κr . By Fact 6.11.3 and Theorem
6.11.21, there is an ω-successful type-full good λ-frame s with Ks = Kλ-sat

λ . Now
(by Theorem 6.10.16 if µ > λ), K is categorical in λ. Thus Kλ-sat = K≥λ. The-
orem 6.12.16 and Theorem 6.13.6 give the next two parts. Theorem 6.14.15 gives
the fourth part. For the fifth part, let i′ witness the fourth part. We use Theo-

rem 6.9.3 with α, λ, i there standing for λ+4, λ+3, (i′)<λ
+4

here. We obtain that

(i′)<λ
+4

� Kλ+4-sat = i<λ
+4

. Since both i and i′ have the left λ+3-witness property,

i′ � Kλ+4-sat = i, as desired. �

6.16. Applications

We give three contexts in which the construction of a global independence
relation can be carried out. To simplify the statement of the results, we adopt the
following convention:

Notation 6.16.1. When we say “For any high-enough cardinal λ”, this should
be replaced by “There exists an infinite cardinal λ0 such that for all λ ≥ λ0”.

6.16.1. Fully (< ℵ0)-tame and short AECs.

Lemma 6.16.2. Let K be a fully (< ℵ0)-tame and short AEC with amalgama-
tion. Then K is type-local.

Proof. Straightforward since types are determined by finite restrictions of
their length. �

Note that the framework of fully (< ℵ0)-tame and short AEC with amalga-
mation generalizes homogeneous model theory. It is more general since we are not
assuming that all sets are amalgamation bases, nor that we are working in a class
of models of a first-order theory omitting a set of types. As a result, we do not have
the weak compactness of homogeneous model theory, so Corollary 6.16.3 is (to the
best of our knowledge) new.

Corollary 6.16.3. Let K be a fully (< ℵ0)-tame and short AEC with amal-
gamation. Assume that K is LS(K)-superstable. For any high-enough cardinal λ,
Kλ-sat is fully good.

Proof. By Lemma 6.16.2, K is type-local. Now apply Theorem 6.15.1. �

6.16.2. Fully tame and short eventually categorical AECs. An AEC is
eventually categorical (or categorical on a tail) if it is categorical in any high-enough
cardinal. Note that Theorem 6.1.5 gives conditions under which this follows from
categoricity in a single cardinal. In this context, we can also construct a global
independence relation. To the best of our knowledge, this is new.

Corollary 6.16.4. Let K be a fully tame and short AEC with amalgamation.
If K is eventually categorical, then for any high-enough cardinal λ, K≥λ is fully
good.
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Proof. Let κ be such that K is fully (< κ)-tame and short and let λ0 be
such that K is categorical in any λ ≥ λ0. We can make κ bigger if necessary and
replace K by K≥µ for an appropriate µ to assume without loss of generality that
LS(K) < κ = iκ, and K is categorical in all λ ≥ κ. We now apply Theorem 6.15.6
to obtain that for any high-enough λ, K≥λ is fully good, except it may only have
extension over saturated models. However any model is saturated by categoricity,
so K≥λ is fully good. �

6.16.3. Large cardinals. Categoricity together with a large cardinal axiom
implies that coheir is a well-behaved global independence relation. This was ob-
served in [MS90] when the AEC is a class of models of an Lκ,ω theory (κ a strongly
compact cardinal), and in [BG] for any AEC. Here we can improve on these results
by proving that in this framework coheir is fully good. In particular, it has full
model continuity and κα(i) = α+ + ℵ0. Full model continuity is not discussed in
[MS90, BG], and κα(i) = α+ + ℵ0 is only proven when α < κ or α = α<κ (see
[BG, Theorem 8.2(3)]). Further, the proof uses the large cardinal axiom whereas
we use it only to prove that coheir has the extension property.

Corollary 6.16.5. Let K be an AEC and let κ > LS(K) be a strongly com-
pact cardinal. For any high-enough cardinal λ > κ, if K is categorical in λ then
K≥λ is fully good as witnessed by coheir (that is, iκ-ch(K≥λ) is fully good).

Proof. By Fact 6.1.1, K is fully (< κ)-tame and short and K≥κ has amal-
gamation. By the last part of Theorem 6.15.6, there exists µ < λ such that

i := iκ-ch(Kµ+4-sat) is fully good, except perhaps for the extension property. By
[BG, Theorem 8.2(1)] (using that κ is strongly compact) i also has extension,
hence it is fully good. Now the model of size λ is saturated (Theorem 6.10.16), so

K≥λ ⊆ Kµ+4-sat. Hence iκ-ch(K≥λ) is also fully good. �

Remark 6.16.6. We can replace the categoricity hypothesis by amalgamation
and κ-superstability. Moreover instead of asking for κ to be a large cardinal, it
is enough to assume that K has amalgamation, is fully (< κ)-tame and short,
LS(K) < κ = iκ, and coheir has the extension property (as in hypothesis (3) of
[BG, Theorem 5.1]).





CHAPTER 7

Chains of saturated models in AECs

This chapter is based [BV17] and is joint work with Will Boney.

Abstract

We study when a union of saturated models is saturated in the framework of
tame abstract elementary classes (AECs) with amalgamation. We prove:

Theorem 7.0.7. If K is a tame AEC with amalgamation satisfying a natu-
ral definition of superstability (which follows from categoricity in a high-enough
cardinal), then for all high-enough λ:

(1) The union of an increasing chain of λ-saturated models is λ-saturated.
(2) There exists a type-full good λ-frame with underlying class the saturated

models of size λ.
(3) There exists a unique limit model of size λ.

Our proofs use independence calculus and a generalization of averages to this
non first-order context.

7.1. Introduction

Determining when a union of λ-saturated models is λ-saturated is an important
dividing line in first-order model theory. Recall that Harnik and Shelah have shown:

Fact 7.1.1 ([Har75], III.3.11 in [She90] for the case λ ≤ |T |). Let T be a
first-order theory.

• If T is superstable, then any increasing union of λ-saturated models is
λ-saturated.

• If T is stable, then any increasing union of λ-saturated models of cofinality
at least |T |+ is λ-saturated.

A converse was later proven by Albert and Grossberg [AG90, Theorem 13].
Fact 7.1.1 can be used to prove:

Fact 7.1.2 (The saturation spectrum theorem, VIII.4.7 in [She90]). Let T be
a stable first-order theory. Then T has a saturated model of size λ if and only if [T
is stable in λ or λ = λ<λ + |D(T )|].

Although not immediately evident from the statement, the proof of Fact 7.1.1
relies on the heavy machinery of forking and averages.

While the saturation spectrum theorem has been generalized to homogeneous
model theory (see [She75c, 1.13] or [GL02, 5.9]), to the best of our knowledge
no explicit generalization of Fact 7.1.1 has been published in this context (Shelah
asserts it without proof in [She75c, 1.15]). Grossberg [Gro91b] has proven a

193
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version of Fact 7.1.1 in the framework of stability theory inside a model. The proof
uses averages but relies on a strong negation of the order property. Makkai and
Shelah [MS90, 4.18] have given a generalization in the class of models of an Lκ,ω
sentence where κ is a strongly compact cardinal. The proof uses independence
calculus.

One can ask whether Fact 7.1.1 can also be generalized to abstract elementary
classes (AECs), a general framework for classification theory introduced in [She87a]
(see [Gro02] for an introduction to AECs). In [She09a, I.5.39], Shelah proves a
generalization of the superstable case of Fact 7.1.1 to “definable-enough” AECs
with countable Löwenheim-Skolem number, using the weak continuum hypothesis.

In chapter II of [She09a], Shelah starts with a (weakly successful) good λ-
frame (a local notion of superstability) on an abstract elementary class (AEC) K
and wants to show that a union of saturated models is saturated in Kλ+ . For this
purpose, he introduces a restriction ≤∗ of the ordering that allows him to prove the
result for ≤∗-increasing chains (II.7.7 there). Restricting the ordering of the AEC
is somewhat artificial and one can ask what happens in the general case, and also
if λ+ is replaced by an arbitrary cardinal. Moreover, Shelah’s methods to obtain a
weakly successful good λ-frame typically use categoricity in two successive cardinals
and the weak continuum hypothesis1.

In [She99], Shelah had previously proven that a union of λ-saturated models is
λ-saturated, for K an AEC with amalgamation, joint embedding, and no maximal
models categorical in a successor λ′ > λ (see [Bal09, Chapter 15] for a writeup),
but left the case λ ≥ λ′ (or λ′ not a successor) unexamined.

In this chapter, we replace the local model-theoretic assumptions of Shelah with
global ones, including tameness, a locality notion for types introduced by Grossberg
and VanDieren [GV06b]. We take advantage of recent developments in the study
of forking in tame AECs (especially by Boney and Grossberg [BG] and the author
(see Chapters 2 and 6) to generalize Fact 7.1.1 to tame abstract elementary classes
with amalgamation. Our main result is:

Corollary 7.3.5. Assume K is a (< κ)-tame AEC with amalgamation. If
κ = iκ > LS(K) and K is categorical in some cardinal strictly above κ, then
for all λ > 2κ, Kλ-sat (the class of λ-saturated models of K) is an AEC with
LS(Kλ-sat) = λ.

Notice that if Kλ-sat is an AEC, then any increasing union of λ-saturated mod-
els is λ-saturated. Thus, in contrast to Shelah’s [She99] result, we obtain a global
theorem that holds for all high-enough λ and not just those under the categoricity
cardinal. Furthermore categoricity at a successor is not assumed. We can also
replace the categoricity by various notions of superstability defined in terms of the
local character for independence notions such as coheir or splitting. In fact, we can
combine this result with the construction of a good frame in Chapter 6 to obtain
the theorem in the abstract:

1See for example [She09a, II.3.7]. Shelah also shows how to build a good frame in ZFC from
more model-theoretic hypotheses in [She09a, IV.4.10], but he has to change the class and it is

not clear his frame is weakly successful.
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Theorem 7.6.1. If K is a tame AEC with amalgamation satisfying a natural
definition of superstability (see Definition 7.5.12), then for all high-enough λ, there
exists a unique limit model of size λ.

This proves an eventual version of a statement appearing in early versions of
[GVV16] (see the discussion in Section 7.6).

It is very convenient to have Kλ-sat an AEC, as saturated models are typically
better behaved than arbitrary ones. This is crucial for example in Shelah’s upward
transfer of frames in [She09a, Chapter II], and is also used in Chapter 6 to build
an ω-successful good frame (and later a global independence notion). We also prove
a result for the strictly stable case:

Theorem 7.5.16. Let K be a κ-tame AEC with amalgamation, κ ≥ LS(K),
stable in some cardinal above κ. Then there exists χ0 ≤ λ0 < i(2κ)+ such that
whenever λ ≥ λ0 is such that µ<χ0 < λ for all µ < λ, the union of an increasing
chain of λ-saturated models of cofinality at least χ0 is λ-saturated.

One caveat here (compared to Fact 7.1.1, where there are no restrictions on λ)
is the introduction of cardinal arithmetic. When dealing with compact classes (or
even just (< ω)-tame classes), the map λ 7→ λ<ω can be used freely. Even in the
work of Makkai and Shelah [MS90], where κ is strongly compact and the class is
(< κ)-tame, the map λ 7→ λ<κ is constant on most cardinals (those with cofinality
at least κ) by a result of Solovay. However, in our context of (< κ)-tameness for
κ > ω but not strongly compact, this function can be much wilder. Thus, we need
to introduce assumptions that this map is well-behaved. Using various tricks, we
can bypass these assumptions in the superstable case but are unable to do so in the
stable case. For example in Theorem 7.5.16, the cardinal arithmetic assumption
can be replaced by “K is stable in µ for unboundedly many µ < λ”, which is always
true in case K is superstable.

We use two main methods: The first method is pure independence calculus,
relying on a well-behaved independence relation (coheir), whose existence in our
context is proven in [BG] and Chapter 2. This works well in the superstable case if
we define superstability in terms of coheir (called strong superstability in Chapter
6) but we do not know how to make it work for weaker definitions of superstability
(such as superstability defined in terms of splitting, a more classical definition
implicit for example in [GVV16]). The second method is the use of syntactic
averages, developed by Shelah in [She09b, Chapter V]. We end up proving a result
on chains of saturated models in the framework of stability theory inside a model
and then translate to AECs using Galois Morleyization, introduced in Chapter 2.
This method allows us to use superstability defined in terms of splitting. The two
methods give incomparable results: in case we know that K is (< κ)-tame, with
κ = iκ > LS(K), the first gives better Hanf numbers than the second. However
if we know that K is LS(K)-tame, then we get better bounds using the second
method, since we do not need to work above a fixed point of the beth function.

The chapter is organized as follows. Section 7.2 gives the argument using
independence calculus culminating in Theorems 7.2.14 and 7.3.4. Both of these
arguments work just using forking relations, drawing inspiration from Makkai and
Shelah, rather than the classical first-order argument using averages. Section 7.4
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develops averages in our context based on earlier work of Shelah and culminates
in the more local Theorem 7.4.27. Section 7.5 translates the local result to AECs
and Section 7.6 proves consequences such as the uniqueness of limit models from
superstability.

7.2. Using independence calculus: the stable case

We assume that the reader is familiar with the basics of AECs, as presented
in [Bal09] or [Gro]. We will use the notation from Chapter 2. In particular,
gtp(b̄/A;N) denotes the Galois type of b̄ over A as computed in N .

All throughout this section, we assume:

Hypothesis 7.2.1.

(1) K is an AEC with amalgamation, joint embedding, and arbitrarily large
models. We work inside a monster model C.

(2) LS(K) < κ = iκ.
(3) K is (< κ)-tame.
(4) K is stable (in some cardinal above κ).

We will use the independence notion of coheir for AECs, introduced in [BG].

Definition 7.2.2 (Coheir). Define a tertiary relation ^ by ^(M,A,B) if and
only if:

(1) M ≤K C, M is κ-saturated, and A,B ⊆ |C|.
(2) For any ā ∈ <κA and B0 ⊆ |M | ∪ B of size less than κ, there exists

ā′ ∈ <κ|M | such that gtp(ā/B0) = gtp(ā′/B0) (here, the Galois types are
computed inside C).

We write A^
M
B instead of ^(M,A,B). We will also say that gtp(ā/B) is a

(< κ)-coheir over M when ran(ā)^
M
B (it is straightforward to check that this does

not depend on the choice of ā).

The following locality cardinals will play an important role:

Definition 7.2.3. Let α be a cardinal.

(1) Let κ̄α(^) be the minimal cardinal µ ≥ |α|++κ+ such that for any M ≤K

C that is κ-saturated, any A ⊆ |C| with |A| ≤ α, there exists M0 ≤K M
in K<µ with A^

M0

M . When µ does not exist, we set κ̄α0
(i) =∞.

(2) Let κα(^) be the minimal cardinal µ ≥ |α|++ℵ0 such that for any regular
δ ≥ µ, any increasing chain 〈Mi : i < δ〉 in K and any A of size at most
α, there exists i < δ such that A^

Mi

⋃
i<δMi. When µ does not exist, we

set κα0
(i) =∞. For K∗ a subclass of K, we similarly define κα(^ � K∗),

where in addition we require that Mi ∈ K∗ for all i < δ (we will use this
when K∗ is a class of saturated models).

Remark 7.2.4. For any cardinal α, we always have that κα(^) ≤ κ̄α(^).

Fact 7.2.5. Under Hypothesis 7.2.1, ^ satisfies the following properties:

(1) Invariance: If f is an automorphism of C and A^
M
B, then f [A] ^

f [M ]

B.

(2) Monotonicity: Assume A^
M
B, then:
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(a) Left and right monotonicity: If A0 ⊆ A, B0 ⊆ B, then A0^
M
B0.

(b) Base monotonicity: If M ≤K M ′ ≤K C, |M ′| ⊆ B, and M ′ is κ-
saturated, then A^

M ′
B.

(3) Left and right normality: If A^
M
B, then AM^

M
BM .

(4) Symmetry: A^
M
B if and only if B^

M
A.

(5) Strong transitivity: If M0 ≤K C, M1 ≤K C, A^
M0

M1, and A^
M1

B, then

A^
M0

B (note that we do not assume that M0 ≤K M1).

(6) Uniqueness for types of length one: If M ≤K M ′, p, q ∈ gS(M ′) are both
(< κ)-coheir over M and p �M = q �M , then p = q.

(7) Set local character: For any α, κ̄α(^) ≤ ((α+ 2)<κr )
+

.

Moreover K is stable in all µ ≥ κ such that µ = µ2<κr .

Remark 7.2.6. We will not use the exact definition of coheir, just that it
satisfies the conclusion of Fact 7.2.5.

Remark 7.2.7. Strong transitivity will be used in the proof that the relation ^
(Definition 7.2.8) is transitive, see Proposition 7.2.11. We do not know if transitivity
would suffice.

For what comes next, it will be convenient if we could say that A^
M
B and

M ≤K N implies A^
N
B. By base monotonicity, this holds if |N | ⊆ B but in

general this is not part of our assumptions (and in practice this need not hold).
Thus we will close ^ under this property. This is where we depart from [MS90];
there the authors used that the singular cardinal hypothesis holds above a strongly
compact to prove the result corresponding to our Lemma 7.3.2. Here we need to
be more clever.

Definition 7.2.8. A^CB means that there exists M0 ≤K C, |M0| ⊆ C such
that A^

M0

B.

Remark 7.2.9. ^ need not satisfy the normality property from Fact 7.2.5.

In what follows, we will apply the definition of κα and κ̄α (Definition 7.2.3) to
other independence relations than coheir.

Definition 7.2.10. We write A^C [B]1 to mean that A^Cb for all b ∈ B.

Similarly define [A]1^CB. Let (^)1 denote the relation defined by A(^C)1B if

and only if A^C [B]1. For α a cardinal, let κ̄1
α = κ̄1

α(^) := κ̄α((^)1).

Note that A^CB implies [A]1^CB by monotonicity.

Proposition 7.2.11.

(1) ^ satisfies invariance, monotonicity, symmetry, and strong right transi-
tivity (see Fact 7.2.5).

(2) For all α, κ̄α(^) = κ̄α(^), κα(^) = κα(^).

(3) ^ has strong base monotonicity : If A^CB and C ⊆ C ′, then A^C′B.

(4) If A^
M
B, then A^MB.
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(5) If A^MB and M is κ-saturated such |M | ⊆ B, then A^
M
B.

(6) For all α, κ̄1
α(^) ≤ κ̄α(^).

Proof. All quickly follow from the definition. As an example, we prove that ^
has strong right transitivity. Assume A^M0

M1 and A^M1
B. Then there exists

M ′0 ≤K M0 and M ′1 ≤K M1 such that A^
M ′0

M1 and A^
M ′1

B. By monotonicity

for ^, A^
M ′0

M ′1. By strong right transitivity for ^, A^
M ′0

B. Thus M ′0 witnesses

A^M0
B. �

Proposition 7.2.12. Assume 〈Mi : i < δ〉, 〈Ni : i < δ〉 are increasing chains

of κ-saturated models, A is a set. If A^Mi
Ni for all i < δ and κ|A|(^) ≤ cf δ, then

A^Mδ
Nδ, where2 Mδ :=

⋃
i<δMi and Nδ :=

⋃
i<δ Ni.

Proof. Without loss of generality, δ = cf δ. By definition of κ|A|(^), there

exists i < δ such that A^
Ni

Nδ, so A^Ni
Nδ. By strong right transitivity for ^,

A^Mi
Nδ. By strong base monotonicity, A^Mδ

Nδ. �

As already discussed, the reason we use ^ is that we want to generalize [MS90,
4.17] to our context. In their proof, Makkai and Shelah use that cardinal arithmetic
behaves nicely above a strongly compact, and we cannot make use of this fact here.

Thus we are only able to prove this lemma for ^ instead of ^ (see Lemma 7.3.2).

Fortunately, this turns out to be enough. The reader can also think of ^ as a trick
to absorb some quantifiers.

The next lemma imitates [MS90, 4.18].

Lemma 7.2.13. Let λ0 ≥ κr be regular, let λ > λ0 be regular such that K is
stable in unboundedly-many cardinals below λ and let 〈Mi : i < δ〉 be an increasing
chain with Mi λ-saturated for all i < δ. Assume that κ1(^ � Kλ0-sat) ≤ cf δ.

If κ̄1
<λ(^) ≤ λ, then Mδ :=

⋃
i<δMi is λ-saturated.

Proof. Without loss of generality, δ = cf δ. Let A ⊆ |Mδ| have size less than
λ. If λ ≤ δ, then A ⊆ |Mi| for some i < δ and so any type over A is realized in
Mi ⊆ |Mδ|. Now assume without loss of generality that λ > δ. We need to show
every Galois type over A is realized in Mδ. Let µ := λ0 +δ. Note that µ = cf µ < λ.
First, we build an array of λ0-saturated models 〈Nα

i ∈ K<λ : i < δ, α < µ〉 such
that:

(1) For all i < δ, 〈Nα
i : α < µ〉 is increasing.

(2) For all α < µ, 〈Nα
i : i < δ〉 is increasing.

(3) For all i < δ and all α < µ, Nα
i ≤Mi.

(4) A ⊆
⋃
i<δ |N0

i |.
(5) For all α < µ and all i < δ,

⋃
i<δ N

α
i ^Nα+1

i
[Mi]

1.

For α < µ, write Nα
δ :=

⋃
i<δ N

α
i and for i ≤ δ, write Nµ

i :=
⋃
α<µN

α
i . The

following is a picture of the array constructed.

2Note that Mδ and Nδ need not be κ-saturated.
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Mi
// Mi+1

// Mδ

Nµ
i

//

OO

Nµ
i+1

OO

// Nµ
δ

OO

Nα+1
i

//

OO

Nα+1
i+1

//

OO

Nα+1
δ

OO

Nα
i

//

OO

Nα
i+1

//

OO

Nα
δ

OO

A

OO

This is enough: Note that for i < δ, Nµ
i is λ0-saturated and has size less than

λ (since λ > µ and λ is regular). Note also that since δ ≤ µ < λ, Nµ
δ has size less

than λ (but we do not claim that it is λ0-saturated).

Claim: For all i < δ, Nµ
δ^Nµi

[Mi]
1.

Proof of claim: Fix i < δ and let a ∈ Mi. Fix j < δ. By (5), monotonic-

ity, and symmetry, a^Nα+1
i

Nα
j for all α < µ. By Proposition 7.2.12 applied to

〈Nα+1
i : α < µ〉 and 〈Nα

j : α < µ〉, a^Nµi
Nµ
j (note that µ = cf µ ≥ δ ≥ κ1(^)).

Since j was arbitrary, we can apply Proposition 7.2.12 again with the constantly

Nµ
i sequence and 〈Nµ

j : j < δ〉 (note that δ = cf δ ≥ κ1(^)) to get that a^Nµi
Nµ
δ .

By symmetry, Nµ
i ^Nµi

a, as desired. †Claim

Now let p ∈ gS(A). By (4), A ⊆ Nµ
δ so we can extend p to some q ∈ gS(Nµ

δ ).
Since δ ≥ κ1(^), we can find i < δ such that q does not fork over Nµ

i . Since
Nµ
i ≤ Mi, Mi is λ-saturated, and ‖Nµ

i ‖ < λ, we can find a ∈ Mi realizing q � Nµ
i .

Since by the claim Nµ
δ^Nµi

[Mi]
1, we can use symmetry to conclude a^Nµi

Nµ
δ , and

hence (Proposition 7.2.11(5)) a ^
Nµi

Nµ
δ . By uniqueness for types of length one, a

must realize q, so in particular a realizes p. This concludes the proof that Mδ is
λ-saturated.

This is possible: We define 〈Nα
i : i < δ〉 by induction on α. For a fixed i < δ,

choose any N0
i ≤K Mi in K<λ that contains A ∩ |Mi| and is λ0-saturated (this

is possible since K is stable in unboundedly-many cardinals below λ). For α < µ

limit and i < δ, pick any Nα
i ≤K Mi containing

⋃
β<αN

β
i which is in K<λ and

λ0-saturated (this is possible for the same reason as in the base case). Now assume

α = β + 1 < µ, and Nβ
i has been defined for i < δ. Define Nα

i by induction on
i. Assume Nα

j has been defined for all j < i. Pick Nα
i containing

⋃
j<iN

α
j which

is in K<λ, is λ0-saturated, and satisfies Nα
i ≤K Mi and (5). This is possible by

strong base monotonicity and definition of κ̄1
<λ. �
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Below, we give a more natural formulation of the hypotheses.

Theorem 7.2.14. Let λ > κ. Let 〈Mi : i < δ〉 be an increasing chain with Mi

λ-saturated for all i < δ. If:

(1) cf δ ≥ κ1(^); and

(2) χ2<κr < λ for all χ < λ,

then
⋃
i<δMi is λ-saturated.

Proof. Let Mδ :=
⋃
i<δMi. Note that λ > κr: since λ > κ, λ ≥ κ+ and if

λ = κ+ then κ<κ < λ so κ = κ<κ hence κ is regular: κr = κ.
Let χ < λ be such that χ+ > κr. We show that Mδ is χ+-saturated. By

hypothesis, χ2<κr < λ, so replacing χ by χ<κr if necessary, we might as well

assume that χ = χ2<κr . We check that χ+ satisfies the conditions of Lemma 7.2.13
(with λ0 there standing for κr here) as λ there. By assumption, χ+ is regular and
χ+ > κr. Also, K is stable in unboundedly-many cardinals below χ+ because by
the moreover part of Fact 7.2.5, K is stable in χ.

Now by Proposition 7.2.11(6), κ̄1
χ(^) ≤ κ̄χ(^). By Fact 7.2.5, κ̄χ(^) ≤

(χ<κr )+ = χ+. Thus κ̄1
χ(^) ≤ χ+, as needed.

Thus Lemma 7.2.13 applies and so Mδ is χ+-saturated. Since χ < λ was
arbitrary, Mδ is λ-saturated. �

For the next corollaries to AECs, we repeat our hypotheses.

Corollary 7.2.15. Let K be an AEC with amalgamation. Let κ = iκ >
LS(K) be such that K is (< κ)-tame. Assume that K is stable in some cardinal
greater than or equal to κ and let 〈Mi : i < δ〉 be an increasing chain of λ-saturated
models. If:

(1) cf δ > 2<κr .

(2) χ2<κr < λ for all χ < λ.

Then
⋃
i<δMi is λ-saturated.

Proof. Without loss of generality, δ = cf δ < λ. Also without loss of gener-
ality, K has joint embedding (otherwise, partition it into disjoint classes, each of
which has joint embedding), and arbitrarily large models (since K has a model of
cardinality κ = iκ > LS(K)). Therefore Hypothesis 7.2.1, and hence the conclusion
of Fact 7.2.5, hold.

Note (Remark 7.2.4) that κ1(^) ≤ κ̄1(^) ≤ (2<κr )
+

. Now use Theorem
7.2.14. �

7.3. Using independence calculus: the superstable case

Next we show that in the superstable case we can remove the cardinal arithmetic
condition (2) in Corollary 7.2.15.

Hypothesis 7.3.1. Same as in the previous section: Hypothesis 7.2.1.

In the proof of Theorem 7.2.14, we estimated κ̄1
α(^) using κ̄α(^). Using

superstability, we can prove a better bound. This is adapted from [MS90, 4.17].

Lemma 7.3.2. Assume that κ1(^) = ℵ0 and K is stable in all λ ≥ κr. Then

for any cardinal α, κ̄1
α(^) ≤ κ̄κr (^) + α+.
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Proof. Let A have size α and N be a κ-saturated model. We show by in-
duction on α that there exists an M ≤K N with ‖M‖ < µ := κ̄κr (^) + α+ and

A^M [N ]1. Note that µ > κr.
If α ≤ κr, then apply the definition of κ̄κr (^) to get a M ≤ N with ‖M‖ <

κ̄κr (^), A^MN , which is more than what we need.
Now, assume α > κr, and that the result has been proven for all α0 < α.

Closing A to a κ-saturated model (using the stability assumptions) if necessary, we
can assume without loss of generality that A is a κ-saturated model. Let 〈Ai : i < α〉
be an increasing resolution of A such that Ai is κ-saturated in K<α for all i < α.
Now define an increasing chain 〈Mi : i < α〉 such that for all i < α:

(1) Mi ∈ K<µ and Mi is κ-saturated.
(2) Mi ≤K N .

(3) Ai^Mi
[N ]1.

This is possible: For i < α, use the induction hypothesis to find Mi ≤K N

such that Ai^Mi
[N ]1 and ‖Mi‖ < µ. By strong base monotonicity of ^ and the

closure assumption, we can assume that Mi contains
⋃
j<iMj .

This is enough: Let M ∈ K<µ be κ-saturated and contain
⋃
i<αMi. We claim

that A^M [N ]1. Let a ∈ N . By symmetry, it is enough to see a^MA. This follows
from strong base monotonicity and Proposition 7.2.12 applied to 〈Mi : i < α〉
and 〈Ai : i < α〉 since κ1(^) = ℵ0 ≤ cf α by Proposition 7.2.11(2) and the
hypothesis. �

Remark 7.3.3. The heavy use of strong base monotonicity in the above proof

was the reason for introducing ^.

Theorem 7.3.4. Let λ0 ≥ κr be regular. Assume that κ1(^ � Kλ0-sat) = ℵ0

and K is stable in all λ ≥ λ0. Let λ ≥ κ̄κr (^) + λ+
0 .

Let 〈Mi : i < δ〉 be an increasing chain with Mi λ-saturated for all i < δ. Then
Mδ :=

⋃
i<δMi is λ-saturated.

Proof. Let χ < λ be such that χ+ ≥ κ̄κr (^) + λ+
0 . We claim that χ+

satisfies the hypotheses of Lemma 7.2.13 (as λ there). Indeed by Lemma 7.3.2,

κ̄1
χ(^) ≤ κ̄κr (^) + χ+ = χ+.

Thus Lemma 7.2.13 applies: Mδ is χ+-saturated. Since χ < λ was arbitrary,
Mδ is λ-saturated. �

For the next corollary to AECs, we drop our hypotheses.

Corollary 7.3.5. Let K be an AEC with amalgamation and no maximal
models. Let κ = iκ > LS(K) be such that K is (< κ)-tame. If K is categorical
in some cardinal strictly above κ, then for all λ > 2κ, Kλ-sat is an AEC with
Löwenheim-Skolem number λ.

Proof. Using categoricity and amalgamation, it is easy to check that K has
joint embedding. Let λ0 := κ+. By Theorem 6.10.8 and Proposition 6.10.10, K
is stable in all µ ≥ κ and κ1(^ � Kλ0-sat) = ℵ0. In particular, Hypothesis 7.2.1
holds. Remembering (Fact 7.2.5) that κ̄κr (^) ≤ κ<κrr ≤ 2κ, we obtain the result
from Theorem 7.3.4 (to show that LS(Kλ-sat) = λ, imitate the proof of [She90,
III.3.12]). �
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7.4. Averages

In this section, we write in the framework of stability theory inside a model:

Hypothesis 7.4.1.

(1) κ is an infinite cardinal.
(2) L is a (< κ)-ary language.
(3) N is a fixed L-structure.
(4) We work inside N .
(5) Hypotheses 7.4.2 and 7.4.4, see the discussion below.

Midway through, we will also assume Hypothesis 7.4.22.

We use the same notation and convention as the preliminaries of Chapter 2:
although we may forget to say it, we always work with quantifier-free Lκ,κ formulas
and types (so the arity of all the variables inside a given formula is less than κ). Also,
since we work inside N , everything is defined relative to N . For example tp(c̄/A)
means tpqLκ,κ(c̄/A;N ), the quantifier-free Lκ,κ-type of c̄ over A, and saturated

means saturated in N . Similarly, we write |= φ[b̄] instead of N |= φ[b̄]. By “type”,
we mean a member of S<∞(A) for some set A. Whenever we mention a set of
formulas (meaning a possibly incomplete type), we mean a (Lκ,κ-quantifier free)
set of formulas that is satisfiable by an element in N .

Unless otherwise noted, the letters ā, b̄, c̄ denote tuples of elements of length
less than κ. The letters A, B, C, will denote subsets of N . We say 〈Ai : i < δ〉 is
increasing if Ai ⊆ Aj for all i < j < δ.

We say N is α-stable in λ if |Sα(A)| ≤ λ for all A with |A| ≤ λ (the default
value is for α is 1). We say N has the order property of length χ if there exists a
(quantifier-free) formula φ(x̄, ȳ) and elements 〈āi : i < χ〉 of the same arity (less
than κ) such that for i, j < χ, |= φ[āi, āj ] if and only if i < j.

Boldface letters like I, J will always denote sequences of tuples of the same
arity (less than κ). We will use the corresponding non-boldface letter to denote the
linear ordering indexing the sequence (writing for example I = 〈āi : i ∈ I〉, where
I is a linear order). We sometimes treat such sequences as sets of tuples, writing
statements like ā ∈ I, but then we are really looking at the range of the sequence.
To avoid potential mistakes, we do not necessarily assume that the elements of I
are all distinct although it should always hold in cases of interest. We write |I|
for the cardinality of the range, i.e. the number of distinct elements in I. We will
sometimes use the interval notation on linear order. For example, if I is a linear
order and i ∈ I, [i,∞)I := {j ∈ I | j ≥ i}.

As the reader will see, this section builds on earlier work of Shelah from
[She09b, Chapter V.A]. Note that Shelah works in an arbitrary logic. We work
only with quantifier-free Lκ,κ-formulas in order to be concrete and because this is
the case we are interested in to translate the syntactic results to AECs.

The reader may wonder what the right notion of submodel is in this context. We
could simply say that it is “subset” but this does not quite work when translating to
AECs. Thus we fix a set of subsets of N that by definition will be the substructures
of N . We require that this set satisfies some axioms akin to those of AECs. This
can be taken to be the full powerset if one is not interested in doing an AEC
translation.

Hypothesis 7.4.2. S ⊆ P(|N |) is a fixed set of subsets of N satisfying:
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(1) Closure under chains: If 〈Ai : i < δ〉 is an increasing sequence of members
of S, then

⋃
i<δ Ai is in S.

(2) Löwenheim-Skolem axiom: If A ⊆ B are sets and B ∈ S, there exists
A′ ∈ S such that A ⊆ A′ ⊆ B and |A′| ≤ (|L|+ 2)<κ + |A|.

We exclusively use the letters M and N to denote elements of S and call such
elements models. We pretend they are L-structures and write |M | and |N | for their
universe and ‖M‖ and ‖N‖ for their cardinalities.

Remark 7.4.3. An element M of S is not required to be an L-structure. Note
however that if it is κ-saturated for types of length less than κ (see below), then it
will be one.

We also need to discuss the definition of saturated: define M to be λ-saturated
for types of length α if for any A ⊆ |M | of size less than λ, any p ∈ Sα(A) is
realized in M . Similarly define λ-saturated for types of length less than α. Now
in the framework we are working in, µ-saturated for types of length less than κ
seems to be the right notion, so we say that M is µ-saturated if it is µ-saturated
for types of length less than κ. Unfortunately it is not clear that it is equivalent
to µ-saturated for types of length one (or length less than ω), even when µ > κ.
However [She09a, II.1.14] (the “model-homogeneity = saturativity” lemma) tells
us that in case N comes from an AEC, then this is the case. Thus we will make
the following additional assumption. Note that it is possible to work without it,
but then everywhere below “stability” must be replaced by “(< κ)-stability”.

Hypothesis 7.4.4. If µ > (|L| + 2)<κ, then whenever M is µ-saturated for
types of length one, it is µ-saturated (for types of length less than κ).

Our goal in this section is to use Shelah’s notion of average in this framework
to prove a result about chains of saturated models. Recall:

Definition 7.4.5 (Definition V.A.2.6 in [She09b]). For I a sequence, χ an
infinite cardinal such that |I| ≥ χ, and A a set, define Avχ(I/A) to be the set of
formulas φ(x̄) over A so that the set {b̄ ∈ I ||= ¬φ[b̄]} has size less than χ.

Note that if |I| ≥ χ (say all the elements of I have the same arity α) and φ(x̄)
is a formula with `(x̄) = α, then at most one of φ, ¬φ is in Avχ(I/A). Thus the
average is not obviously contradictory, but we do not claim that there is an element
in N realizing it. Also, Avχ(I/A) might be empty. However, we give conditions
below (see Fact 7.4.13 and Theorem 7.4.21) where it is in fact complete (i.e. exactly
one of φ and ¬φ is in the average).

The next lemma is a simple counting argument allowing us to find such an
element:

Lemma 7.4.6. Let I be a sequence with |I| ≥ χ and let A be a set. Let
p := Avχ(I/A). Assume that

|I| > χ+ min((|A|+ |L|+ 2)<κ, |S`(p)(A)|)
Then there exists b̄ ∈ I realizing p.

Proof. Assume first that the minimum is realized by (|A| + |L| + 2)<κ. By
definition of the average, for every every formula φ(x̄) ∈ p, Jφ := {b̄ ∈ I ||= ¬φ[b̄]}
has size less than χ. Let J :=

⋃
φ∈p Jφ. Note that |J| ≤ χ+ (|A|+ |L|+ 2)<κ and

by definition any b̄ ∈ I\J realizes p.
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Now assume that the minimum is realized by |S`(p)(A)|. Let µ := χ+|S`(p)(A)|.
By the pigeonhole principle, there exists I0 ⊆ I of size µ+ such that c̄, c̄′ ∈ I0 implies
q := tp(c̄/A) = tp(c̄′/A). We claim that p ⊆ q, which is enough: any b̄ ∈ I0 realizes
p. If not, there exists φ(x̄) ∈ p such that ¬φ(x̄) ∈ q. By definition of the average,
fewer than χ-many elements of I satisfy ¬φ(x̄). However, ¬φ(x̄) is in q which means
that it is realized by all the elements of I0 and |I0| = µ+ > χ, a contradiction. �

We now recall the definition of splitting and study how it interacts with aver-
ages.

Definition 7.4.7. A set of formulas p splits over A if there exists φ(x̄, b̄) ∈ p
and b̄′ with tp(b̄′/A) = tp(b̄/A) and ¬φ(x̄, b̄′) ∈ p.

The following result is classical:

Lemma 7.4.8 (Uniqueness for nonsplitting). Let A ⊆ |M | ⊆ B. Assume p, q
are complete sets of formulas (say in the variable x̄, with `(x̄) < κ) over B that do
not split over A and M is |A|+-saturated. If p �M = q �M , then p = q.

Proof. Let φ(x̄, b̄) ∈ p with b̄ ∈ B. We show φ(x̄, b̄) ∈ q and the converse is
symmetric. By saturation3, find b̄′ ∈M such that tp(b̄′/A) = tp(b̄/A). Since p does
not split over A, φ(x̄, b̄′) ∈ p. Since p �M = q �M , φ(x̄, b̄′) ∈ q. Since again q does
not split, φ(x̄, b̄) ∈ q. �

We would like to study when the average is a nonsplitting extension. This is
the purpose of the next definition.

Definition 7.4.9. I is χ-based on A if for any B, Avχ(I/B) does not split over
A.

The next lemma tells us that any sequence is based on a set of small size.

Lemma 7.4.10 (IV.1.23(2) in [She09a]). If I is a sequence and J ⊆ I has size
at least χ, then I is χ-based on J.

Proof. Let B be a set. Let p := Avχ(I/B). Note that p ⊆ Avχ(J/B).
Let b̄, b̄′ ∈ B be such that tp(b̄/J) = tp(b̄′/J). Assume φ(x̄, b̄) ∈ p. Then since
p ⊆ Avχ(J/B), let ā ∈ J be such that |= φ[ā, b̄]. Since ā ∈ J, |= φ[ā, b̄′]. Since there
are at least χ-many such ā’s, ¬φ(x̄, b̄′) /∈ p. �

We know that at most one of φ, ¬φ is in the average. It is very desirable to
have that exactly one is in, i.e. that the average is a complete type. This is the
purpose of the next definition. Recall from the beginning of this section that I
always denotes a sequence of elements of the same arity less than κ.

Definition 7.4.11 (V.A.2.1 in [She09b]). A sequence I is said to be χ-
convergent if |I| ≥ χ and for any set A, Avχ(I/A) is a complete type over A.
That is, whenever φ(x̄) is a formula with `(x̄) equal to the arity of all the elements
of I, then we have that exactly one of φ or ¬φ is in Avχ(I/A).

Remark 7.4.12 (Monotonicity). If I is χ-convergent, J ⊆ I, and |J| ≥ χ′ ≥ χ,
then for any set A, Avχ(I/A) = Avχ′(J/A). In particular, J is χ′-convergent.

3Note that we are really using saturation for types of length less than κ here.
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Recall [She90, III.1.7(1)] that if T is a first-order stable theory and I is an
infinite sequence of indiscernibles (in its monster model), then I is ℵ0-convergent.
The proof relies heavily on the compactness theorem. We would like a replacement
of the form “if N has some stability and I is nice, then it is convergent. The
next result is key. It plays the same role as the ability to extract indiscernible
subsequences in first-order stable theories.

Fact 7.4.13 (The convergent set existence theorem: V.A.2.8 in [She09b]). Let
χ0 ≥ (|L| + 2)<κ be such that N does not have the order property of length χ+

0 .
Let µ be an infinite cardinal such that µ = µχ0 + 22χ0

.
Let I be a sequence with |I| = µ+. Then there is J ⊆ I of size µ+ which is

χ0-convergent.

However having to extract a subsequence every time is too much for us. One
issue is with the cardinal arithmetic condition on µ: what if we have a sequence
of length µ+ when µ is a singular cardinal of low cofinality? We work toward
proving a more constructive result: Morley sequences (defined below) are always
convergent. The parameters represent respectively a bound on the size of A, the
degree of saturation of the models, and the length of the sequence. They will be
assigned default values in Hypothesis 7.4.22.

Definition 7.4.14. We say 〈āi : i ∈ I〉 a 〈Ni : i ∈ I〉 is a (χ0, χ1, χ2)-Morley
sequence for p over A if:

(1) χ0 ≤ χ1 ≤ χ2 are infinite cardinals, I is a linear order, A is a set, p(x̄) is
a set of formulas with parameters and `(x̄) < κ, and there is α < κ such
that for all i ∈ I, āi ∈ αN .

(2) For all i ∈ I, A ⊆ |Ni| and |A| < χ0.
(3) 〈Ni : i ∈ I〉 is increasing, and each Ni is χ1-saturated.
(4) For all i ∈ I, āi realizes4 p � Ni and for all j > i in I, āi ∈ αNj .
(5) i < j in I implies āi 6= āj .
(6) |I| ≥ χ2.
(7) For all i < j in I, tp(āi/Ni) = tp(āj/Ni).
(8) For all i ∈ I, tp(āi/Ni) does not split over A.

When p or A is omitted, we mean “for some p or A”. We call 〈Ni : i ∈ I〉
the witnesses to I := 〈āi : i ∈ I〉 being Morley, and when we omit them we simply
mean that I a 〈Ni : i ∈ I〉 is Morley for some witnesses 〈Ni : i ∈ I〉.

Remark 7.4.15 (Monotonicity). Let 〈āi : i ∈ I〉 a 〈Ni : i ∈ I〉 be (χ0, χ1, χ2)-
Morley for p over A. Let χ′0 ≥ χ0, χ′1 ≤ χ1, and χ′2 ≤ χ2. Let I ′ ⊆ I be such that
|I ′| ≥ χ′2, then 〈āi : i ∈ I ′〉 a 〈Ni : i ∈ I ′〉 is (χ′0, χ

′
1, χ
′
2)-Morley for p over A.

Remark 7.4.16. By the proof of [She90, I.2.5], a Morley sequence is indis-
cernible (this will not be used).

The next result tells us how to build Morley sequences inside a given model:

Lemma 7.4.17. Let A ⊆ |M | and let χ ≥ (|L|+ 2)<κ be such that |A| ≤ χ. Let
p ∈ Sα(M) be nonalgebraic (that is, ai /∈ |M | for all i < α for any ā realizing p)
such that p does not split over A, and let µ > χ. If:

(1) M is µ+-saturated.

4Note that dom p might be smaller than Ni.
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(2) N is stable in µ.

Then there exists 〈āi : i < µ+〉 a 〈Ni : i < µ+〉 inside M which is (χ+, χ+, µ+)-
Morley for p over A.

Proof. We build 〈āi : i < µ+〉 and 〈Ni : i < µ+〉 increasing such that for all
i < µ+:

(1) A ⊆ |N0|.
(2) |Ni| ⊆ |M |.
(3) ‖Ni‖ ≤ µ.
(4) Ni is χ+-saturated.
(5) āi ∈ αNi+1.
(6) āi realizes p � Ni.

This is enough by definition of a Morley sequence (note that for all i < µ+,
āi /∈ αNi by nonalgebraicity of p, so āi 6= āj for all j < i).

This is possible: assume inductively that 〈āj : j < i〉 a 〈Nj : j < i〉 has
been defined. Pick Ni ⊆ M which is χ+-saturated, has size ≤ µ, and contains
A ∪

⋃
j<iNj . Such an Ni exists: simply build an increasing chain 〈Mk : k < χ+〉

with M0 := A∪
⋃
j<iNj , ‖Mk‖ ≤ µ, and Mk realizing all elements of S(

⋃
k′<kMk′)

(this is where we use stability in µ). Then Ni :=
⋃
k<χ+ Mk is as desired (we are

using Hypothesis 7.4.4 to deduce that it is χ+-saturated for types of length less
than κ). Now pick āi ∈ αM realizing p � Ni (exists by saturation of M). �

Before proving that Morley sequences are convergent (Theorem 7.4.21), we
prove several useful lemmas:

Lemma 7.4.18. Let I := 〈āi : i ∈ I〉 be (χ0, χ1, χ)-Morley, as witnessed by
〈Ni : i ∈ I〉. Let i ∈ I be such that [j,∞)I has size at least χ. Then Avχ(I/Ni) ⊆
tp(āi/Ni).

Proof. Let φ(x̄) be a formula over Ni with `(x̄) = `(āi). Assume φ(x̄) ∈
Avχ(I/Ni). By definition of average and assumption there exists j ∈ [i,∞) such
that |= φ[āj ]. By (7) in Definition 7.4.14, |= φ[āi] so φ(x̄) ∈ tp(āi/Ni). �

Lemma 7.4.19. Let I be a linear order and let χ < |I| be infinite. Then there
exists i ∈ I such that both (−∞, i]I and [i,∞)I have size at least χ.

Proof. Without loss of generality, |I| = χ+. Let I0 := {i ∈ I | |(−∞, i]I | < χ}
and let I1 := {i ∈ I | |[i,∞)I | < χ}. Assume the conclusion of the lemma fails.
Then I0 ∪ I1 = I. Thus either |I0| = χ+ or |I1| = χ+. Assume that |I0| = χ+, the
proof in case |I1| = χ+ is symmetric. Let δ := cf I0 and let 〈aα ∈ I0 : α < δ〉 be
a cofinal sequence. If δ < χ+, then, since I0 = ∪α<δ(−∞, aα]I has size χ+, there
is α < δ such that |(−∞, aα)I | = χ+. If δ ≥ χ+, then |(−∞, aχ)I | ≥ χ. Either of
these contradict the definition of I0. �

Lemma 7.4.20. Let I be (χ+, χ+, χ+)-Morley over A (for some type). If I is
χ-convergent, then I is χ-based on A.

Proof. Let I := 〈āi : i ∈ I〉 and let 〈Ni : i ∈ I〉 witness that I is χ-Morley
over A. By assumption, |I| ≥ χ+, so let i ∈ I be as given by Lemma 7.4.19: both
(−∞, i]I and [i,∞)I have size at least χ. By Lemma 7.4.10 and the definition of i,
we can find A′ ⊆ |Ni| containing A of size at most χ such that I is χ-based on A′.
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Let p := Avχ(I/N ). Assume for a contradiction that p splits over A and pick
witnesses such that φ(x̄, b̄), ¬φ(x̄, b̄′) ∈ p and tp(b̄/A′) = tp(b̄′/A′). Note that
p � Ni = tp(āi/Ni) by convergence and Lemma 7.4.18. Since Ni is χ+-saturated,
we can find b̄′′ ∈ <κ|Ni| such that tp(b̄′′/A′) = tp(b̄/A′). Now either φ(x̄, b̄′′) ∈ p or
¬φ(x̄, b̄′′) ∈ p. If φ(x̄, b̄′′) ∈ p, then φ(x̄, b̄′′),¬φ(x̄, b̄′) witness that p splits over A
and if ¬φ(x̄, b̄′′) ∈ q, then φ(x̄, b̄), ¬φ(x̄, b̄′′) witness the splitting. Either way, we
can replace b̄ or b̄′ by b̄′′. So (swapping the role of b̄ and b̄′ if necessary), assume
without loss of generality that b̄′′ = b̄ (so b̄ ∈ <κ|Ni|).

By definition of a Morley sequence, p � Ni does not split over A, so b̄′ /∈ <κ|Ni|.
Let p′i := p � Ni ∪ {φ(x̄, b̄), φ(x̄, b̄′)}. We claim that p′i does not split over A: if
it does, since φ(x̄, b̄′) is the only formula of p′i with parameters outside of Ni, the
splitting must be witnessed by φ(x̄, c̄), ¬φ(x̄, c̄′), and one of them must be outside
Ni, so c̄ = b̄′. Now tp(b̄/A) = tp(b̄′/A) = tp(c̄′/A), and we have c̄′ ∈ <κ|Ni| so by
nonsplitting of p � Ni, also ¬φ(x̄, b̄) ∈ p � Ni. This is a contradiction since we know
φ(x̄, b̄) ∈ p � Ni.

Now, since I is χ-based on A′, p does not split over A′ and by monotonicity p′i
also does not split over A′. Now use the proof of Lemma 7.4.8 (with M = Ni) to
get a contradiction. �

We are now ready to prove the relationship between Morley and convergent:

Theorem 7.4.21. Let χ0 ≥ (|L|+2)<κ be such that N does not have the order

property of length χ+
0 . Let χ :=

(
22χ0

)+
.

If I is a (χ+
0 , χ

+
0 , χ)-Morley sequence, then I is χ-convergent.

Proof. Write I = 〈āi : i ∈ I〉 and let 〈Ni : i ∈ I〉 witness that it is Morley for
p over A.

Assume for a contradiction that I is not χ-convergent. Then there exists a
formula φ(x̄) (over N ) and linear orders I` ⊆ I, ` = 0, 1 such that |I`| = χ and
i ∈ I` implies5 |= φ`[āi]. By Fact 7.4.13, we can assume without loss of generality
that I` := 〈āi : i ∈ I`〉 is χ0-convergent. By Lemma 7.4.20 (with χ0 here standing
for χ there), I` is χ0-based on A for ` = 0, 1. Let p` := Avχ0(I`/N ). Since I` is
χ0-based on A, p` does not split over A. By Lemma 7.4.19, pick i` ∈ I so that
|(i,∞)I` | ≥ χ0 for ` = 0, 1. let i := min(i0, i1). By Lemma 7.4.18 and convergence,
p` � Ni` = tp(ai`/Ni`) so p` � Ni = tp(ai`/Ni) = tp(ai/Ni), so p0 � Ni = p1 � Ni.
By assumption, Ni is χ+

0 -saturated. By uniqueness for nonsplitting (Lemma 7.4.8),
p0 = p1. However φ(x̄) ∈ p0 while ¬φ(x̄) ∈ p1, contradiction. �

From now on we assume:

Hypothesis 7.4.22.

(1) χ0 ≥ (|L|+ 2)<κ is an infinite cardinal.
(2) N does not have the order property of length χ+

0 .

(3) χ :=
(
22χ0

)+
.

(4) The default parameters for Morley sequences are (χ+
0 , χ

+, χ+), and the
default parameter for averages and convergence is χ. That is, Mor-
ley means (χ+

0 , χ
+, χ+)-Morley, convergent means χ-convergent, Av(I/A)

means Avχ(I/A), and based means χ-based.

5Where φ0 stands for φ, φ1 for ¬φ.
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Note that Theorem 7.4.21 and Hypothesis 7.4.22 imply that any Morley se-
quence is convergent. Moreover by Lemma 7.4.20, any Morley sequence over A is
based on A. We will use this freely.

Before studying chains of saturated models, we generalize Lemma 7.4.20 to
independence notions that are very close to splitting (the reason has to do with the
translation to AECs (Section 7.5)):

Definition 7.4.23. A splitting-like notion is a binary relation R(p,A), where
p ∈ S<∞(B) for some set B and A ⊆ B, satisfying the following properties:

(1) Monotonicity: If A ⊆ A′ ⊆ B0 ⊆ B, p ∈ S<∞(B), and R(p,A), then
R(p � B0, A

′).

(2) Weak uniqueness: If A ⊆ |M | ⊆ B, M is (|A|+ (|L|+ 2)<κ)
+

-saturated,
and for ` = 1, 2, q` ∈ S<∞(B), R(q`, A), and q1 � M = q2 � M , then
q1 = q2.

(3) R extends nonsplitting: If p ∈ S<∞(B) does not split over A ⊆ B, then
R(p,A).

We also say “p does not R-split over A” instead of R(p,A).

Remark 7.4.24. If R(p,A) holds if and only if p does not split over A, then
R is a splitting-like notion: monotonicity is easy to check and R is nonsplitting.
Weak uniqueness is Lemma 7.4.8.

Lemma 7.4.25. Let R be a splitting-like notion. Let p ∈ S<κ(B) be such that
p does not R-split over A ⊆ B with |A| ≤ χ0.

Let I := 〈āi : i ∈ I〉 a 〈Ni : i ∈ I〉 be Morley for p over A.
If |
⋃
i∈I Ni| ⊆ B, then Av(I/B) = p.

Proof. Since I is Morley, I is convergent. By Lemma 7.4.20, I is based on A.
Thus we have that Av(I/B) does not split over A, so it does not R-split over A. Let
i ∈ I be such that |(i,∞)I | ≥ χ (use Lemma 7.4.19). Then Av(I/Ni) = tp(āi/Ni) =
p � Ni by Lemma 7.4.18. By the weak uniqueness axiom of splitting-like relations
(with Ni here standing for M there), Av(I/B) = p. �

To construct Morley sequences, we will also use:

Fact 7.4.26.

(1) If µ = µχ0 + 22χ0
, then N is (< κ)-stable in µ.

(2) Let M be χ+
0 -saturated. Then for any p ∈ S<κ(M), there exists A ⊆ |M |

of size at most χ0 such that p does not split over A.

Proof. The first result is [She09b, V.A.1.19]. The second follows from [She09b,
V.A.1.12]: one only has to observe that the condition between M and N there holds
when M is χ+

0 -saturated. �

We can now get a (completely local) result on unions of saturated models.

Theorem 7.4.27. Assume:

(1) λ > χ+ is such that N is stable in µ for unboundedly many µ < λ.
(2) 〈Mi : i < δ〉 is increasing and for all i < δ, Mi is λ-saturated. Write

Mδ :=
⋃
i<δMi.

(3) For any q ∈ S(Mδ), there exists a splitting-like notion R, i < δ and
A ⊆ |Mi| of size at most χ0 such that q does not R-split over A.
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Then Mδ is λ-saturated.

Proof. By Hypothesis 7.4.4, it is enough to check that Mδ is λ-saturated for
types of length one. Let p ∈ S(B), B ⊆ |Mδ| have size less than λ. Let q be an
extension of p to S(Mδ). If q is algebraic, then p is realized inside Mδ so assume
without loss of generality that q is not algebraic. By assumption, there exists a
splitting-like notion R, i < δ and A ⊆ |Mi| such that p does not R-split over A and
|A| ≤ χ0. Without loss of generality, i = 0. Now M0 is χ+

0 -saturated so (by Fact
7.4.26) there exists A′ ⊆ |M0| of size at most χ0 such that q � M0 does not split
over A′. By making A larger if necessary, we can assume A = A′.

Pick µ < λ such that µ ≥ χ+ + |B| and N is stable in µ. Such a µ exists by the
hypothesis on λ. By Lemma 7.4.17, there exists a sequence I of length µ+ which
is Morley for q � M0 over A, with the witnesses living inside M0. Thus I is also
Morley for q over A.

By Lemma 7.4.25, Av(I/Mδ) = q, and so in particular Av(I/B) = q � B = p.
By Lemma 7.4.6, p is realized by an element of I ⊆ |M0| ⊆ |Mδ|, as needed. �

The condition (3) in Theorem 7.4.27 is useful in case we know that the local
character cardinal for chains κα is significantly lower than the local character car-
dinal for sets κ̄α. This is the case when a superstability-like condition holds. If we
do not care about the local character cardinal for chains, we can state a version of
Theorem 7.4.27 without condition (3).

Corollary 7.4.28. Assume:

(1) λ > χ+ is such that µχ0 < λ for all µ < λ.
(2) 〈Mi : i < δ〉 is increasing and for all i < δ, Mi is λ-saturated.

If cf δ ≥ χ+
0 , then

⋃
i<δMi is λ-saturated.

Proof. Fix α < κ. By Fact 7.4.26(1), N is α-stable in µ for any µ < λ with
µχ0 = µ and µ ≥ χ. By hypothesis, there are unboundedly many such µ’s.

Let Mδ :=
⋃
i<δMi. By an easy argument using the cofinality condition on δ,

Mδ is χ+
0 -saturated. By Fact 7.4.26(2), for any p ∈ S<κ(Mδ), there exists A ⊆ |Mδ|

of size ≤ χ0 such that p does not split over A. By the cofinality assumption on
δ, we can find i < δ such that A ⊆ |Mi|. Now apply Theorem 7.4.27 and get the
result. �

Remark 7.4.29. The proof shows that we can still replace (1) with “λ > χ+

is such that N is stable in µ for unboundedly many µ < λ”.

We end this section with the following interesting variation: the cardinal arith-
metic condition on λ is improved, and we do not even need that the Mi’s be
λ-saturated, only that they realize enough types from the previous Mj ’s.

Theorem 7.4.30. Assume:

(1) λ > χ is such that µ<κ < λ for all µ < λ (or such that N is stable in µ
for unboundedly many µ < λ).

(2) M is such that for any q ∈ S(M) there exists 〈Mi : i < δ〉 strictly increas-
ing so that:
(a) δ ≥ λ is a limit ordinal.
(b) M =

⋃
i<δMi

(c) For all i < δ, Mi is χ+-saturated and Mi+1 realizes q �Mi.
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(d) There exists a splitting-like notion R, i < δ and A ⊆ |Mi| of size at
most χ0 such that q does not R-split over A.

Then M is λ-saturated.

Proof. By Hypothesis 7.4.4, it is enough to check that M is λ-saturated for
types of length one. Let p ∈ S(B), B ⊆ |M | have size less than λ. Let q be an
extension of p to S(M). If q is algebraic, then p is realized inside M , so assume q
is not algebraic. Let 〈Mi : i < δ〉 be as given by (2) for q. Let R be a splitting-like
notion for which there is i < δ and A ⊆ |Mi| such that q does not R-split over A
and |A| ≤ χ0. Without loss of generality, i = 0.

Let µ := (χ+ |B|)<κ (or take µ < λ such that µ ≥ χ + |B| and N is stable
in µ). Note that µ < λ. For i < µ+, let ai ∈ |Mi+1| realize q � Mi. By cofinality
considerations,

⋃
i<µ+ Mi is χ+-saturated. By Fact 7.4.26, there exists i < µ+ and

A′ ⊆ |Mi| such that q �
⋃
i<µ+ Mi does not split over A′. By some renaming we

can assume without loss of generality that A′ = A. It is now easy to check that
I := 〈ai : i < µ+〉 is Morley for q over A, as witnessed by 〈Mi : i < µ+〉.

By Lemma 7.4.25, Av(I/M) = q, and so in particular Av(I/B) = q � B = p.
By Lemma 7.4.6, p is realized by an element of I ⊆ |M0| ⊆ |M |, as needed. �

7.5. Translating to AECs

To translate the result of the previous section to AECs, we will use the Galois
Morleyization of an AEC, a tool introduced in Chapter 2: Essentially, we expand
the language of the AEC with a symbol for each Galois type. With enough tame-
ness, Galois types then become syntactic.

Definition 7.5.1 (Definition 2.3.3). Let K be an AEC and let κ be an infinite

cardinal. Define an (infinitary) expansion L̂ of L(K) by adding a relation symbol

Rp of arity `(p) for each p ∈ gS<κ(∅). Expand each N ∈ K to a L̂-structure N̂ by

specifying that for each ā ∈ N̂ , RN̂p (ā) holds exactly when gtp(ā/∅;N) = p. We

write K̂<κ for K̂. We call K̂<κ the (< κ)-Galois Morleyization of K.

Remark 7.5.2. Let K be an AEC and κ be an infinite cardinal. Then |L(K̂<κ)| ≤
| gS<κ(∅)|+ |L| ≤ 2<(κ+LS(K)+).

Fact 7.5.3 (Theorem 2.3.15). Let K be a (< κ)-tame AEC, and let M ≤K

N`, a` ∈ |N`|, ` = 1, 2. Then gtp(a1/M ;N1) = gtp(a2/M ;N2) if and only if6

tpqL̂κ,κ(a1/M ; N̂1) = tpqL̂κ,κ(a2/M ; N̂2).

Moreover the left to right direction does not need tameness: if M ≤K N`, ā` ∈
<∞|N`|, ` = 1, 2, and gtp(ā1/M ;N1) = gtp(ā2/M ;N2), then tpqL̂κ,κ(ā1/M ; N̂1) =

tpqL̂κ,κ(ā2/M ; N̂2).

Note that this implies in particular that (if K is (< κ)-tame and has amalga-
mation) the Galois version of saturation and stability coincide with their syntactic

analog in K̂<κ. There is also a nice correspondence between the syntactic version
of the order property defined at the beginning of Section 7.4 and Shelah’s semantic
version [She99, 4.3]:

6Recall that tp
qL̂κ,κ

stands for quantifier-free Lκ,κ-type.
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Definition 7.5.4. Let α and µ be cardinals and let K be an AEC. A model
M ∈ K has the α-order property of length µ if there exists 〈āi : i < µ〉 inside M
with `(āi) = α for all i < µ, such that for any i0 < j0 < µ and i1 < j1 < µ,
gtp(āi0 āj0/∅;N) 6= gtp(āj1 āi1/∅;N).

M has the (< α)-order property of length µ if it has the β-order property of
length µ for some β < α. M has the order property of length µ if it has the α-order
property of length µ for some α.

K has the α-order of length µ if some M ∈ K has it. K has the order property
if it has the order property for every length.

Fact 7.5.5 (Proposition 2.4.6). Let K be an AEC. Let K̂ := K̂<κ. If N̂ ∈ K̂
has the (syntactic) order property of length χ, then N has the (Galois) (< κ)-order

property of length χ. Conversely, if χ ≥ 2<(κ+LS(K)+) and N has the (Galois)

(< κ)-order property of length (2χ)+, then N̂ has the (syntactic) order property of
length χ.

We will use Facts 7.5.3 and 7.5.5 freely in this section. We will also use the
following results about stability and the order property:

Fact 7.5.6 (Fact 2.4.7 and Theorem 2.4.15). Let K be an (< κ)-tame AEC
with amalgamation. The following are equivalent:

(1) K is stable in some λ ≥ κ+ LS(K).
(2) There exists µ ≤ λ0 < h∗(κ+ LS(K)+) (see Definition 2.2.2) such that K

is stable in any λ ≥ λ0 with λ = λ<µ.
(3) K does not have the order property.
(4) There exists χ < h∗(κ + LS(K)+) such that K does not have the (< κ)-

order property of length χ.

It remains to find an independence notion to satisfy condition (3) in Theorem
7.4.27. The splitting-like notion R there will be given by the following:

Definition 7.5.7. Let K be an AEC and let κ be an infinite cardinal. For
p ∈ gS<∞(B;N) and A ⊆ B, say p κ-explicitly does not split over A if when-
ever p = gtp(c̄/B;N), for any b̄, b̄′ ∈ <κB, if gtp(b̄/A;N) = gtp(b̄′/A;N), then

tpqL̂κ,κ(c̄b̄/A;N) = tpqL̂κ,κ(c̄b̄′/A;N), where L̂ = L(K̂<κ).

Remark 7.5.8. This is closely related to explicit nonsplitting defined in Defi-
nition 3.3.13. The definition there is that p explicitly does not split if and only if
it κ-explicitly does not split for all κ. When K is fully (< κ)-tame and short (see
[Bon14b, 3.3]), this is equivalent to just asking for p to κ-explicitly not split.

Remark 7.5.9 (Syntactic invariance). Let K̂ := K̂<κ. Assume tpqL̂κ,κ(c̄/B;N) =

tpqL̂κ,κ(c̄′/B;N) and gtp(c̄/B;N) κ-explicitly does not split over A ⊆ B. Then

gtp(c̄′/B;N) κ-explicitly does not split over A.

We will use the following definition of an independence relation, which appears
implicitly in Lemma 4.4.8.

Definition 7.5.10. Let K be an AEC with amalgamation and let λ ≥ LS(K)
be such that K is λ-tame and stable in λ. For M ≤K N with M λ+-saturated,
we say that p ∈ gS(N) does not λ-fork over M if there exists M0 ∈ Kλ such that
M0 ≤K M and p does not λ-split over M0 (that is [She99, I.3.2], whenever N`,
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` = 1, 2, are of size λ such that M0 ≤K N` ≤K N and f : N1
∼=M0

N2, we have that

f(p � N1) = p � N2). We write a
λ-nf

^
M
N to say that gtp(a/N) does not λ-fork over

M and will apply the definition of the properties Definition 7.2.3 and Fact 7.2.5 to
it.

Fact 7.5.11 (§4.4 and §4.5 in Chapter 4). Let K be an AEC with amalgamation
and let λ ≥ LS(K) be such that K is λ-tame, stable in λ, and has no maximal
models in λ.

Then λ-nonforking satisfies invariance, monotonicity, transitivity (i.e. if M1 ≤K

M2 ≤K M3 are such that M1 and M2 are λ+-saturated, p ∈ gS(M3), p does not
λ-fork over M2, p �M2 does not λ-fork over M1, then p does not λ-fork over M1),

and uniqueness. Moreover κ̄1(
λ-nf

^ � Kλ+-sat) = λ++.

We recall the definition of superstability from Definition 6.10.1 using local char-
acter of nonsplitting. Note that it coincides with the first-order definition and is
equivalent to the definition implicit in [GVV16] and Chapter 4 and explicit in
[Gro02, 7.12].

Definition 7.5.12 (Superstability). Let K be an AEC.

(1) For M,N ∈ K, say N is universal over M if and only if M ≤K N and
whenever we have M ′ ≥K M such that ‖M ′‖ = ‖M‖, then there exists
f : M ′ −→

M
N .

(2) K is λ-superstable if:
(a) LS(K) ≤ λ and Kλ 6= ∅.
(b) Kλ has amalgamation, joint embedding, and no maximal models.
(c) K is stable in λ.
(d) K has no long splitting chains in λ: for any limit δ < λ+ and in-

creasing continuous 〈Mi : i ≤ δ〉 in Kλ with Mi+1 universal over Mi

for all i < δ, and any p ∈ gS(Mδ), there exists i < δ such that p does
not λ-split over Mi.

Note that superstability implies local character of λ-forking, and superstability
transfers up assuming tameness:

Fact 7.5.13. Let K be an AEC with amalgamation that is λ-tame and λ-
superstable.

(1) (Lemma 4.4.11) κ1(
λ-nf

^ � Kλ+-sat) = ℵ0.
(2) K is λ′-superstable for all λ′ ≥ λ.

The next result imitates Lemma 3.5.6:

Lemma 7.5.14. Let K be an AEC with amalgamation and let λ ≥ LS(K) be
such that K is λ-tame, stable in λ, and has no maximal models in λ. Let κ ≤ λ+.

Let M ≤K N be given with M λ+-saturated. Let p ∈ gS(N). If p does not
λ-fork over M , then p κ-explicitly does not split over A.

Proof. By definition of λ-nonforking, there exists M0 ≤K M of size λ such
that p does not λ-split over M0. We will show that p explicitly does not κ-split
over M0 which is enough by base monotonicity of explicit κ-nonsplitting.
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Work inside a monster model C and write p = gtp(c/N). Let b̄, b̄′ ∈ <κ|N | be
such that gtp(b/M0) = gtp(b̄′/M0). Let f be an automorphism of C fixing M0 such
that f(b̄) = b̄′. By invariance, f(p) does not λ-split over M0. Now using uniqueness
of λ-splitting (see [Van06, I.4.12]), f(p �M0b̄) = p �M0b̄

′. The result follows. �

The next technical lemma captures the essence of our translation:

Lemma 7.5.15. Let K be a (< κ)-tame AEC with amalgamation and no max-
imal models. Let χ0 be such that:

(1) χ0 ≥ 2<(κ+LS(K)+).
(2) K does not have the (< κ)-order property of length χ+

0 .

Set χ :=
(
22χ0

)+
. Let λ be such that:

(1) λ > χ+.
(2) K is stable in µ for unboundedly many µ < λ.

Let θ := κ1(
χ-nf

^ � Kχ+-sat). Then:

(1) If 〈Mi : i < δ〉 is an increasing chain of λ-saturated models and cf δ ≥ θ,
then

⋃
i<δMi is λ-saturated.

(2) If M ∈ K is such that for any q ∈ gS(M) there exists 〈Mi : i < δ〉 strictly
increasing so that:
(a) δ ≥ λ and cf δ ≥ θ.
(b) M =

⋃
i<δMi.

(c) For all i < δ, Mi is χ+-saturated and Mi+1 realizes q �Mi.
Then M is λ-saturated.

Proof. We prove the first statement. The proof of the second is analogous but
uses Theorem 7.4.30 instead of Theorem 7.4.27. Set Mδ :=

⋃
i<δMi. Let N ≥K Mδ

be such that N realizes all types in gS<κ(Mδ). We check that Mδ is λ-saturated

in N . Let K̂ := K̂<κ be the (< κ)-Galois Morleyization of K. Let N := N̂ . By

(< κ)-tameness, it is enough to show that M̂δ is (syntactically) λ-saturated in N .

Work inside N in the language of K̂. We also let S := {|M | | M ≤K N}. Note
that S satisfies Hypothesis 7.4.2.

First observe that Hypothesis 7.4.22 holds as (Remark 7.5.2) |L(K̂)| ≤ 2<(κ+LS(K)+),
so χ0 has all the required properties. Also, Hypothesis 7.4.4 holds by [She09a,
II.1.14]. Note that K is stable in χ by Fact 7.4.26(1). By hypothesis, λ > χ+. We
want to use Theorem 7.4.27, and it remains to check that (3) there holds.

For A ⊆ B and p ∈ S<∞(B), define the relation R(p,A) to hold if and only
if p = tp(c̄/B) and gtp(c̄/B;N) κ-explicitly does not split over A. Note that this
is well-defined by Remark 7.5.9. We want to check that this is a splitting-like
notion (Definition 7.4.23). By definition of κ-explicit nonsplitting, if p ∈ S<∞(B)
does not split over A ⊆ B, then R(p,A). Also, it is easy to check that R satisfies
the monotonicity axiom. It remains to check the weak uniqueness axiom. So let

M be µ :=
(
|A|+ (|L(K̂)|+ 2)<κ

)+

-saturated, A ⊆ |M | ⊆ B, and for ` = 1, 2,

q` ∈ S<∞(B), R(q`, A) and q1 � M = q2 � M . Note that M is also µ-saturated
in the Galois sense (by tameness and Remark 3). Thus we can imitate the proof
of Lemma 7.4.8, using Galois saturation instead of syntactic saturation to get b̄′

satisfying gtp(b̄′/A) = gtp(b̄/A) (instead of just tp(b̄′/A) = tp(b̄′/A) as there). The
definition of κ-explicit nonsplitting then makes the proof go through.
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Now let q ∈ gS(Mδ). By definition of θ, there exists i < δ such that q does not
χ-fork over Mi. Now by set local character, there exists M ≤K Mi of size χ+ such
that q �Mi does not χ-fork over M . By transitivity, q does not χ-fork over M . By
Lemma 7.5.14, working syntactically inside N , q does not R-split over M . Thus
(3) holds. Therefore Mδ is λ-saturated, as desired. �

We obtain the following result on chains of saturated models in stable AECs:

Theorem 7.5.16. Let K be a (< κ)-tame AEC with amalgamation, κ ≥
LS(K)+. If K is stable, then there exists χ0 ≤ λ0 < h∗(κ) (see Definition 2.2.2)
satisfying the following property:

If λ ≥ λ0 is such that µχ0 < λ for all µ < λ (or just that K is stable in µ for
unboundedly many µ < λ), then whenever 〈Mi : i < δ〉 is an increasing chain of
λ-saturated models with cf δ ≥ λ0, we have that

⋃
i<δMi is λ-saturated.

Proof. Using Fact 7.5.6, pick χ0 ≤ µ0 < h∗(κ) such that:

(1) χ+
0 ≥ 2<(κ+LS(K)+) + κ+.

(2) K is stable in any µ ≥ µ0 with µ = µχ0 .
(3) K does not have the (< κ)-order property of length χ+

0 .

Now set λ0 := (22χ0
)+3 and apply Lemma 7.5.15. �

The statement becomes much nicer in superstable AECs:

Theorem 7.5.17. Let K be a (< κ)-tame AEC with amalgamation, LS(K)+ ≤
κ. Let µ ≥ LS(K) be a cardinal with µ+ ≥ κ and assume that K is µ-superstable.
Then there exists λ0 < h∗(κ) + µ++ with λ0 > µ such that that for any λ ≥ λ0:

(1) Kλ-sat is an AEC with LS(Kλ-sat) = λ.
(2) If M ∈ Kλ0-sat is such that for any q ∈ gS(M) there exists 〈Mi : i < λ〉

a resolution of M in Kλ0-sat such that q � Mi is realized in Mi+1 for all
i < λ, then M ∈ Kλ-sat.

Proof.

(1) We first show that any increasing union of λ-saturated models is saturated.
Let λ00 < h∗(κ) be as given by the proof of Theorem 7.5.16 and let

λ0 := λ00 + µ+. By Fact 7.5.13, κ1(
λ0-nf

^ � Kλ0-sat) = ℵ0. Now apply
Lemma 7.5.15 (note that by Fact 7.5.13, K is stable in any µ′ ≥ µ). To
see that LS(Kλ-sat) = λ, imitate the proof of [She90, Theorem III.3.12].

(2) Similar: use the second conclusion of Lemma 7.5.15.

�

7.6. On superstability in AECs

In the introduction to [She09a], Shelah points out the importance of finding a
definition of superstability for AECs. He also remarks (p. 19) that superstability in
AECs suffers from “schizophrenia”: definitions that are equivalent in the first-order
case might not be equivalent in AECs. In this section, we point out that Definition
7.5.12 implies several other candidate definitions of superstability. Recall from Fact
7.5.13 that Definition 7.5.12 implies that the class is stable on a tail of cardinals.
We will focus on five other definitions:
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(1) For every high-enough λ, the union of any increasing chain of λ-saturated
models is λ-saturated. This is the focus of this chapter and is equivalent
to first-order superstability by [AG90, Theorem 13].

(2) The existence of a saturated model of size λ for every high-enough λ. In
first-order, this is an equivalent definition of superstability by the satura-
tion spectrum theorem (Fact 7.1.2).

(3) The existence of a superlimit model of size λ for every high-enough λ. This
is the definition of superstability listed by Shelah in [She09a, N.2.4]. Re-
call that a model M ∈ Kλ is superlimit if it is universal, has an isomorphic
proper extension in Kλ, and whenever 〈Mi : i < δ〉 is increasing in Kλ,
δ < λ+, and Mi

∼= M for all i < δ, then
⋃
i<δMi

∼= M .
(4) The existence of a good λ-frame on a subclass of saturated models (e.g. for

every high-enough λ). Recall that a good frame is essentially a forking-like
notion for types of length one (see [She09a, II.2.1] for the formal defini-
tion). Good frames are the central notion in [She09a] and are described
by Shelah as a “bare bone” definition of superstability.

(5) The uniqueness of limit models of size λ for every high-enough λ: Re-
call that a model M is (λ, δ)-limit over M0 if M0 ≤K M are in Kλ,
δ < λ+ is a limit ordinal and there exists 〈Mi : i ≤ δ〉 increasing con-
tinuous such that Mδ = M and i < δ implies Mi <

univ
K Mi+1 (recall

Definition 7.5.12). We say Kλ has uniqueness of limit models if for any
M0 ∈ Kλ, any limit δ1, δ2 < λ+, any M` which are (λ, δ`)-limit over
M0 are isomorphic over M0. Uniqueness of limit models is central in
[She99, SV99, Van06, Van13] and is further examined in [GVV16]
(Theorem 6.1 there proves that the condition is equivalent to first-order
superstability). These papers all prove the uniqueness under a categoric-
ity (or no Vaughtian pair) assumption. In [She09a, II.4.8], uniqueness
of limit models is proven from a good frame (see also [Bon14a, 9.2] for
a detailed writeup). This is used in [BG] to get eventual uniqueness of
limit models from categoricity, but the authors have to make an extra
assumption (the extension property for coheir).

Note that some easy implications between these definitions are already known
(see for example [Dru13, 2.3.12]). We now show that assuming amalgamation and
tameness, if K is superstable, then all five of these conditions hold. This gives an
eventual version of [Dru13, Conjecture 4.2.5]. It also shows how to build a good
frame without relying on categoricity (as opposed to all previous constructions, see
[She09a, II.3.7], Theorem 4.7.3, or Theorem 6.10.16).

Theorem 7.6.1. If K is a µ-tame, µ-superstable AEC with amalgamation,
then there exists λ0 < h(µ) such that for all λ ≥ λ0:

(1) The union of any increasing chain of λ-saturated models in K is λ-saturated.
(2) K has a saturated model of size λ.
(3) K has a superlimit model of size λ.
(4) There exists a type-full good λ-frame with underlying class Kλ-sat

λ .
(5) Kλ has uniqueness of limit models.

Proof. Note that by Fact 7.5.13, K≥µ has no maximal models, joint embed-
ding, and is stable in every cardinal. Let λ0 < h(µ) be as given by Theorem 7.5.17
and let λ ≥ λ0. Then Kλ-sat is an AEC with LS(Kλ-sat) = λ. Thus (1) and (2)
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hold. If M is the saturated model of size λ, then it is easy to check that M is
superlimit: it is universal as K≥µ has joint embedding, it has a saturated proper
extension of size λ since LS(Kλ-sat) = λ, and any increasing chain of saturated
models in Kλ of length less than λ+ has a saturated union. Thus (3) holds. To see
(4), use Theorem 6.10.8.(2c).

We are now ready to prove (5). As observed above, a good frame implies
uniqueness of limit models. Thus Kλ-sat

λ has uniqueness of limit models. It follows
that Kλ has uniqueness of limit models: Let M` be (λ, δ`)-limit over M0, ` = 1, 2.
Pick M ′0 ≥K M0 in Kλ-sat

λ . By universality, M` is also (λ, δ`)-limit over some
copy of M ′0, so after some renaming we can assume without loss of generality that
M0 = M ′0. For ` = 1, 2, build 〈M ′i : i ≤ δ`〉 increasing continuous such that for all
i < δ`, M

′
i ∈ Kλ-sat

λ and M ′i <
univ
K M ′i+1. This is easy to do and by a back and forth

argument, M`
∼=M0 M

′
δ`

. By uniqueness of limit models in Kλ-sat, M ′δ1
∼=M0 M

′
δ2

.
Composing the isomorphisms, we obtain that M1

∼=M0
M2. �



CHAPTER 8

Shelah’s eventual categoricity conjecture in
universal classes: part I

This chapter is based on [Vasg]. I thank Will Boney for pointing me to AECs
which admit intersections, for helpful conversations, and for good feedback. I thank
John Baldwin, Adi Jarden, and the referee for useful feedback that greatly helped
me improve the presentation of this chapter.

Abstract

We prove:

Theorem 8.0.2. Let K be a universal class. If K is categorical in cardinals of
arbitrarily high cofinality, then K is categorical on a tail of cardinals.

The proof stems from ideas of Adi Jarden and Will Boney, and also relies on a
deep result of Shelah. As opposed to previous works, the argument is in ZFC and
does not use the assumption of categoricity in a successor cardinal. The argument
generalizes to abstract elementary classes (AECs) that satisfy a locality property
and where certain prime models exist. Moreover assuming amalgamation we can
give an explicit bound on the Hanf number and get rid of the cofinality restrictions:

Theorem 8.0.3. Let K be an AEC with amalgamation. Assume that K is
fully LS(K)-tame and short and has primes over sets of the form M ∪ {a}. Write
H2 := i(

2

i
(2LS(K))

+
)+ . If K is categorical in a λ > H2, then K is categorical in

all λ′ ≥ H2.

8.1. Introduction

Morley’s categoricity theorem [Mor65] states that a first-order countable the-
ory that is categorical in some uncountable cardinal must be categorical in all un-
countable cardinals. The result motivated much of the development of first-order
classification theory (it was later generalized by Shelah [She74] to uncountable
theories).

Toward developing a classification theory for non-elementary classes, one can
ask whether there is such a result for infinitary logics, e.g. for an Lω1,ω sentence.
In 1971, Keisler proved [Kei71, Section 23] a generalization of Morley’s theorem to
this framework assuming in addition that the model in the categoricity cardinal is
sequentially homogeneous. Unfortunately Shelah later observed using an example
of Marcus [Mar72] that Keisler’s assumption does not follow from categoricity.
Still in the summer of 1976, Shelah proposed the following far-reaching conjecture
(this is listed as Open problem D.(3a) in [She90]):

217
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Conjecture 8.1.1 (see p. 218 of [She83a]). If L is a countable language and
ψ ∈ Lω1,ω is categorical in one λ ≥ iω1 , then it is categorical in all λ′ ≥ iω1 .

This has now become the central test problem in classification theory for non-
elementary classes. Shelah alone has more than 2000 pages of approximations
(for example [She75a, She83a, She83b, MS90, She99, She01a, She09a,
She09b]). Shelah’s results led him to introduce a semantic framework encom-
passing several different infinitary logics and algebraic classes [She87a]: abstract
elementary classes (AECs). In this framework, we can state an eventual version of
the conjecture1:

Conjecture 8.1.2 (Shelah’s eventual categoricity conjecture for AECs). An
AEC that is categorical in a high-enough cardinal is categorical on a tail of cardinals.

Remark 8.1.3. A more precise statement is that there should be a function
µ 7→ λµ such that every AEC K categorical in some λ ≥ λLS(K) is categorical
in all λ′ ≥ λLS(K). By a similar argument as for the existence of Hanf numbers
[Han60] (see [Bal09, Conclusion 15.13]), Shelah’s eventual categoricity conjecture
for AECs is equivalent to the statement that an AEC categorical in unboundedly
many cardinals is categorical on a tail of cardinals. We will use this equivalence
freely. Note that Theorem 8.0.3 gives an explicit2 bound for λµ, so proves a stronger
statement than just Shelah’s eventual categoricity conjecture for universal classes
with amalgamation3.

Positive results are known in less general frameworks: For homogeneous model
theory by Lessmann [Les00] and more generally for ℵ0-tame4 simple finitary AECs
by Hyttinen and Kesälä [HK11] (note that these results apply only to countable
languages). In uncountable languages, Grossberg and VanDieren proved the con-
jecture in tame AECs categorical in a successor cardinal [GV06c, GV06a]. Later
Will Boney pointed out that tameness follows5 from large cardinals [Bon14b], a
result that (as pointed out in [LR16]) can also be derived from a 25 year old the-
orem of Makkai and Paré ([MP89, Theorem 5.5.1]). A combination of this gives
that statements much stronger than Shelah’s categoricity conjecture for a successor
hold if there exists a proper class of strongly compact cardinals.

The question of whether categoricity in a sufficiently high limit cardinal implies
categoricity on a tail remains open (even in tame AECs). The central tool there is
the notion of a good λ-frame, a local axiomatization of forking which is the main
concept in [She09a]. After developing the theory of good λ-frames over several
hundreds of pages, Shelah claims to be able to prove the following (see [She09a,
Discussion III.12.40], a proof should appear in [Sheb]):

1The statement here appears in [She09a, Conjecture N.4.2].
2We thank John Baldwin for helpful conversation on the topic.
3We are not sure how to make the distinction precise. Maybe one can call the computable

eventual categoricity conjecture the statement that has the additional requirement that µ 7→ λµ
be computable, where computable can be defined as in [BS14]. Note that in Shelah’s original

categoricity conjecture, λµ is i(2µ)+ , see [She00, 6.14.(3)].
4Tameness is a locality property for orbital types introduced by Grossberg and VanDieren in

[GV06b].
5Recently Boney and Unger [BU] established that the statement “all AECs are tame” is

in fact equivalent to a large cardinal axioms (the existence of a proper class of almost strongly
compact cardinals). This result does not however say anything on the consistency strength of

Shelah’s eventual categoricity conjecture.
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Claim 8.1.4. Assume that 2θ < 2θ
+

for all cardinals θ. Let K be an AEC
such that there is an ω-successful6 good+ λ-frame with underlying class Kλ. If K
is categorical in λ and in some µ > λ+ω, then
K is categorical in all µ > λ+ω.

Assuming amalgamation and Claim 8.1.4, Shelah obtains the eventual cate-
goricity conjecture [She09a, Theorem IV.7.12] (or see Section 15.5 for an exposi-
tion):

Fact 8.1.5. Assume Claim 8.1.4 and 2θ < 2θ
+

for all cardinals θ. Then an
AEC with amalgamation categorical in some λ ≥ h(ℵLS(K)+) is categorical in all
λ′ ≥ h(ℵLS(K)+).

Note that Fact 8.1.5 applies in particular to homogeneous model theory and
finitary AECs with uncountable language (the latter case could not previously be
dealt with).

Now a conjecture of Grossberg made in 1986 (see Grossberg [Gro02, Conjec-
ture 2.3]) is that categoricity of an AEC in a high-enough cardinal should imply
amalgamation (above a certain Hanf number). This is especially relevant consid-
ering that all the positive results above assume amalgamation. In the presence of
large cardinals, Grossberg’s conjecture is known to be true (This was first pointed
out by Will Boney for general AECs, see [Bon14b, Theorem 4.3] and the discussion
around Theorem 7.6 there. The key is that the proofs in [MS90, Proposition 1.13]
or the stronger [SK96] which are for classes of models of an Lκ,ω sentence, κ a
large cardinal, carry over to AECs K with LS(K) < κ). In recent years it has been
shown that several results that could be proven using large cardinals can be proven
using just the model-theoretic assumption of tameness or shortness (see all of the
above works on tameness and for example Chapters 2 and 7). Thus one can ask
whether tameness suffices to get amalgamation from categoricity. In general, this
is not known. The only approximation is a result of Adi Jarden [Jar16] discussed
more at length in Section 8.4. Our contribution is a weak version of amalgamation
which one can assume alongside tameness to prove Grossberg’s conjecture:

Corollary 8.4.17. Let K be tame AEC categorical in unboundedly many
cardinals. If K is eventually syntactically characterizable7 and has weak amalga-
mation (see Definition 8.4.11), then there exists λ such that K≥λ has amalgamation.

The proof uses a deep result of Shelah showing that a categorical AEC is
well-behaved in a specific cardinal, then uses tameness and weak amalgamation to
transfer the good behavior up.

We apply our result to universal classes. Universal classes were introduced by
Shelah in [She87b] as an important framework where he thought finding dividing
lines should be possible8. For many years, Shelah has claimed a main gap theorem
for these classes but the full proof has not appeared in print. The most recent
version is Chapter V of [She09b] which contains hundreds of pages of approxima-
tions. The methods used are stability theory inside a model (averages) as well as

6See Section 8.6 for a definition of good frames and the related technical terms.
7A technical condition discussed more at length in Section 8.4.
8We were told by Rami Grossberg that another motivation was to study certain non first-

order classes of modules.
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combinatorial tools to build many models. Here we show that universal classes are
tame9 (in fact fully (< ℵ0)-tame and short) and have weak amalgamation. More-
over Shelah has shown10 that categoricity in cardinals of arbitrarily high cofinality
implies that the class is eventually syntactically characterizable. Thus combining
Corollary 8.4.17 and Fact 8.1.5 we can already prove Theorem 8.0.2 assuming the
weak generalized continuum hypothesis and Claim 8.1.4. If the universal class is
categorical in unboundedly many successor cardinals, we can use [GV06a] instead
to get a categoricity transfer in ZFC.

By relying on Shelah’s analysis of frames in [She09a, Chapter III] as well as
the frame transfer theorems in [Bon14a], Chapter 5, we can also prove that Claim
8.1.4 holds in ZFC for universal classes (this uses the proof of Corollary 8.4.17). We
deduce Theorem 8.0.2 in the abstract (see Corollary 8.5.28). Note that the result
also holds in uncountable languages.

Our results apply to a more general context than universal classes: fully tame
and short AECs with amalgamation which have a prime model over every set of the
form M ∪ {a} for M a model (this is Theorem 8.0.3 in the abstract, see Theorem
8.5.18 for a proof). Note that existence of prime models over sets of the formM∪{a}
already played a crucial role in the proof of the categoricity transfer theorem for
excellent classes of models of an Lω1,ω sentences [She83b, Theorem 5.9] (in fact, our
proof works also in this setting). Since in that case we are assuming amalgamation,
there is no cofinality restrictions and the Hanf number can be explicitly computed.

Theorem 8.0.3 shows that, at least assuming amalgamation, tameness and
shortness, the existence of primes is the only obstacle. Since amalgamation and
full tameness and shortness follow from large cardinals [Bon14b], we obtain:

Theorem 8.1.6. Let K be an AEC and let κ > LS(K) be strongly compact.
Assume that in K≥κ there are prime models over sets of the form M ∪ {a}. If K
is categorical in a λ > h(h(κ)), then K is categorical in all λ′ ≥ h(h(κ)).

When K is a universal class, we can replace the strongly compact with a mea-
surable (Theorem 8.5.27).

There remains one question: can the conclusion of Theorem 8.0.2 be obtained
from only categoricity in a single cardinal (without cofinality restriction)? We
answer positively in a sequel11 (Chapter 16). Here, let us note that Theorem 8.0.2
generalizes to fully tame and short AECs with primes, but universal classes have
better properties (as demonstrated by Shelah in [She09b, Chapter V]), so there is
still room for improvement12.

The chapter is organized as follows. In Section 8.2, we recall the definition of
universal classes and more generally of AECs which admit intersections (a notion
introduced by Baldwin and Shelah in [BS08]), give examples, and prove some basic

9This uses an argument of Will Boney.
10In fact, Shelah asserts that the cofinality restriction is not necessary but Will Boney and

the author have found a gap in Shelah’s argument, and Shelah’s fix has not yet been published.
See the beginning of Section 8.4.

11Since the initial circulation of this chapter (in June 2015), there have been several other

improvements: Question 8.5.19 has been answered positively (see Chapter 11) and the categoric-
ity threshold of Theorem 8.0.3 has been improved from H2 to H1, see Chapter 14. All these

improvements rely on the results of this chapter.
12In fact, we had claimed in an earlier version of this work to be able to prove the full

categoricity conjecture for universal classes but our argument contained an error.
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properties. In Section 8.3, we prove that universal classes are fully (< ℵ0)-tame
and short. In Section 8.4 we give conditions under which amalgamation follows
from categoricity (in more general classes than universal classes). In Section 8.5,
we prove a categoricity transfer in universal classes that have amalgamation and
more generally in fully tame and short AECs with primes and amalgamation.

To avoid cluttering the chapter, we have written the technical definitions and
results on independence needed for the paper (but not crucial to a conceptual
understanding) in Section 8.6. In Section 8.7, we prove Fact 8.5.10, a result of
Shelah which is crucial to our argument but whose proof is only implicit in Shelah’s
book. In Section 8.8, we give some properties of independence in AECs which admit
intersections.

A word on the background needed to read this chapter: we assume familiarity
with a basic text on AECs such as [Bal09] or [Gro] and refer the reader to the
preliminaries of Chapter 2 for more details and motivations on the notation and
concepts used here. Familiarity with good frames [She09a, Chapter II] would be
helpful, although the basics are reviewed in Section 8.6. The proof of the two
theorems in the abstract relies on the construction of a good frame in Chapter
4, and more generally13 on the study of global independence relations in Chapter
6. Some material from Chapter III of [She09a] is implicitly used there. To get
amalgamation and prove Theorem 8.0.2, the hard arguments of [She09a, Chapter
IV] are used. However we do not rely on them once amalgamation has been obtained
(so for example Theorem 8.0.3 does not rely on [She09a, Chapter IV]). Finally, let
us note that a more leisurely overview of the proof of Theorem 8.0.2 will appear in
[BVd]. We have also written a short outline of the proof in [Vasb].

8.2. AECs which admit intersections

Recall:

Definition 8.2.1 ([She87b]). A class of structures K is universal if:

(1) It is a class of L-structures for a fixed language L = L(K), closed under
isomorphisms.

(2) If 〈Mi : i < δ〉 is ⊆-increasing in K, then
⋃
i<δMi ∈ K.

(3) If M ∈ K and M0 ⊆M , then M0 ∈ K.

Example 8.2.2.

(1) The class of models of a universal Lλ,ω theory (that is, a set of sentences
of the form ∀x0 . . . ∀xn−1ψ, with ψ a quantifier-free Lλ,ω-formula) is uni-
versal.

(2) Not all elementary classes are universal but some universal classes are not
elementary (locally finite groups are one example).

(3) Coloring classes [KLH16] are universal classes. This shows that the be-
havior of amalgamation is non-trivial even in universal classes: some col-
oring classes can have amalgamation up to iα for some α < LS(K)+ and
fail to have it above iLS(K)+ . Other universal classes with non-trivial
amalgamation spectrum appear in [BKL].

(4) If K is a universal class in a countable vocabulary with:

13Although since this chapter has first been made public, an improvement has been published
that avoids dealing with global independence relation, see Chapter 11 (we have kept the original

proof to avoid changing history and also because Section 8.6 is useful in other contexts).
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(a) Arbitrarily large models.
(b) Joint embedding.
(c) Disjoint amalgamation (see Definition 8.4.1).

Then (K,⊆) is a finitary abstract elementary class in the sense of
Hyttinen and Kesälä [HK06, Definition 2.9]. We do not know whether
(K,⊆) is always simple (in the sense of [HK11, Definition 6.1]. In any
case, the arguments of Hyttinen and Kesälä only deal with countable
languages.

Universal classes are abstract elementary classes:

Remark 8.2.3. If K is a universal class, then K := (K,⊆) is an AEC with
LS(K) = |L(K)| + ℵ0. We will use this fact freely. Note that K may have finite
models, and it is the case in several examples, see [BKL].

We now recall the definition of AECs that admit intersections, a notion intro-
duced by Baldwin and Shelah. It is interesting to note that Baldwin and Shelah
thought of admitting intersections as a weak version of amalgamation (see the con-
clusion of [BS08]).

Definition 8.2.4 (Definition 1.2 in [BS08]). Let K be an AEC.

(1) Let N ∈ K and let A ⊆ |N |. N admits intersections over A if there
is M0 ≤K N such that |M0| =

⋂
{M ≤K N | A ⊆ |M |}. N admits

intersections if it admits intersections over all A ⊆ |N |.
(2) K admits intersections if N admits intersections for all N ∈ K.

Example 8.2.5.

(1) If K is a universal class, then K admits intersections (and see Remark
8.2.12).

(2) If K is a class of models of a first-order theory, then when (K,⊆) admits
intersections has been characterized by Rabin [Rab62].

(3) Several classes appearing in algebra admit intersections. For example
[Gro02, Example 1.15], let K be the class of algebraically closed valued
fields (we code the value group with an additional predicate), ordered by
F1 ≤K F2 if and only if F1 is a subfield of F2, the value groups are the
same, and the valuations coincide on F1. Then K admits intersections.
Again, K is not universal (as it is not closed under substructure).

(4) The examples in [BS08] admit intersections. Since they are not (< ℵ0)-
tame, they cannot be universal classes (see Theorem 8.3.6).

(5) The Hart-Shelah example [HS90, BK09] admits intersections but is also
not (< ℵ0)-tame.

(6) If C is a quasiminimal excellent pregeometry class (see [Zil05a, Kir10])
then the AEC K that it induces admits intersections and is categorical
in every uncountable cardinal. Moreover it will be fully tame and short
(at least assuming the existence of large cardinals). However it need not
be finitary (take C to be the class of pseudo-exponential fields [Kir13,
Theorem 2]).

In the rest of this section, we give several equivalent definitions of admitting
intersections and deduce some properties of these classes. All throughout this
chapter, we assume:
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Hypothesis 8.2.6. K is an AEC.

Definition 8.2.7. Let M ∈ K and let A ⊆ |M | be a set. M is minimal over
A if whenever M ′ ≤K M contains A, then M ′ = M . M is minimal over A in N if
in addition M ≤K N .

Definition 8.2.8. Let N ∈ K. We say F is a set of Skolem functions for N if:

(1) F is a non-empty set, and each element f of F is a function from Nn to
N , for some n < ω.

(2) For all A ⊆ |N |, M := F [A] :=
⋃
{f [A] | f ∈ F} is such that M ≤K N

and contains A.

Remark 8.2.9. The proof of Shelah’s presentation theorem (see [She09a,
Lemma I.1.7]) gives that for each N ∈ K, there is F a set of Skolem functions
for N with |F| ≤ LS(K).

Theorem 8.2.10. Let K be an AEC and let N ∈ K. The following are equiv-
alent:

(1) N admits intersections.

(2) There is an operator cl := clN : P(|N |)→ P(|N |) such that for all A,B ⊆
|N | and all M ≤K N :
(a) cl(A) ≤K N .
(b) A ⊆ cl(A).
(c) A ⊆ B implies cl(A) ⊆ cl(B).
(d) cl(M) = M .

(3) For each A ⊆ |N |, there is a unique minimal model over A in N .
(4) There is a set F of Skolem functions for N such that:

(a) |F| ≤ LS(K).
(b) For all M ≤K N , we have F [M ] = M .

Moreover the operator clN : P(|N |) → P(|N |) with the properties in (2) is
unique and if it exists then it has the following characterizations:

• clN (A) =
⋂
{M ≤K N | A ⊆ |M |}.

• clN (A) = F [A], for any set of Skolem functions F for N such that F [M ] =
M for all M ≤K N .
• clN (A) is the unique minimal model over A in N .

Proof.

• (1) implies (2): Let clN (A) :=
⋂
{M ≤K N | A ⊆ |M |}. Even with-

out hypotheses on N , (2b), (2c), and (2d) are satisfied. Since N admits
intersections, (2a) is also satisfied.

• (2) implies (3): Let A ⊆ |N |. Let cl be as given by (2). Let M := cl(A).

By (2a), M ≤K N . By (2b), A ⊆ |M |. Moreover if M ′ ≤K N contains
A, then by (2c), |M | ⊆ | cl(M ′)| but by (2d), cl(M ′) = M ′. Thus by
coherence and (2a) M ≤K M ′. This shows both that M is minimal over
A and that it is unique.

• (3) implies (4): We slightly change the proof of [She09a, Lemma I.1.7]

as follows: Let χ := LS(K). For each ā ∈ <ω|N |, let 〈bāi : i < χ〉 be
an enumeration (possibly with repetitions) of the unique minimal model
over ran(ā) in N . For each n < ω and i < χ, we let fni : Nn → N be
fni (ā) := bāi . Let F := {fni | i < χ, n < ω}. Then |F| ≤ LS(K) and
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if A ⊆ |N |, we claim that F [A] is minimal over A in N . This shows in
particular that F is as required.

Let M := F [A]. By definition, M =
⋃
ā∈<ω|A| F [ran(ā)]. Now if

ā ∈ <ωA, Mā := F [ran(ā)] = {bāi : i < χ} is the unique minimal model
over ran(ā) in N . Thus if ran(ā) ⊆ ran(b̄), we must have (by coherence)
Mā ≤K Mb̄. It follows that M ∈ K and by the axioms of AECs also
M ≤K N . Of course, M contains A. Now if M ′ ≤K M contains A, then
for all ā ∈ <ωA, ā ∈ <ω|M ′|, so as Mā is minimal over ran(ā), Mā ≤K M ′.
It follows that M ≤K M ′ so M = M ′.

• (4) implies (1): Let F be as given by (4). Let A ⊆ |N |. Let M := F [A].
By definition of Skolem functions, M contains A and M ≤K N . We claim
that M =

⋂
{M ′ ≤K N | A ⊆ |M ′|}. Indeed, if M ′ ≤K N contains A,

then by the hypothesis on F , M = F [A] ⊆ F [M ′] = M ′.

The moreover part follows from the arguments above. �

Definition 8.2.11. For N ∈ K let clN : P(|N |) → P(|N |) be defined by

clN (A) :=
⋂
{M ≤K N | A ⊆ |M |}.

Remark 8.2.12. If K is a universal class, then one can take the set F of Skolem
functions in (4) to consist of all the functions of N . Thus clN (A) is just the closure
of A under the functions of N .

Theorem 8.2.10 allows us to deduce several properties of the operator clN .

Proposition 8.2.13. Let M ≤K N ∈ K and let A,B ⊆ |N |.
(1) Invariance: If f : N ∼= N ′, then f [clN (A)] = clN

′
(f [A]).

(2) Monotonicity 1: A ⊆ clN (A).

(3) Monotonicity 2: A ⊆ B implies clN (A) ⊆ clN (B).

(4) Monotonicity 3: If A ⊆ |M |, then clN (A) ⊆ clM (A). Moreover if N admits

intersections over A, then M admits intersections over A and clN (A) =

clM (A).

(5) Idempotence: clN (M) = M .

(6) Finite character: If N admits intersections, then if B ⊆ clN (A) is finite,

there exists a finite A0 ⊆ A such that B ⊆ clN (A0).

Proof. Straightforward given Theorem 8.2.10: For finite character, use the
characterization in terms of Skolem functions. For monotonicity 3, let M0 :=
clN (A). We have M0 ≤K N since N admits intersections over A. Since M ≤K N
contains A, we must have |M0| ⊆ |M |. By coherence, M0 ≤K M , and by minimality,

M0 = clM (A). �

Note in particular the following:

Corollary 8.2.14.

(1) Assume that for every M ∈ K and every A ⊆ |M |, there is N ≥K M such
that N admits intersections over A. Then K admits intersections.

(2) N ∈ K admits intersections if and only if it admits intersections over
every finite A ⊆ |N |.

Proof.

(1) By Monotonicity 3.
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(2) By the proof of Theorem 8.2.10.

�

Remark 8.2.15. The second result is implicit in the discussion after Remark
4.3 in [BS08].

The next result says that in AECs admitting intersections, equality of Galois
types is witnessed by an isomorphism. This can be seen as a weak version of
amalgamation (see Section 8.4).

Proposition 8.2.16. Assume K admits intersections. Then gtp(ā1/A;N1) =

gtp(ā2/A;N2) if and only if there exists f : clN1(ā1) ∼=A clN2(ā2) such that f(ā1) =
ā2.

Proof. Let M1 := clN1(ā1), M2 := clN2(ā2). Since N` admits intersections,
we have M` ≤K N`, ` = 1, 2 so the right to left direction follows. Now assume
gtp(ā1/A;N1) = gtp(ā2/A;N2). It suffices to prove the result when the equality is
atomic (then we can compose the isomorphisms in the general case). So let N ∈ K
and f` : N` −→

A
N witness atomic equality, i.e. f1(ā1) = f2(ā2). By invariance

and monotonicity 3, f`[M`] = clf [N`](f`(ā`)) = clN (f`(ā`)). Since f1(ā1) = f2(ā2),
we must have that f1[M1] = f2[M2]. Thus f := (f2 � M2)−1 ◦ (f1 � M1) is as
desired. �

Remark 8.2.17. Proposition 8.2.16 was already observed (without proof) in
[BS08, Lemma 1.3]. Baldwin and Shelah also assert that E = Eat (see Definition
2.2.17), but this does not seem to follow.

Before ending this section, we point out a technical disadvantage of the defini-
tion of admitting intersection. The notion is not closed under the tail of the AEC:
If K admits intersections and λ is a cardinal, then it is not clear that K≥λ admits
intersections. Thus we will work with a slightly weaker definition:

Definition 8.2.18. For K an AEC and M ∈ K, let KM be the AEC defined
by adding constant symbols for the elements of M and requiring that M embeds
inside every model of KM . That is, L(KM ) = L(K) ∪ {ca | a ∈ |M |}, where the
ca’s are new constant symbols, and

KM := {(N, cNa )a∈|M | | N ∈ K and a 7→ cNa is a K-embedding from M into N}

We order KM by (N1, c
N
a )a∈|M | ≤K (N2, c

N2
a ) if and only if N1 ≤K N2 and

cN1
a = cN2

a for all a ∈ |M |.

Definition 8.2.19. K has P above M For P a property of AECs and M ∈ K,
K has P above M if KM has P . K locally has P if it has P above every M ∈ K.

Remark 8.2.20. K locally admits intersections if and only if for every M ≤K N
in K and every A ⊆ |N | which contains M , clN (A) ≤K N .

Remark 8.2.21. If K locally has P , then for every cardinal λ, K≥λ locally has
P .
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8.3. Universal classes are fully tame and short

In this section, we show that universal classes are fully (< ℵ0)-tame and short.
The basic argument for Theorem 8.3.6 is due to Will Boney and will also appear
in [Bonc].

Note that it is impossible to extend this result to AECs which admits inter-
sections: [BS08] gives several counterexamples. One could hope that showing that
categoricity in a high-enough cardinal implies tameness (a conjecture of Grossberg
and VanDieren, see [GV06a, Conjecture 1.5]) is easier in AECs which admits in-
tersections, but we have been unable to make progress in that direction and leave
it to future work.

The key of the argument for tameness of universal classes is that the isomor-
phism characterizing the equality of Galois type is unique. We abstract this feature
into a definition:

Definition 8.3.1. K is pseudo-universal if it admits intersections and for any
N1, N2, ā1, ā2, if gtp(ā1/∅;N1) = gtp(ā2/∅;N2) and f, g : clN1(ā1) ∼= clN2(ā2) are
such that f(ā1) = g(ā1) = ā2, then f = g.

Example 8.3.2.

(1) In universal classes, clN (A) is just the substructure of N generated by A
(see Remark 8.2.12). Thus universal classes are pseudo-universal.

(2) Let K be the class of groups in the language containing only the multipli-
cation symbol. Then K is not a universal class but it is pseudo-universal
(the inverse function and the unit constant are first-order definable).

(3) We show below that pseudo-universal classes are (< ℵ0)-tame, hence the
AECs in [BS08] admit intersections but are not pseudo-universal.

(4) More simply, the class K of algebraically closed fields is elementary (hence
(< ℵ0)-tame), admits intersections, but is not pseudo-universal. Indeed,
let M be the algebraic closure of Q and let x be transcendental. Let
N be the algebraic closure of M ∪ {x}. Then there exists two different
automorphisms of N that fix M ∪ {x}: the identity and one that sends√
x to −

√
x.

Definition 8.3.3. Let ā` ∈ α|N`| and let κ be an infinite cardinal. We write
(ā1, N1) ≡<κ (ā2, N2) if for every I ⊆ α of size less than κ, gtp(ā1 � I/∅;N1) =
gtp(ā2 � I/∅;N2).

The next proposition says roughly that it is enough to show shortness for types
over the empty set. This appears already as [Bon14b, Theorem 3.5]. We repeat
the argument here for convenience.

Proposition 8.3.4. Let κ be an infinite cardinal. Assume that for every
α, N` ∈ K, ā` ∈ α|N`|, ` = 1, 2, we have that (ā1, N1) ≡<κ (ā2, N2) implies
gtp(ā1/∅;N1) = gtp(ā2/∅;N2). Then K is fully (< κ)-tame and short.

Proof. Let β be an ordinal, M ∈ K, p, q ∈ gSβ(M). Assume that pI � A =
qI � A for all I ⊆ β and A ⊆ |M | of size less than κ. Say p = gtp(ā1/M ;N1),
q = gtp(ā2/M ;N2). Let b̄ be an enumeration of |M | and let p′ := gtp(ā1b̄/∅;N1),

q′ := gtp(ā2b̄/∅;N2). By assumption, (p′)I
′

= (q′)I
′

for all I ′ of size less than κ. In
other words, (ā1b̄, N1) ≡<κ (ā2b̄, N2). Therefore by our locality assumption p′ = q′,
and from the definition of Galois types this implies that p = q. �
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Remark 8.3.5. By a similar argument, we can show that pseudo-universal
classes are locally pseudo-universal (recall Definition 8.2.19).

Theorem 8.3.6. If K is pseudo-universal, then K is fully (< ℵ0)-tame and
short.

Proof. Let N` ∈ K, ā` ∈ α|N`|, ` = 1, 2. Assume that (ā1, N1) ≡<ℵ0
(ā2, N2).

We show that gtp(ā1/∅;N1) = gtp(ā2/∅;N1), which is enough by Proposition 8.3.4.

Let M` := clN`(ran ā`).

For each finite I ⊆ α, let M`,I := clN`(ran ā` � I). By definition of ≡<ℵ0
, for

each finite I ⊆ α, gtp(ā1 � I/∅;N1) = gtp(ā2 � I/∅;N2). Therefore (because K
admits intersections) there exists fI : M1,I

∼= M2,I such that fI(ā1 � I) = ā2 � I.
Moreover by definition of pseudo-universal, fI is unique with that property. This
means in particular that if I ⊆ J ⊆ α are both finite, we must have fI ⊆ fJ .
By finite character of the closure operator, M` =

⋃
I∈[α]<ℵ0 M`,I and so letting

f :=
⋃
I∈[α]<ℵ0 fI , we have that f : M1

∼= M2 and f(ā1) = ā2. This witnesses

that gtp(ā1/∅;M1) = gtp(ā2/∅;M2) and so (since M` ≤K N`), gtp(ā1/∅;N1) =
gtp(ā2/∅;N2). �

Remark 8.3.7. If K is a universal class (i.e. not “pseudo”), then the proof
of Theorem 8.3.6 (together with Remark 8.2.12) shows that Galois types are the
same as quantifier-free types. That is, gtp(ā1/A;N1) = gtp(ā2/A;N2) if and only
if tpqf(ā1/A;N1) = tpqf(ā2/A;N2), where tpqf(ā/A;N) denotes the quantifier-free
types of ā over A computed in N .

We can localize Theorem 8.3.6 to obtain more generally (Remark 8.3.5):

Corollary 8.3.8. If K is locally pseudo-universal, then K is fully LS(K)-tame
and short.

Proof. Let M ∈ K and let p, q ∈ gSα(M). Assume that pI � A = qI � A for
all A ⊆ |M | of at most size LS(K) and all I ⊆ α of size at most LS(K). We want to
see that p = q. Without loss of generality ‖M‖ ≥ LS(K). Let M0 ≤K M have size
LS(K). We know that pI �M0 = qI �M0 for all I ⊆ α of size at most LS(K). Since
K is locally pseudo-universal, KM0

(see Definition 8.2.18) is pseudo-universal. By
Theorem 8.3.6, KM0

is fully (< ℵ0)-tame and short. Translating to K, this means

that for any N ≥K M0, any p′, q′ ∈ gSβ(N), if (p′)I � (|M0|∪A) = (q′)I � (|M0|∪A)
for all finite I and A, then p′ = q′. Setting N, p′, q′ to stand for M,p, q, we get that
p = q, as desired. �

8.4. Amalgamation from categoricity

We investigate how to get amalgamation from categoricity in tame AECs ad-
mitting intersections. In what follows, we will often use Remark 8.1.3 without
comments. Recall:

Definition 8.4.1. An AEC K has amalgamation if for any M0 ≤K M`, ` =
1, 2, there exists N ∈ K and embeddings f` : M` −−→

M0

N . We say that K has

λ-amalgamation if this holds for the models in Kλ. We define similarly disjoint
amalgamation, where we require in addition that f1[M1] ∩ f2[M2] = M0.

We will use the concept of a good λ-frame, a notion of forking for types of
length one over models of size λ, see [She09a, Definition II.2.1] or Section 8.6. The
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following claim is a deep result of Shelah which says that good λ-frames exist in
categorical classes.

Claim 8.4.2. If K is categorical in unboundedly many cardinals, then there
exists a categoricity cardinal λ ≥ LS(K) such that K has a good λ-frame (i.e. there
exists a good λ-frame s such that Ks = Kλ). In particular, K has λ-amalgamation.

The statement is implicit in Chapter IV of [She09a], but in June 2015 Will
Boney and the author identified a gap in a key part of Shelah’s proof [BVb]. In
September 2016, Shelah communicated a fix to the author, which should appear as
an online revision of Sh:734. As of December 2016, Shelah’s fix has not yet been
made public.

The key notion in the proof of Claim 8.4.2 is:

Definition 8.4.3 (Definition 2.1 in [BVb]). An AEC K is L∞,θ-syntactically
characterizable if whenever M,N ∈ K, if M ≤K N then M �L∞,θ N . We say that
K is eventually syntactically characterizable if for every infinite cardinal θ, there
exists λ such that K≥λ is L∞,θ-syntactically characterizable.

Remark 8.4.4. Using that saturated models are model-homogeneous, it is easy
to see that any AEC with amalgamation categorical in a proper class of cardinals
is eventually syntactically characterizable [BVb, Proposition 1.3].

The problematic part of Shelah’s proof is a claim that an AEC categorical in un-
boundedly many cardinals is eventually syntactically characterizable (see [She09a,
Conclusion IV.2.14]). However the following weakening is true:

Fact 8.4.5 (Conclusion IV.2.12.(1) in [She09a]). If K is categorical in cardi-
nals of arbitrarily high cofinality (that is, for every θ there exists λ such that K is
categorical in λ and cf λ ≥ θ), then K is eventually syntactically characterizable.

From an eventually syntactically characterizable AEC that is categorical in
unboundedly many cardinals, Shelah’s proof of Claim 8.4.2 goes through:

Fact 8.4.6 (Theorem 2.12 in [BVb]). If K is eventually syntactically char-
acterizable and categorical in unboundedly many cardinals, then there exists a
categoricity cardinal λ ≥ LS(K) such that K has a good λ-frame.

Thus it is reasonable to assume that we have a good λ-frame, and we want to
transfer amalgamation above it. Our inspiration is a recent result of Adi Jarden,
presented at a talk in South Korea in the Summer of 2014.

Fact 8.4.7 (Corollary 7.16 in [Jar16]). Assume K has a good λ-frame where
the class of uniqueness triples satisfies the existence property and K is strongly
λ-tame, then K has λ+-amalgamation.

We will not give the definition of the class of uniqueness triples here (but see
Definition 8.6.17 and Fact 8.6.18). It suffices to say that they are a version of
domination for good frames. As for strong tameness, it is a variation of tameness
relevant when amalgamation fails to hold. Recall that λ-tameness asks for two types
that are equal on all their restrictions of size λ to be equal. The strong version asks
them to be atomically equal, i.e. there is a map witnessing it that amalgamates
the two models in which the types are computed, see Definition 2.2.17. Jarden’s
result is interesting, since it shows that tameness, a locality property that we see
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as quite mild compared to assuming amalgamation, can be of some use to proving
amalgamation. The downside is that we have to ask for a strengthened version.

While Jarden proved much more than λ+-amalgamation, it has been pointed
out by Will Boney (in a private communication) that if one only wants amalga-
mation, the hypothesis that uniqueness triples satisfy the existence property is not
necessary. The reason is that the argument of [Bon14a] can be used to transfer
enough of the good frame to λ+ so that the extension property holds, and the
extension property implies amalgamation.

We make the argument precise here and also show that less than strong tame-
ness is needed (in particular, it suffices to assume tameness and that the AEC
admits intersections). We first fix some notation.

Definition 8.4.8. Let λ ≥ LS(K).

(1) K3,1 is the set of triples (a,M,N) such that M ≤K N and a ∈ N . K3,1
λ

is the set of such triples where the models are in Kλ (the difference with
Definition 2.2.17 is that we require the base to be a model and the sequence
b̄ to have length one).

(2) We say (a1,M1, N1) ∈ K3,1 atomically extends (a0,M0, N0) ∈ K3,1 if
M1 ≥K M0 and (a1,M0, N1)Eat(a0,M0, N0) (recall Definition 2.2.17)

(3) We say M ∈ Kλ has the type extension property if for any N ≥K M in
Kλ and any p ∈ gS(M), there exists q ∈ gS(N) extending p.

(4) We say M has the strong type extension property if for any N ≥K M ,

whenever (a,M,M ′) ∈ K3,1
λ , there exists (b,N,N ′) ∈ K3,1

λ atomically
extending (a,M,M ′).

We say Kλ has the [strong] type extension property (or K has the [strong] type
extension property in λ) if every M ∈ Kλ has it.

Remark 8.4.9. It is well-known (see for example [Gro]) that if K has amal-
gamation, then E = Eat. Similarly if λ ≥ LS(K) and K has λ-amalgamation, then

E � K3,1
λ = Eat � K

3,1
λ . Moreover, K has λ-amalgamation if and only if Kλ has the

strong type extension property.

We think of the type extension property as saying that amalgamation cannot
fail because there are “fundamentally incompatible” elements in the two models we
want to amalgamate. Rather, the reason amalgamation fails is because we simply
“do not have enough models” to witness that two types are equal in one step. It
would be useful to formalize this intuition but so far we have failed to do so.

We are interested in conditions implying that the type extension property (not
the strong one) is enough to get amalgamation. For this, it turns out that it is
enough to require that the AEC admits intersections. However we can even require
a weaker condition:

Definition 8.4.10 (Weak atomic equivalence). Let (a`,M,N`) ∈ K3,1
λ , ` =

1, 2. We say (a1,M,N1)E−at(a2,M,N2) (in words, (a1,M,N1) and (a2,M,N2) are
weakly atomically equivalent) if for ` = 1, 2, there exists N ′` ≤K N` containing a`
and M such that (a`,M,N ′`)Eat(a3−`,M,N3−`).

Definition 8.4.11. K has weak amalgamation if E � K3,1 = E−at � K
3,1, i.e.

equivalence of triples is the same as weak atomic equivalence of triples. Similarly
define what it means for K to have weak λ-amalgamation.
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Remark 8.4.12. K has weak amalgamation if and only if whenever gtp(a1/M ;N1) =
gtp(a2/M ;N2), there exists N ′1 ≤K N1 containing a1 and M and there exists
N ≥K N2 and f : N ′1 −→

M
N so that f(a1) = a2.

Remark 8.4.13. If K locally admits intersections, (a`,M,N`) ∈ K3,1
λ , ` = 1, 2

and (a1,M,N1)E(a2,M,N2), then by Proposition 8.2.13, N ′` := clN`(|M | ∪ {a`})
witnesses that (a1,M,N1)E−at(a2,M,N2). Thus in that case, E � K3,1

λ = E−at �
K3,1
λ , so K has weak amalgamation.

Intuitively, weak amalgamation requires only that points that have the same
Galois types can be amalgamated. The key result is:

Theorem 8.4.14. Let K be an AEC and λ ≥ LS(K). Assume Kλ has the type
extension property. The following are equivalent:

(1) K has λ-amalgamation.

(2) E � K3,1
λ = Eat � K

3,1
λ (i.e. equivalence of triples is the same as atomic

equivalence of triples).
(3) K has weak λ-amalgamation (i.e. equivalence of triples is the same as weak

atomic equivalence of triples).

In particular, if K admits intersections and has the type extension property,
then it has amalgamation.

Proof. (1) implies (2) implies (3) is easy. We prove (3) implies (1).

Assume E � K3,1
λ = E−at � K

3,1
λ . The idea of the proof is as follows: we want to

amalgamate a triple (M0,M,N), M0 ≤K M , M0 ≤K N . We use weak amalgama-
tion first to amalgamate some smaller triple (M0,M

′, N ′) with M0 <K M ′ ≤K M ,
M0 <K N ′ ≤K N , then proceed inductively to amalgamate the entire triple. Claim
1 below shows that there exists a smaller triple which can be amalgamated and
Claim 2 is a renaming of Claim 1. We then use Claim 2 repeatedly to amalgamate
the full triple.

Claim 1. For every triple (M0,M1,M2) of models in Kλ so that M0 <K M1 and
M0 ≤K M2, there exists M ′1 ≤K M1 and M ′2 ≥K M2 in Kλ such that M0 <K M ′1,
and there exists g : M ′1 −−→

M0

M ′2.

M1

M ′1

OO

g
// M ′2

M0

OO

// M2

OO

Proof of claim 1. Let M0 <K M` be models in Kλ, ` = 1, 2. Pick any a1 ∈
|M1|\|M0|. Let p := gtp(a1/M0;M1). By the type extension property, there ex-
ists q ∈ gS(M2) extending p. Pick M∗2 ≥K M2 and a2 ∈ |M∗2 | such that q =
gtp(a2/M2;M∗2 ). Since E is E−at over the domain of interest, we have (a1,M0,M1)E−at(a2,M0,M

∗
2 ).

Let M ′1 ≤K M1 contain a1 and M0 such that (a1,M0,M
′
1)Eat(a2,M0,M

∗
2 ). By def-

inition, we have that there exists M ′2 ≥K M∗2 such that M ′1 embeds into M ′2 over
M0, as needed. †Claim 1
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Now we obtain amalgamation by repeatedly applying Claim 1. Since the result
is key to subsequent arguments, we give full details below.

Claim 2. For every triple (M0,M1,M2) of models in Kλ so that M0 <K M1

and f : M0 → M2, there exists M ′1 ≤K M1, M ′2 ≥K M2 in Kλ and g : M ′1 −→ M ′2
such that M0 <K M ′1 and f ⊆ g.

M1

M ′1

OO

g
// M ′2

M0

OO

f
// M2

OO

Proof of claim 2. Let M0,M1,M2 and f be as given by the hypothesis. Let

M̂2 and f̂ be such that f ⊆ f̂ , M0 ≤K M̂2 and f̂ : M̂2
∼= M2. Now apply

Claim 1 to (M0,M1, M̂2) to obtain M ′1 ≤K M1 with M0 <K M ′1, M̂2

′
≥K M̂2 and

ĝ : M ′1 −−→
M0

M̂2

′
. Now let f̂ ′, M ′2 be such that M ′2 ≥K M2 and f̂ ′ : M̂2

′ ∼= M ′2

extends f̂ . Let g := f̂ ′ ◦ ĝ. Since ĝ fixes M0 and f̂ ′ extends f , g extends f , as
desired. †Claim 2

Now let M0 ≤K M and M0 ≤K N be in Kλ. We want to amalgamate M and
N over M0. We try to build 〈Mi : i < λ+〉, 〈Ni : i < λ+〉 increasing continuous in
Kλ and 〈fi : i < λ+〉 an increasing continuous sequence of embeddings such that
for all i < λ+:

(1) Mi ≤K M .
(2) fi : Mi −−→

M0

Ni.

(3) N0 = N .
(4) Mi <K Mi+1.

This is impossible since then
⋃
i<λ+ Mi has cardinality λ+ but is a K-substructure

of M which has cardinality λ. Now for i = 0, we can take N0 = N and f0 = idM0

and for i limit we can take unions. Therefore there must be some α < λ+ such that
fα, Mα, Nα are defined but we cannot define fα+1, Mα+1, Nα+1. If Mα <K M , we
can use Claim 2 (with M0, M1, M2, f there standing for Mα, M , Nα, fα here) to
get Mα+1 ≤K M with Mα <K Mα+1 and Nα+1 ≥K Nα with fα+1 : Mα+1 → Nα+1

extending fα (so M ′1, M ′2, g in Claim 2 stand for Mα+1, Nα+1, fα+1 here). Thus we
can continue the induction, which we assumed was impossible. Therefore Mα = M ,
so fα : M −−→

M0

Nα amalgamates M and N over M0, as desired. �

Remark 8.4.15. It is enough to assume that the type extension property holds
on a set of types satisfying what Shelah calls the density property of basic types
(see axiom (D)(c) in [She09a, Definition II.2.1]): for any M <K N in Kλ, there
exists b ∈ |N |\|M | such that gtp(b/M ;N) can be extended to any M ′ ≥K M with
M ′ ∈ Kλ. This generalization is the reason the last part of the proof is done
non-constructively rather than first enumerating M and amalgamating it element
by element. This is used to prove Theorem 8.4.16 in full generality (i.e. without
assuming that the good frame is type-full).
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We are now ready to formally state the amalgamation transfer:

Theorem 8.4.16. Let K be an AEC. Let λ ≥ LS(K) and assume s is a good
λ-frame with underlying class Kλ. If:

(1) K is λ-tame.
(2) K≥λ has weak amalgamation.

Then K≥λ has amalgamation.

Proof. We extend s to models of size greater than λ by defining ≥ s as in
[She09a, Section II.2] (or see [Bon14a, Definition 2.7]). Even without assuming
tameness or weak amalgamation, Shelah has shown that ≥ s has local character,
density of basic types, and transitivity. Moreover, tameness implies that it has
uniqueness. Now work by induction on µ ≥ λ to show that K has µ-amalgamation.
When µ = λ this follows from the definition of a good frame so assume µ > λ. As
in [Bon14a, Theorem 5.13], we can prove that ≥ s has the extension property for
models of size µ (the key is that the directed system argument only uses amalga-
mation below µ). In particular, Kµ has the type extension property for basic types.
The proof of Theorem 8.4.14 together with the density of basic types (see Remark
8.4.15) shows that this suffices to get µ-amalgamation. �

Corollary 8.4.17. Let K be a tame AEC that is eventually syntactically
characterizable and categorical in unboundedly many cardinals. If K has weak
amalgamation, then there exists λ such that K≥λ has amalgamation.

Proof. By Fact 8.4.6, we can find λ ≥ LS(K) such that Kλ has a good frame
and K is λ-tame. By Theorem 8.4.16, K≥λ has amalgamation. �

Corollary 8.4.18. Let K be an eventually syntactically characterizable AEC
categorical in unboundedly many cardinals. If K is tame and locally admits inter-
sections, then there exists λ such that K≥λ has amalgamation.

Proof. By Remark 8.4.13, K has weak amalgamation. Now apply Corollary
8.4.17. �

Corollary 8.4.19. Let K be locally pseudo-universal AEC. If K is eventually
syntactically characterizable and categorical in unboundedly many cardinals, then
there exists λ such that K≥λ has amalgamation.

Proof. By Corollary 8.3.8, K is tame. Now apply Corollary 8.4.18. �

We can apply these results to Shelah’s categoricity conjecture and improve Fact
8.1.5. When K has primes, this will be further improved in Section 8.5.

Corollary 8.4.20. Let K be a tame AEC with weak amalgamation.

(1) If K is categorical in a high-enough successor cardinal, then K is categor-
ical on a tail of cardinals.

(2) Assume 2θ < 2θ
+

for every cardinal θ and an unpublished claim of Shelah
(Claim 8.1.4). If K is eventually syntactically characterizable and cate-
gorical in unboundedly many cardinals, then K is categorical on a tail of
cardinals.

Proof. By Corollary 8.4.17 (using Fact 8.4.5 to see that K is eventually syn-
tactically characterizable in (1)), we can assume without loss of generality that K
has amalgamation. Now:
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(1) Apply [GV06a] (and [She99] can also give a downward transfer).
(2) Apply Fact 8.1.5.

�

Note that even if K is a universal class which already has amalgamation, The-
orem 8.4.16 is still key to transfer categoricity (see Theorem 8.5.16).

8.5. Categoricity transfer in AECs with primes

In this section, we prove a categoricity transfer for AECs that have amalgama-
tion and primes. Prime triples were introduced in [She09a, Section III.3], see also
[Jar].

Definition 8.5.1.

(1) Let M ∈ K and let A ⊆ |M |. M is prime over A if for any enumeration
ā of A and any N ∈ K, whenever gtp(ā/∅;M) = gtp(b̄/∅;N), there exists
f : M → N such that f(ā) = b̄.

(2) (a,M,N) is a prime triple if M ≤K N , a ∈ |N |, and N is prime over
|M | ∪ {a}.

(3) K has primes if for any p ∈ gS(M) there exists a prime triple (a,M,N)
such that p = gtp(a/M ;N).

(4) K weakly has primes if whenever gtp(a1/M ;N1) = gtp(a2/M ;N2), there
exists M1 ≤K M containing a1 and N1 and f : M1 −→

M
N2 such that

f(a1) = a2. Similarly define what it means for Kλ to have or weakly have
primes.

Remark 8.5.2. For M ≤K N and a ∈ |N |, (a,M,N) is a prime triple if and
only if whenever gtp(b/M ;N ′) = gtp(a/M ;N), there exists f : N −→

M
N ′ such that

f(a) = b. Thus if K has primes, then K weakly has primes.

Remark 8.5.3. If K admits intersections, M ≤K N , and a ∈ |N |, (a,M, clN (|M |∪
{a})) is a prime triple. Thus K has primes.

Assume K is an AEC categorical in λ := LS(K) (this is a reasonable assumption
as we can always restrict ourselves to the class of λ-saturated models of K). Our
goal is to prove (with more hypotheses) that if K is categorical in a θ > λ then
it is categorical in all θ′ ≥ λ. To accomplish this, we will show that Kλ is uni-
dimensional. In [She09a, Section III.2], Shelah gives several possible generalization
of the first-order definition in [She90, Definition V.2.2]. We have picked what seems
to be the most convenient to work with:

Definition 8.5.4 (Definition III.2.2.6 in [She09a]). Let λ ≥ LS(K). Kλ

is weakly uni-dimensional if for every M <K M`, ` = 1, 2 all in Kλ, there is
c ∈ |M2|\|M | such that gtp(c/M ;M2) has more than one extension in gS(M1).

To understand this definition, it might be helpful to look at the negation: there
exists M <K M`, ` = 1, 2 all in Kλ such that for all c ∈ |M2|\|M |, gtp(c/M ;M2)
has exactly one extension in gS(M1). Working in a good frame, this one extension
must be the nonforking extension (so in particular gtp(c/M ;M2) is omitted in
M1). It turns out that for any c ∈ |M2|\|M | and d ∈ |M1|\|M |, gtp(c/M ;M2)
and gtp(d/M ;M1) are orthogonal (in a suitable sense, see Section 8.7), so they will
generate two different dimensions.



234 8. CATEGORICITY IN UNIVERSAL CLASSES: PART I

Fact 8.5.5 (Claim III.2.3.(4) in [She09a]). Let λ ≥ LS(K). If Kλ is weakly
uni-dimensional, is categorical in λ, is stable in λ, and has λ-amalgamation, then14

K is categorical in λ+.

If K is λ-tame and has amalgamation, then categoricity in λ+ is enough by the
categoricity transfer of Grossberg and VanDieren:

Fact 8.5.6 (Theorem 6.3 in [GV06a]). Assume K is an LS(K)-tame AEC with
amalgamation and no maximal models. If K is categorical in LS(K) and LS(K)+,
then K is categorical in all µ ≥ LS(K).

Thus the hard part is showing that KLS(K) is weakly uni-dimensional. We
proceed by contradiction.

Definition 8.5.7 (III.12.39.(d) in [She09a]). Let M ∈ K and let p ∈ gS(M).
We define15 K¬∗p to be the class of N ∈ KM (recall Definition 8.2.18) such that
f(p) has a unique extension to gS(N � L(K)). Here f : M → N is given by
f(a) := cNa . We order K¬∗p with the strong substructure relation induced from
KM .

Remark 8.5.8. Let p ∈ gS(M) be nonalgebraic and let M ≤K N . If we are
working in a good frame and p has a unique extension to gS(N), then it must be
the nonforking extension. Thus p is omitted in N . However even if p is omitted in
N , p could have two nonalgebraic extensions to gS(N), so K¬∗p need not be the
same as the class K¬p of models omitting p.

In general, we do not claim that K¬∗p is an AEC. Nevertheless it is an abstract
class in the sense introduced by Grossberg in [Gro], see Definition 2.2.7. Thus we
can define notions such as amalgamation, Galois types, and tameness there just as
in AECs. The following gives an easy criterion for when K¬∗p is an AEC:

Proposition 8.5.9. Let s = (K,^) be a type-full good (≥ λ)-frame (so λ =
LS(K) and K<λ = ∅). Let M ∈ K and let p ∈ gS(M). Then K¬∗p is an AEC.

Proof. All the axioms are easy except closure under chains. So let δ be a limit
ordinal and let 〈Ni : i < δ〉 be increasing continuous in K¬∗p. Identify models in K
with their expansions in KM , assuming without loss of generality that M ≤K N0,
i.e. the map a 7→ cN0

a for a ∈ M is the identity. Let Nδ :=
⋃
i<δMi. We have that

Nδ � L(K) ∈ K. Now if p1, p2 ∈ gS(Nδ � L(K)) are two extensions of p, by local
character there exists i < δ such that p1 and p2 do not fork over Ni. Since p has a
unique extension to Ni, p1 � Ni = p2 � Ni. By uniqueness, p1 � Nδ = p2 � Nδ. �

In fact, Shelah gave a criterion for when K¬∗p has a good λ-frame:

Fact 8.5.10 (Claim III.12.39 in [She09a]). Let s be a good λ-frame with
underlying class Kλ. Assume s is type-full, good+, successful (see Section 8.6 for
the definitions of these terms), and Kλ has primes. Assume further that K is
categorical in λ.

If Kλ is not weakly uni-dimensional, then there exists M ∈ Kλ and p ∈ gS(M)
such that s � K¬∗p (the restriction of s to models in K¬∗p) is a type-full good
λ-frame.

14In [She09a, Claim III.2.3.(4)], Shelah assumes more generally the existence of a good λ-

frame, but the proof shows that the hypotheses mentioned here suffice. In any case, we will only

use Fact 8.5.5 inside a good frame.
15Shelah calls the class K∗.
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Since this result is crucial to our argument and Shelah’s proof is only implicit,
we have included a proof in Section 8.7.

Note that the hypotheses of Fact 8.5.10 are reasonable. In fact, it is known that
they follow from categoricity in fully tame and short AECs with amalgamation:

Fact 8.5.11 (Theorem 6.15.6). Let K be a fully (< κ)-tame and short AEC
with amalgamation. Let λ, µ be cardinals such that:

LS(K) < κ = iκ < λ = iλ ≤ µ
Assume further that cf λ ≥ κ. If K is categorical in µ, then K is categorical in

λ and there exists a type-full successful good λ-frame s with underlying class Kλ.

From Proposition 8.6.20, it will follow that the frame given by Fact 8.5.11
is also good+. If in addition the AEC has primes (e.g. if it is universal), then
the hypotheses are satisfied. Of course, the Hanf numbers in Fact 8.5.11 are not
optimal. We give the following improvement in Section 8.6:

Theorem 8.5.12. Let K be a fully LS(K)-tame and short AEC with amalga-
mation and no maximal models. If K is categorical in a µ > LS(K), then there
exists λ0 < h(LS(K)) such that for all λ ≥ λ0 where K is categorical in λ, there
exists a type-full successful good+ λ-frame with underlying class Kλ.

Proof. Combine Corollaries 8.6.16 and 8.6.21. �

Now we reach a crucial point. For the purpose of a categoricity transfer, it would
be enough to show that K¬∗p above has arbitrarily large models, since this means
that there are non-saturated models in every cardinal above λ. Unfortunately, even
if K is fully tame and short and has amalgamation, it is not easy to get a handle
on K¬∗p. For example, it is not clear if it has amalgamation or even if it is tame.
In [She09a, Discussion III.12.40] Shelah claims to be able to show using enough
instances of the weak generalized continuum hypothesis that s � K¬∗p above has
arbitrarily large models (this is probably how Claim 8.1.4 is proven) and this is the
key to the proof of Fact 8.1.5.

We make the situation where K¬∗p is well-behaved into a definition:

Definition 8.5.13. K is nice if:

(1) K has weak amalgamation.
(2) For any M ∈ K and any p ∈ gS(M), K¬∗p has weak amalgamation and

if K is ‖M‖-tame, then so is K¬∗p.

Note that if K is a universal class, then K¬∗p also is universal (using that K
is fully (< ℵ0)-tame and short, we can prove as in Proposition 8.5.9 that it is an
AEC), hence K is nice! More generally:

Proposition 8.5.14. If K weakly has primes, then K is nice.

Proof. Weak amalgamation follows from the definition of weakly having primes.
Now let M ∈ K and p ∈ gS(M). Observe that K¬∗p weakly has primes, because if
N ∈ K¬∗p, N0 ≤K N � L(K) is in K, and M ≤K N0, then the natural expansion
of N0 is in K¬∗p. Therefore K¬∗p also has weak amalgamation. If in addition K
is ‖M‖-tame, then so is K¬∗p: indeed if N ∈ K¬∗p, q1, q2 ∈ gS(N), and the two
types are equal in K, then since K¬∗p weakly has primes there is a map witnessing
equality of the types in K¬∗p also. �



236 8. CATEGORICITY IN UNIVERSAL CLASSES: PART I

The following fact is the key to our argument. It was first proven under slightly
stronger hypotheses by Will Boney [Bon14a]. The interesting consequence to us
is that it gives a local criterion for a tame AEC to have arbitrarily large models.

Fact 8.5.15 (Corollary 5.6.10). ] If s is a good λ-frame on Kλ, K is λ-tame and
has amalgamation, then s extends to a good (≥ λ)-frame on K≥λ. In particular,
K≥λ has no maximal models and is stable in every cardinal above λ.

Theorem 8.5.16. Let s be a good λ-frame with underlying AEC K. Assume
s is type-full, good+, successful, and Kλ has primes. Assume also that K is cate-
gorical in λ, λ-tame, and nice. The following are equivalent.

(1) Kλ is weakly uni-dimensional.
(2) K is categorical in all µ ≥ λ.
(3) K is categorical in some θ > λ.

Proof. Replacing K with K≥λ, assume without loss of generality that λ =
LS(K) and K<LS(K) = ∅. First note that K has amalgamation by Theorem 8.4.16.
By Fact 8.5.15, s extends to a good (≥ λ)-frame on K. In particular, K has no
maximal models and is stable in every cardinal. Moreover by Proposition 8.5.9,
K¬∗p is an AEC for all p ∈ gS(M) and M ∈ K.

If Kλ is weakly uni-dimensional, then by Fact 8.5.5, K is categorical in λ+. By
Fact 8.5.6, K is categorical in all µ ≥ λ. So (1) implies (2). Of course, (2) implies
(3). It remains to show (3) implies (1). We show the contrapositive.

Assume that K is not weakly uni-dimensional. Let M ∈ Kλ and p ∈ gS(M)
be as given by Fact 8.5.10. Let s¬∗p := s � K¬∗p, the restriction of s to models in
K¬∗p. Since K is nice, K¬∗p has weak amalgamation and since K is also λ-tame,
K¬∗p is λ-tame. Since s¬∗p is a good λ-frame, Theorem 8.4.16 gives that K¬∗p has
amalgamation. By Fact 8.5.15, K¬∗p has no maximal models and is stable in every
cardinals. Now let θ > λ. By stability, K has a saturated model of size θ. Moreover

since K¬∗p has arbitrarily large models there must exist N̂ ∈ K¬∗p of size θ. By

construction, N̂ � L(K) is not saturated of size θ. Therefore K is not categorical
in θ. �

We are now ready to prove a categoricity transfer in fully tame and short AECs
with amalgamation (Theorem 8.0.3 from the abstract). We state one more fact:

Fact 8.5.17. If K is a LS(K)-tame AEC with amalgamation and no maximal
models which is categorical in a λ ≥ H2 (recall Definition 2.2.2) and the model of
size λ is saturated, then K is categorical in H2.

Proof. By the proof of [She99, Theorem II.1.6] (or see [Bal09, Theorem
14.8]). �

Theorem 8.5.18. Let K be a fully LS(K)-tame and short AEC with amalga-
mation such that K≥H2

has primes. If K is categorical in a λ > H2, then K is
categorical in all λ′ ≥ H2.

Proof. Without loss of generality, K has joint embedding and no maximal
models: we can start by splitting K into disjoint parts, each of which has joint
embedding, and then work with the unique part which has arbitrarily large models.

We start by observing that K is categorical in H2 by Fact 8.5.17 (note that the
model of size λ is saturated by Facts 8.6.8 and 8.6.9). Now apply Theorem 8.5.12
(to K≥LS(K)+) and Theorem 8.5.16. �
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The only place where shortness is used above is to get the existence property
for uniqueness triples (i.e. that the good frame is successful). The proof shows that
it is enough to assume that for some λ, K≥λ is almost fully good, i.e. it has a
nice-enough global independence relation (see 8.6.1 for a more precise definition).
One can ask:

Question 8.5.19. Can the full tameness and shortness hypothesis be weakened
to just being LS(K)-tame?

We obtain a categoricity transfer for universal classes with amalgamation.

Corollary 8.5.20. Let K be a locally pseudo-universal AEC with amalgama-
tion. If K is categorical in a λ > H2, then K is categorical in all λ′ ≥ H2.

Proof. By Corollary 8.3.8, K is fully LS(K)-tame and short. By Remark
8.5.3, K has primes. Now apply Theorem 8.5.18. �

In view of Theorem 8.5.18, a natural question is whether the existence of primes
follows from the other hypotheses:

Question 8.5.21. If K is fully tame and short, has amalgamation, and is
categorical in unboundedly many cardinals, does there exists λ such that K≥λ has
primes?

Note that by [Bon14b], a positive answer would imply that Shelah’s cate-
goricity conjecture follows from the existence of a proper class of strongly compact
cardinals. Moreover, it turns out that a converse is true. This was conjectured in
earlier versions of this chapter, and the missing piece was proven in Chapter 12:

Fact 8.5.22. Let K be an almost fully good AEC (see Definition 8.6.2). For
any λ > LS(K)+, Kλ-sat

λ has primes.

Blackboxing Fact 8.5.22, we can give a proof of the converse of Theorem 8.5.18:

Theorem 8.5.23. Let K be a fully LS(K)-tame and short AEC with amalga-
mation. The following are equivalent:

(1) K≥H2 has primes and is categorical in some λ > H2

(2) K is categorical in all λ′ ≥ H2.

Proof. (1) implies (2) is Theorem 8.5.18. We show (2) implies (1). As in
the proof of Theorem 8.5.18, we assume without loss of generality that K has joint
embedding and no maximal models. By Corollary 8.6.16 (with κ, θ there standing

for LS(K)+, λ here), K∗ := Kµ-sat is almost fully good, where µ :=
(
2LS(K)

)+5
.

Now apply Fact 8.5.22 to the AEC K∗ and use categoricity in all λ′ ≥ H2. �

Remark 8.5.24. Using the threshold improvements of Chapter 14, we can
replace H2 by H1 (and allow λ = H1 in (1)) in Theorem 8.5.23.

There is still an assumption of amalgamation in Theorem 8.5.18. Assuming the
categoricity cardinals are sufficiently nice, this can be removed using the results of
Section 8.4:

Theorem 8.5.25. Let K be a fully tame and short AEC with primes. If K is
categorical in cardinals of arbitrarily high cofinality, then K is categorical on a tail
of cardinals.
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Proof. By Fact 8.4.5, K is eventually syntactically characterizable. By the
definition of having primes, K has weak amalgamation. By Corollary 8.4.17, there
exists λ such that K≥λ has amalgamation. Now apply Theorem 8.5.18 to K≥λ. �

Remark 8.5.26. Instead of categoricity in cardinals of arbitrarily high cofi-
nality, it suffices to assume that K is eventually syntactically characterizable and
categorical in unboundedly many of cardinals.

We can replace the assumption on the categoricity cardinal by large cardinals.
As pointed out in the introduction (Theorem 8.1.6), a strongly compact would
be enough. Here we improve this to a measurable (but assume full tameness and
shortness). This only gives amalgamation below the categoricity cardinal but we
can then transfer amalgamation upward using the arguments in Section 8.4.

Theorem 8.5.27. Let K be a fully LS(K)-tame and short AEC with primes.
Let κ > LS(K) be a measurable cardinal. If K is categorical in some λ > h(h(κ)),
then K is categorical in all λ′ ≥ h(h(κ)).

Proof. By the main result of [SK96]16 K[κ,λ) has amalgamation (and K≥κ
has no maximal models, using ultraproducts). Combining (the proofs of) Facts
8.6.8 and 8.6.9, there is a good κ+-frame with underlying class Kκ+ . By Theorem
8.4.16, K≥κ has amalgamation. Now apply Theorem 8.5.18 to K≥κ. �

We can now prove Theorem 8.0.2 from the abstract.

Corollary 8.5.28. Let K be a universal class (or just a locally pseudo-
universal AEC, see Example 8.3.2.(1) and Remark 8.3.5).

(1) If K is categorical in cardinals of arbitrarily high cofinality, then K is
categorical on a tail of cardinals.

(2) If κ > LS(K) is a measurable cardinal and K is categorical in some
λ > h(h(κ)), then K is categorical in all λ′ ≥ h(h(κ)).

Proof. Follow the proof of Corollary 8.5.20 to see that the assumptions of
Theorems 8.5.25 and 8.5.27 respectively are satisfied. �

8.6. Independence below the Hanf number

In this section, we give all the results needed for the proof of Theorem 8.5.12.
We also define all the technical terms related to good frames used there. Good
frames were introduced by Shelah in [She09a, Chapter II] but we use the notation
and definitions in Chapter 6 (we also extensively use its results). The reader is
invited to consult this paper for more motivation and background on the concepts
used here.

The first definition is that of a global forking-like notion:

Definition 8.6.1 (Definition 6.8.1). i = (K,^) is a fully good independence
relation if:

(1) K is an AEC with K<LS(K) = ∅ and K 6= ∅.
(2) K has amalgamation, joint embedding, and no maximal models.
(3) K is stable in all cardinals.

16The result there is stated in terms of the class of models of an Lκ,ω sentence. However,
Boney [Bon14b] has pointed out that this applies as well when K is an AEC and κ > LS(K),

see in particular the discussion around Theorem 7.6 there.
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(4) i is a (<∞,≥ LS(K))-independence relation (see Definition 6.3.6). That
is, ^ is a relation on quadruples (M,A,B,N) with M ≤K N and A,B ⊆

|N | satisfying invariance, monotonicity, and normality. We write A
N

^
M
B

instead of ^(M,A,B,N), and we also say gtp(ā/B;N) does not fork over

M for ran ā
N

^
M
B.

(5) i has base monotonicity, disjointness (A
N

^
M
B implies A ∩B ⊆ |M |), sym-

metry, uniqueness, extension, and the local character properties:
(a) If p ∈ gSα(M), there exists M0 ≤K M with ‖M0‖ ≤ |α| + LS(K)

such that p does not fork over M0.
(b) If 〈Mi : i ≤ δ〉 is increasing continuous, p ∈ gSα(Mδ) and cf δ > α,

then there exists i < δ such that p does not fork over Mi.

(6) i has the left and right (≤ LS(K))-witness properties: A
N

^
M
B if and only

if for all A0 ⊆ A and B0 ⊆ B with |A0| + |B0| ≤ LS(K), we have that

A0

N

^
M
B0.

(7) i has full model continuity: if for ` < 4, 〈M `
i : i ≤ δ〉 are increasing

continuous such that for all i < δ, M0
i ≤K M `

i ≤K M3
i for ` = 1, 2 and

M1
i

M3
i

^
M0
i

M2
i , then M1

δ

M3
δ

^
M0
δ

M2
δ .

We say that i is good if it has all the properties above except full model con-
tinuity. We say that K is [fully] good if there exists ^ such that (K,^) is [fully]
good.

We will use the following variation:

Definition 8.6.2. i = (K,^) is almost fully good if it satisfies Definition 8.6.1
except that only the following types are required to have a nonforking extension:

(1) Types that do not fork over saturated models.
(2) Type that do not fork over models of size LS(K).
(3) Types of length at most LS(K).

As before, we say that K is almost fully good if there exists ^ such that (K,^)
is almost fully good. If we drop “fully” we mean that full model continuity need
not hold.

In this terminology, we have:

Fact 8.6.3 (Theorem 6.15.1). Let K be a fully (< κ)-tame and short AEC
with amalgamation.

If κ = iκ > LS(K), and K is categorical in a µ > λ0 := (2κ)
+5

, then K≥λ is
almost fully good, where we have set λ := min(µ, h(λ0)).

A localization of fully good independence relation are Shelah’s good λ-frames.
Roughly speaking, we simply require the types to have length one and the models
to have a fixed size λ. We only give the definition of a type-full good λ-frame here,
since this is the one that we can build here. In [She09a, Section II.2], Shelah has
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a more general definition where he only requires a dense class of basic types to
satisfy the properties of forking: this is also what we call a good λ-frame (without
the “type-full”) in this chapter, e.g. in Theorem 8.4.16. We use the definition in
Definition 6.8.1 and refer to Remark 6.3.5 there for why this is equivalent (in the
type-full case) to Shelah’s definition in [She09a, Section II.2].

Definition 8.6.4. s = (Ks,^) is a type-full good λ-frame if:

(1) There exists an AEC K with λ = LS(K), Kλ = Ks. Below, we require
that all the models be in Ks.

(2) Ks 6= ∅.
(3) Ks has amalgamation, joint embedding, and no maximal models.
(4) Ks is stable in λ.
(5) ^ is a relation on quadruples (M0, a,M,N) with M0 ≤K M ≤K N and

a ∈ |N | satisfying invariance, monotonicity, and normality. As before, we

write a
N

^
M0

M instead of ^(M0, a,M,N), and we also say gtp(a/M ;N)

does not fork over M0 for a
N

^
M0

M .

(6) s has base monotonicity, disjointness, full symmetry (if a
N

^
M0

M , b ∈ |M |,

then there exists N ′ ≥K N and M ′0 ≥K M0 with M ′0 ≤K N ′, a ∈ |M ′0|,

and b
N ′

^
M0

M ′0), uniqueness, extension, and the local character property: If

〈Mi : i ≤ δ〉 is increasing continuous, p ∈ gS(Mδ), then there exists i < δ
such that p does not fork over Mi.

We define similarly “type-full good (≥ λ)-frame”, where we allow the models
in Ks to have sizes in K≥λ (but still work with types of length one).

Notation 8.6.5. When i = (K,^) is an almost good independence relation
and λ ≥ LS(K), we write pre(i≤1) � Kλ for the type-full good λ-frame obtained by
restricting^ to types of length one and models in Kλ. Similarly for pre(i≤1) � K≥λ.

Assuming tameness and amalgamation, good frames can be built from a superstability-
like condition (the superstability condition already appears implicitly in [SV99] and
is developed further in [Van06, Van13, GVV16, Van16a] and Chapters 4, 6, 7,
and 10). The construction of a good frame appears implicitly already in Chapter
4:

Definition 8.6.6 (Superstability, see Definition 6.10.1).

(1) For M,N ∈ K, say M <univ
K N (N is universal over M) if and only if

M <K N and whenever we have M ′ ≥K M such that ‖M ′‖ ≤ ‖N‖, then
there exists f : M ′ −→

M
N . Say M ≤univ

K N if and only if M = N or

M <univ
K N .

(2) p ∈ gS(N) µ-splits over M if M ≤K N , M ∈ Kµ, and there exists
N1, N2 ∈ Kµ with M ≤K N` ≤K N , ` = 1, 2, and an isomorphism
f : N1

∼=M N2, such that f(p � N1) 6= p � N2.
(3) K is µ-superstable if:

(a) LS(K) ≤ µ.
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(b) There existsM ∈ Kµ such that for anyM ′ ∈ Kµ there is f : M ′ →M
with f [M ′] <univ

K M .
(c) If 〈Mi : i < δ〉 is increasing in Kµ such that i < δ implies Mi <

univ
K

Mi+1 and p ∈ gS(
⋃
i<δMi), then there exists i < δ such that p does

not µ-split over Mi.

Definition 8.6.7. For λ a cardinal, let Kλ-sat be the class of λ-saturated
models in K≥λ.

Fact 8.6.8. Assume K is µ-superstable, µ-tame, and has amalgamation. Then:

(1) (Proposition 6.10.10) K is µ′-superstable for all µ′ ≥ µ. In particular,
K≥µ has joint embedding, no maximal models, and is stable in all cardi-
nals.

(2) (Corollary 10.6.10) If λ > µ, then Kλ-sat is an AEC with LS(Kλ-sat) = λ.
(3) (Corollary 10.6.14 and Corollary 5.6.10). For any λ > µ, there exists a

type-full good (≥ λ)-frame with underlying AEC Kλ-sat.

From the analysis of Shelah and Villaveces in [SV99, Theorem 2.2.1], we obtain
that superstability follows from categoricity (if the cofinality of the categoricity
cardinal is high-enough, this appears as [She99, Lemma 6.3]). The version that we
state here assumes amalgamation instead of GCH and is proven in Chapter 20.

Fact 8.6.9. Assume K has amalgamation and no maximal models. If K is
categorical in a θ > LS(K), then K is LS(K)-superstable.

Corollary 8.6.10. Assume K is LS(K)-tame and has amalgamation and no
maximal models. If K is categorical in a θ > LS(K), then there exists a type-full

good (≥ LS(K)+)-frame with underlying class Kθ+-sat.

Proof. Combine Facts 8.6.9, and 8.6.8. �

It remains to see how to build a fully good (i.e. global) independence relation
from just a local good frame. This is done using shortness, together with a property
Shelah calls successfulness (we do not give the exact definition of uniqueness triple,
the relation ≤NF

Kλ+
, or the successor frame, as we have no use for it).

Definition 8.6.11 (Definition III.1.1 in [She09a]). Let s be a type-full good
λ-frame.

(1) s is weakly successful if for any M ∈ Kλ and any nonalgebraic p ∈ gS(M),
there exists N ≥K M and a ∈ |N | such that p = gtp(a/M ;N) and
(a,M,N) is a uniqueness triple (see [She09a, Definition II.5.3]).

(2) s is successful if in addition the class (Kλ+-sat
λ+ ,≤NF

Kλ+
) (see [JS13, Defini-

tion 10.1.1]) is an AEC.
(3) [She09a, Definition III.1.12] s is ω-successful if for all n < ω, the nth

successor frame s+n (see [She09a, Definition III.1.12]) is a type-full suc-
cessful good λ-frame.

We can obtain an ω-successful frame using existence of a sufficiently well-
behaved global independence relation:

Fact 8.6.12 (Theorem 6.11.21). Assume i is a (<∞,≥ LS(K))-independence
relation on K and λ > LS(K) is a cardinal such that17:

17In Chapter 6, it is also assumed that Kλ+n-sat is an AEC for all n < ω. However Fact
8.6.8 shows that this follows from the rest.
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(1) s := pre(i≤1) is a type-full good (≥ LS(K))-frame.
(2) i has base monotonicity, uniqueness for types over models, and the left

and right (≤ LS(K))-witness properties.
(3) i has the following local character property: for every n < ω, if µ :=

λ+(n+1), then for every increasing continuous 〈Mi : i ≤ µ〉 and every
p ∈ gS<µ(Mµ), there exists i < µ such that p does not fork (in the sense
of i) over Mi.

Then s � Kλ-sat
λ (the restriction of s to the class Kλ-sat

λ ) is an ω-successful
type-full good λ-frame.

In Chapter 6, we used (< κ)-satisfiability as i above. The downside is that we
used that κ = iκ > LS(K). Now we show we can use an independence relation
induced by µ-nonsplitting instead of (< κ)-satisfiability. We need one more fact:

Fact 8.6.13. Assume K has amalgamation and is stable in µ ≥ LS(K). Let
M ∈ K≥µ and let p ∈ gS<κ(M). If µ = µ<κ, then there exists M0 ∈ Kµ with
M0 ≤K M such that p does not µ-split over M0.

Proof. By [She99, Claim 3.3] (or [GV06b, Fact 4.6]), it is enough to show
that | gS<κ(N)| = µ for every N ∈ Kµ. This holds by stability in µ and [Bon17,
Theorem 3.1]. �

Lemma 8.6.14. Let K be an AEC with amalgamation. Assume that K is
fully (< κ)-tame and short with κ ≤ LS(K)+. Assume further that K is LS(K)-
superstable. Let λ > LS(K) be such that λ = λ<κ. Then there exists an ω-

successful good λ+-frame with underlying class Kλ+-sat
λ+ .

Proof sketch. Define a (< ∞,≥ λ) independence relation i = (Ki,^) as
follows:

• Ki = Kλ-sat.
• p ∈ gSα(M) does not fork (in the sense of i) over M0 ≤K M if and only

if:
– M0,M ∈ Kλ-sat.
– For every I ⊆ α with |I| < κ, there exists M ′0 ≤K M0 in Kµ such

that pI does not µ-split over M ′0.

We claim that i satisfies the hypotheses of Fact 8.6.12 (where K there is K≥λ
here and λ there is λ+ here). By Fact 8.6.13 and superstability, we have that
i induces a LS(K)-generator for a weakly good (< κ)-independence relation (in
the sense of Definition 6.7.3), as well as a LS(K)-generator for a good (≤ 1)-
independence relation (see Definition 6.8.5). It follows from Theorems 6.7.5, 6.8.9
that s := pre(i≤1) is a type-full good (≥ λ)-frame and i<κ (the restriction of i
to types of length less than κ) has base monotonicity, uniqueness for types over
models, transitivity, and so that any type does not fork over a model of size LS(K).

Now, it is easy to see using shortness that i also has uniqueness for types
over models. By definition, it also has base monotonicity, transitivity, and the left
(< κ)-witness property. Now from transitivity and the local character property
mentioned in the previous paragraph, we get (Proposition 6.4.3.(6)) that i has
the right (≤ LS(K))-witness property. Thus all the hypotheses of Fact 8.6.12 are
satisfied, so s is ω-successful. �
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From an ω-successful good λ-frame, we obtain the desired global independence
relation:

Fact 8.6.15. Let s = (Kλ,^) be an ω-successful good λ-frame which is cat-
egorical in λ. If K is fully (< cf λ)-tame and short and has amalgamation, then

Kλ+3-sat is almost fully good.

Proof. By Theorems 6.12.16, 6.13.6, and 6.14.15. �

Corollary 8.6.16. Assume that K has amalgamation, no maximal models,
and is fully (< κ)-tame and short, with κ ≤ LS(K)+ a regular cardinal. If K is cat-

egorical in a θ > LS(K), then Kλ-sat is almost fully good, where λ := (LS(K)<κ)
+5

.

Proof. By Fact 8.6.9, K is LS(K)-superstable. Let µ := (LS(K)<κ)
+

. By
Fact 8.6.14 (with λ there standing for µ here), there is an ω-successful good µ+-

frame with underlying class Kµ+-sat
µ+ . By Fact 8.6.15 (with λ there standing for µ+

here), Kµ+4-sat is almost fully good. �

Note for future reference that in almost good AECs, uniqueness triples have an
easier definition.

Definition 8.6.17. Let i = (K,^) be an almost good independence relation.
(a,M,N) is a domination triple if M ≤K N , a ∈ |N |\|M |, and for any N ′ ≥K N

and any B ⊆ |N ′|, if a
N ′

^
M
B, then N

N ′

^
M
B.

Fact 8.6.18 (Lemma 6.11.7). Let i = (K,^) be an almost good independence
relation. Let µ ≥ LS(K) and let s := pre(i≤1) � Kµ.

For M,N ∈ Kµ, (a,M,N) is a domination triple if and only it is a uniqueness
triple in s.

We continue the proof of Theorem 8.5.12 by showing that the frame induced
by an almost good independence relation is good+, a technical property of frames:

Definition 8.6.19 (Definition III.1.3 in [She09a]). Let s = (Kλ,^) be a type-
full good λ-frame. s is good+ if the following is impossible: There exists increasing
continuous chains 〈Mi : i ≤ λ+〉, 〈Ni : i ≤ λ+〉, a type p∗ ∈ gS(M0), and a sequence
〈ai : i < λ+〉 such that for all i < λ+:

(1) Mλ+ is λ+-saturated.
(2) Mi ≤K Ni and they are both in Kλ.
(3) ai+1 ∈ |Mi+2|.
(4) gtp(ai+1/Mi+1;Mi+2) is a nonforking extension of p∗.
(5) gtp(ai+1/N0;Ni+2) forks over M0.

Proposition 8.6.20. If i = (K,^) is an almost good independence relation,
then pre(i≤1) � KLS(K) is good+.

Proof. Suppose 〈Mi : i ≤ λ+〉, 〈Ni : i ≤ λ+〉, 〈ai : i < λ+〉, and p∗ witness
the failure of being good+. By local character, there exists i < λ+ such that

N0

Nλ+

^
Mi

Mλ+ . By symmetry and monotonicity, we must have that ai+1

Nλ+

^
Mi

N0, i.e.

gtp(ai+1/N0;Ni+2) does not fork over Mi. By transitivity and base monotonicity,
gtp(ai+1/N0;Ni+2) does not fork over M0, contradiction. �
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Corollary 8.6.21. Assume i = (K,^) is an almost good independence re-
lation. Let λ > LS(K) and let s := pre(i≤1) � Kλ-sat. Then s is ω-successful and
good+.

Proof. By Fact 8.6.12 and Proposition 8.6.20 (applied to the restriction of i
to λ-saturated models). �

Remark 8.6.22. In Section 8.5, we only need a (type-full) successful good+

frame. Moreover Shelah proves in [She09a, Claim III.1.9] that if s is successful,
then the successor frame s+ is good+, so why do we bother building an almost
good independence relation? The reason is that we want a successful good+ λ-
frame when λ is a limit cardinal. Then if K is categorical in λ and has primes,
the frame will have primes (no need to restrict to saturated models, where it is not
clear whether primes exist even if the original class has primes), so the hypotheses
of Theorem 8.5.16 will be satisfied

8.7. Frames that are not weakly uni-dimensional

In this section, we give a proof of Fact 8.5.10. We work with the following
hypotheses:

Hypothesis 8.7.1.

(1) s = (Kλ,^) is a type-full successful good+ λ-frame.
(2) Kλ has primes.
(3) K is categorical in λ.

We will use the orthogonality calculus developed in [She09a, Chapter III].

Definition 8.7.2 (Definition III.6.2 in [She09a]).

(1) Let M ∈ Kλ and let p, q ∈ gS(M) be nonalgebraic. We say that p and
q are weakly orthogonal if whenever (a,M,N) is a uniqueness triple with
gtp(a/M ;N) = q, then p has a unique extension to gS(N). We say that p
and q are orthogonal, written p ⊥ q if for every N ≥K M , the nonforking
extensions to N p′, q′ of p and q respectively are weakly orthogonal.

(2) Let M` ∈ Kλ and p` ∈ gS(M`) be nonalgebraic, ` = 1, 2. We say that p1

and p2 are orthogonal if there exists N ≥K M` such that the nonforking
extensions to N p′1, p′2 of p1 and p2 respectively are orthogonal.

Fact 8.7.3 (Claims III.6.7, III.6.8 in [She09a]). Let M ∈ Kλ and p, q ∈ gS(M)
be nonalgebraic.

(1) [She09a, Claim III.6.3] p is weakly orthogonal to q if and only if there
exists a uniqueness triple (a,M,N) such that gtp(a/M ;N) = q and p has
a unique extension to gS(N).

(2) [She09a, Claim III.6.7.2] p ⊥ q if and only if q ⊥ p.
(3) [She09a, Claim III.6.8.5] p and q are orthogonal if and only if they are

weakly orthogonal.

We will also use the following without comments:

Fact 8.7.4 (Claim III.3.7 in [She09a]). If (a,M,N) is a prime triple, then it
is a uniqueness triple.

Some orthogonality calculus gives us a useful description of the types in K¬∗p
(recall Definition 8.5.7).
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Lemma 8.7.5. Let M ∈ Kλ and let p ∈ gS(M) be nonalgebraic. Let N ∈ K¬∗p
be of size λ such that the map a 7→ cNa is the identity (so M ≤K N � L(K)). For
any N0 ≤K N � L(K) with M ≤K N0 and any q ∈ gS(N0;N), p ⊥ q.

Proof. Let p′ be the nonforking extension of p to N0. By Fact 8.7.3, it is
enough to show that p′ is weakly orthogonal to q. Let (a,N0, N

′) be a prime triple
such that gtp(a/N0;N ′) = q and N ′ ≤K N (exists since we are assuming that Kλ

has primes). Then since p has a unique extension to N it has a unique extension
to N ′, which must be the nonforking extension so p′ also has a unique extension to
N ′. By Fact 8.7.4, (a,N0, N

′) is a uniqueness triple and by Fact 8.7.3 again, this
suffices to conclude that p′ and q are weakly orthogonal. �

The next lemma justifies the “uni-dimensional” terminology: if the class is not
uni-dimensional, then there are two orthogonal types.

Lemma 8.7.6. If Kλ is not weakly uni-dimensional, there exists M ∈ Kλ and
types p, q ∈ gS(M) such that p ⊥ q.

Proof. Assume Kλ is not weakly uni-dimensional. This means that there ex-
ists M <K M`, ` = 1, 2, all in Kλ such that for any c ∈ |M2|\|M |, gtp(c/M ;M2) has
a unique extension to gS(M1). Pick any c ∈ |M2|\|M | and let p := gtp(c/M ;M2).
Then there is a natural expansion of M1 to K¬∗p. So pick any d ∈ |M1|\|M | and
let q := gtp(d/M ;M1). By Lemma 8.7.5, p ⊥ q, as desired. �

We can now prove Fact 8.5.10. We restate it here for convenience:

Fact 8.7.7. If Kλ is not weakly uni-dimensional, then there exists M ∈ Kλ

and p ∈ gS(M) such that s � K¬∗p (the restriction of s to the models in K¬∗p) is a
type-full good λ-frame.

Proof. Assume Kλ is not weakly uni-dimensional. By Lemma 8.7.6, there
exists M ∈ Kλ and types p, q ∈ gS(M) such that p ⊥ q.

Let s¬∗p := s � K¬∗p. We check that it is a type-full good λ-frame. For ease
of notation, we identify a model N ∈ K¬∗p and its reduct to K. For N ≥K M , we
write pN for the nonforking extension of p to gS(N), and similarly for qN .

• K¬∗p is not empty, since (the natural expansion of) M is in it.
• (K¬∗p)λ is an AEC in λ (that is, its models of size λ behave like an AEC,

see [She09a, Definition II.1.18]) by the proof of Proposition 8.5.9.
• Forking has many of the usual properties: monotonicity, invariance, dis-

jointness, local character, continuity, and transitivity all trivially follow
from the definition of K¬∗p.

• Forking has the uniqueness property: Let N ∈ K¬∗p have size λ. Without
loss of generality M ≤K N . Let N ′ ≥K N be in K¬p of size λ and let
r1, r2 ∈ gS(N ′) be nonforking over N and such that r1 � N = r2 � N . Say
r` = gtp(a`/N

′;N`). Now in K, r1 = r2, and since Kλ has primes, the
equality is witnessed by an embedding f : M1 −→

N
N2, with M1 ≤K N1.

Since N1 ∈ K¬∗p, M1 ∈ K¬∗p, and so r1 = r2 also in K¬∗p (this is similar
to the proof of Proposition 8.5.14).

• Forking has the extension property. Let N ∈ K¬∗p have size λ. Without
loss of generality, M ≤K N . Let r ∈ gS(N) be nonalgebraic and let
N ′ ≥K N be in K¬∗p of size λ. Let r′ ∈ gS(N ′) be the nonforking
extension of r to N ′ (in K). Let (a,N ′, N ′′) be a prime triple such that
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gtp(a/N ′;N ′′) = r′. By Lemma 8.7.5, r ⊥ p. Thus r′ is weakly orthogonal
to pN ′ and hence pN ′′ is the unique extension of pN ′ to N ′′. Now if p′

is an extension of p to gS(N ′′), then p′ � N ′ = pN ′ as N ′ ∈ K¬∗p, so
p′ = pN ′′ by the previous sentence. This shows that N ′′ ∈ K¬∗p, so as
r′ ∈ gS(N ′;N ′′), r′ is a Galois type in K¬∗p, as desired.

• K¬∗p has λ-amalgamation: because (K¬∗p)λ has the type extension prop-
erty and weak λ-amalgamation (as Kλ, and hence (K¬∗p)λ, has primes,
see the proof of Proposition 8.5.14), thus one can apply Theorem 8.4.14.

• K¬∗p has λ-joint embedding: since any model contains a copy of M , this
is a consequence of λ-amalgamation over M .

• K¬∗p is stable in λ: because K¬∗p has “fewer” Galois types than K, and
K is stable in λ.

• (K¬∗p)λ has no maximal models: This is where we use the negation of
weakly uni-dimensional. Let N ∈ K¬∗p be of size λ and without loss
of generality assume M ≤K N . Recall from above that there is a non-
algebraic type q ∈ gS(M) such that p ⊥ q. Let qN be the nonfork-
ing extension of q to N and let (a,N,N ′) be a prime triple such that
q = gtp(a/N ;N ′). As in the proof of the extension property, N ′ ∈ K¬∗p.
Moreover as a ∈ |N ′|\|N |, N <K N ′, as needed.

• s¬∗p is type-full: because s is.

• s¬∗p has full symmetry: Assume a
N

^
N0

N1, for N0, N1, N ∈ K¬∗p, M ≤K

N0 ≤K N1 ≤K N , and a ∈ |N |. Let b ∈ |N1|. Without loss of generality,

a /∈ |N1| (if a ∈ |N1|, then a ∈ |N0| by disjointness and as b
N

^
N0

N0, N0

and N witness the full symmetry). By full symmetry in s, there exists

N ′0, N
′ ∈ K such that N ≤K N ′, N0 ≤K N ′0 ≤K N ′, and b

N ′

^
N0

N ′0 (note

that the first use of ^ was in s¬∗p and the second in s, but since the first
is just the restriction of the first to models in K¬∗p, we do not make the
difference). Now let N ′′0 be such that N0 ≤K N ′′0 ≤K N ′0 and (a,N0, N

′′
0 ) is

a prime triple. Since r = gtp(a/N0;N ′′0 ) = gtp(a/N0;N) is orthogonal to

p (by Lemma 8.7.5), we have that N ′′0 ∈ K¬∗p. By monotonicity, b
N ′

^
N0

N ′′0 .

Now let (b,N ′′0 , N
′′) be a prime triple with N ′′ ≤K N ′. By the same

argument as before, N ′′ ∈ K¬∗p and by monotonicity, b
N ′′

^
N0

N ′′0 . Since all

the models are in K¬∗p, this shows that the nonforking happens in s¬∗p,
as needed.

We have checked all the properties and therefore s¬∗p is a type-full good λ-
frame. �

8.8. Independence in universal classes

We investigate the properties of independence in universal classes (more gen-
erally in AECs admitting intersections). Recall that Theorem 6.15.6 showed that
a fully tame and short AEC with amalgamation categorical in unboundedly many
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cardinals eventually admits a well-behaved independence notion. We want to spe-
cialize this result to AECs admitting intersections and prove more properties of
forking there. Here, we prove that the independence relation satisfies the axioms
of Chapter 3 (partially answering Question 3.7.1 there). Moreover it has a finite
character property (Theorem 8.8.7) and can be extended to an independence rela-
tion over sets (Theorem 8.8.14). A simple corollary is the disjoint amalgamation
property (Corollary 8.8.6).

While none of the results are used in this chapter, we believe they shed further
light on how the existence a closure operator helps in the structural analysis of an
AEC. Since several classes of interests to algebraists admit intersections, we believe
the existence of a well-behaved independence notion there is likely to have further
applications.

By Fact 8.6.3 or Corollary 8.6.16, it is reasonable to assume:

Hypothesis 8.8.1.

(1) K locally admits intersections.
(2) i = (K,^) is an almost fully good independence relation (see Definition

8.6.1).

Our goal is to prove that i is actually fully good, i.e. extension holds. Note that
if we knew that K was categorical above the Löwenheim-Skolem-Tarski number,
we could use the categoricity transfer of Section 8.5. However here we do not make
any categoricity assumption and our approach is easier: we study how the closure
operator interacts with independence. The key lemma is:

Lemma 8.8.2. If A
N

^
M0

B, then clN (A)
N

^
M0

clN (B).

Proof. By normality, without loss of generality |M0| ⊆ A,B. Using symme-

try, it is enough to show that A
N

^
M0

clN (B). By the witness property and finite

character of the closure operator, we can assume without loss of generality that
|A| ≤ LS(K). Therefore by extension there exists N ′ ≥K N and M ≥K M0 such

that M ≤K N ′, M contains B, and A
N ′

^
M0

M . By definition, clN (B) = clN
′
(B) is

contained in M , so A
N ′

^
M0

clN (B), so A
N

^
M0

clN (B). �

An abstract way of stating Lemma 8.8.2 is via domination triples (recall Defi-
nition 8.6.17).

Lemma 8.8.3. Let M ≤K N and let a ∈ |N |\|M |. Then (a,M, clN ({a}∪ |M |))
is a domination triple.

Proof. Directly from Lemma 8.8.2. �

In our framework, domination triples are the same as the uniqueness triples of
[She09a, Definition II.5.3] by Fact 8.6.18, thus we get:

Theorem 8.8.4. i has extension. Hence it is a fully good independence relation.
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Proof. Let µ ≥ LS(K) and let s := pre(i≤1 � Kµ). By Lemma 8.8.3 and Fact
8.6.18 s has the so-called existence property for uniqueness triples (see [She09a,
Definition II.5.3]). By Section II.6 of [She09a] (and the results of Section 6.12) s
induces an independence relation i′ for types of length at most µ over models of size
µ that is well-behaved (i.e. it has all of the properties of a fully good independence
relation except full model continuity and disjointness). By the canonicity of such
relations (see the proofs of Corollary 3.5.18 and Theorem 3.6.12), i′ must be the
same as i≤µ � Kµ, the restriction of i to size µ. Thus for all µ ≥ LS(K), i has
extension for types of length at most µ over models of size µ. By the proof of
Lemma 6.14.13, this suffices to conclude that i has extension. �

Remark 8.8.5. The proof shows that instead of the AEC admitting intersec-
tions, it is enough to assume that for each µ, the restriction of i to a good frame
in µ has the existence property for uniqueness triples. Unfortunately the proof in
Section 6.11 only works when the frame is restricted to the saturated models of size
µ.

Corollary 8.8.6. K has disjoint amalgamation.

Proof. Because i has existence, extension and disjointness. �

Another consequence of having a closure operator is:

Theorem 8.8.7 (Finite character of independence). A
N

^
M0

B if and only if for

all finite A0 ⊆ A and B0 ⊆ B, A0

N

^
M0

B0. That is, i has the (< ℵ0)-witness property.

Proof. By symmetry it is enough to show that if A0

N

^
M0

B for all finite A0 ⊆ A,

then A
N

^
M0

B. For each finite A0 ⊆ A, let MA0
:= clN (|M0| ∪ A0). Let M :=

clN (|M0| ∪ B). By Lemma 8.8.2, MA0

N

^
M0

M for each finite A0 ⊆ A. Let MA :=

clN (|M0| ∪A). It is easy to see that 〈MA0
| A0 ∈ [A]<ℵ0〉 is a directed system with

union MA. Therefore by full model continuity, MA

N

^
M0

M , and so A
N

^
M0

B. �

Remark 8.8.8. One can check that (K,≤K,^, cl) satisfies the axiomatic frame-
work AxFri1 from [She09b, Chapter V.B].

For the next two results, we drop our hypotheses.

Theorem 8.8.9. Let K be a fully (< LS(K))-tame and short AEC with amal-
gamation. Assume further that K locally admits intersections.

If K is categorical in a µ ≥ h(LS(K)), then there exists λ < h(LS(K)) such
that K≥λ is fully good. Moreover the independence relation has the (< ℵ0)-witness
property.

Proof. Combine Corollary 8.6.16, Theorem 8.8.4, and Theorem 8.8.7. �
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Remark 8.8.10. If K is not categorical but only superstable (see Definition
8.6.6), then we can generalize the result (using Theorem 6.15.1) provided that for
all λ, Kλ-sat (the class of λ-saturated models in K) locally admits intersections.

8.8.1. Set bases. We end by showing that it is possible to extend the inde-
pendence relation to define forking not only over models but also over sets. In the
terminology of [HL02], K is simple (note that the paper gives an example due to
Shelah of a class that has a fully good independence relation, yet is not simple).

For our arguments to work, we have to assume that K admits intersections,
i.e. not just locally. To see that this is not a big loss, recall that if K is categorical
in unboundedly many cardinals and has amalgamation, then the models in the
categoricity cardinals are saturated, so for M ∈ LS(K), KM will also be categorical
in unboundedly many cardinals.

Hypothesis 8.8.11. K admits intersections.

Definition 8.8.12. Let N ∈ K and A,B,C ⊆ |N |. Define B
N

^
A
C to hold if

and only if clN (AB)
N

^
clN (A)

clN (AC).

We define properties such as invariance, monotonicity, etc. just as for the model-
based version of independence.

Remark 8.8.13. When A ≤K N , this agrees with the previous definition of
independence.

Theorem 8.8.14.

(1) ^ has invariance, left and right monotonicity, base monotonicity, and
normality.

(2) ^ has symmetry, finite character (i.e. the (< ℵ0)-witness property), exis-
tence and transitivity.

(3) ^ has extension.
(4) Let N ∈ K and let 〈Bi : i < δ〉 be an increasing chain of sets. Let

Bδ :=
⋃
i<δ Bi and assume Bδ ⊆ |N |. Let p ∈ gSα(B;N). If cf δ > α,

then there exists i < δ such that p does not fork over Bi.
(5) If p ∈ gSα(B;N), there exists A ⊆ B such that p does not fork over A

and |A| < |α|+ + ℵ0.

Proof.

(1) Easy.
(2) Easy.
(3) By transitivity and extension of i.
(4) By local character for i.
(5) By finite character, it is enough to show it when α < ω. Work by induction

on λ := |B|. If λ < ℵ0, take A = B and use the existence property. If
λ ≥ ℵ0, write B =

⋃
i<λBi, where |Bi| < λ for all i < λ. By the previous

result, there exists i < λ such that p does not fork over Bi. Now apply
the induction hypothesis and transitivity.

�

Remark 8.8.15. Thus in this framework types of finite length really do not
fork over a finite set. This removes the need for a special chain version of local
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character (i.e. if 〈Mi : i ≤ δ〉 is increasing continuous, p<ω ∈ gS(Mδ), there exists
i < δ such that p does not fork over Mi).



CHAPTER 9

Equivalent definitions of superstability in tame
abstract elementary classes

This chapter is based on [GV] and is joint work with Rami Grossberg. We
thank Will Boney and a referee for feedback that helped improve the presentation
of the chapter.

Abstract

In the context of abstract elementary classes (AECs) with a monster model,
several possible definitions of superstability have appeared in the literature. Among
them are no long splitting chains, uniqueness of limit models, and solvability. Under
the assumption that the class is tame and stable, we show that (asymptotically) no
long splitting chains implies solvability and uniqueness of limit models implies no
long splitting chains. Using known implications, we can then conclude that all the
previously-mentioned definitions (and more) are equivalent:

Corollary 9.0.16. Let K be a tame AEC with a monster model. Assume
that K is stable in a proper class of cardinals. The following are equivalent:

(1) For all high-enough λ, K has no long splitting chains.
(2) For all high-enough λ, there exists a good λ-frame on a skeleton of Kλ.
(3) For all high-enough λ, K has a unique limit model of cardinality λ.
(4) For all high-enough λ, K has a superlimit model of cardinality λ.
(5) For all high-enough λ, the union of any increasing chain of λ-saturated

models is λ-saturated.
(6) There exists µ such that for all high-enough λ, K is (λ, µ)-solvable.

This gives evidence that there is a clear notion of superstability in the frame-
work of tame AECs with a monster model.

9.1. Introduction

In the context of classification theory for abstract elementary classes (AECs),
a notion analogous to the first-order notion of stability exists: let us say that an
AEC K is stable in λ if K has at most λ-many Galois types over every model of
cardinality λ (a justification for this definition is Fact 2.4.15, showing that it is
equivalent, under tameness, to failure of the order property). However it has been
unclear what a parallel notion to superstability might be. Recall that for first-order
theories we have:

Fact 9.1.1. Let T be a first-order complete theory. The following are equiva-
lent:

(1) T is stable in every cardinal λ ≥ 2|T |.

251
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(2) For all infinite cardinals λ, the union of an increasing chain of λ-saturated
models is λ-saturated.

(3) κ(T ) = ℵ0 and T is stable.
(4) T has a saturated model of cardinality λ for every λ ≥ 2|T |.
(5) T is stable and Dn[x̄ = x̄, L(T ),∞] <∞.
(6) There does not exists a set of formulas Φ = {φn(x̄; ȳn) | n < ω} such that

Φ can be used to code the structure (ω≤ω, <,<lex)

(1) =⇒ (2) and (1) ⇐⇒ (`) for ` ∈ {3, 4, 5, 6} all appear in Shelah’s book
[She90]. Albert and Grossberg [AG90, 13.2] established (2) =⇒ (6).

In the last 30 years, in the context of classification theory for non elementary
classes, several notions that generalize that of first-order superstablity have been
considered. See papers by Grossberg, Shelah, VanDieren and Villaveces: [GS86a,
Gro88], [She99], [SV99], [Van06, Van13], [GVV16], and Chapters 4 and 6 of
this thesis. Reasons for developping a superstability theory in the non-elementary
setup include the aesthetic appeal (guided by motivation from the first-order case)
and recent applications such as Shelah’s eventual categoricity conjecture in universal
classes, Chapters 8 and 16 or the fact that (in an AEC with a monster model) the
model in a categoricity cardinal is saturated (Chapter 17).

In [She99, p. 267] Shelah states that part of the program of classification
theory for AECs is to show that all the various notions of first-order saturation
(limit, superlimit, or model-homogeneous, see Section 9.2.2) are equivalent under
the assumption of superstablity. A possible definition of superstability is solvability
(see Definition 9.2.14), which appears in the introduction to [She09a] and is hailed
as a true counterpart to first-order superstability. Full justification is delayed to
[Sheb] but [She09a, Chapter IV] already uses it. Other definitions of superstability
analogous to the ones in Fact 9.1.1 can also be formulated. The main result of
this chapter is to show that, at least in tame AECs with a monster model, several
definitions of superstability that previously appeared in the literature are equivalent
(see the preliminaries for precise definitions of some of the concepts appearing
below). Many of the implications have already been proven in earlier papers, but
here we complete the loop by proving two theorems. Before stating them, some
notation will be helpful:

Notation 9.1.2 (4.24(5) in [Bal09]). Given a fixed AEC K, setH1 := i(2LS(K))
+ .

Theorem 9.3.18. Let K be an LS(K)-tame AEC with a monster model. There
exists χ < H1 such that for any µ ≥ χ, if K is stable in µ, there is a saturated
model of cardinality µ, and every limit model of cardinality µ is χ-saturated, then
K has no long splitting chains in µ.

Theorem 9.4.9. Let K be an LS(K)-tame AEC with a monster model. There
exists χ < H1 such that for any µ ≥ χ, if K is stable in µ and has no long splitting
chains in µ then K is uniformly (µ′, µ′)-solvable, where µ′ := (iω+2(µ))

+
.

These two theorems prove (3) implies (1) and (1) implies (6) of our main
corollary, proven in detail after the proof of Corollary 9.5.5.

Corollary 9.1.3 (Main Corollary). Let K be a LS(K)-tame AEC with a
monster model. Assume that K is stable in some cardinal greater than or equal to
LS(K). The following are equivalent:
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(1) There exists µ1 < H1 such that for every λ ≥ µ1, K has no long splitting
chains in λ.

(2) There exists µ2 < H1 such that for every λ ≥ µ2, there is a good λ-frame
on a skeleton of Kλ (see Section 9.2.3).

(3) There exists µ3 < H1 such that for every λ ≥ µ3, K has a unique limit
model of cardinality λ.

(4) There exists µ4 < H1 such that for every λ ≥ µ4, K has a superlimit
model of cardinality λ.

(5) There exists µ5 < H1 such that for every λ ≥ µ5, the union of any
increasing chain of λ-saturated models is λ-saturated.

(6) There exists µ6 < H1 such that for every λ ≥ µ6, K is (λ, µ6)-solvable.

Moreover any of the above conditions also imply:

(7) There exists µ7 < H1 such that for every λ ≥ µ7, K is stable in λ.

Remark 9.1.4. The main corollary has a global assumption of stability (in
some cardinal). While stability is implied by some of the equivalent conditions
(e.g. by (2) or (6)) other conditions may be vacuously true if stability fails (e.g.
(1)). Thus in order to simplify the exposition we just require stability outright.

Remark 9.1.5. In the context of the main corollary, if µ1 ≥ LS(K) is such that
K is stable in µ1 and has no long splitting chains in µ1, then for any λ ≥ µ1, K is
stable in λ and has no long splitting chains in λ (see Fact 9.2.3). In other words,
superstability defined in terms of no long splitting chains transfers up.

Remark 9.1.6. In (3), one can also require the following strong version of
uniqueness of limit models: if M0,M1,M2 ∈ Kλ and both M1 and M2 are limit
over M0, then M1

∼=M0
M2 (i.e. the isomorphism fixes the base). This is implied

by (2): see Fact 9.2.11.

Remark 9.1.7. At the time this chapter was first circulated (July 2015), we
did not know whether (7) implied the other conditions. This has now been proven
and appears in Chapter 19.

Note that in Corollary 9.1.3, we can let µ be the maximum of the µ`’s and then
each property will hold above µ. Interestingly however, the proof of Corollary 9.1.3
does not tell us that the least cardinals µ` where the corresponding properties holds
are all equal. In fact, it uses tameness heavily to move from one cardinal to the
next and uses e.g. that one equivalent definition holds below λ to prove that another
definition holds at λ. Showing equivalence of these definitions cardinal by cardinals,
or even just showing that the least cardinals where the properties hold are all equal
seems much harder. We also show that we can ask only for each property to hold
in a single high-enough cardinals below H1 (but again the least such cardinal may
not be the same for each property, see Corollary 9.5.5). In general, we suspect
that the problem of computing the minimal value of the cardinals µ` could play a
role similar to the computation of the first stability cardinal for a first-order theory
(which led to the development of forking, see e.g. the introduction of [GIL02]).

We discuss earlier work. Shelah [She09a, Chapter II] introduced good λ-
frames (a local axiomatization of first-order forking in a superstable theory, see
more in Section 9.2.4) and attempts to develop a theory of superstability in this
context. He proves for example the uniqueness of limit models (see Fact 9.2.11, so
(2) implies (3) in the main theorem is due to Shelah) and (with strong assumptions,
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see below) the fact that the union of a chain (of length strictly less than λ++)
of saturated models of cardinality λ+ is saturated [She09a, II.8]. From this he
deduces the existence of a good λ+-frame on the class of λ+-saturated models of
K and goes on to develop a theory of prime models, regular types, independent
sequences, etc. in [She09a, Chapter III]. The main issue with Shelah’s work is
that it does not make any global model-theoretic hypotheses (such as tameness or
even just amalgamation) and hence often relies on set-theoretic assumptions as well
as strong local model-theoretic hypotheses (few models in several cardinals). For
example, Shelah’s construction of a good frame in the local setup [She09a, II.3.7]
uses categoricity in two successive cardinals, few models in the next, as well as
several diamond-like principles.

By making more global hypotheses, building a good frame becomes easier and
can be done in ZFC (see Chapter 4 or [She09a, Chapter IV]). Recently, assuming a
monster model and tameness (a locality property of types introduced by VanDieren
and Grossberg, see Definition 2.2.23), progress have been made in the study of
superstability defined in terms of no long splitting chains. Specifically, Theorem
4.5.6 proved (1) implies (7). Partial progress in showing (1) implies (2) is made
in Chapters 4 and 6 but the missing piece of the puzzle, that (1) implies (5), is
proven in Chapter 7. From these results, it can be deduced that (1) implies (2)-(5)
(see Theorem 7.6.1). Shelah has shown that (2) implies (3), see Fact 9.2.11. Some
implications between variants of (3), (4) and (5) are also straightforward (see Fact
9.2.5), though one has to be careful about where the class is stable (the existence of
a limit model of cardinality λ implies stability in λ, but not the fact that the union
of a chain of λ-saturated models is λ-saturated). In the proof of Corollary 9.5.5, we
end up using a single technical condition, (3∗), asserting that limit models have a
certain degree of saturation. It is quite easy to see that (3), (4), and (5) all imply
(3∗). Finally, (6) directly implies (4) from its definition (see Section 9.2.5).

Thus as noted before the main contributions of this chapter are (3) (or really
(3∗)) implies (1) and (1) implies (6). In Theorem 9.5.4 it is shown that, assuming
a monster model and tameness, solvability in some high-enough cardinal implies
solvability in all high-enough cardinals. Note that Shelah asks (inspired by the
analogous question for categoricity) in [She09a, Question N.4.4] what the solv-
ability spectrum can be (in an arbitrary AEC). Theorem 9.5.4 provides a partial
answer under the additional assumptions of a monster model and tameness. The
proof notices that a powerful results of Shelah and Villaveces [SV99] (deriving no
long splitting chains from categoricity) can be adapted to our setup (see Fact 9.5.1
and Corollary 9.5.2). Shelah also asks [She09a, Question N.4.5] about the super-
limit spectrum. In our context, we can show that if there is a high-enough stability
cardinal λ with a superlimit model, then K has a superlimit on a tail of cardinals
(see Corollary 9.5.5). We do not know if the hypothesis that λ is a stability cardinal
is needed (see Question 9.5.7).

Since this chapter was first circulated (July 2015), several related results have
been proven. VanDieren [Van16a, Van16b] gives some relationships between ver-
sions of (3) and (5) in a single cardinal (with (1) as a background assumption).
This is done without assuming tameness, using very different technologies than in
this chapter. This work is applied to the tame context in Chapter 10, showing for
example that (1) implies (3) holds cardinal by cardinal. Chapter 19 studies the
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model theory of strictly stable tame AECs, establishing in particular that stability
on a tail implies no long splitting chains (see Remark 9.1.7).

We do not know how to prove analogs to the last two properties of Fact 9.1.1.
Note also that, while the analogous result is known for stability (see Fact 2.4.15), we
do not know whether no long splitting chains should hold below the Hanf number:

Question 9.1.8. Let K be a LS(K)-tame AEC with a monster model. Assume
that there exists µ ≥ LS(K) such that K is stable in µ and has no long splitting
chains in µ. Is the least such µ below H1?

The background required to read this chapter is a solid knowledge of AECs (for
example Chapters 4-12 of Baldwin’s book [Bal09] or the upcoming [Gro]). We rely
on the first ten sections of Chapter 6, as well as on the material in Chapters 2 and
7.

At the beginning of Sections 9.3 and 9.4, we make global hypotheses that hold
until the end of the section (unless said otherwise). This is to make the statements
of several technical lemmas more readable. We will repeat the global hypotheses in
the statement of major theorems.

9.2. Preliminaries

We assume familiarity with a basic text on AECs such as [Bal09] or [Gro] and
refer the reader to the preliminaries of Chapter 2 for more details and motivations
on the concepts used in this chapter.

We use K (boldface) to denote a class of models together with an ordering
(written ≤K). We will often abuse notation and write for example M ∈ K. When
it becomes necessary to consider only a class of models without an ordering, we will
write K (no boldface).

Throughout all this chapter, K is a fixed AEC. Most of the time, K will have
amalgamation, joint embedding, and arbitrarily large models. In this case we say
that K has a monster model. We also often assume that K is LS(K)-tame (this
means that Galois types are determined by their restrictions of size LS(K), see
Definition 2.2.23). Note that if K is χ-tame for χ > LS(K), the class K′ := K≥χ
will be an LS(K′)-tame AEC. Thus we might as well directly assume that K is
LS(K)-tame.

9.2.1. Superstability and no long splitting chains. A definition of su-
perstability analogous to κ(T ) = ℵ0 in first-order model theory has been studied
in AECs (see [SV99, GVV16, Van06, Van13] and Chapters 4 and 6). Since it
is not immediately obvious what forking should be in that framework, the more
rudimentary independence relation of λ-splitting is used in the definition. Since in
AECs, types over models are much better behaved than types over sets, it does not
make sense in general to ask for every type to not split over a finite set1. Thus we
require that every type over the union of a chain does not split over a model in
the chain. For technical reasons (it is possible to prove that the condition follows
from categoricity), we require the chain to be increasing with respect to universal
extension. Definition 9.2.1 rephrases (1) in Corollary 9.1.3:

1But see Theorem 8.8.14 where a notion of forking over set is constructed from categoricity
in a universal class.
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Definition 9.2.1. Let λ ≥ LS(K). We say K has no long splitting chains in
λ if for any limit δ < λ+, any increasing 〈Mi : i < δ〉 in Kλ with Mi+1 universal
over Mi for all i < δ, any p ∈ gS(

⋃
i<δMi), there exists i < δ such that p does not

λ-split over Mi.

Remark 9.2.2. The condition in Definition 9.2.1 first appears in [She99, Ques-
tion 6.1]. In [Bal09, 15.1], it is written as2 κ(K, λ) = ℵ0. We do not adopt this
notation, since it blurs out the distinction between forking and splitting, and does
not mention that only a certain type of chains are considered. A similar nota-
tion is in Definition 6.3.16: K has no long splitting chains in λ if and only if
κ1(iλ-ns(Kλ), <univ) = ℵ0.

In tame AECs with a monster model, no long splitting chains transfers upward:

Fact 9.2.3 (Proposition 6.10.10). Let K be an AEC with a monster model and
let LS(K) ≤ λ ≤ µ. If K is stable in λ and has no long splitting chains in λ, then
K is stable in µ and has no long splitting chains in µ.

9.2.2. Definitions of saturated. The search for a good definition of “sat-
urated” in AECs is central. We quickly review various possible notions and cite
some basic facts about them, including basic implications.

Implicit in the definition of no long splitting chains is the notion of a limit model.
It plays a central role in the study of AECs that do not necessarily have amalgama-
tion [SV99] (their study in this context was continued in [Van06, Van13]). We
use the notation and basic definitions from [GVV16]. The two basic facts about
limit models (in an AEC with a monster model) are:

(1) Existence: If K is stable in λ, then for every M and every limit δ < λ+

there is a (λ, δ)-limit over M .
(2) Uniqueness: Any two limit models of the same length are isomorphic.

Uniqueness of limit models that are not of the same cofinality is a key concept
which is equivalent to superstability in first-order model theory.

A second notion of saturation can be defined using Galois types (when K has
a monster model): for λ > LS(K), say M is λ-saturated if every type over a ≤K-
substructure of M of size less than λ is realized inside M . We will write Kλ-sat for
the class of λ-saturated models in K.

A third notion of saturation appears in [She87a, 3.1(1)]3. The idea is to encode
a generalization of the fact that a union of saturated models should be saturated.

Definition 9.2.4. Let M ∈ K and let λ ≥ LS(K). M is called superlimit in λ
if:

(1) M ∈ Kλ.
(2) M is “properly universal”: For any N ∈ Kλ, there exists f : N →M such

that f [N ] <K M .
(3) Whenever 〈Mi : i < δ〉 is an increasing chain in Kλ, δ < λ+ and Mi

∼= M
for all i < δ, then

⋃
i<δMi

∼= M .

The following local implications between the three definitions are known:

2Of course, the κ notation has a long history, appearing first in [She70].
3We use the definition in [She09a, N.2.4(4)] which requires in addition that the model be

universal.
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Fact 9.2.5 (Local implications). Assume that K has a monster model. Let
λ ≥ LS(K) be such that K is stable in λ.

(1) If χ ∈ [LS(K)+, λ] is regular, then any (λ, χ)-limit model is χ-saturated.
(2) If λ > LS(K) and λ is regular, then M ∈ Kλ is saturated if and only if

M is (λ, λ)-limit.
(3) If λ > LS(K), then any two limit models of size λ are isomorphic if and

only if every limit model of size λ is saturated.
(4) If M ∈ Kλ is superlimit, then for any limit δ < λ+, M is (λ, δ)-limit and

(if λ > LS(K)) saturated.
(5) Assume that λ > LS(K) and there exists a saturated model M of size λ.

Then M is superlimit if and only if in Kλ, the union of any increasing
chain (of length strictly less than λ+) of saturated models is saturated.

Proof. (1), (2), and (3) are straightforward from the basic facts about limit
models and the uniqueness of saturated models. (4) is by [Dru13, 2.3.10] and the
previous parts. (5) then follows. �

Remark 9.2.6. (3) is stated for λ regular in [Dru13, 2.3.12] but the argument
above shows that it holds for any λ.

9.2.3. Skeletons. The notion of a skeleton was introduced in Section 6.5 and
is meant to be an axiomatization of a subclass of saturated models of an AEC. It
is mentioned in (2) of the main corollary.

Recall the definition of an abstract class, due to Grossberg [Gro] (or see Defi-
nition 2.2.7): it is a pair K′ = (K ′,≤K′) so that K ′ is a class of τ -structures in a
fixed vocabulary τ = τ(K′), closed under isomorphisms, and ≤K′ is a partial order
on K ′ which respects isomorphisms and extends the τ -substructure relation.

Definition 9.2.7 (Definition 6.5.3). A skeleton of an abstract class K∗ is an
abstract class K′ such that:

(1) K ′ ⊆ K∗ and for M,N ∈ K′, M ≤K′ N implies M ≤K∗ N .
(2) K′ is dense in K∗: For any M ∈ K∗, there exists M ′ ∈ K′ such that

M ≤K∗ M
′.

(3) If α is a (not necessarily limit) ordinal and 〈Mi : i < α〉 is a strictly ≤K∗ -
increasing chain in K′, then there exists N ∈ K′ such that Mi ≤K′ N
and4 Mi 6= N for all i < α.

Example 9.2.8. Let λ ≥ LS(K). Assume that K is stable in λ, has amalga-
mation and no maximal models in λ. Let K ′ be the class of limit models of size λ
in K. Then (K ′,≤K) (or even K ′ ordered with “being equal or universal over”) is
a skeleton of Kλ.

Remark 9.2.9. If K′ is a skeleton of Kλ and K′ itself generates an AEC, then
M ≤K′ N if and only if M,N ∈ K′ and M ≤K N . This is because of the third
clause in the definition of a skeleton (used with α = 2) and the coherence axiom.

We can define notions such as amalgamation and Galois types for any abstract
class (see the preliminaries of Chapter 2). The properties of a skeleton often corre-
spond to properties of the original AEC:

4Note that if α is limit this follows.
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Fact 9.2.10. Let λ ≥ LS(K) and assume that K has amalgamation in λ. Let
K′ be a skeleton of Kλ.

(1) For P standing for having no maximal models in λ, being stable in λ, or
having joint embedding in λ, K has P if and only if K′ has P .

(2) Assume that K has joint embedding in λ and for every limit δ < λ+ and
every N ∈ K′ there exists N ′ ∈ K′ which is (λ, δ)-limit over N (in the
sense of K′).
(a) Let M,M0 ∈ K′ and let δ < λ+ be a limit ordinal. Then M is (λ, δ)-

limit over M0 in the sense of K′ if and only M is (λ, δ)-limit over M0

in the sense of K.
(b) K′ has no long splitting chains in λ if and only if K has no long

splitting chains in λ.

Proof. (1) is by Proposition 6.5.8. As for (2a), (2b), note first that the
hypotheses of (2) imply (by (1)) that K is stable in λ and has no maximal models
in λ. In particular, limit models of size λ exist in K.

Let us prove (2a). If M is (λ, δ)-limit over M0 in the sense of K′, then it is
straightforward to check that the chain witnessing it will also witness that M is
(λ, δ)-limit over M0 in the sense of K. For the converse, observe that by assumption
there exists a (λ, δ)-limit M ′ over M0 in the sense of K′. Furthermore, by what has
just been observed M ′ is also limit in the sense of K, hence by uniqueness of limit
models of the same length, M ′ ∼=M0

M . Therefore M is also (λ, δ)-limit over M0

in the sense of K′. The proof of (2b) is similar, see Lemma 6.6.7. �

9.2.4. Good frames. Good frames are a local axiomatization of forking in a
first-order superstable theories. They are introduced in [She09a, Chapter II]. We
will use Definition 6.8.1 which is weaker and more general than Shelah’s, as it does
not require the existence of a superlimit (as in [JS13]). As opposed to Chapter
6, we allow good frames that are not type-full: we only require the existence of
a set of well-behaved basic types satisfying some density property (see [She09a,
Chapter II] for more). Note however that Remark 9.5.6 says that in the context of
the main theorem the existence of a good frame implies the existence of a type-full
good frame (possibly over a different class).

In Definition 6.8.1, the underlying class of the good frame consists only of
models of size λ. Thus when we say that there is a good λ-frame on a class K′, we
mean the underlying class of the good frame is K′, and the axioms of good frames
will require that K′ generates a non-empty AEC with amalgamation in λ, joint
embedding in λ, no maximal models in λ, and stability in λ.

The only facts that we will use about good frames are:

Fact 9.2.11. Let λ ≥ LS(K). If there is a good λ-frame on a skeleton of Kλ,
then K has a unique limit model of size λ. Moreover, for any M0,M1,M2 ∈ Kλ, if
both M1 and M2 are limit over M0, then M1

∼=M0
M2 (i.e. the isomorphism fixes

M0).

Proof. Let K′ be the skeleton of Kλ which is the underlying class of the
good λ-frame. By [She09a, II.4.8] (see [Bon14a, 9.2] for a detailed proof), K′

has a unique limit model of size λ (and the moreover part holds for K′). By Fact
9.2.10(2a), this must also be the unique limit model of size λ in K (and the moreover
part holds in K too). �
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Fact 9.2.12. Assume that K has a monster model and is LS(K)-tame. If
µ < H1 is such that K is stable in µ and has no long splitting chains in µ, then
there exists λ0 < H1 such that for all λ ≥ λ0, there is a good λ-frame on Kλ-sat

λ .
Moreover, Kλ-sat

λ is a skeleton of Kλ, K is stable in λ, any M ∈ Kλ-sat
λ is superlimit,

and the union of any increasing chain of λ-saturated models is λ-saturated.

Proof. First assume that K has no long splitting chains in LS(K) and is
stable in LS(K). By Theorem 7.6.1, there exists λ0 < i(2µ+)

+ such that for any

λ ≥ λ0, any increasing chain of λ-saturated models is λ-saturated and there is a
good λ-frame on Kλ-sat

λ . That any M ∈ Kλ-sat
λ is a superlimit (Fact 9.2.5(5)) and

Kλ-sat
λ is a skeleton of Kλ easily follows, and stability in λ is given (for example)

by Fact 9.2.10(1).
Now by Theorem 7.5.17, we more precisely have that if K has no long splitting

chains in µ and is stable in µ then the same conclusion holds with i(2µ+)
+ replaced

by H1. �

9.2.5. Solvability. Solvability appears as a possible definition of superstabil-
ity for AECs in [She09a, Chapter IV]. The definition uses Ehrenfeucht-Mostowski
models and we assume the reader has some familiarity with them, see for example
[Bal09, Section 6.2] or [She09a, IV.0.8].

Definition 9.2.13.

(1) A countable set Φ = {pn : n < ω} is proper for linear orders if the pn’s
are an increasing sequence of n-variable quantifier-free types in a fixed
vocabulary τ(Φ) which are satisfied by a sequence of indiscernibles. As
usual, such a set Φ determines an EM-functor from linear orders into τ(Φ)-
structures, mapping a linear order I to EM(I,Φ) and taking suborders to
substructures.

(2) [She09a, IV.0.8] For µ ≥ LS(K), let Υµ[K] be the set of Φ proper for
linear orders with τ(K) ⊆ τ(Φ), |τ(Φ)| ≤ µ, and such that the τ(K)-
reduct EMτ(K)(I,Φ) is a functor from linear orders into members of K of
cardinality at most |I|+ µ. Such a Φ is called an EM blueprint for K.

Definition 9.2.14. Let LS(K) ≤ µ ≤ λ.

(1) [She09a, IV.1.4(1)] We say that Φ witnesses (λ, µ)-solvability if:
(a) Φ ∈ Υµ[K].
(b) If I is a linear order of size λ, then EMτ(K)(I,Φ) is superlimit in λ

for K, see Definition 9.2.4.
K is (λ, µ)-solvable if there exists Φ witnessing (λ, µ)-solvability.

(2) K is uniformly (λ, µ)-solvable if there exists Φ such that for all λ′ ≥ λ, Φ
witnesses (λ′, µ)-solvability.

Fact 9.2.15 (IV.0.9 in [She09a]). Let K be an AEC and let µ ≥ LS(K). Then
K has arbitrarily large models if and only if Υµ[K] 6= ∅.

We give some more manageable definitions of solvability ((3) is the one we will
use). Shelah already mentions one of them on [She09a, p. 61] (but does not prove
it is equivalent).

Lemma 9.2.16. Let LS(K) ≤ µ ≤ λ. The following are equivalent.

(1) K is [uniformly] (λ, µ)-solvable.
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(2) There exists τ ′ ⊇ τ(K) with |τ ′| ≤ µ and ψ ∈ Lµ+,ω(τ ′) such that:
(a) ψ has arbitrarily large models.
(b) [For all λ′ ≥ λ], if M |= ψ and ‖M‖ = λ [‖M‖ = λ′], then M � τ(K)

is in K and is superlimit.
(3) There exists τ ′ ⊇ τ(K) and an AEC K′ with τ(K′) = τ ′, LS(K′) ≤ µ

such that:
(a) K′ has arbitrarily large models.
(b) [For all λ′ ≥ λ], if M ∈ K′ and ‖M‖ = λ [‖M‖ = λ′], then M � τ(K)

is in K and is superlimit.

Proof.

• (1) implies (2): Let Φ witness (λ, µ)-solvability and write Φ = {pn | n <
ω}. Let τ ′ := τ(Φ)∪{P,<}, where P , < are symbols for a unary predicate
and a binary relation respectively. Let ψ ∈ Lµ+,ω(τ ′) say:
(1) (P,<) is a linear order.
(2) For all n < ω and all x0 < · · · < xn−1 in P , x0 . . . xn−1 realizes pn.
(3) For all y, there exists n < ω, x0 < · · · < xn−1 in P , and ρ an n-ary

term of τ(Φ) such that y = ρ(x0, . . . , xn−1).
Then if M |= ψ, M � τ = EMτ(K)(P

M ,Φ) (and by solvability if
‖M‖ = λ then M is superlimit in K). Conversely, if M = EMτ(K)(I,Φ),

we can expand M to a τ ′-structure M ′ by letting (PM
′
, <M

′
) := (I,<).

Thus ψ is as desired.
• (2) implies (3): Given τ ′ and ψ as given by (2), Let Ψ be a fragment of

Lµ+,ω(τ ′) containing ψ of size µ and let K′ be Mod(ψ) ordered by �Ψ.
Then K′ is as desired for (3).

• (3) implies (1): Directly from Fact 9.2.15.

�

9.3. Forking and averages in stable AECs

In the introduction to his book [She09a, p. 61], Shelah asserts (without proof)
that in the first-order context solvability (see Section 9.2.5) is equivalent to super-
stability. We aim to give a proof (see Corollary 9.5.3) and actually show (assuming
amalgamation, stability, and tameness) that solvability is equivalent to any of the
definitions in the main theorem. First of all, if there exists µ such that K is
(λ, µ)-solvable for all high-enough λ, then in particular K has a superlimit in all
high-enough λ, so we obtain (4) in the main corollary. We work toward a converse.
The proof is similar to that in [BGS99]: we aim to code saturated models using
their characterization with average of sequences (the crucial result for this is Lemma
9.3.16). In this section, we use the theory of averages in AECs (as developed by
Shelah in [She09b, Chapter V.A] and by Boney and the author in Chapter 7)
to give a new characterization of forking (Lemma 9.3.12). We also prove the key
result for (5) implies (1) in the main corollary (Theorem 9.3.18). All throughout,
we assume:

Hypothesis 9.3.1.

(1) K has a monster model C (we work inside it).
(2) K is LS(K)-tame.
(3) K is stable in some cardinal greater than or equal to LS(K).
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We set κ := LS(K)+ and work in the setup of Section 7.4. In particular we
think of Galois types of size LS(K) as formulas and think of bigger Galois types as
set of such formulas. That is, we work inside the Galois Morleyization of K (see
Definition 2.3.3). We encourage the reader to be ready to flip back to both Chapters
2 and 7, since we will cite from there freely and use basic notation and terminology
(χ-convergent, χ-based, (χ0, χ1, χ2)-Morley, Avχ(I/A) etc.) often without even an
explicit citation. We will say that p ∈ gS<κ(M) does not syntactically split over
M0 ≤K M if it does not split in the syntactic sense of Definition 7.4.7 (that is,
it does not split in the usual first-order sense when we think of Galois types of
size LS(K) as formulas). Note that several results from Chapter 7 that we quote
assume (< LS(K))-tameness (defined in terms of Galois types over sets). However,
as argued in the proof of Fact 9.2.12, LS(K)-tameness suffices.

We will define several other cardinals χ0 < χ′0 < χ1 < χ′1 < χ2 (see Notation
9.3.4, 9.3.9, and 9.3.10). The reader can simply see them as “high-enough” cardinals
with reasonable closure properties. If χ0 is chosen reasonably, we will have χ2 < H1.

The letters I, J will denote sequences of tuples of length strictly less than κ.
We will use the same conventions as in Section 7.4. Note that the sequences may
be indexed by arbitrary linear orders.

By Facts 2.4.15 and [She99, I.4.5(3)] (recalling that there is a global assump-
tion of stability in this section), we have:

Fact 9.3.2. There exists χ0 < H1 such that K does not have the LS(K)-order
property of length χ0.

Another property of χ0 is the following more precise version of Fact 2.4.15 (see
Chapter 2 on how to translate Shelah’s syntactic version to AECs):

Fact 9.3.3 (Theorem V.A.1.19 in [She09b]). If λ = λχ0 , then K is stable in
λ. In particular, K is stable in χ′0.

The following notation will be convenient:

Notation 9.3.4. Let χ0 be any regular cardinal such that χ0 ≥ 2LS(K) and
K does not have the LS(K)-order property of length χ+

0 . For a cardinal λ, let

γ(λ) := (22λ)+. We write χ′0 := γ(χ0).

Remark 9.3.5. By Fact 9.3.2, one can take χ0 < H1. In that case also χ′0 < H1.
For the sake of generality, we do not require that χ0 be least with the property
above.

Recall (Theorem 7.4.21) that if I is a (χ+
0 , χ

+
0 , γ(χ0))-Morley sequence, then I

is χ-convergent. We want to use this to relate average and forking:

Definition 9.3.6. Let M0,M ∈ K(χ′0)+-sat be such that M0 ≤K M . Let
p ∈ gS(M). We say that p does not fork over M0 if there exists M ′0 ∈ Kχ′0

such
that M ′0 ≤K M0 and p does not χ′0-split over M ′0.

We will use without comments:

Fact 9.3.7. Forking has the following properties:

(1) Invariance under isomorphisms and monotonicity: if M0 ≤K M1 ≤K M2

are all (χ′0)+-saturated and p ∈ gS(M2) does not fork over M0, then
p �M1 does not fork over M0 and p does not fork over M1.
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(2) Set local character: if M ∈ K(χ′0)+-sat and p ∈ gS(M), there exists M0 ∈
K(χ′0)+-sat of size (χ′0)+ such that M0 ≤K M and p does not fork over M0.

(3) Transitivity: Assume M0 ≤K M1 ≤K M2 are all (χ′0)+-saturated and
p ∈ gS(M2). If p does not fork over M1 and p � M1 does not fork over
M0, then p does not fork over M0.

(4) Uniqueness: If M0 ≤K M are all (χ′0)+-saturated and p, q ∈ gS(M) do
not fork over M0, then p � M0 = q � M0 implies p = q. Moreover p does
not λ-split over M0 for any λ ≥ (χ′0)

+
.

(5) Local extension over saturated models: If M0 ≤K M are both saturated,
‖M0‖ = ‖M‖ ≥ (χ′0)+, p ∈ gS(M0), there exists q ∈ gS(M) such that q
extends p and does not fork over M0.

Proof. Use Theorem 6.7.5. The generator used is the one given by Propo-
sition 7.4(2) there. For the moreover part of uniqueness, use Lemma 3.4.2 (and
Proposition 3.3.12). �

Note that the extension property need not hold in general. However if the class
has no long splitting chains we have:

Fact 9.3.8. If K has no long splitting chains in χ′0, then:

(1) (Theorem 6.8.9 or Theorem 4.7.1) Forking has:
(a) The extension property: If M0 ≤K M are (χ′0)+-saturated and p ∈

gS(M0), then there exists q ∈ gS(M) extending p and not forking
over M0.

(b) The chain local character property: If 〈Mi : i < δ〉 is an increasing
chain of (χ′0)+-saturated models and p ∈ gS(

⋃
i<δMi), then there

exists i < δ such that p does not fork over Mi.
(2) (Theorem 7.5.16) For any λ > (χ′0)+, Kλ-sat is an AEC with LS(Kλ-sat) =

λ.

For notational convenience, we “increase” χ0:

Notation 9.3.9. Let χ1 := (χ′0)++. Let χ′1 := γ(χ1).

We obtain a characterization of forking that adds to those proven in Section
6.9. A form of it already appears in [She09a, IV.4.6]. Again, we define more
cardinal parameters:

Notation 9.3.10. Let χ2 := iω(χ0).

Remark 9.3.11. We have that χ0 < χ′0 < χ1 < χ′1 < χ2, and χ2 < H1 if
χ0 < H1.

Lemma 9.3.12. Let M0,M be χ2-saturated with M0 ≤K M . Let p ∈ gS(M).
The following are equivalent:

(1) p does not fork over M0.
(2) p �M0 has a nonforking extension to gS(M) and there exists M ′0 ≤K M0

with ‖M ′0‖ < χ2 such that p does not syntactically split over M ′0.
(3) p �M0 has a nonforking extension to gS(M) and there exists µ ∈ [χ+

0 , χ2)
and I a (µ, µ, γ(µ)+)-Morley sequence for p, with all the witnesses inside
M0, such that Avγ(µ)(I/M) = p.
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Remark 9.3.13. When K has no long splitting chains in χ′0, forking has the
extension property (Fact 9.3.8) so the first part of (2) and (3) always hold. However
in Theorem 9.3.18 we apply Lemma 9.3.12 in the strictly stable case (i.e. K may
only be stable in χ′0 and not have no long splitting chains there).

We recall more definitions and facts before giving the proof of Lemma 9.3.12:

Fact 9.3.14 (V.A.1.12 in [She09b]). If p ∈ gS(M) and M is χ+
0 -saturated,

there exists M0 ∈ K≤χ0
with M0 ≤K M such that p does not syntactically split

over M0.

Fact 9.3.15. Let M0 ≤K M be both (χ′1)+-saturated. Let µ := ‖M0‖. Let
p ∈ gS(M) and let I be a (µ+, µ+, γ(µ))-Morley sequence for p over M0 with all
the witnesses inside M . Then if p does not syntactically split or does not fork over
M0, then Avγ(µ)(I/M) = p.

Proof. For syntactic splitting, this is Lemma 7.4.25. The Lemma is actually
more general and the proof of Theorem 7.5.16 shows that this also works for forking.

�

Proof of Lemma 9.3.12. Before starting, note that if µ < χ2, then K is
stable in 2µ+χ0 < χ2 by Fact 9.3.3. Thus there are unboundedly many stability
cardinals below χ2, so we have “enough space” to build Morley sequences.

• (1) implies (2): By Fact 9.3.14, we can find M ′0 ≤K M0 such that p �M0

does not syntactically split over M ′0 and ‖M ′0‖ ≤ χ1. Taking M ′0 bigger,
we can assume M ′0 is χ1-saturated and p �M0 does not fork over M ′0. Thus
by transitivity p does not fork over M ′0. Let I be a (χ+

1 , (χ
′
1)+, (χ′1)+)-

Morley sequence for p � M0 over M ′0 inside M0. By Theorem 7.4.21, I is
χ′1-convergent. By Lemma 7.4.20, I is χ′1-based on M ′0. Note also that I
is a (χ+

1 , (χ
′
1)+, (χ′1)+)-Morley sequence for p over M ′0 and by Fact 9.3.15,

Avχ′1(I/M0) = p so as I is χ′1-based on M ′0, p does not syntactically split
over M ′0.

• (2) implies (3): As in the proof of (1) implies (2) (except χ1 could be

bigger).
• (3) implies (2): By Theorem 7.4.21, I is γ(µ)-convergent. Pick any J ⊆ I

of length γ(µ) and use Lemma 7.4.10 to find M ′0 ≤K M0 of size γ(µ) such
that J is γ(µ)-based on M ′0. Since also J is γ(µ)-convergent, we have that
I is γ(µ)-based on M ′0. Thus Avγ(µ)(I/M) = p does not syntactically split
over M ′0.

• (2) implies (1): Without loss of generality, we can choose M ′0 to be such

that p � M0 also does not fork over M ′0. Let µ := ‖M ′0‖ + χ0. Build
a (µ+, µ+, γ(µ))-Morley sequence I for p over M ′0 inside M0. If q is the
nonforking extension of p �M0 to M , then I is also a Morley sequence for q
over M ′0 so by the proof of (1) implies (2) we must have Avγ(µ)(I/M) = q,
but also Avγ(µ)(I/M) = p, since p does not syntactically split over M ′0
(Fact 9.3.15). Thus p = q.

�

The next result is a version of [She90, III.3.10] in our context. It is implicit in
the proof of Theorem 7.4.27.
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Lemma 9.3.16. Let M ∈ Kχ2-sat. Let λ ≥ χ2 be such that K is stable in
unboundedly many µ < λ. The following are equivalent.

(1) M is λ-saturated.
(2) If q ∈ gS(M) is not algebraic and does not syntactically split over M0 ≤K

M with ‖M0‖ < χ2, there exists a ((‖M0‖+χ0)+, (‖M0‖+χ0)+, λ)-Morley
sequence for p over M0 inside M .

Proof. (1) implies (2) is trivial using saturation. Now assume (2). Let p ∈
gS(N), ‖N‖ < λ, N ≤K M . We show that p is realized in M . Let q ∈ gS(M)
extend p. If q is algebraic, we are done so assume it is not. Let M0 ≤K M have size
(χ′1)+ such that q does not fork over M0. By Lemma 9.3.12, we can increase M0 if
necessary so that q does not syntactically split over M0 and µ := ‖M0‖ ≥ χ0. Now
by (2), there exists a (µ+, µ+, λ)-Morley sequence I for q over M0 inside M . Now
by Fact 9.3.15, Avγ(µ)(I/M) = q. Thus Avγ(µ)(I/N) = p. By Lemma 7.4.6 and
the hypothesis of stability in unboundedly many cardinals below λ, p is realized by
an element of I and hence by an element of M . �

We end by showing that if high-enough limit models are sufficiently saturated,
then no long splitting chains holds. A similar argument already appears in the
proof of [She09a, IV.4.10]. We start with a more local version,

Lemma 9.3.17. Let λ ≥ χ2. Let δ < λ+ be a limit ordinal and let 〈Mi : i < δ〉
be an increasing chain of saturated models in Kλ. Let Mδ :=

⋃
i<δMi. If Mδ is

χ2-saturated, then for any p ∈ gS(Mδ), there exists i < δ such that p does not fork
over Mi.

Proof. Without loss of generality, δ is regular. If δ ≥ χ2, by set local character
(Fact 9.3.7(2)), there exists M ′0 of size χ1 such that p does not fork over M ′0 and
M ′0 ≤K Mδ, so pick i < δ such that M ′0 ≤K Mi and use monotonicity.

Now assume δ < χ2. By assumption, we have that Mδ is χ2-saturated. We
also have that p does not fork over Mδ (by set local character) so by Lemma 9.3.12,
there exists µ ∈ [χ+

0 , χ2) and I a (µ, µ, γ(µ)+)-Morley sequence for p with all the
witnesses inside Mδ such that Avγ(µ)(I/Mδ) = p. Since Mδ is χ2-saturated (and
there are unboundedly many stability cardinals below χ2), we can increase I if
necessary to assume that |I| ≥ χ2. Write Ii := |Mi| ∩ I. Since δ < χ2, there must
exists i < δ such that |Ii| ≥ χ2. Note that Ii is a (µ, µ, χ2)-Morley sequence for
p. Because I is γ(µ)-convergent and |Ii| ≥ χ2 > γ(µ), Avγ(µ)(Ii/Mδ) = p. Letting
M ′ ≥K Mδ be a saturated model of size λ and using local extension over saturated
models (Fact 9.3.7(5)), p � Mi has a nonforking extension to gS(M ′) and hence to
gS(Mδ). By Lemma 9.3.12, p does not fork over Mi, as desired. �

Theorem 9.3.18. Assume that K has a monster model, is LS(K)-tame, and
stable in some cardinal greater than or equal to LS(K).

Let χ0 ≥ LS(K) be such that K does not have the LS(K)-order property of
length χ0, and let χ2 := iω(χ0). Let λ ≥ χ2 be such that K is stable in λ and
there exists a saturated model of cardinality λ. If every limit model of cardinality
λ is χ2-saturated, then K has no long splitting chains in λ.

Proof. Let K′ be Kχ2-sat
λ ordered by being equal or universal over. Note that,

by stability in λ, K′ is a skeleton of Kλ (see Definition 9.2.7). Moreover since every
limit model of cardinality λ is χ2-saturated, for any limit δ < λ+, one can build
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an increasing continuous chain 〈Mi : i ≤ δ〉 in Kλ such that for all i ≤ δ, Mi is
χ2-saturated and (when i < δ) Mi+1 is universal over Mi. Therefore limit models
exist in K′, so the assumptions of Fact 9.2.10(2b) are satisfied. So it is enough to
see that K′ (not K) has no long splitting chains in λ.

Let δ < λ+ be limit and let 〈Mi : i < δ〉 be an increasing chain of models in K′,
with Mi+1 universal over Mi for all i < δ. Let Mδ :=

⋃
i<δMi. By assumption, Mδ

is χ2-saturated. By uniqueness of limit models of the same length, we can assume
without loss of generality that Mi+1 is saturated for all i < δ.

Let p ∈ gS(Mδ). By Lemma 9.3.17 (applied to 〈Mi+1 : i < δ〉), there exists
i < δ such that p does not fork over Mi. By the moreover part of Fact 9.3.7(4), p
does not λ-split over Mi, as desired. �

9.4. No long splitting chains implies solvability

From now on we assume no long splitting chains:

Hypothesis 9.4.1.

(1) Hypothesis 9.3.1, and we fix cardinals χ0 < χ′0 < χ1 < χ′1 < χ2 as defined
in Notation 9.3.4, 9.3.9, and 9.3.10. Note that by Fact 9.3.3 K is stable
in χ′0.

(2) K has no long splitting chains in χ′0.

In Notation 9.4.3, we will define another cardinal χ with χ2 < χ. If χ0 < H1,
we will also have that χ < H1.

Note that no long splitting chains in χ′0 and stability in χ′0 implies (Fact 9.2.3)
that K is stable in all λ ≥ χ′0. Further, forking is well-behaved in the sense of Fact
9.3.8. This implies that Morley sequences are closed under unions (here we use
that they are indexed by arbitrary linear orders, as opposed to just well-orderings).
Recall that we say I a 〈Ni : i ≤ δ〉 is a Morley sequence when I is a sequence
of elements and the Ni’s are an increasing chain of sufficiently saturated models
witnessing that I is Morley, see Definition 7.4.14 for the details.

Lemma 9.4.2. Let 〈Iα : α < δ〉 be an increasing (with respect to substructure)
sequence of linear orders and let Iδ :=

⋃
α<δ Iα. Let M0,M be χ2-saturated such

that M0 ≤K M . Let µ0, µ1, µ2 be such that χ2 < µ0 ≤ µ1 ≤ µ2, p ∈ gS(M) and
for α < δ, let Iα := 〈ai : i ∈ Iα〉 together with 〈Nα

i : i ∈ Iα〉 be (µ0, µ1, µ2)-Morley

for p over M0, with Nα
i ≤K Nβ

i ≤K M for all α ≤ β < δ and i ∈ Iα. For i ∈ Iα,

let Nδ
i :=

⋃
β∈[α,δ)N

β
i . Let Iδ := 〈ai : i ∈ Iδ〉.

If p does not fork over M0, then Iδ a 〈Nδ
i : i ∈ Iδ〉 is (µ0, µ1, µ2)-Morley for p

over M0.

Proof. By Lemma 9.3.12, p does not syntactically split over M0. Therefore
the only problematic clauses in Definition 7.4.14 are (4) and (7). Let’s check (4):
let i ∈ Iδ. By hypothesis, āi realizes p � Nα

i for all sufficiently high α < δ. By local
character of forking, there exists α < δ such that gtp(āi/N

δ
i ) does not fork over

Nα
i . Since gtp(āi/N

δ
i ) � Nα

i = p � Nα
i and p does not fork over M0 ≤K Nα

i , we
must have by uniqueness that p � Nδ

i = gtp(āi/N
δ
i ). The proof of (7) is similar. �

For convenience, we make χ2 even bigger:

Notation 9.4.3. Let χ := γ(χ2) (recall from Notation 9.3.4 that γ(χ2) =(
22χ2

)+
). A Morley sequence means a (χ+

2 , χ
+
2 , χ)-Morley sequence.
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Remark 9.4.4. By Remark 9.3.11, we still have χ < H1 if χ0 < H1.

We are finally in a position to prove solvability (in fact even uniform solvability).
We will use condition (3) in Lemma 9.2.16.

Definition 9.4.5. We define a class of models K ′ and a binary relation ≤K′

on K ′ (and write K′ := (K ′,≤K′)) as follows.

• K ′ is a class of τ ′ := τ(K′)-structures, with:

τ ′ := τ(K) ∪ {N0, N, F,R}
where:

– N0 and R are binary relations symbols.
– N is a ternary relation symbol.
– F is a binary function symbol.

• A τ ′-structure M is in K ′ if and only if:
(1) M � τ(K) ∈ Kχ-sat.
(2) RM is a linear ordering of |M |. We write I for this linear ordering.
(3) For5 all a ∈ |M | and all i ∈ I, NM (a, i) ≤K M � τ(K) (where

we see NM (a, i) as an τ(K)-structure; in particular, NM (a, i) ∈ K;
it will follow from (4b) that the NM (a, i)’s are increasing with i,
NM

0 (a) ≤K NM (a, i), and NM
0 (a) is saturated of size χ2.

(4) There exists a map a 7→ pa from |M | onto the non-algebraic Galois
types (of length one) over M � τ(K) such that for all a ∈ |M |:

(a) pa does not fork6 over NM
0 (a).

(b) 〈FM (a, i) : i ∈ I〉 a 〈NM (a, i) : i ∈ I〉 is a Morley sequence for
pa over NM

0 (a).
• M ≤K′ M ′ if and only if:

(1) M ⊆M ′.
(2) M � τ(K) ≤K M ′ � τ(K).

(3) For all a ∈ |M |, NM
0 (a) = NM ′

0 (a).

We show in Lemma 9.4.7 that K′ is an AEC, but first let us see that this
suffices:

Lemma 9.4.6. Let λ ≥ χ.

(1) If M ∈ Kλ is saturated, then there exists an expansion M ′ of M to τ ′

such that M ′ ∈ K′.
(2) If M ′ ∈ K′ has size λ, then M ′ � τ(K) is saturated.

Proof.

(1) Let RM
′

be a well-ordering of |M | of type λ. Identify |M | with λ. By
stability, we can fix a bijection p 7→ ap from gS(M) onto |M |. For each
p ∈ gS(M) which is not algebraic, fix Np ≤K M saturated such that
p does not fork over Np and ‖Np‖ = χ2. Then use saturation to build
〈aip : i < λ〉 a 〈N i

p : i < λ〉 Morley for p over Np (inside M). Let

NM ′

0 (ap) := Np, N
M ′(ap, i) := N i

p, F
M ′(a, i) := aip. For p algebraic, pick

5For a binary relation Q we write Q(a) for {b | Q(a, b)}, similarly for a ternary relation.
6Note that by Lemma 9.3.12 this also implies that it does not syntactically split over some

M ′0 ≤K NM
0 (a) with ‖M ′0‖ < χ2.
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p0 ∈ gS(M) nonalgebraic and let NM ′

0 (ap) := NM ′

0 (ap0
), NM ′(ap0

) :=

NM ′(ap0
), FM

′
(ap) := FM

′
(ap0

).
(2) By Lemma 9.3.16.

�

Lemma 9.4.7. K′ is an AEC with LS(K′) = χ.

Proof. It is straightforward to check that K′ is an abstract class with coher-
ence. Moreover:

• K′ satisfies the chain axioms: Let 〈Mi : i < δ〉 be increasing in K′. Let
Mδ :=

⋃
i<δMi.

– M0 ≤K′ Mδ, and if N ≥K′ Mi for all i < δ, then N ≥K′ Mδ:
Straightforward.

– Mδ ∈ K′: Mδ � τ(K) is χ-saturated by Fact 9.3.8. Moreover, RMδ

is clearly a linear ordering of Mδ. Write Ii for the linear ordering
(Mi, Ri). Condition 3 in the definition of K′ is also easily checked.
We now check Condition 4.
Let a ∈ |Mδ|. Fix i < δ such that a ∈ |Mi|. Without loss of general-
ity, i = 0. By hypothesis, for each i < δ, there exists pia ∈ gS(Mi �
τ(K)) not algebraic such that 〈FMi(a, j) | j ∈ Ii〉 a 〈NMi(a, j) |
j ∈ Ii〉 is a Morley sequence for pia over NMi

0 (a) = NM0
0 (a). Clearly,

pia � N
M0
0 (a) = p0

a � N
M0
0 (a) for all i < δ. Moreover by assumption pia

does not fork over NM0
0 . Thus for all i < j < δ, pja � Mi = pia � Mi.

By extension and uniqueness, there exists pa ∈ gS(Mδ � τ(K)) that

does not fork over NM0
0 (a) and we have pa � Mi = pia for all i < δ.

Now by Lemma 9.4.2, 〈FMδ(a, j) | j ∈ Iδ〉 a 〈NMδ(a, j) | j ∈ Iδ〉 is

a Morley sequence for pa over NM0
0 (a).

Moreover, the map a 7→ pa is onto the nonalgebraic Galois types over
Mδ � τ(K): let p ∈ gS(Mδ � τ(K)) be nonalgebraic. Then there
exists i < δ such that p does not fork over Mi. Let a ∈ |Mi| be
such that 〈FMi(a, j) | j ∈ Ii〉 a 〈NMi(a, j) | j ∈ Ii〉 is a Morley

sequence for p � Mi over NMi
0 (a). It is easy to check it is also a

Morley sequence for p over NMi
0 (a). By uniqueness of the nonforking

extension, we get that the extended Morley sequence is also Morley
for p, as desired.

• LS(K′) = χ: An easy closure argument.

�

Theorem 9.4.8. K is uniformly (χ, χ)-solvable.

Proof. By Lemma 9.4.7, K′ is an AEC with LS(K′) = χ. Now combine
Lemma 9.4.6 and Lemma 9.2.16. Note that by Fact 9.3.8, for each λ ≥ χ there is
a saturated model of size λ, and it is also a superlimit. �

For the convenience of the reader, we give a more quotable version of Theorem
9.4.8. For the next results, we drop Hypothesis 9.4.1.

Theorem 9.4.9. Assume that K has a monster model, is LS(K)-tame, and is
stable in some cardinal greater than or equal to LS(K). There exists χ < H1 such
that for any µ ≥ χ, if K is stable in µ and has no long splitting chains in µ then K
is uniformly (µ′, µ′)-solvable, where µ′ := (iω+2(µ))

+
.
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Proof. Hypothesis 9.3.1 holds. Let χ < H1 be such that K does not have the
LS(K)-order property of length χ (see Fact 9.3.2).

Let µ ≥ χ be such that K is stable in µ and has no long splitting chains in µ.
We apply Theorem 9.4.8 by letting χ0 in Notation 9.3.4 stand for µ here. By Fact
9.2.3, K is stable in µ1 and has no long splitting chains in µ1 for every µ1 ≥ µ,
thus Hypothesis 9.4.1 holds. Moreover χ2 in Notation 9.3.10 corresponds to iω(µ)
here, and χ in Notation 9.4.3 corresponds to µ′ here. Thus the result follows from
Theorem 9.4.8. �

Corollary 9.4.10. Assume that K has a monster model and is LS(K)-tame.
If there exists µ < H1 such that K is stable in µ and has no long splitting chains
in µ, then there exists µ′ < H1 such that K is uniformly (µ′, µ′)-solvable.

Proof. Let µ < H1 be such that K is stable in µ and has no long splitting
chains in µ. Fix χ < H1 as given by Theorem 9.4.9. Without loss of generality,
µ ≤ χ. By Fact 9.2.3, K is stable in χ and has no long splitting chains in χ, so
apply the conclusion of Theorem 9.4.9. �

9.5. Superstability below the Hanf number

In this section, we prove the main corollary. In fact, we prove a stronger version
that instead of asking for the properties to hold on a tail asks for them to hold only
in a single high-enough cardinal. Toward this end, we start by explaining why no
long splitting chains follows from categoricity in a high-enough cardinal. In fact,
categoricity can be replaced by solvability. All the ingredients for this result are
contained in [SV99] and this specific form has only appeared recently (see Chapter
20). Note also that Shelah states a similar result in [She99, 5.5] but his definition
of superstability is different.

Fact 9.5.1 (The ZFC Shelah-Villaveces theorem). Let K be an AEC with
arbitrarily large models and amalgamation7 in LS(K). Let λ > LS(K) be such
that K<λ has no maximal models. If K is (λ,LS(K))-solvable, then K is stable in
LS(K) and has no long splitting chains in LS(K).

Corollary 9.5.2. Let K be an AEC with a monster model. Let λ > LS(K).
If K is categorical in λ, then K is stable in µ and has no long splitting chains in µ
for all µ ∈ [LS(K), λ).

Proof. By Fact 9.5.1 applied to K≥µ for each µ ∈ [LS(K), λ). Note that, since
K has arbitrarily large models, categoricity in λ implies (λ,LS(K))-solvability. �

We conclude that solvability is equivalent to superstability in the first-order
case:

Corollary 9.5.3. Let T be a first-order theory and let K be the AEC of
models of T ordered by elementary substructure. Let µ ≥ |T |. The following are
equivalent:

(1) T is stable in all λ ≥ µ.
(2) K is (λ, µ)-solvable, for some λ > µ.
(3) K is uniformly (µ, µ)-solvable.

7In [SV99], this is replaced by the generalized continuum hypothesis (GCH).
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Proof sketch. (3) implies (2) is trivial. (2) implies (1) is by Corollary 9.5.2
together with Fact 9.2.3). Finally, (1) implies (3) is as in the proof of Theorem
9.4.9. �

We can also use the ZFC Shelah-Villaveces theorem to prove the following
interesting result, showing that the solvability spectrum satisfies an analog of She-
lah’s categoricity conjecture in tame AECs (Shelah asks what the behavior of the
solvability spectrum should be in [She09a, Question N.4.4]).

Theorem 9.5.4. Assume that K has a monster model and is LS(K)-tame.
There exists χ < H1 such that for any µ ≥ χ, if K is (λ, µ)-solvable for some

λ > µ, then K is uniformly (µ′, µ′)-solvable, where µ′ := (iω+2(µ))
+

.

Proof. Let χ < H1 be as given by Theorem 9.4.9. Let µ ≥ χ and fix λ > µ
such that K is solvable in λ. By Fact 9.5.1, K is stable in µ and has no long
splitting chains in µ. Now apply Theorem 9.4.9. �

We are now ready to prove the stronger version of the main corollary where the
properties hold only in a single high-enough cardinal below H1 (but the cardinal
may be different for each property).

Corollary 9.5.5. Assume that K has a monster model, is LS(K)-tame, and
is stable in some cardinal greater than or equal to LS(K). Then there exists χ ∈
(LS(K), H1) such that the following are equivalent:

(1)− For some λ1 ∈ [χ,H1), K is stable in λ1 and has no long splitting chains
in λ1.

(2)− For some λ2 ∈ [χ,H1), there is a good λ2-frame on a skeleton of Kλ2
.

(3)− For some λ3 ∈ [χ,H1), K has a unique limit model of cardinality λ3.
(4)− For some λ4 ∈ [χ,H1), K is stable in λ4 and has a superlimit model of

cardinality λ4.
(5)− For some λ5 ∈ [χ,H1), the union of any increasing chain of λ5-saturated

models is λ5-saturated.
(6)− For some λ6 ∈ [χ,H1), for some µ < λ6, K is (λ6, µ)-solvable.

Remark 9.5.6. In (2)−, we do not assume that the good frame is type-full (i.e.
it may be that there exists some nonalgebraic types which are not basic, so fork
over their domain). However if (1)− holds, then the proof of (1)− implies (2)− (Fact
9.2.12) actually builds a type-full frame. Therefore, in the presence of tameness,
the existence of a good frame implies the existence of a type-full good frame (in a
potentially much higher cardinal, and over a different class).

Proof of Corollary 9.5.5. By Fact 2.4.15, K does not have the LS(K)-
order property. By Fact 9.3.2, there exists χ0 < H1 such that K does not have the
LS(K)-order property of length χ0. Let χ := iω (χ0 + LS(K)).

We will use the following auxiliary condition, which is a weakening of (3)− (the
problem is that we do not quite know that (5)− implies (3)− as K might not be
stable in λ5):

(3)∗ For some λ∗3 ∈ [χ,H1), K is stable in λ∗3, has a saturated model of cardi-
nality λ∗3, and every limit model of cardinality λ∗3 is χ-saturated.

We will prove the following claims, which put together give us what we want:
Claim 1: (1)− ⇔ (6)−.
Claim 2: (3)∗ ⇒ (1)−.
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Claim 3: For ` ∈ {1, 2, 3, 4, 5}, (`)− ⇒ (3)∗.
Proof of Claim 1: By Theorem 9.4.9 and Fact 9.5.1. †Claim 1

Proof of Claim 2: This is Theorem 9.3.18, where χ2 there stands for χ here.
†Claim 2

Proof of Claim 3: It is enough to prove the following subclaims:

Subclaim 1: (1)− ⇒ (2)− ⇒ (3)−.
Subclaim 2: (4)− ⇒ (3)−.
Subclaim 3: (3)− ⇒ (3)∗.
Subclaim 4: (5)− ⇒ (3)∗.

Proof of Subclaim 1: By Fact 9.2.12. †Subclaim 1

Proof of Subclaim 2: By Fact 9.2.5(4). †Subclaim 2

Proof of Subclaim 3: By Fact 9.2.5(3). †Subclaim 3

Proof of Subclaim 4: Let λ∗3 ∈ [λ5, H1) be a regular stability cardinal.
Then K has a saturated model of cardinality λ∗3, and from (5)− it is
easy to see that any limit model of cardinality λ∗3 is λ5-saturated, hence
χ-saturated. †Subclaim 4

�

We can now prove the main result of this chapter (Corollary 9.1.3):

Proof of Corollary 9.1.3. Let χ be as given by Corollary 9.5.5. By Fact
2.4.15, there exists unboundedly-many regular stability cardinals in (χ,H1). This
implies that for ` ∈ {1, 2, 3, 4, 5, 6}, (`) (from Corollary 9.1.3) implies (`)− (from
Corollary 9.5.5). Moreover (1)− implies both (1) and (7) by Fact 9.2.3. Since
Corollary 9.5.5 tells us that (`1)− is equivalent to (`2)− for `1, `2 ∈ {1, 2, 3, 4, 5, 6},
it follows that (`1) is equivalent to (`2) as well, and (7) is implied by any of these
conditions. �

Question 9.5.7. Is stability in λ4 needed in condition (4)− of Corollary 9.5.5?
That is, can one replace the condition with:

(4)−− For some λ4 ∈ [χ, θ), K has a superlimit model of cardinality λ4.

The answer is positive when K is an elementary class [She12, 3.1].

9.6. Future work

While we managed to prove that some analogs of the conditions in Fact 9.1.1
are equivalent, much remains to be done.

For example, one may want to make precise what the analog to (5) and (6) in
9.1.1 should be in tame AECs. One possible definition for (6) could be:

Definition 9.6.1. Let λ, µ > LS(K). We say that K has the (λ, µ)-tree prop-
erty provided there exists {pn(x; yn) | n < ω} Galois-types over models of size less

than µ and {Mη | η ∈ ≤ωλ} such that for all n < ω, ν ∈ nλ and every η ∈ ωλ:

〈Mη,Mν〉 |= pn ⇐⇒ ν is an initial segment of η.

We say that K has the tree property if it has it for all high-enough µ and all
high-enough λ (where the “high-enough” quantifier on λ can depend on µ).

We can ask whether no long splitting chains (or any other reasonable definition
of superstability) implies that K does not have the tree property, or at least obtain
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many models from the tree property as in [GS86a]. This is conjectured in [She99]
(see the remark after Claim 5.5 there).

As for the D-rank in 9.1.1(5), perhaps a simpler analog would be the U -rank
defined in terms of (< κ)-satisfiability in [BG, 7.2] (another candidate for a rank
is Lieberman’s R-rank, see [Lie13]). By [BG, 7.9], no long splitting chains implies
that the U -rank is bounded but we do not know how to prove the converse. Perhaps
it is possible to show that U [p] =∞ implies the tree property.





CHAPTER 10

Symmetry in abstract elementary classes with
amalgamation

This chapter is based on [VV17] and is joint work with Monica VanDieren.
We thank the referees for reports which helped improve the presentation of this
paper.

Abstract

This chapter is part of a program initiated by Saharon Shelah to extend the
model theory of first order logic to the non-elementary setting of abstract elemen-
tary classes (AECs). An abstract elementary class is a semantic generalization of
the class of models of a complete first order theory with the elementary substruc-
ture relation. We examine the symmetry property of splitting (previously isolated
by VanDieren) in AECs with amalgamation that satisfy a local definition of super-
stability.

The key results are a downward transfer of symmetry and a deduction of sym-
metry from failure of the order property. These results are then used to prove several
structural properties in categorical AECs, improving classical results of Shelah who
focused on the special case of categoricity in a successor cardinal.

We also study the interaction of symmetry with tameness, a locality property
for Galois (orbital) types. We show that superstability and tameness together imply
symmetry. This sharpens some results from Chapter 7.

10.1. Introduction

The guiding conjecture for the classification of abstract elementary classes
(AECs) is Shelah’s categoricity conjecture. For an introduction to AECs and She-
lah’s cateogicity conjecture, see [Bal09].

Although most progress towards Shelah’s categoricity conjecture has been made
under the assumption that the categoricity cardinal is a successor, e.g. [She99,
GV06a, Bon14b], in Chapters 8 and 16, we prove a categoricity transfer theorem
without assuming that the categoricity cardinal is a successor, but assuming that
the class is universal, Chapters 8 and 16 (other partial results not assuming cate-
goricity in a successor cardinal are in Chapter 6 and [She09a, Chapter IV]). In this
chapter, we work in a more general framework than Chapters 8, 16. We assume the
amalgamation property and no maximal models and deduce new structural results
without having to assume that the categoricity cardinal is a successor, or even has
“high-enough” cofinality.

Beyond Shelah’s categoricity conjecture, a major focus in developing a classifi-
cation theory for AECs has been to find an appropriate generalization of first-order
superstability. Approximations isolated in [She99] and [SV99] have provided a
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mechanism for proving categoricity transfer results (see also [GV06a], Chapters
8, 16). In Chapter IV of [She09a], Shelah introduced solvability and claims it
should be the true definition of superstability in AECs (see Discussion 2.9 in the
introduction to [She09a]). It seems, however, that under the assumption that the
class has amalgamation, a more natural definition is a version of “κ(T ) = ℵ0”, first
considered by Shelah and Villaveces in [SV99]. In Chapter 9, it is shown that this
definition is equivalent to many others (including solvability and the existence of
a good frame, a local notion of independence), provided that the AEC satisfies a
locality property for types called tameness [GV06b].

Without tameness, progress has been made in the study of structural conse-
quences of the Shelah-Villaveces definition of superstability such as the uniqueness
of limit models (e.g. [GVV16]) or the property that the union of saturated models
is saturated (Chapter 7 or [Van16b]). Recently in [Van16a], VanDieren isolated a
symmetry property for splitting that turns out to be closely related to the unique-
ness of limit models.

10.1.1. Transferring symmetry. In this chapter we prove a downward trans-
fer theorem for this symmetry property. This allows us to gain insight into all of
the aspects of superstability mentioned above.

Theorem 10.1.1. Let K be an AEC. Suppose λ and µ are cardinals so that
λ > µ ≥ LS(K) and K is superstable in every χ ∈ [µ, λ]. Then λ-symmetry implies
µ-symmetry.

Theorem 10.1.1 (proven at the end of Section 10.3) improves Theorem 2 of
[Van16b] which transfers symmetry from µ+ to µ. We also clarify the relationship
between µ-symmetry (as a property of µ-splitting) and the symmetry property
in good frames (see Section 10.4). The latter is older and has been studied in
the literature: the work of Shelah in [She01a] led to [She09a, Theorem 3.7],
which gives conditions under which a good frame (satisfying a version of symmetry)
exists (but uses set-theoretic axioms beyond ZFC and categoricity in two successive
cardinals). One should also mention [She09a, Theorem IV.4.10] which builds a
good frame (in ZFC) from categoricity in a high-enough cardinal. Note, however,
the cardinal is very high and the underlying class of the frame is a smaller class of
Ehrenfeucht-Mostowski models, although this can be fixed by taking an even larger
cardinal.

It was observed in Theorem 3.5.13 that Shelah’s proof of symmetry of first-order
forking generalizes naturally to give that the symmetry property of any reasonable
global independence notion follows from the assumption of no order property. This
is used in Chapter 4 to build a good frame from tameness and categoricity (the
results there are improved in Chapters 6 and 7). As for symmetry transfers, Boney
[Bon14a] has shown how to transfer symmetry of a good frame upward using
tameness for types of length two. This was later improved to tameness for types of
length one with a more conceptual proof in Chapter 5.

Theorem 10.1.1 differs from these works in a few ways. First, we do not as-
sume tameness nor set-theoretic assumptions, and we do not work within the full
strength of a frame or with categoricity (only with superstability). Also, we obtain
a downward and not an upward transfer. The arguments of this chapter use tow-
ers whereas the aforementioned result of Chapter 5 use independent sequences to
transfer symmetry upward.
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10.1.2. Symmetry and superstability. Another consequence of our work
is a better understanding of the relationship between superstability and symmetry.
It was claimed in an early version of [GVV16] that µ-superstability directly implies
the uniqueness of limit models of size µ but an error was later found in the proof.
Here we show that this is true provided we have enough instances of superstability:

Theorem 10.5.4. Let K be an AEC and let µ ≥ LS(K). If K is superstable
in all µ′ ∈ [µ,i(2µ)+), then K has µ-symmetry.

The main idea is to imitate the proof of the aforementioned Theorem 3.5.13 to
get the order property from failure of symmetry. However we do not have as much
global independence as there so the proof here is quite technical.

10.1.3. Implications in categorical AECs. As a corollary of Theorem
10.5.4, we obtain several applications to categorical AECs. A notable contribu-
tion of this chapter is an improvement on a 1999 result of Shelah (see [She99,
Theorem 6.5]):

Fact 10.1.2. Let K be an AEC with amalgamation and no maximal models.
Let λ and µ be cardinals such that cf(λ) > µ > LS(K). If K is categorical in λ,
then any limit model of size µ is saturated.

Shelah claims in a remark immediately following his result that this can be
generalized to show that for M0,M1,M2 ∈ Kµ, if M1 and M2 are limit over M0,
then M1

∼=M0 M2 (that is, the isomorphism also fixes M0). This is however not
what his proof gives (see the discussion after Theorem 10.17 in [Bal09]). Here we
finally prove this stronger statement. Moreover, we can replace the hypothesis that
cf(λ) > µ by λ ≥ i(2µ)+ . That is, it is enough to ask for λ to be high-enough (but

of arbitrary cofinality):

Corollary 10.7.3.. Let K be an AEC with amalgamation and no maximal
models. Let λ and µ are cardinals so that λ > µ ≥ LS(K) and assume that K is
categorical in λ. If either cf(λ) > µ or λ ≥ i(2µ)+ , then whenever M0,M1,M2 ∈ Kµ

are such that both M1 and M2 are limit models over M0, we have that M1
∼=M0

M2.

This gives a proof (assuming amalgamation, no maximal models, and a high-
enough categoricity cardinal) of the (in)famous [SV99, Theorem 3.3.7], where a
gap was identified in the VanDieren’s Ph.D. thesis. The gap was fixed assuming
categoricity in µ+ in [Van06, Van13] (see also the exposition in [GVV16]). In
[BG, Corollary 6.18], this was improved to categoricity in an arbitrary λ > µ
provided that µ is big-enough and the class satisfies strong locality assumptions
(full tameness and shortness and the extension property for coheir). In Theorem
4.7.11, only tameness was required but the categoricity had to be in a λ with
cf(λ) > µ. Still assuming tameness, this is shown for categoricity in any λ ≥ i(2µ)+

in Theorem 7.6.1. Here assuming tameness we will improve this to categoricity in
any λ > LS(K) (see Corollary 10.7.10).

In general, we obtain that an AEC with amalgamation categorical in a high-
enough cardinal has several structural properties that were previously only known
for AECs categorical in a cardinal of high-enough cofinality, or even just in a suc-
cessor.
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Corollary 10.1.3. Let K be an AEC with amalgamation. Let λ > µ ≥ LS(K)
and assume that K is categorical in λ. Let µ ≥ LS(K). If K is categorical in a
λ > µ, then:

(1) (see Corollary 10.7.4) If λ ≥ i(2µ)+ and µ > LS(K), then the model of
size λ is µ-saturated.

(2) (see Corollary 10.7.9) If µ ≥ i(2LS(K))+ and the model of size λ is µ+-
saturated, then there exists a type-full good µ-frame with underlying class
the saturated models in Kµ.

This improves several classical results from Shelah’s milestone study of cate-
gorical AECs with amalgamation [She99]:

• Corollay 10.1.3.(1) partially answers Baldwin [Bal09, Problem D.1.(2)]
which asked if in any AEC with amalgamation categorical in a high-
enough cardinal, then model in the categoricity cardinal is saturated.

• Corollay 10.1.3.(2) partially answers the question in [She99, Remark
4.9.(1)] of whether there is a parallel to forking in categorical AECs with
amalgamation. It also improves on Theorem 4.7.4, which assumed cate-
goricity in a successor (and a higher Hanf number bound).

• As part of the proof of Corollay 10.1.3.(2), we derive weak tameness (i.e.
tameness over saturated models) from categoricity in a big-enough car-
dinal (this is Corollary 10.7.5). It was previously only known how to
do so assuming that the categoricity cardinal has high-enough cofinality
[She99, Main Claim II.2.3].

We deduce a downward categoricity transfer in AECs with amalgamation (see
also Corollary 10.7.7):

Corollary 10.7.8. Let K be an AEC with amalgamation. Let LS(K) < µ =
iµ < λ. If K is categorical in λ, then K is categorical in µ.

This improves on Theorem 6.10.16 where the result is stated with the additional
assumption of (< µ)-tameness.

10.1.4. Implications in tame AECs. This chapter also combines our re-
sults with tameness: in Section 10.6, we improve Hanf number bounds for several
consequences of superstability. With Will Boney, we have shown (Theorem 7.6.1)
that µ-superstability and µ-tameness imply that for all high-enough λ, limit mod-
els of size λ are unique (in the strong sense discussed above), unions of chains of
λ-saturated models are saturated, and there exists a type-full good λ-frame. We
transfer this behavior downward using our symmetry transfer theorem to get that
the latter result is actually true starting from λ = µ+, and the former starting from
λ = µ:

Corollary 10.1.4. Let µ ≥ LS(K). If K is µ-superstable and µ-tame, then:

(1) (see Corollary 10.6.9) If M0,M1,M2 ∈ Kµ are such that both M1 and M2

are limit models over M0, then M1
∼=M0 M2.

(2) (see Corollary 10.6.10) For any λ > µ, the union of an increasing chain of
λ-saturated models is λ-saturated.

(3) (see Corollary 10.6.14) There exists a type-full good µ+-frame with un-
derlying class the saturated models in Kµ+ .
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In fact, µ-tameness along with µ-superstability already implies µ-symmetry.
Many assumptions weaker than tameness (such as the existence of a good µ+-
frame, see Theorem 10.4.15) suffice to obtain such a conclusion.

10.1.5. Notes. A word on the background needed to read this chapter: It is
assumed that the reader has a solid knowledge of AECs (including the material in
[Bal09]). Some familiarity with good frames, in particular the material of Chapter
4 would be very helpful. In addition to classical results, e.g. in [She99], the chapter
uses heavily the results of [Van16a, Van16b] on limit models and the symmetry
property of splitting. It also relies on the construction of a good frame in Chapter 4.
At one point we also use the canonicity theorem for good frames (Theorem 6.9.7).

10.2. Background

All throughout this chapter, we assume the amalgamation property:

Hypothesis 10.2.1. K is an AEC with amalgamation.

For convenience, we fix a big-enough monster model C and work inside C. This
is possible since by Remark 10.2.9, we will have the joint embedding property in
addition to the amalgamation property for models of the relevant cardinalities. At
some point, we will also use the following fact whose proof is folklore (see e.g.
Proposition 6.10.13).

Fact 10.2.2. Assume that K has joint embedding in some λ ≥ LS(K). Then
there exists χ < i(2LS(K))

+ and an AEC K∗ such that:

(1) K∗ ⊆ K and K∗ has the same strong substructure relation as K.
(2) LS(K∗) = LS(K).
(3) K∗ has amalgamation, joint embedding, and no maximal models.
(4) K≥min(λ,χ) = (K∗)≥min(λ,χ).

Many of the pre-requisite definitions and notations used in this chapter can be
found in [GVV16]. Here we recall the more specialized concepts that we will be
using explicitly.

We write gtp(ā/M) for the Galois type of the sequence ā over M (and we
write gS(M) for the set of all Galois types over M). While the reader can think
of gtp(ā/M) as the orbit of ā under the action of AutM (C), gtp(ā/M) is really
defined as the equivalence class of the triple (ā,M,C) under a certain equivalence
relation (see for example [Gro02, Definition 6.4]). This allows us to define the
restriction of a Galois type to any strong substructure of its domain, as well as its
image under any automorphism of C (and by extension any K-embedding whose
domain contains the domain of the type).

With that remark in mind, we can state the definition of non-splitting, a notion
of independence from [She99, Definition 3.2].

Definition 10.2.3. A type p ∈ gS(N) does not µ-split over M if and only if for
any N1, N2 ∈ Kµ such that M ≤K N` ≤K N for ` = 1, 2, and any f : N1

∼=M N2,
we have f(p � N1) = p � N2

We will use the definition of universality from [Van06, Definition I.2.1]:

Definition 10.2.4. Let M,N ∈ K be such that M ≤K N . We say that N is
µ-universal over M if for any M ′ ≥K M with ‖M ′‖ ≤ µ, there exists f : M ′ −→

M
N .

We say that N is universal over M if N is ‖M‖-universal over M .
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A fundamental concept in the study of superstable AECs is the notion of a
limit model, first introduced in [She99]. We only give the definition here and refer
the reader to [GVV16] for more history and motivation.

Definition 10.2.5. Let µ ≥ LS(K) and let α < µ+ be a limit ordinal. Let
M ∈ Kµ. We say that N is (µ, α)-limit over M (or a (µ, α)-limit model over M)
if there exists a strictly increasing continuous chain 〈Mi : i ≤ α〉 in Kµ such that
M0 = M , Mα = N , and Mi+1 is universal over Mi for all i < α. We say that N is
limit over M (or a limit model over M) if it is (µ, β)-limit over M for some β < µ+.
Finally, we say that N is limit if it is limit over N0 for some N0 ∈ K‖N‖.

Towers were introduced in Shelah and Villaveces [SV99] as a tool to prove the
uniqueness of limit models. A tower is an increasing sequence of length α of limit
models, denoted by M̄ = 〈Mi ∈ Kµ | i < α〉, along with a sequence of designated
elements ā = 〈ai ∈ Mi+1\Mi | i+ 1 < α〉 and a sequence of designated submodels
N̄ = 〈Ni | i+ 1 < α〉 for which Ni ≤K Mi, tp(ai/Mi) does not µ-split over Ni, and
Mi is universal over Ni (see Definition I.5.1 of [Van06]).

Now we recall a bit of terminology regarding towers. The collection of all
towers (M̄, ā, N̄) made up of models of cardinality µ and sequences indexed by α is
denoted by K∗µ,α. For (M̄, ā, N̄) ∈ K∗µ,α, if β < α then we write (M̄, ā, N̄) � β for

the tower made of the subseqences M̄ � β = 〈Mi | i < β〉, ā � β = 〈ai | i+ 1 < β〉,
and N̄ � β = 〈Ni | i+ 1 < β〉. We sometimes abbreviate the tower (M̄, ā, N̄) by T .

Definition 10.2.6. For towers (M̄, ā, N̄) and (M̄ ′, ā′, N̄ ′) in K∗µ,α, we say

(M̄, ā, N̄) ≤ (M̄ ′, ā′, N̄ ′)

if for all i < α, Mi ≤K M ′i , ā = ā′, N̄ = N̄ ′ and whenever M ′i is a proper extension
of Mi, then M ′i is universal over Mi. If for each i < α, M ′i is universal over Mi we
will write (M̄, ā, N̄) < (M̄ ′, ā′, N̄ ′).

In order to transfer symmetry from λ to µ we will need to consider a generaliza-
tion of these towers where the models Mi and Ni may have different cardinalities.
Fix λ ≥ µ ≥ LS(K) and α a limit ordinal < µ+. We will write K∗λ,α,µ for the

collection of towers of the form (M̄, ā, N̄) where M̄ = 〈Mi | i < α〉 is a sequence of
models each of cardinality λ and N̄ = 〈Ni | i + 1 < α〉 is a sequence of models of
cardinality µ. We require that for i < α, Mi is µ-universal over Ni and tp(ai/Mi)
does not µ-split over Ni.

In a natural way we order these towers by the following adaptation of Definition
10.2.6.

Definition 10.2.7. Let λ ≥ χ ≥ µ ≥ LS(K) be cardinals and fix α < µ+ an
ordinal. For towers (M̄, ā, N̄) ∈ K∗λ,α,µ and (M̄ ′, ā′, N̄ ′) ∈ K∗χ,α,µ, we say

(M̄, ā, N̄) <µK (M̄ ′, ā′, N̄ ′)

if for all i < α, Mi ≤K M ′i , ā = ā′, N̄ = N̄ ′, and there is θ < λ+ so that M ′i is a
(λ, θ)-limit model witnessed by a sequence 〈Mγ

i | γ < θ〉 with Mi <K Mγ
0 .

Note that Definition 10.2.6 is defined only on towers in K∗µ,α and is slightly

weaker from the ordering <µK when restricted to K∗µ,α. In particular, the models

M ′i in the tower (M̄ ′, ā, N̄) <-extending (M̄, ā, N̄) are only required to be universal
over Mi and limit. It is not necessary that M ′i is limit over Mi as we require if
(M̄ ′, ā, N̄) <µK (M̄, ā, N̄).
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Towers are particularly suited for superstable abstract elementary classes, in
which they are known to exist and in which the union of an increasing chain of
towers will be a tower. The definition below is already implicit in [SV99] and has
since then been studied in many papers, e.g. [Van06, GVV16] and Chapters 6, 7,
9. We will use Definition 6.10.1:

Definition 10.2.8. K is µ-superstable (or superstable in µ) if:

(1) µ ≥ LS(K).
(2) Kµ is nonempty, has joint embedding, and no maximal models.
(3) K is stable in µ. That is, | gS(M)| ≤ µ for all M ∈ Kµ. Some authors

call this “Galois-stable,” and:
(4) µ-splitting in K satisfies the “no long splitting chains” property:

For any limit ordinal α < µ+, for every sequence 〈Mi | i < α〉 of
models of cardinality µ with Mi+1 universal over Mi and for every p ∈
gS(
⋃
i<αMi), there exists i < α such that p does not µ-split over Mi.

Remark 10.2.9. By our global hypothesis of amalgamation (Hypothesis 10.2.1),
if K is µ-superstable, then K≥µ has joint embedding.

Remark 10.2.10. By the weak transitivity property of µ-splitting (Proposition
4.3.7, µ-superstability implies the following continuity property (which is sometimes
also stated as part of the definition): For any limit ordinal α < µ+, for every
sequence 〈Mi | i < α〉 of models of cardinality µ with Mi+1 universal over Mi and
for every p ∈ gS(

⋃
i<αMi), if p �Mi does not µ-split over M0 for all i < α, then p

does not µ-split over M0. We will use this freely.

Proposition 10.2.11. Let µ ≥ LS(K). Assume that Kµ has joint embedding
and K is stable in µ. The following are equivalent:

(1) K has a model of size µ+.
(2) Kµ is nonempty and has no maximal models.
(3) K has a limit model of size µ.
(4) There exists M0,M1,M2 ∈ Kµ such that M0 <K M1 <K M2 and M1 is

universal over M0.

Proof. (1) implies (2) is by joint embedding. (2) implies (3) implies (4) is
straightforward. We show (4) implies (1). Assume M0 <K M1 <K M2 and M1

is universal over M0. It is enough to show that M2 has a proper extension. By
universality, there exists f : M2 −−→

M0

M1. Now extend f to g : M ′2
∼=M0

M2. Since

M1 <K M2, M2 <K M ′2, as desired. �

The main results of this chapter involve the concept of symmetry over limit
models and its equivalent formulation involving towers which was identified in
[Van16a]:

Definition 10.2.12. We say that an abstract elementary class exhibits sym-
metry for non-µ-splitting if whenever models M,M0, N ∈ Kµ and elements a and
b satisfy the conditions 1-4 below, then there exists M b a limit model over M0,
containing b, so that tp(a/M b) does not µ-split over N . See Figure 1.

(1) M is universal over M0 and M0 is a limit model over N .
(2) a ∈M\M0.
(3) tp(a/M0) is non-algebraic and does not µ-split over N .
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N

M0 M

b

a

M b

Figure 1. A diagram of the models and elements in the definition
of symmetry. We assume the type tp(b/M) does not µ-split over
M0 and tp(a/M0) does not µ-split over N . Symmetry implies
the existence of M b a limit model over M0 containing b, so that
tp(a/M b) does not µ-split over N .

(4) tp(b/M) is non-algebraic and does not µ-split over M0.

We end by recalling a few results of VanDieren showing the importance of the
symmetry property:

Fact 10.2.13 (Theorem 2 in [Van16a]). If K is µ-superstable and the union
of any chain (of length less than µ++) of saturated models of size µ+ is saturated,
then K has µ-symmetry.

Many of the results on symmetry rely on the equivalent formulation of µ-
symmetry in terms of reduced towers.

Definition 10.2.14. A tower (M̄, ā, N̄) ∈ K∗µ,α is reduced if it satisfies the

condition that for every <-extension (M̄ ′, ā, N̄) ∈ K∗µ,α of (M̄, ā, N̄) and for every
i < α, M ′i

⋂
(
⋃
j<αMj) = Mi.

Definition 10.2.15. A tower (M̄, ā, N̄) ∈ K∗µ,α is continuous if for any limit
i < α, Mi =

⋃
j<iMj .

Fact 10.2.16 (Theorem 3 in [Van16a]). Assume K is µ-superstable. The
following are equivalent:

(1) K has µ-symmetry.
(2) Any reduced tower in K∗µ,α is continuous.

It was previously established (in [SV99] or more explicitly in [GVV16]) that
the continuity of reduced towers gives uniqueness of limit models:

Fact 10.2.17. Assume K is µ-superstable. If any reduced tower in K∗µ,α is
continuous (or equivalently by Fact 10.2.16 if K has µ-symmetry), then for any
M0,M1,M2 ∈ Kµ, if M1 and M2 are limit over M0, then M1

∼=M0
M2.

Symmetry also has implications to chains of saturated models. For λ > LS(K),
write Kλ-sat for the class of λ-saturated models in K≥λ. We also define K0-sat := K.
Using this notation, we have:



10.3. TRANSFERRING SYMMETRY 281

Fact 10.2.18 (Theorem 22 in [Van16b]). Assume K is µ-superstable, µ+-

superstable, and every limit model in Kµ+ is saturated. Then Kµ+-sat is an AEC

with LS(Kµ+-sat) = µ+.

Remark 10.2.19. By Fact 10.2.17, the hypotheses of Fact 10.2.18 hold if K is
µ-superstable, µ+-superstable, and has µ+-symmetry.

We will also use the following easy lemma:

Lemma 10.2.20. Let λ be a limit cardinal and let λ0 < λ. Assume that for all
µ ∈ [λ0, λ), Kµ-sat is an AEC with LS(Kµ-sat) = µ. Then Kλ-sat is an AEC with
LS(Kλ-sat) = λ.

Proof. That Kλ-sat is closed under chains is easy to check. To see LS(Kλ-sat) =
λ, let M ∈ Kλ-sat and let A ⊆ |M |. Without loss of generality, χ := |A| ≥ λ. Let
δ := cf(λ) and let 〈λi : i < δ〉 be an increasing sequence of cardinals with limit λ.
Build 〈Mi : i ≤ δ〉 increasing continuous in Kχ such that for all i < δ, Mi+1 is λ+

i -
saturated and A ⊆ |M0|. This is possible by assumption. Then Mδ is λ+

i -saturated
for all i < δ, hence is λ-saturated. Thus it is as needed. �

10.3. Transferring symmetry

In this section we prove Theorem 10.1.1 which is key to the results in the
following sections. We start with a few observations which will allow us to extend
the tower machinery from [GVV16] and [Van16b] to include towers composed
of models of different cardinalities. In particular, we derive an extension property
for towers of different cardinalities, Lemma 10.3.7. This will allow us to adapt the
arguments from [Van16b] to prove Theorem 10.1.1.

We start with a study of chains where each model indexed by a successor is
universal over its predecessor:

Proposition 10.3.1. Suppose that λ ≥ LS(K) is a cardinal. Assume that K
is stable in λ with no maximal models of cardinality λ. Let θ be a limit ordinal.
Assume 〈Mi ∈ K≥LS(K) | i < θ〉 is a strictly increasing and continuous sequence of
models so that for all i < θ, Mi+1 is universal over Mi. If M :=

⋃
i<θMi has size

λ, then M is a (λ, θ)-limit model over some model containing M0.

Proof. By cardinality considerations, θ < λ+. Replacing θ by cf(θ) if nec-
essary, we can assume without loss of generality that θ is regular. By λ-stability
and the assumption that K has no maximal models of cardinality λ, we can fix a
(λ, θ)-limit model M∗ witnessed by 〈M∗i | i < θ〉 with M0 ≤K M∗0 . If there exists
i < θ such that Mi ∈ Kλ, then the sequence 〈Mj | j ∈ [i, θ)〉 witnesses that M is
(λ, θ)-limit and M0 ≤K Mi; so assume that λ > LS(K) and Mi ∈ K<λ for all i < θ.
Then we must have that θ = cf(λ). If λ is a successor, we must have that θ = λ
and we obtain the result from [Van16b, Proposition 14]; so assume λ is limit. For
i < θ, let λi := ‖Mi‖.

Fix 〈aα | α < λ〉 an enumeration of M∗. Using the facts that Mi+1 is universal
over Mi and that M∗i+1 is universal over M∗i , we can build an isomorphism f : M ∼=
M∗ inductively by defining an increasing and continuous sequence of K-embeddings
fi so that fi : Mi →M∗i , f0 = idM0

, and {aα | α < λi} ⊆ ran(fi+1). �



282 10. SYMMETRY IN AECS WITH AMALGAMATION

We will use the following generalization of the weak transitivity property of
µ-splitting proven in Proposition 4.3.7. The difference here is that the models are
allowed to be of size bigger than µ.

Proposition 10.3.2. Let µ ≥ LS(K) be such that K is stable in µ. Let
M0 ≤K M1 <K M ′1 ≤K M2 all be in K≥µ. Assume that M ′1 is universal over M1.
Let p ∈ gS(M2). If p � M ′1 does not µ-split over M0 and p does not µ-split over
some N ∈ Kµ with N ≤K M1, then p does not µ-split over M0.

Proof. Note that by definition of µ-splitting, M0 ∈ Kµ. Thus by making N
larger if necessary we can assume thatM0 ≤K N . By basic properties of universality
we have that M ′1 is universal over N , hence without loss of generality M1 = N . In
particular, M1 ∈ Kµ. By stability, build M ′′1 ∈ Kµ universal over M1 such that
M1 <K M ′′1 ≤K M ′1. By monotonicity, p � M ′′1 does not µ-split over M0. Thus
without loss of generality also M ′′1 ∈ Kµ. By definition of µ-splitting, it is enough
to check that p � M ′2 does not µ-split over M0 for all M ′2 ∈ Kµ with M ′2 ≤K M2.
Thus without loss of generality again M2 ∈ Kµ. Now use the weak transitivity
property of µ-splitting (Proposition 4.3.7). �

We use the previous proposition to extend the continuity property of µ-splitting
to models of size bigger than µ. This is very similar to the argument in [She09a,
Claim II.2.11].

Proposition 10.3.3. Let µ ≥ LS(K) and assume that K is µ-superstable.
Suppose 〈Mi ∈ K≥µ | i < δ〉 is an increasing sequence of models so that, for all

i < δ, Mi+1 is universal over Mi. Let p ∈ gS(
⋃
i<δMi). If p � Mi does not µ-split

over M0 for each i < δ, then p does not µ-split over M0.

Proof. Without loss of generality, δ = cf(δ). Let Mδ :=
⋃
i<δMi. There are

two cases to check. If δ > µ, then by [She99, Claim 3.3], there exists N ∈ Kµ with
N ≤K Mδ such that p does not µ-split over N . Pick i < δ such that N ≤K Mi.
Then p does not µ-split over Mi. By Proposition 10.3.2 (where (M0,M1M

′
1,M2, N)

there stand for (M0,Mi,Mi+1,Mδ, N) here), p does not µ-split over M0.
Suppose then that δ ≤ µ and for sake of contradiction that M∗ of cardinality

µ witnesses the splitting of p over M0, i.e. p � M∗ µ-splits over M0. We can find
〈M∗i ∈ Kµ | i < δ〉 an increasing resolution of M∗ so that M∗i ≤K Mi for all i < δ.
By monotonicity of splitting, stability in µ, and the fact that each Mi+1 is universal
over Mi, we can increase M∗, if necessary, to arrange that M∗i+1 is universal over
M∗i . Since p � Mi does not µ-split over M0, monotonicity of non-splitting implies
that p � M∗i does not µ-split over M0. Then, by µ-superstability p � M∗-does not
µ-split over M0. This contradicts our choice of M∗.

�

We adapt the proof of the extension property for non-µ-splitting ([Van06,
Theorem I.4.10]) to handle models of different sizes under the additional assumption
of superstability in the size of the bigger model. The conclusion can also be achieved
using the assumption of tameness instead of superstability (since µ-splitting and
λ-splitting coincide if K is µ-tame and µ ≤ λ, see Proposition 3.3.12).

Proposition 10.3.4. Fix cardinals λ > µ ≥ LS(K). Suppose that K is µ-
stable and λ-superstable.
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Let M ∈ Kµ and Mλ,M ′ ∈ Kλ be such that M ≤K Mλ ≤K M ′ and Mλ

is limit over some model containing M . Let p ∈ gS(Mλ) be such that p does not
µ-split over M . Then there exists q ∈ gS(M ′) extending p so that q does not µ-split
over M . Moreover q is algebraic if and only if p is.

Proof. Let θ < λ+ and 〈Mλ
i | i < θ〉 witness that Mλ is (λ, θ)-limit with

M ≤K Mλ
0 . Write p := gtp(a/Mλ). By λ-superstability there exists i < θ so

that p does not λ-split over Mλ
i . Since Mλ

i+2 is universal over Mλ
i+1 there exists

f : M ′ →
Mλ
i+1

Mλ
i+2. Extend f to g ∈ AutMλ

i+1
(C). Let q := g−1(p) � M ′ =

gtp(g−1(a)/M ′). Note that q is nonalgebraic if p is nonalgebraic (the converse will
follow once we have shown that q extends p). By monotonicity, invariance, and
our assumption that p does not µ-split over M , we can conclude that q does not
µ-split over N . By similar reasoning also q does not λ-split over Mλ

i . In particular
gtp(g−1(a)/Mλ) = q � Mλ does not λ-split over Mλ

i . Since g fixes Mλ
i+1, we

know that g−1(a) realizes p �Mλ
i+1. Therefore, we get by the uniqueness of non-λ-

splitting extensions that q �Mλ = gtp(f−1(a)/Mλ) = gtp(a/Mλ) = p. This shows
that q extends p, as desired. �

We can now prove an extension property for towers in K∗λ,α,µ.

Lemma 10.3.5. Let λ and µ be cardinals satisfying λ ≥ µ ≥ LS(K). Assume
that K is superstable in µ and in λ. For any (M̄, ā, N̄) ∈ K∗λ,α,µ, there exists

(M̄ ′, ā, N̄) ∈ K∗λ,α,µ so that:

(M̄, ā, N̄) <µK (M̄ ′, ā, N̄)

Proof. If λ = µ, the result follows from infinitely many (for example cf(λ)
many) applications of [GVV16, Lemma 5.3] which is the extension property for
towers. If λ > µ, the result follows similarly from the proof of the extension property
for towers using Proposition 10.3.4. �

We also have a continuity property:

Lemma 10.3.6. Let µ ≥ LS(K) be such that K is µ-superstable. Let 〈λi : i < δ〉
be an increasing sequence of cardinals with λ0 ≥ µ. Let 〈(M̄ i, ā, N̄) ∈ K∗λi,α,µ | i <
δ〉 be a sequence of towers such that (M̄ i, ā, N̄) <µK (M̄ i+1, ā, N̄) for all i < δ.

Let M̄δ be the sequence composed of models of the form M δ
β :=

⋃
i<δM

i
β for

β < α. Let λ :=
∑
i<δ λi.

Then (M̄δ, ā, N̄) ∈ Kλ,α,µ∗ and (M̄ i, ā, N̄) <µK (M̄ δ, ā, N̄) for all i < δ.

Proof. Working by induction on δ, we can assume without loss of generality
that the sequence of tower is continuous. That is, for each β < α and limit i < δ,
M i
β =

⋃
j<iM

j
β . Of course, it is enough to show that (M̄0, ā, N̄) <µK (M̄ δ, ā, N̄).

Let β < α. There are two things to check: Mλ
β is a limit model over a model

that contains M0
β , and gtp(aβ/M

λ
β ) does not µ-split over Nβ . Proposition 10.3.1

confirms that Mλ
β is a (λ, δ)-limit model over some model containing M0

β . Because

each (M̄ i, ā, N̄) is a tower, we know that gtp(aβ/M
i
β) does not µ-split over Nβ .

This allows us to apply Proposition 10.3.3 to conclude that gtp(aβ/M
λ
β ) does not

µ-split over Nβ . �

We conclude an extension property for towers of different sizes
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Lemma 10.3.7. Let κ, λ and µ be cardinals satisfying λ ≥ κ ≥ µ ≥ LS(K).
Assume that K is superstable in µ and in every χ ∈ [κ,max(κ+, λ))

Let (M̄κ, ā, N̄) ∈ K∗κ,α,µ.

(1) There exists (M̄, ā, N̄) ∈ K∗λ,α,µ so that

(M̄κ, ā, N̄) <µK (M̄, ā, N̄).

(2) If in addition K is λ-superstable, then there exists a sequence 〈Nλ
β | β < α〉

so that Ni ≤ Nλ
β for all β < α and (M̄, ā, N̄λ) ∈ K∗λ,α.

Proof. We prove the first statement in the lemma by induction on λ. If
λ = κ, this is given by Lemma 10.3.5. Now assume that λ > κ. Fix an increasing
continuous sequence 〈λi | i < cf(λ)〉 which is cofinal in λ and so that λ0 = κ (if
λ = χ+ is a successor we can take λi = χ for all i < λ). We build a sequence
〈(M̄λi , ā, N̄) ∈ K∗λi,α,µ | i < cf(λ)〉 which is increasing (that is, (M̄λi , ā, N̄) <µK
(M̄λi+1 , ā, N̄) for all i < cf(λ)) and continuous (in the obvious sense, see Lemma
10.3.6). This is possible by the induction hypothesis. Now by Lemma 10.3.6, the
union of the chain of towers (defined there) is as desired.

For part (2), recall from Definition 10.2.7 that for each β < α, Mβ is a limit
model over some model containing Mκ

β . Let 〈M∗β,i ∈ Kλ | i < θβ〉 witness this By

λ-superstability, for each β < α, there exists iβ < θβ so that gtp(aβ/M
λ
β ) does not

λ-split over M∗β,iβ . By our choice of M∗β,0 containing Mκ
β , and consequently Nκ

β ,

we can take Nλ
β := M∗β,iβ . �

We now begin the proof of Theorem 10.1.1. The structure of the proof is similar
to the proof of Theorem 2 of [Van16b]; only here we work with towers in K∗λ,α,µ
as opposed to only towers in K∗µ,α.

Proof of Theorem 10.1.1. Suppose for the sake of contradiction that K
does not have symmetry for µ-non-splitting. By Fact 10.2.16 and our µ-superstability
assumption, K has a reduced discontinuous tower in K∗µ,α for some α < µ+. Let α
be the minimal ordinal for which there is a reduced, discontinuous tower in K∗µ,α.
By [GVV16, Lemma 5.7], we may assume that α = δ+ 1 for some limit ordinal δ.
Fix T = (M̄, ā, N̄) ∈ K∗µ,α a reduced discontinuous tower with b ∈Mδ\

⋃
β<αMβ .

Let I := cf(λ). By Lemma 10.3.7, we can build an increasing and continuous
chain of towers 〈T i | i ∈ I〉 extending T � δ. If λ = κ+ for some κ, then select each
T i ∈ K∗κ,δ,µ. If λ is a limit cardinal, fix 〈λi | i < cf(λ)〉 to be an increasing and

continuous sequence of cardinals cofinal in λ, with λ0 > µ and choose T i ∈ K∗λi,δ,µ.

Let T λ :=
⋃
i∈I T i.

Notice that by Lemma 10.3.6, and our assumptions on the towers T i, we can
conclude that T λ ∈ K∗λ,δ,µ and T λ extends T � δ. In particular, for each β < α,

(2) tp(aβ/M
λ
β ) does not µ-split over Nβ .

Furthermore by the second part of Lemma 10.3.7 we can find Nλ
β so that the

tower defined by (M̄λ, ā, N̄λ) is in K∗λ,δ and each Mλ
β is a limit over Nλ

β . We can

extend this to a tower of length δ+ 1 by appending to (M̄λ, ā, N̄λ) a model Mλ
δ of

cardinality λ containing
⋃
β<δM

λ
β and Mδ. Call this tower T b, since it contains b.

By λ-symmetry and Fact 10.2.16, we know that all reduced towers in K∗λ,α
are continuous. Therefore T b is not reduced. However, by the density of reduced
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towers [GVV16, Theorem 5.6], we can find a reduced, continuous extension of T b
in K∗λ,δ+1. By λ-applications of this theorem, we may assume that for each β < α,

the model indexed by β in this reduced tower is a (λ, cf(λ))-limit over Mλ
β . Refer

to this tower as T ∗. See Fig. 2.

N0

Nβ

Nλ
β

M0 M1 . . .Mβ Mβ+1 . . .
⋃
k<δ

Mk MδT ∈ K∗µ,α

M i
0 . . .M i

β M i
β+1M i

1 . . .
⋃
l<δ

M i
lT i ∈ K∗λi,δ,µ

...
...

...
...

...

Mλ
0 Mλ

β Mλ
β+1Mλ

1 . . .
⋃
l<δ

Mλ
lT b ∈ K∗λ,α

T ∗ ∈ K∗λ,α M∗0 M∗1 M∗β M∗β+1

b

aβa1

Mλ
δ

. . .
⋃
β<δ

M∗β = M∗δ

Figure 2. The towers in the proof of Theorem 10.1.1

Claim 10.3.8. For every β < α, tp(aβ/M
∗
β) does not µ-split over Nβ .

Proof. Since Mλ
β and M∗β are both limit models over Nλ

β , by λ-symmetry

and Fact 10.2.17, there exists f : Mλ
β
∼=Nλβ

M∗β . Since T ∗ is a tower extending T b,
we know tp(aβ/M

∗
β) does not λ-split over Nλ

β . Therefore by the definition of non-

splitting, it must be the case that tp(f(aβ)/M∗β) = tp(aβ/M
∗
β). From this equality

of types we can fix g ∈ AutM∗β (C) with g(f(aβ)) = aβ . An application of g ◦ f to

(2) yields the statement of the claim. �

We can now complete the proof of Theorem 10.1.1. By the continuity of T ∗
there exists β < δ so that b ∈ M∗β . We can then use T ∗ to construct a tower

T̀ in K∗µ,δ+1 extending T so that b ∈ M̀β contradicting our assumption that T
was reduced. This is possible by the downward Löwenheim property of abstract
elementary classes, µ-stability, universality of the models in T ∗, monotonicity of
non-µ-splitting, and Claim 10.3.8.

�
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Similar to the proof of [Van16a, Theorem 2] we can use Lemma 10.3.7 to
derive symmetry from categoricity. More precisely, it is enough to assume that all
the models in the top cardinal have enough saturation.

Theorem 10.3.9. Suppose λ and µ are cardinals so that λ > µ ≥ LS(K).
If K is superstable in every χ ∈ [µ, λ), and all the models of size λ are µ+-

saturated, then K has µ-symmetry.

Proof. Suppose that K does not satisfy µ-symmetry. Then by Fact 10.2.16
there is a reduced discontinuous tower in K∗µ,α. As in the proof of Theorem 10.1.1,
we can find a discontinuous reduced tower T ∈ K∗µ,α with α = δ + 1 with the
witness of discontinuity b ∈ Mδ\

⋃
β<δMβ . As in the proof of Theorem 10.1.1,

we can use Lemma 10.3.7 (note that we only use the first part so not assuming
λ-superstability is okay) to find a tower T λ ∈ K∗λ,µ,δ extending T � δ.

By our assumption that all the models of size λ are µ+-saturated, tp(b/
⋃
β<δMβ)

is realized in
⋃
β<δM

λ
β . Let b′ and β′ < δ be such that b′ |= tp(b/

⋃
β<δMβ) and

b′ ∈ Mλ
β′ . Fix f ∈ Aut⋃

β<δMβ
(C) so that f(b′) = b. Notice that T b := f(T λ) is a

tower in K∗λ,δ,µ extending T � δ with b ∈M b
β′ .

We can now use the downward Löwenheim-Skolem property of abstract elemen-
tary classes, stability in µ, µ+-saturation of models of cardinality λ, and monotonic-
ity of non-µ-splitting to construct from T b a discontinuous tower in K∗µ,α extending
T so that b appears in the model indexed by β′ in the tower. This will contradict
our choice of T being reduced. �

Remark 10.3.10. Instead of assuming that all the models of size λ are µ+-
saturated, it is enough to assume the following weaker property. For any δ < µ+

and any increasing chain 〈Mi : i < δ〉 in Kλ of (< λ, cf(λ))-limit models (i.e. for

each i < δ, there exists a resolution of Mi 〈M j
i ∈ K<λ : j < cf(λ)〉 such that M j+1

i

is universal over M j
i for each j < cf(λ)),

⋃
i<δMi is µ+-saturated.

10.4. A hierarchy of symmetry properties

We discuss the relationship between the symmetry property of Definition 10.2.12
and other symmetry properties previously defined in the literature, especially the
symmetry property in the definition of a good µ-frame. This expands on the short
remark after Definition 3 of [Van16a] and on Corollary 2 there. It will be conve-
nient to use the following terminology. A minor variation (where “limit over” is
replaced by “universal over”) appears in Definition 4.3.8.

Definition 10.4.1. Let M0 ≤K M ≤K N be models in Kµ. We say a type
p ∈ gS(N) explicitly does not µ-fork over (M0,M) if:

(1) M is limit over M0.
(2) p does not µ-split over M0.

We say that p does not µ-fork over M if there exists M0 so that p explicitly
does not µ-fork over (M0,M).

Remark 10.4.2. Assuming µ-superstability, the relation “p does not µ-fork
over M” is very close to defining an independence notion with the properties of
forking in a first-order superstable theory (i.e. a good µ-frame, see below). In fact
using tameness it can be used to do precisely that, see Chapter 4 or Theorem
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10.6.4. Moreover forking in any categorical good µ-frame has to be µ-forking, see
Fact 10.4.10.

We now give several variations on µ-symmetry. We will show that variation (1)
is equivalent to (2) which implies (3) which implies (4). Moreover variation (1) is
equivalent to the µ-symmetry of Definition 10.2.12 and variation (4) is equivalent to
the symmetry property of good frames. We do not know if any of the implications
can be reversed, or even if all the variations already follow from superstability (see
Question 10.4.14).

For clarity, we have highlighted the differences between each property.

Definition 10.4.3. Let µ ≥ LS(K).

(1) K has uniform µ-symmetry if for any limit models N,M0,M in Kµ where
M is limit overM0 andM0 is limit overN , if gtp(b/M) does not µ-split over M0,

a ∈ |M |, and gtp(a/M0) explicitly does not µ-fork over (N,M0), there ex-
ists Mb ∈ Kµ containing b and limit over M0 so that gtp(a/Mb) explicitly
does not µ-fork over (N,M0).

(2) K has weak uniform µ-symmetry if for any limit models N,M0,M in Kµ

whereM is limit overM0 andM0 is limit overN , if gtp(b/M) does not µ-fork over M0,

a ∈ |M |, and gtp(a/M0) explicitly does not µ-fork over (N,M0), there ex-
ists Mb ∈ Kµ containing b and limit over M0 so that gtp(a/Mb) explicitly
does not µ-fork over (N,M0). See Figure 3.

(3) K has non-uniform µ-symmetry if for any limit models M0,M in Kµ

where M is limit over M0, if gtp(b/M) does not µ-split over M0, a ∈ |M |,
and gtp(a/M0) does not µ-fork over M0, there exists Mb ∈ Kµ containing
b and limit over M0 so that gtp(a/Mb) does not µ-fork over M0.

(4) K has weak non-uniform µ-symmetry if for any limit models M0,M in Kµ

where M is limit over M0, if gtp(b/M) does not µ-fork over M0, a ∈ |M |,
and gtp(a/M0) does not µ-fork over M0, there exists Mb ∈ Kµ containing
b and limit over M0 so that gtp(a/Mb) does not µ-fork over M0.

N

M0
M

M ′0

b

a

M b

Figure 3. A diagram of the models and elements in the definition
of weak uniform µ-symmetry. We require that gtp(b/M) does not
µ-fork over M0 in the weak version, so there exists M ′0 such that
M0 is limit over M ′0 and gtp(b/M) does not µ-split over M ′0
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The difference between the uniform and non-uniform variations is in the con-
clusion: in the uniform case, we start with gtp(a/M0) which explicitly does not
µ-fork over (N,M0) and get get gtp(a/Mb) explicitly does not µ-fork over (N,M0).
Thus both types do not µ-split over N . In the non-uniform case, we start with
gtp(a/M0) which does not µ-fork over M0, hence explicitly does not µ-fork over
(N,M0) for some N , but we only get that gtp(a/Mb) does not µ-fork over M0, so
it explicitly does not µ-fork over (N ′,M0), for some N ′ potentially different from
N .

The difference between weak and non-weak is in the starting assumption: in the
weak case, we assume that gtp(b/M) does not µ-fork over M0, hence there exists
M ′0 so that M0 is limit over M ′0 and gtp(b/M) does not µ-split over M ′0. In the non-
weak case, we assume only that gtp(b/M) does not µ-split over M0. Even under
µ-superstability, it is open whether this implies that there must exist a smaller M ′0
so that gtp(b/M) does not µ-split over M ′0. The problem is that µ-splitting need
not satisfy the transitivity property, see the discussion after Definition 4.3.8.

Using the monotonicity property of µ-splitting, we get the easy implications:

Proposition 10.4.4. Let µ ≥ LS(K). If K has uniform µ-symmetry, then it
has non-uniform µ-symmetry and weak uniform µ-symmetry. If K has non-uniform
µ-symmetry, then it has weak non-uniform µ-symmetry.

Playing with the definitions and monotonicity of µ-splitting (noting that cases
ruled out by Definition 10.2.12 such as a ∈ |M0| are easy to handle), we also have:

Proposition 10.4.5. K has uniform µ-symmetry if and only if it has µ-
symmetry (in the sense of Definition 10.2.12).

Surprisingly, uniform symmetry and weak uniform symmetry are also equiva-
lent assuming superstability. We will use the characterization of symmetry in terms
of reduced towers provided by Fact 10.2.16.

Lemma 10.4.6. If K is µ-superstable, then weak uniform µ-symmetry is equiv-
alent to uniform µ-symmetry.

Proof. By Proposition 10.4.4, uniform symmetry implies weak uniform sym-
metry. Now assuming weak uniform symmetry, the proof of (1) ⇒ (2) of Fact
10.2.16 still goes through. The point is that whenever we consider gtp(b/M) in
the proof, M =

⋃
i<δMi for some increasing continuous 〈Mi : i < δ〉 with Mi+1

universal over Mi for all i < δ, and we simply use that by superstability gtp(b/M)
does not µ-split over Mi for some i < δ. However we also have that gtp(b/M)
explicitly does not µ-fork over (Mi,Mi+1).

Therefore reduced towers are continuous, and hence by Fact 10.2.16 K has
µ-symmetry (and so by Proposition 10.4.5 uniform µ-symmetry). �

How do these definitions compare to the symmetry property in good µ-frames?
Recall [She09a, Definition II.2.1] that a good µ-frame is a triple s = (Kµ,^, gSbs)
where:

(1) K is an AEC.

(2) For each M ∈ Kµ, gSbs(M) (called the set of basic types over M) is a
set of nonalgebraic Galois types over M satisfying (among others) the
density property : if M <K N are in Kµ, there exists a ∈ |N |\|M | such

that gtp(a/M ;N) ∈ gSbs(M).
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(3) ^ is an (abstract) independence relation on types of length one over
models in Kµ satisfying several basic properties (that we will not list
here) of first-order forking in a superstable theory.

Remark 10.4.7. We will not use the axiom (B) [She09a, Definition II.2.1]
requiring the existence of a superlimit model of size µ. In fact many papers (e.g.
[JS13]) define good frames without this assumption.

As in [She09a, Definition II.6.35], we say that a good µ-frame s is type-full

if for each M ∈ Kµ, gSbs(M) consists of all the nonalgebraic types over M . For
simplicity, we focus on type-full good frames in this chapter. Given a type-full good
µ-frame s = (Kµ,^, gSbs) and M0 ≤K M both in Kµ, we say that a nonalgebraic
type p ∈ gS(M) does not s-fork over M0 if it does not fork over M0 according to
the abstract independence relation ^ of s. We say that a good µ-frame s is on Kµ

if its underlying class is Kµ.
The existence of a good µ-frame gives quite a lot of information about the class.

Fact 10.4.8. Assume there is a good µ-frame on Kλ-sat
µ , for λ ≤ µ (so in

particular, unions of chains of λ-saturated models are λ-saturated). Then:

(1) For any M0,M1,M2 ∈ Kµ such that M1 and M2 are limit over M0,
M1
∼=M0

M2.
(2) K is µ-superstable.

Proof. The first part is [She09a, Lemma II.4.8] (or see [Bon14a, Theorem
9.2]). Note that by the usual back and forth argument (as made explicit in the
proof of Theorem 7.6.1), any limit model is isomorphic to a limit model where the
models witnessing it are λ-saturated. The second part is because:

• By definition of a good µ-frame, µ ≥ LS(K), Kµ is nonempty, has amal-
gamation, joint embedding, and no maximal models.

• By [She09a, Claim II.4.2.(1)], K is stable in µ.
• By the uniqueness property of s-forking, if a type does not s-fork over M0

(where s is a good µ-frame on Kµ), then it does not µ-split over M0 (see
Lemma 3.4.2). Thus we obtain the “no long splitting chains” condition in
Definition 10.2.8 when the Mis are λ-saturated, and as noted above (or in
Proposition 6.10.6) we can do a back and forth argument to get that no
long splitting chains holds even when the members of the chain are not
saturated.

�

Among the axioms a good µ-frame must satisfy is the symmetry axiom:

Definition 10.4.9. The symmetry axiom for a good µ-frame s = (Kµ,^, gSbs)
is the following statement: For any M0 ≤K M in Kµ, if gtp(b/M) does not s-fork

over M0 and a ∈ |M |\|M0| is so that gtp(a/M0) ∈ gSbs(M0), there exists Mb ∈ Kµ

containing b and extending M0 so that gtp(a/Mb) does not s-fork over M0.
Note that the good frame axioms imply that K has amalgamation in µ, so for

this definition (and for simplicity only) we work inside a saturated model C of size
µ+.

Since the symmetry properties of Definition 10.4.3 are all over limit models
only, we will discuss only frames whose models are the limit models. By Fact 10.4.8,
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such frames are categorical (that is, their underlying class has a single model up to
isomorphism). This is not a big loss since most known general constructions of a
good µ-frame (e.g. [She09a, Theorem II.3.7], Theorem 4.1.3) assume categoricity
in µ. In the known constructions when categoricity in µ is not assumed (such as
in Corollary 6.10.19), it holds that the union of a chain of µ-saturated model is
µ-saturated, so we can simply restrict the frame to the saturated models of size µ.

We will use Theorem 6.9.7 that categorical good µ-frames are canonical:

Fact 10.4.10 (The canonicity theorem for categorical good frames). Let s =

(Kµ,^, gSbs) be a categorical good µ-frame. Let p ∈ gSbs(M) and let M0 ≤K M
be in Kµ. Then p does not s-fork over M0 if and only if p does not µ-fork over M0

(recall Definition 10.4.1).

Remark 10.4.11. The statement of Theorem 6.9.7 uses the definition of µ-
forking with “universal over” instead of “limit over,” but the proof goes through
also for the “limit over” definition.

Remark 10.4.12. The proof of the second part of Fact 10.4.8 and Fact 10.4.10
do not use the symmetry axiom (but the first part of Fact 10.4.8 does).

Using the canonicity theorem, we obtain:

Theorem 10.4.13. Let s be a type-full categorical good µ-frame on Kµ, except
that we do not assume that it satisfies the symmetry axiom. The following are
equivalent:

(1) s satisfies the symmetry axiom (Definition 10.4.9).
(2) K has weak non-uniform µ-symmetry (Definition 10.4.3.(4)).

Proof. By Fact 10.4.10 (and Remark 10.4.12), µ-forking and s-forking coin-
cide. Now replace s-forking by µ-forking in the symmetry axiom and expand the
definition. �

One can ask whether weak non-uniform symmetry can be replaced by the uni-
form version:

Question 10.4.14. Assume there is a type-full categorical good µ-frame on
Kµ. Does K have µ-symmetry? More generally, if K is µ-superstable, does K have
µ-symmetry?

We will show (Corollary 10.6.9) that the answer is positive if K is µ-tame. Still
much less suffices:

Theorem 10.4.15. If K is µ-superstable and has a good µ+-frame on Kλ-sat
µ+

for some λ ≤ µ+, then K has µ-symmetry.

Proof. By Fact 10.4.8, all limit models in Kµ+ are saturated and K is µ+-
superstable. By Fact 10.2.18, the remark following it, and Fact 10.2.13, K has
µ-symmetry. �

We end this section with a partial answer to Question 10.4.14 assuming that
the good frame satisfies several additional technical properties of frames introduced
by Shelah (see [She09a, Definitions III.1.1, III.1.3]). For this result amalgamation
(Hypothesis 10.2.1) is not necessary.
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Corollary 10.4.16. Assume there is a successful good+ µ-frame with under-
lying class Kµ. Then K has µ-symmetry.

Proof. Let s be a successful good+ µ-frame with underlying class Kµ. By
[She09a, Claim II.6.36], we can assume without loss of generality that s is type-
full (note that by Theorem 3.6.12 there can be only one such type-full frame). By
Fact 10.4.8, K is µ-superstable. By [She09a, III.1.6, III.1.7, III.1.8], there is a

good µ+-frame s+ on Kµ+-sat
µ+ . By Theorem 10.4.15, K has µ-symmetry. �

10.5. Symmetry from no order property

In this section, we give another way to derive symmetry. The idea is to imitate
the argument from Theorem 3.5.13, but we first have to obtain enough properties
of independence. We will work with µ-forking (Definition 10.4.1). We start by
improving Proposition 10.3.4.

Proposition 10.5.1 (Extension property of forking). Let LS(K) ≤ µ ≤ λ. Let
M ≤K N be in K[µ,λ]. Let p ∈ gS(M) be such that p explicitly does not µ-fork
over (M0,M). If K is superstable in every χ ∈ [µ, λ], then there exists q ∈ gS(N)
extending p and explicitly not µ-forking over (M0,M). Moreover q is algebraic if
and only if p is.

Proof. By induction on ‖N‖. Let a realize p. If ‖N‖ = ‖M‖ this is given
by Proposition 10.3.4 (if ‖M‖ = ‖N‖ = µ, this is [Van06, Theorem I.4.10]). If
‖M‖ < ‖N‖, build 〈Ni ∈ K‖M‖+|i| : i ≤ ‖N‖〉 increasing continuous such that
N0 = M , Ni+1 is limit over Ni, and gtp(a/Ni) explicitly does not µ-fork over
(M0,M). This is possible by the induction hypothesis and the continuity property
of splitting (Proposition 10.3.3). Now Nλ is ‖N‖-universal over N0 = M , so let
f : N −→

M
Nλ. Let q := f−1(gtp(a/f [N ])). It is easy to check that q is as

desired. �

Recall the definition of the order property in AECs from Definition 2.4.3. We
will use two important facts: that it is enough to look at length of the order property
up to the Hanf number (Fact 2.4.7) and that the order property implies instability
(Fact 2.4.11).

The following lemma appears in some more abstract form in Lemma 3.5.6. The
lemma says that if we assume that p does not µ-fork over M , then in the definition
of non-splitting (Definition 10.2.3) we can replace the N` by arbitrary sequences in
N of length at most µ. In the proof of Lemma 10.5.3, this will be used for sequences
of length one.

Lemma 10.5.2. Let µ ≥ LS(K). Let M ∈ Kµ and N ∈ K≥µ be such that
M ≤K N . Assume that K is stable in µ. If p ∈ gS(N) does not µ-fork over M
(Definition 10.4.1), a realizes p, and b̄1, b̄2 ∈ ≤µ|N | are such that gtp(b̄1/M) =
gtp(b̄2/M), then gtp(ab̄1/M) = gtp(ab̄2/M).

Proof. Pick N0 ∈ Kµ containing b̄1b̄2 with M ≤K N0 ≤K N . Then p � N0

does not µ-fork over M . Replacing N by N0 if necessary, we can assume without
loss of generality that N ∈ Kµ. By definition of µ-forking, there exists M0 ∈
Kµ such that M0 ≤K M and p does not µ-split over M0. By the extension and
uniqueness property for µ-splitting there exists N ′ extending N of cardinality µ
so that N ′ is universal over both N and M , and gtp(a/N ′) does not µ-split over
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M0. Since gtp(b̄1/M) = gtp(b̄2/M) and since N ′ is universal over N , we can find
f : N →

M
N ′ so that f(b̄1) = b̄2. Since gtp(a/N ′) does not µ-split over M0 we

know gtp(f(a)/f(N)) = gtp(a/f(N)). By our choice of f this implies that there
exists g ∈ Autf(N)(C) so that g(f(a)) = a, g � M = idM , and g(b̄2) = b̄2. In other

words gtp(f(a)b̄2/M) = gtp(ab̄2/M). Moreover f−1 witnesses that gtp(ab̄1/M) =
gtp(f(a)b̄2/M), which we have seen is equal to gtp(ab̄2/M). �

The next lemma shows that failure of symmetry implies the order property.
The proof is similar to that of Theorem 3.5.13, the difference is that we use Lemma
10.5.2 and the equivalence between symmetry and weak uniform symmetry (Lemma
10.4.6).

Lemma 10.5.3. Let λ > µ ≥ LS(K). Assume that K is superstable in every
χ ∈ [µ, λ). If K does not have µ-symmetry, then it has the µ-order property of
length λ.

Proof. By Lemma 10.4.6, K does not have weak uniform µ-symmetry. We
first pick witnesses to that fact. Pick limit models N,M0,M ∈ Kµ such that M is
limit over M0 and M0 is limit over N . Pick b such that gtp(b/M) does not µ-fork
over M0, a ∈ |M |, and gtp(a/M0) explicitly does not µ-fork over (N,M0), and
there does not exist Mb ∈ Kµ containing b and limit over M0 so that gtp(a/Mb)
explicitly does not µ-fork over (N,M0). We will show that C has the µ-order
property of length λ.

We build increasing continuous 〈Nα : α < λ〉 and 〈aα, bα, N ′α : α < λ〉 by
induction so that for all α < λ:

(1) Nα, N
′
α ∈ Kµ+|α|.

(2) N0 is limit over M and b ∈ |N0|.
(3) gtp(aα/M0) = gtp(a/M0) and aα ∈ |N ′α|.
(4) gtp(bα/M) = gtp(b/M) and bα ∈ |Nα+1|.
(5) N ′α is limit over Nα and Nα+1 is limit over N ′α.
(6) gtp(aα/Nα) explicitly does not µ-fork over (N,M0) and gtp(bα/N

′
α) does

not µ-fork over M0.

This is possible. Let N0 be any model in Kµ containing M and a and limit
over M . At α limits, let Nα :=

⋃
β<αNβ . Now assume inductively that Nβ

has been defined for β ≤ α, and aβ , bβ , N ′β have been defined for β < α. By

extension for splitting, find q ∈ gS(Nα) that explicitly does not µ-fork over (N,M0)
and extends gtp(a/M0). Let aα realize q and pick N ′α limit over Nα containing
aα. Now by extension again, find q′ ∈ gS(N ′α) that does not µ-fork over M0 and
extends gtp(b/M). Let bα realize q′ and pick Nα+1 limit over N ′α containing bα.

This is enough. We show that for α, β < λ:

(1) gtp(aαb/M0) 6= gtp(ab/M0)
(2) If β < α, gtp(ab/M0) 6= gtp(aαbβ/M0).
(3) If β ≥ α, gtp(ab/M0) = gtp(aαbβ/M0).

For (1), observe that b ∈ |N0| ⊆ |Nα| and gtp(aα/Nα) explicitly does not
µ-fork over (N,M0). Therefore by monotonicity Nα witnesses that there exists
Nb ∈ Kµ containing b and limit over M0 so that gtp(aα/Mb) explicitly does not
µ-fork over (N,M0). By failure of symmetry and invariance, we must have that
gtp(aαb/M0) 6= gtp(ab/M0).
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For (2), suppose β < α. We know that gtp(aα/Nα) does not µ-fork over
M0. Since β < α, b, bβ ∈ |Nα| and gtp(b/M) = gtp(bβ/M), we must have by
Lemma 10.5.2 that gtp(aαb/M0) = gtp(aαbβ/M0). Together with (1), this implies
gtp(ab/M0) 6= gtp(aαbβ/M0). This is really where we use the equivalence between
uniform µ-symmetry and weak uniform µ-symmetry: if we only had failure of uni-
form µ-symmetry, then we would only know that gtp(b/M) does not µ-split over
M0, so would be unable to use Lemma 10.5.2.

To see (3), suppose β ≥ α and recall that (by (1)) gtp(ab/M0) = gtp(aβb/M0).
We also have that gtp(bβ/N

′
β) does not µ-fork over M0. Moreover gtp(a/M0) =

gtp(aα/M0), and a, aα ∈ N ′β . By Lemma 10.5.2 again, gtp(abβ/M0) = gtp(aαbβ/M0).

This gives us that gtp(ab/M0) = gtp(aαbβ/M0).
Now let d̄ be an enumeration of M0 and for α < λ, let c̄α := aαbαd̄. Then

(2) and (3) together tell us that the sequence 〈c̄α | α < λ〉 witnesses the µ-order
property of length λ. �

We conclude that symmetry follows from enough instances of superstability.

Theorem 10.5.4. Let µ ≥ LS(K). Then there exists λ < h(µ) such that if K
is superstable in every χ ∈ [µ, λ), then K has µ-symmetry.

Proof. If K is unstable in 2µ, then we can set λ := (2µ)
+

and get a vacuously
true statement; so assume that K is stable in 2µ. By Facts 2.4.11 and 2.2.25(1),
K does not have the µ-order property. By Fact 2.4.7, there exists λ < h(µ) such
that K does not have the µ-order property of length λ. By Lemma 10.5.3, it is as
desired. �

Remark 10.5.5. How can one obtain many instances of superstability as in the
hypothesis of Theorem 10.5.4? One way is categoricity, see Fact 10.7.1. Another
way is to start with one instance of superstability and transfer it up using tameness,
see Fact 10.6.7.

10.6. Symmetry and tameness

Tameness is a locality property for types introduced by Grossberg and VanDieren
in [GV06b] and used to prove Shelah’s eventual categoricity conjecture from a
successor in [GV06c]. It has also played a key roles in the proof of several other
categoricity transfers, for example [Bon14b] or Chapters 8, 16.

Definition 10.6.1 (Tameness). Let µ ≥ LS(K). K is µ-tame if for every
M ∈ K and every p, q ∈ gS(M), if p 6= q, then there exists M0 ∈ K≤µ with
M0 ≤K M such that p �M0 6= q �M0.

In this section, we study the combination of tameness (and its relatives, see
below) with superstability. In Section 10.7, we will combine tameness and cate-
goricity.

10.6.1. Weak tameness. We will start by studying a weaker, more local,
variation that appears already in [She99]. We use the notation in [Bal09, Defini-
tion 11.6].

Definition 10.6.2 (Weak tameness). Let χ, µ be cardinals with LS(K) ≤ χ ≤
µ. K is (χ, µ)-weakly tame if for any saturated M ∈ Kµ, any p, q ∈ gS(M), if p 6= q,
there exists M0 ∈ Kχ with M0 ≤K M and p �M0 6= q �M0.



294 10. SYMMETRY IN AECS WITH AMALGAMATION

Tameness says that type over any models are determined by their small re-
strictions. Weak tameness says that only types over saturated models have this
property.

While there is no known example of an AEC that is weakly tame but not tame,
it is known that weak tameness follows from categoricity in a suitable cardinal (but
the corresponding result for non-weak tameness is open, see [GV06a, Conjecture
1.5]): this appears as [She99, Main Claim II.2.3] and a simplified argument is in
[Bal09, Theorem 11.15].

Fact 10.6.3. Let λ > µ ≥ h(LS(K)). Assume that K is categorical in λ, and
the model of cardinality λ is µ+-saturated. Then there exists χ < h(LS(K)) such
that K is (χ, µ)-weakly tame.

It was shown in Chapter 4 (and further improvements in Section 6.10 and Chap-
ter 7 that tameness can be combined with superstability to build a good frame at a
high-enough cardinal. At a meeting in the winter of 2015 in San Antonio, VanDieren
asked whether weak tameness could be used instead. This is not a generalization
for the sake of generalization because weak tameness (but not tameness) is known
to follow from categoricity. We can answer in the affirmative:

Theorem 10.6.4. Let λ > µ ≥ LS(K). Assume that K is superstable in every
χ ∈ [µ, λ] and has λ-symmetry.

If K is (µ, λ)-weakly tame, then there exists a type-full good λ-frame with
underlying class Kλ-sat

λ .

Proof. First observe that limit models in Kλ are unique (by Fact 10.2.17),
hence saturated. By Theorem 10.1.1, K has χ-symmetry for every χ ∈ [µ, λ]. By

Fact 10.2.18, for every χ ∈ [µ, λ), Kχ+-sat, the class of χ+-saturated models in

K≥χ+ is an AEC with LS(Kχ+-sat) = χ+. Therefore by Lemma 10.2.20 Kλ-sat

is an AEC with LS(Kλ-sat) = λ. By the λ-superstability assumption, Kλ-sat
λ is

nonempty, has amalgamation, no maximal models, and joint embedding. It is also
stable in λ. We want to define a type-full good λ-frame s on Kλ-sat

λ . We define
forking in the sense of s (s-forking) as follows: For M ≤K N saturated of size λ,
a non-algebraic p ∈ gS(N) does not s-fork over M if and only if it does not µ-fork
over M .

Now most of the axioms of good frames are verified in Section 4.4, the only
properties that remain to be checked are extension, uniqueness, and symmetry.
Extension is by Proposition 10.5.1, and uniqueness is by uniqueness of splitting
in µ ([Van06, I.4.12]) and the weak tameness assumption. As for symmetry, we
know that λ-symmetry holds, hence by Proposition 10.4.4, Proposition 10.4.5, and
Theorem 10.4.13 the symmetry property of good frame follows. �

Remark 10.6.5. If λ = µ+ above, then the hypotheses reduce to “K is super-
stable in µ and µ+ and K has µ+-symmetry”.

We can combine this construction with the results of Section 10.5:

Corollary 10.6.6. Let λ > µ ≥ LS(K). Assume that K is superstable in
every χ ∈ [µ, h(λ)). If K is (µ, λ)-weakly tame, then there exists a type-full good
λ-frame with underlying class Kλ-sat

λ .

Proof. Combine Theorem 10.6.4 and Theorem 10.5.4. �
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10.6.2. Global tameness. For the rest of this section, we will work with
global non-weak tameness. Superstability is studied together with amalgamation
and tameness in many of the chapters of this thesis (for example Chapters 4, 6, 7,
and 9). Recall the following upward transfer of superstability:

Fact 10.6.7 (Proposition 6.10.10). Assume K is µ-superstable and µ-tame.
Then for all µ′ ≥ µ, K is µ′-superstable. In particular, K≥µ has no maximal
models and is stable in all cardinals.

An application of tameness and superstability is to chains of saturated models.
Recall from Section 10.4 that Kλ-sat denotes the class of λ-saturated models in
K≥λ. We would like to give conditions under which Kλ-sat is an AEC – in particular
unions of chains of λ-saturated models are λ-saturated. From superstability and
tameness, it is known that one eventually obtains this behavior:

Fact 10.6.8 (Theorem 7.6.1). Assume K is µ-superstable and µ-tame. Then
there exists λ0 < i(2µ+ )+ such that for any λ ≥ λ0, Kλ-sat is an AEC with

LS(Kλ-sat) = λ.

We can use this to show that superstability implies symmetry in tame AECs
(obtaining another partial answer to Question 10.4.14). We also give another, more
self-contained proof that does not rely on Fact 10.6.8.

Corollary 10.6.9. If K is µ-superstable and µ-tame, then K has µ-symmetry.

First proof. First observe that by Fact 10.6.7, K is superstable in every

µ′ ≥ µ. By Fact 10.6.8, there exists λ0 ≥ µ such that Kλ+
0 -sat is an AEC. Therefore

the hypotheses of Fact 10.2.13 are satisfied, so K has λ0-symmetry. By Theorem
10.1.1, K has µ-symmetry. �

Second proof. As in the first proof, K is superstable in every µ′ ≥ µ. By
Theorem 10.5.4, K has µ-symmetry. �

Thus we obtain an improvement on the Hanf number of Fact 10.6.8:

Corollary 10.6.10. Assume K is µ-superstable and µ-tame. For every λ > µ,
Kλ-sat is an AEC with LS(Kλ-sat) = λ.

Proof. By Fact 10.6.7 and Corollary 10.6.9, K is λ-superstable and has λ-

symmetry for any λ > µ. By Fact 10.2.18, Kµ+-sat is an AEC with LS(Kµ+-sat) =
µ+. We can replace µ+ with any successor λ > µ. To take care of limit cardinals
λ, use Lemma 10.2.20. �

Note that Corollary 10.6.10 is an improvement on Fact 10.6.8 and its second
proof does not rely on Fact 10.6.8. However beyond Fact 10.6.8, the arguments
of Chapter 7 (in particular the use of averages) have other applications (see for
example the proof of solvability in Theorem 9.4.9).

We can also say more on another result of Chapter 7: Theorem 7.5.17 implies
that, assuming µ-superstability, there is a λ0 ≥ µ such that if 〈Mi : i < δ〉 is a
chain of λ0-saturated models where δ ≥ λ0 and Mi+1 is universal over Mi, then⋃
i<δMi is saturated. We can improve this too:

Corollary 10.6.11. Assume K is µ-superstable and µ-tame. Let δ be a limit
ordinal and 〈Mi : i < δ〉 is increasing in K≥µ and Mi+1 is universal over Mi for all
i < δ. Let Mδ :=

⋃
i<δMi. If ‖Mδ‖ > LS(K), then Mδ is saturated.
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Proof. By Proposition 10.3.1, Mδ is a (λ, cf(δ))-limit model, where λ = ‖Mδ‖.
By Fact 10.6.7, K is λ-superstable. By Corollary 10.6.9, K has λ-symmetry. By
Fact 10.2.17, Mδ is saturated. �

One can ask whether Corollary 10.6.10 can be improved further by also getting
the conclusion for λ = µ. If µ = LS(K), it is not clear that LS(K)-saturated
models are the right notion so perhaps the right question is to be framed in terms
of a superlimit. Recall from [She09a, Definition N.2.2.4] that a superlimit model is
a universal model M with a proper extension so that if 〈Mi : i < δ〉 is an increasing
chain with M ∼= Mi for all i < δ, then (if δ < ‖M‖+), M ∼=

⋃
i<δMi. Note that,

assuming µ-superstability and uniqueness of limit models of size µ, it is easy to see
that the existence of a superlimit of size µ is equivalent to the statement that the
union of an increasing chain of limit models in µ (of length less than µ+) is limit.

Question 10.6.12. Assume K is µ-tame and there is a type-full good µ-frame
on Kµ (or just that K is µ-superstable). Is there a superlimit model of size µ?

We now turn to good frames and show that, assuming tameness, the statement
of Theorem 10.6.4 can be simplified. Recall that previous work gives a condition
under which good frames can be constructed from tameness:

Fact 10.6.13 (Theorem 6.10.8). Assume K is µ-superstable and µ-tame. If
for any δ < µ+, any chain of length δ of saturated models in Kµ+ has a saturated

union, then there is a type-full good µ+-frame with underlying class Kµ+-sat
µ+ .

Combining this with Fact 10.6.8 it was proven in Chapter 7 that µ-superstability
and µ-tameness implies the existence of a good λ-frame on the saturated models
of size λ, for some high-enough λ > µ. Now we show that we can take λ = µ+.
We again give two proofs: one uses Theorem 10.6.4 and the other relies on Fact
10.6.13.

Corollary 10.6.14. If K is µ-superstable and µ-tame, then there is a type-full

good µ+-frame with underlying class Kµ+-sat
µ+ .

First proof. Combine Fact 10.6.13 and Corollary 10.6.10. �

Second proof. By Fact 10.6.7, K is superstable in every µ′ ≥ µ. Now apply
Corollary 10.6.6 (with λ there standing for µ+ here). �

Remark 10.6.15. To obtain a type-full good λ-frame for λ > µ+, we can either
make a slight change to the second proof of Corollary 10.6.14, or use the upward
frame transfer of [Bon14a], Chapter 5.

10.7. Symmetry and categoricity

Theorem 10.1.1 has several applications to categorical AECs. We will use the
following result, an adaptation of an argument of Shelah and Villaveces [SV99,
Theorem 2.2.1] to settings with amalgamation, see Chapter 9:

Fact 10.7.1 (The Shelah-Villaveces theorem). Assume that K has no maximal
models. Let µ ≥ LS(K). If K is categorical in a λ > µ, then K is µ-superstable.
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Corollary 10.7.2. Assume that K has no maximal models. Suppose λ and µ
are cardinals so that λ > µ ≥ LS(K) and assume that K is categorical in λ. Then
K is µ-superstable and it has µ-symmetry if at least one of the following conditions
hold:

(1) The model of size λ is µ+-saturated.
(2) λ ≥ h(µ).

Proof. By Fact 10.7.1, K is χ-superstable in every χ ∈ [µ, λ). Now:

(1) If the model of size λ is µ+-saturated, then by Theorem 10.3.9, K has
µ-symmetry.

(2) If λ ≥ h(µ), then by Theorem 10.5.4, K has µ-symmetry.

�

As announced in the introduction, we can combine Corollary 10.7.2 with Fact
10.2.17 to improve on [She99, Theorem 6.5]. The following result also improves on
Corollary 18 of [Van16b], by removing the successor assumption in the categoricity
cardinal and obtaining uniqueness of limit models in much smaller cardinalities as
well.

Corollary 10.7.3. Assume that K has no maximal models. Suppose λ and
µ are cardinals so that λ > µ ≥ LS(K) and assume that K is categorical in λ. If
either cf(λ) > µ or λ ≥ h(µ), then K has uniqueness of limit models of cardinality
µ. That is, if M0,M1,M2 ∈ Kµ are such that both M1 and M2 are limit models
over M0, then M1

∼=M0
M2.

Proof. Categoricity in λ, the assumption that cf(λ) > µ, and Fact 10.7.1
imply that the model of cardinality λ is µ+-saturated. We can now apply Corollary
10.7.2, to get that K is µ-superstable and has µ-symmetry. Then Fact 10.2.17
finishes the proof. �

Once we have obtained symmetry from a high-enough categoricity cardinal, we
can deduce that the model in the categoricity cardinal has some saturation:

Corollary 10.7.4. Let µ > LS(K). Assume that K is categorical in a λ ≥
supµ0<µ h(µ+

0 ). Then the model of size λ is µ-saturated.

Proof. By Fact 10.2.2, we can assume without loss of generality that K has
no maximal models. We check that the model of size λ is µ+

0 -saturated for every
µ0 ∈ [LS(K), µ). Fix such a µ0. By Corollary 10.7.2, K is µ0-superstable, µ+

0 -

superstable, and has µ+
0 -symmetry. By Fact 10.2.18 Kµ+

0 -sat, the class of µ+
0 -

saturated models in K≥µ+
0

, is an AEC with Löwenheim-Skolem number µ+
0 . Since

it has arbitrarily large models, it must have a model of size λ, which is unique by
categoricity. �

We conclude that categoricity in a high-enough cardinal implies some amount
of weak tameness:

Corollary 10.7.5. Let µ ≥ LS(K). Let λ ≥ h(µ+). If K is categorical in λ,
then there exists χ < H1 such that K is (χ, µ)-weakly tame.

Proof. By Corollary 10.7.4, the model of size λ is µ+-saturated. Now apply
Fact 10.6.3. �
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We can derive a downward categoricity transfer. We will use the notation from
Chapter 14 of [Bal09]: we write H1 for h(LS(K)) and H2 for h(H1) = h(h(LS(K))).
We will use the following fact, given by the proof of [Bal09, Theorem 14.9] (origi-
nally [She99, II.1.6]):

Fact 10.7.6. If K is categorical in a λ > H2, K is (χ,H2)-weakly tame for
some χ < H1, and the model of size λ is χ-saturated, then K is categorical in H2.

Corollary 10.7.7. If K is categorical in a λ ≥ h(H+
2 ), then K is categorical

in H2.

Proof. By Corollary 10.7.5, there exists χ < H1 such that K is (χ,H2)-
weakly tame. By Corollary 10.7.4, the model of size λ is χ-saturated. Now apply
Fact 10.7.6. �

We obtain in particular:

Corollary 10.7.8. Let µ = iµ > LS(K). If K is categorical in some λ > µ,
then K is categorical in µ.

Proof. Without loss of generality (Fact 10.2.2), K has no maximal models.
Applying Corollary 10.7.7 to K≥µ0 for each µ0 < µ, we get that K is categorical
in unboundedly many µ0 < µ. By (for example) Fact 10.7.1, K is stable in every
µ0 < µ. Thus the models in the categoricity cardinals below µ are saturated, hence
every model of size µ is also saturated. �

We can also build a good frame assuming categoricity in a high-enough cardinal
(of arbitrary cofinality).

Corollary 10.7.9. Let µ ≥ H1. Assume that K is categorical in a λ > µ.
If the model of size λ is µ+-saturated (e.g. if cf(λ) > µ or by Corollary 10.7.4 if
λ ≥ h(µ+)), then there exists a type-full good µ-frame with underlying class Kµ-sat

µ .

Proof. By Fact 10.2.2, we can assume without loss of generality that K has
no maximal models. By Fact 10.6.3, there exists χ < H1 such that K is (χ, µ)-
weakly tame. By Corollary 10.7.2, K has χ′-symmetry and is χ′-superstable for
every χ′ ∈ [χ, µ]. Now apply Theorem 10.6.4 with (µ, λ) there standing for (χ, µ)-
here. �

The Hanf number of Corollary 10.7.9 can be improved if we assume that the
AEC is tame. We state a more general corollary summing up our results in tame
categorical AECs:

Corollary 10.7.10. Assume that K has no maximal models and is LS(K)-
tame. If K is categorical in a λ > LS(K), then:

(1) For any µ ≥ LS(K), K has uniqueness of limit models in µ: ifM0,M1,M2 ∈
Kµ are such that both M1 and M2 are limit over models M0, then
M1
∼=M0

M2.
(2) For any µ > LS(K), Kµ-sat is an AEC with LS(Kµ-sat) = µ and there

exists a type-full good µ-frame with underlying class Kµ-sat
µ .

Proof. By Fact 10.7.1, K is superstable in LS(K). By Fact 10.6.7, K is
superstable in every µ ≥ LS(K). By Corollary 10.6.9, K has symmetry in every
µ ≥ LS(K). The first part now follows from Fact 10.2.17 and the second from
Corollary 10.6.10 and Corollary 10.6.14 (together with Remark 10.6.15). �
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Remark 10.7.11. By Chapter 5, we can transfer the type-full good LS(K)+-

frame on K
LS(K)+-sat
LS(K)+ given by the previous corollary to a type-full good (≥ LS(K)+)-

frame with underlying class KLS(K)+-sat. That is, the nonforking relation of the
frame is can be extended to types over all LS(K)+-saturated models.





CHAPTER 11

Shelah’s eventual categoricity conjecture in tame
AECs with primes

This chapter is based on [Vasf]. I thank Tapani Hyttinen for his comments on
the categoricity conjecture for homogeneous model theory, as well as the referee for
several thorough reports that greatly helped improve the presentation and focus of
this chapter.

Abstract

A new case of Shelah’s eventual categoricity conjecture is established:

Theorem 11.0.12. Let K be an AEC with amalgamation. Write H2 :=
i(

2

i
(2LS(K))

+
)+ . Assume that K is H2-tame and K≥H2

has primes over sets of

the form M ∪ {a}. If K is categorical in some λ > H2, then K is categorical in all
λ′ ≥ H2.

The result had previously been established when the stronger locality assump-
tions of full tameness and shortness are also required.

An application of the method of proof of Theorem 11.0.12 is that Shelah’s
categoricity conjecture holds in the context of homogeneous model theory (this was
known, but our proof gives new cases):

Theorem 11.0.13. Let D be a homogeneous diagram in a first-order theory T .
If D is categorical in a λ > |T |, then D is categorical in all λ′ ≥ min(λ,i(2|T |)+).

11.1. Introduction

Shelah’s eventual categoricity conjecture is a major force in the development
of classification theory for abstract elementary classes (AECs)1.

Conjecture 11.1.1 (Shelah’s eventual categoricity conjecture, N.4.2 in [She09a]).
An AEC categorical in a high-enough cardinal is categorical on a tail of cardinals.

In Chapter 8, we established the conjecture for universal classes with the amal-
gamation property2 (a universal class is a class of models closed under isomor-
phisms, substructures, and unions of ⊆-increasing chains, see [She87b]). The proof
starts by noting that universal classes satisfy tameness: a locality property intro-
duced in VanDieren’s 2002 Ph.D. thesis (the relevant chapter appears in [GV06b]).

1For a history, see the introduction of Chapter 8. We assume here that the reader is familiar

with the basics of AECs as presented in e.g. [Bal09].
2After the initial submission of the paper this chapter is based on, we managed to remove

the amalgamation hypothesis (Chapter 16).

301
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Fact 11.1.2 ([Bonc]). Any universal class K is3 LS(K)-tame.

The proof generalizes to give a stronger locality property introduced in [Bon14b]:

Definition 11.1.3. Let K be an AEC and let χ ≥ LS(K) be an infinite cardi-
nal. K is fully χ-tame and short if for any M ∈ K, any ordinal α, and any Galois
types p, q ∈ gSα(M) of length α, p = q if and only if pI � M0 = qI � M0 for any
M0 ∈ K≤χ with M0 ≤K M and any I ⊆ α with |I| ≤ χ.

Fact 11.1.4. Any universal class K is fully LS(K)-tame and short.

Another important property of universal classes used in the proof of Shelah’s
eventual categoricity conjecture (Corollary 8.5.20) is that they have primes. The
definition is due to Shelah and appears in [She09a, III.3]. For the convenience of
the reader, we include it here:

Definition 11.1.5. Let K be an AEC.

(1) We say a triple (a,M,N) represents a Galois type p if p = gtp(a/M ;N).
In particular, M ≤K N and a ∈ |N |.

(2) A prime triple is a triple (a,M,N) representing a nonalgebraic Galois
type p such that for every N ′ ∈ K, a′ ∈ |N ′|, if p = gtp(a′/M ;N ′) then
there exists f : N −→

M
N ′ so that f(a) = a′.

(3) We say that K has primes if for every M ∈ K and every nonalgebraic
p ∈ gS(M), there exists a prime triple representing p.

(4) We define localizations such as “Kλ has primes” in the natural way.

By taking the closure of |M | ∪ {a} under the functions of N , we get:

Fact 11.1.6 (Remark 8.5.3). Any universal class has primes.

The proof of the eventual categoricity conjecture for universal classes with
amalgamation in Chapter 8 generalizes to give:

Fact 11.1.7 (Theorem 8.5.18). Fully tame and short AECs that have amalga-
mation and primes satisfy Shelah’s eventual categoricity conjecture.

Many results only use the assumption of tameness (for example [GV06b,
GV06c, GV06a, BKV06, Lie11b] and in Chapters 4 and 7), while others use
full tameness and shortness (e.g. [BG] or Chapter 6, but it is also unclear whether
it is really needed there, see Question 6.15.4).

It is natural to ask whether shortness can be removed from Fact 11.1.7. We an-
swer in the affirmative: Tame AECs with primes and amalgamation satisfy Shelah’s
eventual categoricity conjecture.

Main Theorem 11.3.8. Let K be an AEC with amalgamation. Assume that
K is H2-tame and K≥H2

has primes. If K is categorical in some λ > H2, then K
is categorical in all λ′ ≥ H2.

This improves Theorem 8.5.18 which assumed full LS(K)-tameness and short-
ness (so the improvement is on two counts: “full tameness and shortness” is replaced
by “tameness” and “LS(K)” is replaced by “H2”). Compared to Grossberg and

3While the main idea of the proof is due to Will Boney, the fact that it applies to universal
classes is due to the author. A full proof of Fact 11.1.2 appears as Theorem 8.3.6.
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VanDieren’s upward transfer [GV06a], we do not require categoricity in a succes-
sor cardinal, but we do require the categoricity cardinal to be at least H2 and more
importantly ask for the AEC to have primes.

Let us give a rough picture of the proof of both Theorem 11.3.8 and the earlier
Theorem 8.5.18. We will then explain where exactly the two proofs differ. The
first step of the proof is to find a sub-AEC K′ of K (typically a class of saturated
models or just a tail: in the case of Theorem 11.3.8 we will have K′ = K≥H2

) which
is “well-behaved” in the sense of admitting a good-enough notion of independence.
Typically, the first step does not use primes. The second step is to show that in
K′, categoricity in some λ > LS(K′) implies categoricity in all λ′ > LS(K′). This
uses orthogonality calculus and the existence of prime models. The third step pulls
back this categoricity transfer to K.

Shelah has developed orthogonality calculus in the context of what he calls
successful good+ λ-frames [She09a, III.6]. It is known (from Chapter 6) that one
can build such a frame using categoricity, amalgamation, and full tameness and
shortness so this is how K′ from the previous paragraph was chosen in Chapter
8. The orthogonality calculus part was just quoted from Shelah (although we did
provide some proofs for the convenience of the reader). It is not known how to build
a successful good+ λ-frame using just categoricity, amalgamation, and tameness.

In this chapter, we develop orthogonality calculus in the setup of good λ-frames
with primes (i.e. we get rid of the successful good+ hypothesis). Note that it is easier
to build good frames than to build successful ones (see Chapter 4 and Corollary
10.6.14). In particular, this can be done with just amalgamation, categoricity,
and tameness (the threshold cardinals are also lower than in the construction of a
successful good frame).

To develop orthogonality calculus in good frames with primes, we change She-
lah’s definition of orthogonality: Shelah’s definition uses the so-called uniqueness
triples, which may not exist here. This chapter’s definition uses prime triples in-
stead and shows that the proofs needed for the categoricity transfer still go through.
This is the main difference between this chapter and Chapter 8. In some places,
new arguments are provided. For example, Lemma 11.2.4, saying that a definition
of orthogonality in terms of “for all” is equivalent to one in terms of “there exists”,
has a different proof than Shelah’s.

Let us justify the assumptions of Theorem 11.3.8. First of all, why do we ask for
λ > H2 and not e.g. λ > H1 or even λ > LS(K)? The reason is that the argument
uses categoricity in two cardinals, so we appeal to a downward categoricity transfer
implicit in [She99, II.1.6] which proves (without using primes) that classes as in the
hypothesis of Theorem 11.3.8 must be categorical in H2. If we know that the class
is categorical in two cardinals already, then we can work above LS(K) (provided of
course we adjust the levels at which tameness and primes occur). This is Theorem
11.3.4. Moreover if we know that for some χ < λ, the class of χ-saturated models
of K has primes, then we can also lower the Hanf number from H2 to H1 (see
Theorem 11.3.10).

Let us now discuss the structural assumptions on K. Many classes occurring
in practice have amalgamation. Grossberg conjectured [Gro02, 2.3] that eventual
amalgamation should follow from categoricity and, assuming that the class is even-
tually syntactically characterizable (see Section 8.4), it does assuming the other
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assumptions: tameness and having primes. We now focus on these two assump-
tions.

A wide variety of AECs are tame (see e.g. the introduction to [GV06b] or the
upcoming survey [BVd]), and many classes studied by algebraists have primes (one
example are AECs which admit intersections, i.e. whenever N ∈ K and A ⊆ |N |, we
have that

⋂
{M ≤K N | A ⊆ |M |} ≤K N . See [BS08] or Section 8.2). Tameness is

conjectured (see [GV06a, Conjecture 1.5]) to follow from categoricity and of course,
the existence of prime models plays a key role in many categoricity transfer results
including Morley’s categoricity theorem and Shelah’s generalization to excellent
classes [She83a, She83b]. Currently, no general way4 of building prime models
in AECs is known except by going through the machinery of excellence [She09a,
Chapter III]. It is unknown whether excellence follows from categoricity.

In the special case of homogeneous model theory, it is easier to build prime
models5. Let K be a class of models of a homogeneous diagram categorical in a
λ > H2. Clearly, K has amalgamation and is fully LS(K)-tame and short. By
stability and [She70, Section 5], the class of H2-saturated models of K has primes.
The proof of Theorem 11.3.8 first argues without using primes that K is categorical
in H2. Hence the class of H2-saturated models of K is just the class K≥H2

, so it has
primes. We apply Theorem 11.3.8 to obtain the eventual categoricity conjecture for
homogeneous model theory. Actually Theorem 11.3.8 is not needed for that result:
Theorem 8.5.18 suffices. However we can also improve on the Hanf number H2 and
obtain Theorem 11.0.13 from the abstract:

Theorem 11.4.22. Let D be a homogeneous diagram in a first-order theory T .
If D is categorical in some λ > |T |, then D is categorical in all λ′ ≥ min(λ, h(|T |)).

When T is countable, a stronger result has been established by Lessmann
[Les00]: categoricity in some uncountable cardinal implies categoricity in all un-
countable cardinals. When T is uncountable, the eventual categoricity conjecture
for homogeneous model theory is implicit in [She70, Section 7] and was also given
a proof by Hyttinen [Hyt98]. More precisely, Hyttinen prove that categoricity in
some λ > |T | with λ 6= ℵω(|T |) implies categoricity in all λ′ ≥ min(λ, h(|T |)). Our
proof of Theorem 11.4.22 is new and also covers the case λ = ℵω(|T |). We do not
know whether a similar result also holds in the framework of finitary AECs (there
the categoricity conjecture has been solved for tame and simple6 finitary AECs
with countable Löwenheim-Skolem number [HK06]7).

A continuation of the present chapter is in Chapter 14, where orthogonality
calculus is developed inside good frames that do not necessarily have primes. We
establish there that the analog of Theorem 11.4.22 (i.e. the threshold is H1) holds
in any LS(K)-tame AEC with amalgamation and primes.

4We discuss homogeneous model theory and more generally finitary AECs later.
5We thank Rami Grossberg for asking us if the methods of Chapter 8 could be adapted to

this context.
6In this context, stable does not imply simple.
7The argument is similar to the proof of Morley’s categoricity theorem.
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11.2. Orthogonality with primes

In [She09a, III.6], Shelah develops a theory of orthogonality for good frames.
In addition to the existence of primes, his assumptions include that the good frame
is successful good+ (see [She09a, III.1]) so in particular it expands to an indepen-
dence relation NF for models in Kλ. While successfulness follows from full tameness
and shortness (Theorem 6.11.13), it is not clear if it follows from tameness only, so
we do not adopt this assumption. Instead we will assume only that the good frame
has primes.8

The proof of Fact 11.1.7 uses Shelah’s theory of orthogonality to prove a tech-
nical statement on good frames being preserved when doing a certain change of
AEC [She09a, III.12.39]. We show that this statements still holds if we do not as-
sume successfulness but only the existence of primes (see Theorem 11.2.7). Along
the way, we develop orthogonality calculus in good frames with primes. To do so,
we change Shelah’s definition of orthogonality from [She09a, III.6.2] to use prime
triples instead of uniqueness triples and check that [She09a, III.12.39] can still be
proven using this new definition of orthogonality.

We assume that the reader is familiar with Sections 8.5 and 8.7. We also assume
that the reader is familiar with the basics of good frames as presented in [She09a,
II.2]. As in [She09a, II.6.35], we say that a good λ-frame s is type-full if the basic
types consist of all the nonalgebraic types over M . For simplicity, we focus on
type-full good frames here. We say that a good λ-frame s is on Kλ if its underlying
class is Kλ. We say that s is categorical if K is categorical in λ and we say that
it has primes if Kλ has primes (where we localize Definition 11.1.5 in the natural
way).

All throughout, we assume:

Hypothesis 11.2.1. s = (Kλ,^, gSbs) is a categorical type-full good λ-frame
which has primes. We work inside s.

Hypothesis 11.2.1 is reasonable: By Fact 11.3.2, categorical good frames exist
assuming categoricity, amalgamation, and tameness. As for assuming the existence
of primes, this is an hypothesis of our main theorem (Theorem 11.3.8) and we have
tried to justify it in the introduction. Se also Fact 11.4.6, which shows how to
obtain the existence of primes in the setup of homogeneous model theory.

The definition of orthogonality is similar to [She09a, III.6.2]: the only differ-
ence is that uniqueness triples are replaced by prime triples. In Shelah’s context,
this gives an equivalent definition (see [She09a, III.6.3]).

Definition 11.2.2. Let M ∈ Kλ and let p, q ∈ gS(M) be nonalgebraic. We

say that p is weakly orthogonal to q and write p ⊥
wk
q if for all prime triples (b,M,N)

representing q (i.e. q = gtp(b/M ;N), see Definition 11.1.5(1)), we have that p has
a unique extension to gS(N).

We say that p is orthogonal to q (written p ⊥ q) if for every N ∈ Kλ with

N ≥K M , p′ ⊥
wk

q′, where p′, q′ are the nonforking extensions to N of p and q

respectively.

8Recently, Will Boney and the author have shown (see Chapter 18) that the ℵn−3-good frame

in the Hart-Shelah example is not (weakly) successful. However it is categorical and has primes
(because the Hart-Shelah example admits intersections). Thus the setup of this chapter is strictly

weaker than Shelah’s.
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For p` ∈ gS(M`) nonalgebraic, ` = 1, 2, p1 ⊥ p2 if and only if there exists
N ≥K M`, ` = 1, 2 such that the nonforking extensions to N p′1 and p′2 of p1 and
p2 respectively are orthogonal.

Remark 11.2.3. Formally, the definition of orthogonality depends on the frame
but s will always be fixed.

The next basic lemma says that we can replace the “for all” in Definition 11.2.2
by “there exists”. This corresponds to [She09a, III.6.3], but the proof is different.

Lemma 11.2.4. Let M ∈ Kλ and p, q ∈ gS(M) be nonalgebraic. Then p ⊥
wk

q

if and only if there exists a prime triple (b,M,N) representing q such that p has a
unique extension to gS(N).

Proof. The left to right direction is straightforward. Now assume (b,M,N)
is a prime triple representing q such that p has a unique extension to gS(N). Let
(b2,M,N2) be another prime triple representing q. We want to see that p has a
unique extension to gS(N2). Let p2 ∈ gS(N2) be an extension of p. By primeness
of (b2,M,N2), there exists f : N2 −→

M
N such that f(b2) = b.

We have that f(p2) is an element of gS(f [N2]) and f [N2] ≤K N , so using
amalgamation pick p′2 ∈ gS(N) extending f(p2). Now as f fixes M , f(p2) extends
p, so p′2 extends p. Since by assumption p has a unique extension to gS(N), p′2
must be this unique extension, and in particular p′2 does not fork over M . By
monotonicity, f(p2) does not fork over M . By invariance, p2 does not fork over M .
This shows that p2 must be the unique extension of p to gS(N2), as desired. �

We now show that weak orthogonality is the same as orthogonality. Recall
(Hypothesis 11.2.1) that we are assuming categoricity in λ. In particular, all the
models of size λ are superlimit9. Thus we can use the following property, which
Shelah proves for superlimit models M,N ∈ Kλ:

Fact 11.2.5 (The conjugation property, III.1.21 in [She09a]). Let M ≤K N
be in Kλ, α < λ, and let (pi)i<α be types in gS(N) that do not fork over M . Then
there exists f : N ∼= M such that f(pi) = pi �M for all i < α.

Lemma 11.2.6 (III.6.8(5) in [She09a]). For M ∈ Kλ, p, q ∈ gS(M) nonalge-

braic, p ⊥
wk
q if and only if p ⊥ q.

Proof. Clearly if p ⊥ q then p ⊥
wk

q. Conversely assume p ⊥
wk

q and let

N ≥K M . Let p′, q′ be the nonforking extensions to N of p, q respectively. We

want to show that p′ ⊥
wk

q′. By the conjugation property, there exists f : N ∼= M

such that f(p′) = p and f(q) = q′. Since weak orthogonality is invariant under

isomorphism, p′ ⊥
wk
q′. �

We have arrived to the main theorem of this section. This generalizes [She09a,
III.12.39] (a full proof of which appears in Fact 8.7.7) which assumes in addition that

9Recall [She09a, N.2.4(4)] that M ∈ Kλ is superlimit if it is universal in Kλ, has a proper
extension, and whenever δ < λ+ is limit, 〈Mi : i < δ〉 is increasing with M ∼= Mi for all i < δ, then
M ∼=

⋃
i<δMi. Directly from the definition, one checks that for any AEC K and any λ ≥ LS(K),

if K is categorical in λ and has no maximal models in λ (so in particular if there is a categorical
good λ-frame on Kλ), then the model of cardinality λ is superlimit.
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s is successful and good+. For the convenience of the reader, we repeat Hypothesis
11.2.1.

Theorem 11.2.7. Let s = (Kλ,^, gSbs) be a categorical good λ-frame which
has primes. If Kλ is not weakly uni-dimensional (see [She09a, III.2.2(6)]), then
there exists M ∈ Kλ and p ∈ gS(M) such that s � K¬∗p (the expansion of s to
KM restricted to the models in K¬∗p, see Definitions 8.2.18 and 8.5.7) is a type-full
good λ-frame with primes.

Proof. Exactly the same as in Fact 8.7.7, except that we replace uniqueness
triples with prime triples, and use Lemmas 11.2.4 and 11.2.6 wherever appropriate.

�

Assuming tameness and existence of primes above λ, we can conclude an equiv-
alence between uni-dimensionality and categoricity. Once again, we repeat Hypoth-
esis 11.2.1.

Theorem 11.2.8. Assume that K is an AEC categorical in λ which has a
(type-full) good λ-frame. If K≥λ has primes and is λ-tame, then the following are
equivalent:

(1) K is weakly uni-dimensional (see [She09a, III.2.2(6)]).
(2) K is categorical in all µ > λ.
(3) K is categorical in some µ > λ.

Proof. Exactly as in the proof of Theorem 8.5.16, except that we use Theorem
11.2.7 (and replace uniqueness triples with prime triples). �

Remark 11.2.9. For the proof of Theorem 11.2.8 (and the other categoricity
transfer theorems of this chapter), the symmetry property of good frames is not
needed.

11.3. Categoricity transfers in AECs with primes

In this section, we prove Theorem 9.0.16 from the abstract. We first recall that
the existence of good frames follow from categoricity, amalgamation, and tameness.
We use the following notation:

Notation 11.3.1. For K an AEC with amalgamation and λ > LS(K), we
write Kλ-sat for the class of λ-saturated models in K≥λ.

Fact 11.3.2. Let K be a LS(K)-tame AEC with amalgamation and no maximal
models. Let λ and µ be cardinals such that both λ and µ are strictly bigger than
LS(K). If K is categorical in µ, then:

(1) K is stable in every cardinal.
(2) Kλ-sat is an AEC with LS(Kλ-sat) = λ.
(3) There exists a categorical type-full good λ-frame with underlying class

Kλ-sat
λ .

Proof. By the Shelah-Villaveces theorem (see Chapter 20), K is LS(K)-
superstable (see for example Definition 6.10.1), in particular it is stable in LS(K).
Now we start to use LS(K)-tameness. By Corollary 10.6.10, Kλ-sat is an AEC
with LS(Kλ-sat) = λ. By Theorem 6.10.8, there is a type-full good λ-frame with
underlying class Kλ-sat

λ (and in particular stable in λ) By uniqueness of saturated
models, Kλ-sat is categorical in λ. �
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We obtain a categoricity transfer for tame AECs with primes categorical in two
cardinals. First we prove a more general lemma:

Lemma 11.3.3. Let K be a LS(K)-tame AEC with amalgamation and arbi-
trarily large models. Let λ and µ be cardinals such that LS(K) < λ < µ.

If K is categorical in µ and Kλ-sat has primes, then Kλ-sat is categorical in all
µ′ ≥ λ.

Proof. By partitioning K into disjoint AECs, each of which has joint embed-
ding (see for example [Bal09, 16.14]) and working inside the unique piece that is
categorical in µ, we can assume without loss of generality that K has joint embed-
ding. Because K has arbitrarily large models, K also has no maximal models.

By Fact 11.3.2, there is a categorical type-full good λ-frame s with underlying
class Kλ-sat

λ . Now apply Theorem 11.2.8 to s and Kλ-sat. �

Theorem 11.3.4. Let K be a LS(K)-tame AEC with amalgamation and arbi-
trarily large models. Let λ and µ be cardinals such that LS(K) < λ < µ. Assume
that K≥λ has primes.

If K is categorical in both λ and µ, then K is categorical in all µ′ ≥ λ.

Proof. By categoricity, Kλ-sat = K≥λ. Now apply Lemma 11.3.3. �

Remark 11.3.5. What if λ = LS(K)? Then it is open whether K has a good
LS(K)-frame (see the discussion in Section 4.3). If it does, then we can use Theorem
11.2.8.

We present two transfers from categoricity in a single cardinal. The first uses
the following downward transfer which follows from the proof of [Bal09, 14.9] (an
exposition of [She99, II.1.6]).

Fact 11.3.6. Let K be an AEC with amalgamation and no maximal models.
If K is categorical in a λ > H2 (recall Definition 2.2.2) and the model of size λ is
H+

2 -saturated, then K is categorical in H2.

To get the optimal tameness bound, we will use10:

Fact 11.3.7 (Corollary 10.7.9). Let K be an AEC with amalgamation and no
maximal models. Let µ ≥ H1 and assume that K is categorical in a λ > µ so that
the model of size λ is µ+-saturated. Then there exists a categorical type-full good
µ-frame with underlying class Kµ-sat

µ .

Theorem 11.3.8. Let K be an AEC with amalgamation. Assume that K is
H2-tame and K≥H2

has primes. If K is categorical in some λ > H2, then K is
categorical in all λ′ ≥ H2.

Proof. As in the proof of Lemma 11.3.3, we can assume without loss of gener-
ality that K has no maximal models. By Fact 11.3.2 (applied to the AEC K≥H2

),
K is in particular stable in λ, hence the model of size λ is saturated. By Fact
11.3.6, K is categorical in H2. By Fact 11.3.7, there is a categorical type-full good
H2-frame s with underlying class KH2-sat

H2
. By categoricity in H2, KH2-sat = K≥H2

.
Now apply Theorem 11.2.8 to s. �

10For a simpler proof of Theorem 11.3.8 from slightly stronger assumptions, replace “H2-
tame” by “χ-tame for some χ < H2. Then in the proof one can use Fact 11.3.2 together with

Theorem 11.3.4, both applied to the class K≥χ.
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We give a variation on Theorem 11.3.8 which gives a lower Hanf number but
assumes that classes of saturated models have primes. We will use the following
consequence of the omitting type theorem for AECs [She99, II.1.10] (or see [Bal09,
14.3]):

Fact 11.3.9. Let K be an AEC with amalgamation. Let λ ≥ χ > LS(K)
be cardinals. Assume that all the models of size λ are χ-saturated. Then all the
models of size at least min(λ, supχ0<χ h(χ0)) are χ-saturated.

Theorem 11.3.10. Let K be a LS(K)-tame AEC with amalgamation and ar-
bitrarily large models. Let λ > LS(K)+ be such that K is categorical in λ and
let χ ∈ (LS(K), λ) be such that Kχ-sat has primes. Then K is categorical in all
λ′ ≥ min(λ, supχ0<χ h(χ0)).

Proof. As in the proof of Lemma 11.3.3, we may assume that K has no
maximal models. By Lemma 11.3.3, Kχ-sat is categorical in all λ′ ≥ χ. By Fact
11.3.2, K is stable in λ, so the model of size λ is saturated, hence χ-saturated.
By Fact 11.3.9, all the models of size at least λ′0 := min(λ, supχ0<χ h(χ0)) are χ-

saturated. In other words, K≥λ′0 = Kχ-sat
≥λ′0

. Since Kχ-sat is categorical in all λ′ ≥ χ,

K is categorical in all λ′ ≥ λ′0. �

Remark 11.3.11. Theorem 11.3.8 and Theorem 11.3.10 have different strengths.
It could be that we know our AEC K has primes but it is unclear that Kχ-sat has
primes for any χ. For example, K could be a universal class (or more generally
an AEC admitting intersections). In this case we can use Theorem 11.3.8. On the
other hand we may not know that K has primes but we could know how to build
primes in Kχ-sat (for example K could be an elementary class or more generally a
class of homogeneous models, see the next section). There Theorem 11.3.10 applies.

11.4. Categoricity in homogeneous model theory

We use the results of the previous section to obtain Shelah’s categoricity conjec-
ture for homogeneous model theory, a nonelementary framework extending classical
first-order model theory. It was introduced in [She70]. The idea is to look at a
class of models of a first-order theory omitting a set of types and assume that this
class has a very nice (sequentially homogeneous) monster model. We quote from
the presentation in [GL02] but all the results on homogeneous model theory that
we use initially appeared in either [She70] or [HS00].

The following definitions appear in [GL02]. They differ from (but are equiva-
lent to) Shelah’s original definitions from [She70].

Definition 11.4.1. Fix a first-order theory T .

(1) A set of T -types D is a diagram in T if it has the form {tp(ā/∅;M) | ā ∈
<ωA} for a model M of T .

(2) A model M of T is a D-model if D(M) := {tp(ā/∅;M) | ā ∈ <ω|M |} ⊆ D.
(3) For D a diagram of T , we let KD be the class of D-models of T , ordered

with elementary substructure.
(4) For M a model of T , we write S<ωD (A;M) for the set of types of finite

tuples over A which are realized in some D-model N with N �M .

Definition 11.4.2. Let T be a first-order theory and D a diagram in T . A
model M of T is (D,λ)-homogeneous if it is a D-model and for every N �M , every
A ⊆ |M | with |A| < λ, every p ∈ S<ωD (A;N) is realized in M .
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Definition 11.4.3. We say a diagram D in T is homogeneous if for every λ
there exists a (D,λ)-homogeneous model of T .

We are not aware of any source explicitly stating the facts below, but they are
straightforward to check, so we omit the proof. They will be used without mention.

Proposition 11.4.4. For D a homogeneous diagram in T :

(1) KD is an AEC with LS(KD) = |T |.
(2) K has amalgamation, no maximal models, and is fully LS(K)-tame and

short (in fact syntactic and Galois types coincide).
(3) For λ > |T |, a D-model M is (D,λ)-homogeneous if and only if M ∈

Kλ-sat
D .

Note that in this framework it also makes sense to talk about the |T |-saturated
models, so we let:

Definition 11.4.5. Let K
|T |-sat
D be the class of (D, |T |)-homogeneous models,

ordered by elementary substructure.

To apply the results of the previous section, we must give conditions under
which Kχ-sat

D has primes. This is implicit in [She70, Section 5]:

Fact 11.4.6. Let D be a homogeneous diagram in T . If KD is stable in
χ ≥ LS(K) then Kχ-sat

D has primes.

Proof. By [She70, 5.11(1)] (with µ, λ there standing for χ, χ here; in par-
ticular 2µ > λ), D satisfies a property Shelah calls (P, χ, 1) (a form of density of
isolated types, see [She70, 5.4]). By the proof of [She70, 5.2(1)] and [She70,

5.3(1)] there, this implies that the class Kχ-sat
D has primes. �

We immediately obtain:

Theorem 11.4.7. If a homogeneous diagram D in a first-order theory T is
categorical in a λ > |T |+, then it is categorical in all λ′ ≥ min(λ, h(|T |)).

Proof. Note that KD is stable in all cardinals by Fact 11.3.2. So we can
combine Fact 11.4.6 and Theorem 11.3.10. �

This proves Theorem 11.0.13 in the abstract modulo a small wrinkle: the
case λ = |T |+. One would like to use the categoricity transfer of Grossberg
and VanDieren [GV06a] but they assume that K is categorical in a successor
λ > LS(K)+ since otherwise it is in general unclear whether there is a super-
limit (see footnote 9) in LS(K) (one can get around this difficulty if LS(K) = ℵ0,
see [Les05]). However in the case of homogeneous model theory we can show
that there is a superlimit, completing the proof. The key is that under stability,
(D, |T |)-homogeneous models are closed under unions of chains. This is claimed
without proof by Shelah in [She75c, 1.15]. We give a proof here which imitates
the first-order proof of Harnik [Har75]. Still it seems that a fair amount of forking
calculus has to be developed first. All throughout, we assume:

Hypothesis 11.4.8. D is a homogeneous diagram in a first-order theory T . We
work inside a (D, κ̄)-homogeneous model C for κ̄ a very big cardinal. In particular,
all sets are assumed to be D-sets (see [GL02, 2.1(2)]).
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The following can be seen as a first approximation for forking in the homoge-
neous context. It was used by Shelah to prove the stability spectrum theorem in
this framework (see Fact 11.4.11). We will not use the exact definition, only its
consequences.

Definition 11.4.9 (4.1 in [She70]). A type p ∈ S<ωD (A) strongly splits over
B ⊆ A if there exists an indiscernible sequence 〈āi : i < ω〉 over B and a formula
φ(x̄, ȳ) such that φ(x̄, ā0) ∈ p and ¬φ(x̄, ā1) ∈ p.

Definition 11.4.10. κ(D) is the minimal cardinal κ such that for all A and
all p ∈ S<ωD (A), there exists B ⊆ A with |B| < κ so that p does not strongly split
over B.

The following is due to Shelah [She70, 4.4]. See also [GL02, 4.11, 4.14, 4.15]:

Fact 11.4.11. If D is stable in λ0 ≥ |T |, then κ(D) <∞ and for λ ≥ λ0, D is
stable in λ if and only if λ = λ<κ(D).

We can define forking using strong splitting:

Definition 11.4.12 (3.1 in [HS00]). For A ⊆ B, p ∈ S<ωD (B) does not fork
over A if there exists A0 ⊆ A such that:

(1) |A0| < κ(D).
(2) For every set C, there exists q ∈ S<ωD (B ∪ C) such that q extends p and

q does not strongly split over A0.

Assuming that the base has a certain degree of saturation, forking behaves well:

Fact 11.4.13. Assume thatD is stable in λ ≥ |T |. LetM be (D,λ)-homogeneous
and let A ⊆ B ⊆ C be sets.

(1) (Monotonicity) For p ∈ S<ωD (C), if p does not fork over A, then p � B
does not fork over A and p does not fork over B.

(2) (Extension-existence) For any p ∈ S<ωD (M), there exists q ∈ S<ωD (M ∪B)
that extends p and does not fork over M . Also, q is algebraic if and only
if p is. Moreover if p ∈ S<ωD (M) does not strongly split over A0 ⊆ |M |,
then p does not fork over A0.

(3) (Uniqueness) If p, q ∈ S<ωD (M ∪B) both do not fork over M and are such
that p �M = q �M , then p = q.

(4) (Transitivity) For any p ∈ S<ωD (M ∪ B), if p does not fork over M and
p �M does not fork over A0 ⊆ |M |, then p does not fork over A0.

(5) (Symmetry) If tp(b̄/Mā) does not fork over M , then tp(ā/Mb̄) does not
fork over M .

(6) (Local character) For any p ∈ S<ωD (M), there exists A0 ⊆ |M | such that
|A0| < κ(D) and p does not fork over A0. Moreover, for any 〈Mi : i < δ〉
increasing chain of (D,λ)-homogeneous models, if p ∈ S<ωD (

⋃
i<δMi) and

cf δ ≥ κ(D), then there exists i < δ and A0 ⊆ |Mi| such that |A0| < κ(D)
and p does not fork over A0.

Proof. We use freely that (by [HS00, 1.9(iv)]) a (D,λ)-homogeneous model
is an a-saturated model in the sense of [HS00, 1.8(ii)]. Monotonicity is [HS00,
3.2.(i)], extension-existence is given by [HS00, 3.2.(iii), (v), (vi)] and the definitions
of κ(D) and forking. Uniqueness is [HS00, 3.4], transitivity is [HS00, 3.5.(iv)], and
symmetry is [HS00, 3.6]. For local character, we prove the moreover part and the
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first part follows by taking Mi := M for all i < δ. Let Mδ :=
⋃
i<δMi. Without loss

of generality, δ = cf δ ≥ κ(D). By definition of κ(D), there exists A0 ⊆ |Mδ| such
that |A0| < κ(D) and p does not strongly split over A0. By cofinality consideration,
there exists i < δ such that A0 ⊆ |Mi|. By the moreover part of extension-existence,
for all j ∈ [i, δ), p �Mj does not fork over A0. By [HS00, 3.5.(i)], it follows that p
does not fork over Mi, and therefore by transitivity over A0. �

We will use the machinery of indiscernibles and averages. Note that by [GL02,
3.4, 3.12], indiscernible sequences are indiscernible sets under stability. We will use
this freely. The following directly follows from the definition of strong splitting:

Fact 11.4.14 (5.3 in [GL02]). Assume that D is stable. For all infinite in-
discernible sequences I over a set A and all elements b, there exists J ⊆ I with
|J | < κ(D) such that I\J is indiscernible over A ∪ {b}.

Definition 11.4.15. For I an indiscernible sequence of cardinality at least
κ(D), let Av(I/A) be the set of formulas φ(x̄, ā) with ā ∈ <ωA such that for at
least κ(D)-many elements b̄ of I, |= φ[b̄, ā].

Fact 11.4.16 (5.5 in [GL02]). If D is stable and I is an indiscernible sequence
of cardinality at least κ(D), then Av(I/A) ∈ S<ωD (A).

Fact 11.4.17. Assume that D is stable.
Let A ⊆ B and let p ∈ S<ωD (B). If p does not fork over A, |A| < κ(D), and p is

nonalgebraic, then there exists an indiscernible set I over A with |I| ≥ κ(D) such
that Av(I/M) = p.

Proof. This follows from [HS00, 3.9]. We have to check that p � A has
unboundedly-many realizations, but this is easy using the extension-existence prop-
erty of forking (Fact 11.4.13) and the assumption that p is nonalgebraic. �

We can conclude:

Theorem 11.4.18. Let λ ≥ |T |. Assume that D is stable in some µ ≤ λ. Let δ
be a limit ordinal with cf δ ≥ κ(D) and let 〈Mi : i < δ〉 be an increasing sequence
of (D,λ)-homogeneous models. Then

⋃
i<δMi is (D,λ)-homogeneous.

Proof. By cofinality consideration, we can assume without loss of generality
that δ = cf δ and λ > δ. Also without loss of generality, λ is regular. Let Mδ :=⋃
i<δMi. Let A ⊆ |Mδ| have size less than λ and let p ∈ S<ωD (A). Let q ∈ S<ωD (Mδ)

be an extension of p and assume for sake of contradiction that p is not realized in
Mδ. By the moreover part of local character (Fact 11.4.13), there exists i < δ and
B ⊆ |Mi| such that |B| < κ(D) and q does not fork over B. By making A slightly
bigger we can assume without loss of generality that B ⊆ A.

Since p is not realized in Mδ, q is nonalgebraic. By Fact 11.4.17, there exists
an indiscernible set I over B with Av(I/Mδ) = q. Enlarging I if necessary, |I| = λ.
Since Mi+1 is (D,λ)-homogeneous, we can assume without loss of generality that
I ⊆ |Mi+1|. By Fact 11.4.14 used |A|-many times (recall |A| < λ), there exists
I0 ⊆ I with |I0| = λ and I0 indiscernible over A. Then Av(I0/Mδ) = Av(I/Mδ) = q
so p = Av(I0/A). By definition of average, if φ(x̄, ā) ∈ p, there exists b̄ ∈ I0 such
that |= φ[b̄, ā]. By indiscernibility over A, this is true for any b̄ ∈ I0, hence any
element of I0 realizes p. �
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Remark 11.4.19. When λ > |T | and κ(D) = ℵ0, Theorem 11.4.18 generalizes
to superstable tame AECs with amalgamation (see Chapter 7 and the more recent
Corollary 10.6.10). We do not know whether there is a generalization of Theorem
11.4.18 to AECs when λ = LS(K) (see also Question 10.6.12).

In homogeneous model theory, superstability follows from categoricity:

Lemma 11.4.20. If a homogeneous diagram D in a first-order theory T is cat-
egorical in a λ > |T |, then κ(D) = ℵ0.

Proof. By Fact 11.3.2 (applied to K := KD, recall Proposition 11.4.4), D is
stable in all cardinals and in particular in µ := ℵω(|T |). Since µℵ0 > µ, Fact 11.4.11
gives κ(D) = ℵ0. �

Note that Lemma 11.4.20 was known when λ 6= ℵω(|T |) (see [Hyt98, Theorem
3]). The case λ = ℵω(|T |) is new (in fact, once Lemma 11.4.20 is proven for
λ = ℵω(|T |), Hyttinen’s argument for transferring categoricity [Hyt98, 14.(ii)]
goes through).

The referee asked if Lemma 11.4.20 had an easier proof using tools specific to
homogeneous model theory. An easy proof of Lemma 11.4.20 when λ 6= ℵω(|T |) runs
as follows: By a standard Ehrenfeucht-Mostowski (EM) model argument of Morley
(see for example [Bal09, 8.21]), D is stable in every µ ∈ [|T |, λ). If λ > ℵω(|T |),
then D is stable in µ := ℵω(|T |) and µℵ0 > µ so by the stability spectrum theorem
(Fact 11.4.11), we must have that κ(D) = ℵ0. If λ < ℵω(|T |), λ is a successor and
we can use other EM model tricks. Only the case λ = ℵω(|T |) remains but to deal
with it, we are not aware of any tools specific to the homogeneous setup. The proof
above is in effect an application of a result of Shelah and Villaveces (see [SV99,
2.2.1] and Chapter 20) and an upward stability transfer of the author (Theorem
4.5.6).

We can conclude with a proof of Theorem 11.0.13 from the abstract. When
λ = |T |+, we could appeal to [GV06a] but prefer to prove a more general statement
using primes:

Theorem 11.4.21. If a homogeneous diagram D in a first-order theory T is

categorical in a λ > |T |, then the class K
|T |-sat
D of its (D, |T |)-homogeneous models

is categorical in all λ′ ≥ |T |. In particular, if D is also categorical in |T |, then D is
categorical in all λ′ ≥ |T |

Proof. Let K := KD be the class of D-models of T . By Proposition 11.4.4,
K is a LS(K)-tame AEC (where LS(K) = |T |) with amalgamation and no maximal
models. Furthermore K is categorical in λ. By Lemma 11.4.20, κ(D) = ℵ0. By
Theorem 11.4.18, the union of any increasing chain of (D, |T |)-homogeneous models
is (D, |T |)-homogeneous. Moreover, there is a unique (D, |T |)-homogeneous model
of cardinality |T | (see e.g. [GL02, 5.9]). So we get that:

(1) K
|T |-sat
D is an AEC with LS(K

|T |-sat
D ) = LS(K).

(2) K
|T |-sat
D has amalgamation, no maximal models, and is LS(K)-tame.

(3) K
|T |-sat
D is categorical in LS(K) and λ.

Thus the last sentence in the statement of the theorem follows from uniqueness
of homogeneous models. Let us prove the first. By Fact 11.4.13, nonforking induces

a type-full good |T |-frame on the class (K
|T |-sat
D )|T |. By Fact 11.4.6, K

|T |-sat
D has

primes. Now apply Theorem 11.2.8. �
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Theorem 11.4.22. If a homogeneous diagram D in a first-order theory T is
categorical in a λ > |T |, then it is categorical in all λ′ ≥ min(λ, h(|T |)).

Proof. By Theorem 11.4.21, K
|T |-sat
D is categorical in all λ′ ≥ |T |. In par-

ticular by categoricity in λ,
(
K
|T |-sat
D

)
≥λ

= (KD)≥λ, so KD is categorical in all

λ′ ≥ λ. To see that KD is categorical in all λ′ ≥ h(|T |), use Theorem 11.4.7 (or
just directly Fact 11.3.9). �



CHAPTER 12

Building prime models in fully good abstract
elementary classes

This chapter is based on [Vasa]. I thank a referee for suggestions that helped
refocus the topic of the paper and improve its presentation.

Abstract

We show how to build primes models in classes of saturated models of abstract
elementary classes (AECs) having a well-behaved independence relation:

Theorem 12.0.23. Let K be an almost fully good AEC that is categorical
in LS(K) and has the LS(K)-existence property for domination triples. For any
λ > LS(K), the class of Galois saturated models of K of size λ has prime models
over every set of the form M ∪ {a}.

This generalizes an argument of Shelah, who proved the result when λ is a
successor cardinal.

12.1. Introduction

Prime models (over sets) are a crucial ingredient in the proof of Morley’s cate-
goricity theorem [Mor65]. Morley’s construction gives a primary model : a model
whose universe can be enumerated so that the type of each element is isolated over
the previous ones. This construction can be generalized to certain non-elementary
context such as homogeneous model theory [She70] and even finitary abstract el-
ementary classes [HK06].

In general abstract elementary classes (AECs), it seems that the construction
breaks down due to the lack of even rudimentary compactness: it is not clear
how to define a usable generalization of the notion of an isolated type. Shelah
[She09a, Section III.4] works around this difficulty by assuming that the class
satisfies an axiomatization of superstable forking for its models of size λ (in Shelah’s
terminology, K has a successful good λ-frame) and uses domination to build for
every saturated M of size λ+ and every element a a saturated model N containing
M ∪ {a} and prime in the class of saturated models of K size λ+. Here, saturation
is defined in terms of Galois (orbital) types.

Shelah shows [She09a, Chapter II] that the assumption of existence of a
successful good λ-frame follows from strong local hypotheses: categoricity in λ,
λ+, a medium number of models in λ++, and set-theoretic hypotheses such as

2λ < 2λ
+

< 2λ
++

. In Chapters 4 and 6, we showed that successful good frames
can also be built assuming that the class satisfies global hypotheses: amalgamation,
categoricity in some high-enough cardinal, and a locality property called full tame-
ness and shortness. It is known that amalgamation and the locality property both

315
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follow from categoricity and a large cardinal axiom [MS90, Bon14b]. The global
hypotheses actually enable us to build the global generalization of a successful good
λ-frame: what we call an almost fully good independence relation (see Definition
12.2.2). In this chapter, we show that Shelah’s construction of prime models gen-
eralizes to this global setup and λ+ can be replaced by a limit cardinal. Thus we
obtain a general construction of primes (in an appropriate class of saturated mod-
els) that works assuming only the existence of a well-behaved independence notion
(this is Theorem 12.0.23 from the abstract).

Chapter 8 showed that assuming the global hypotheses above, existence of
primes over every set of the form M ∪{a} implies categoricity on a tail of cardinals.
Unfortunately, we cannot use the construction of prime models of this chapter to
deduce a new categoricity transfer in the global framework: the catch is that we
only get existence of primes in the subclass of saturated models of K: Given M
and a with M saturated, we obtain N saturated that is prime over M ∪ {a} in
the class of saturated models. That is (roughly1), if N ′ contains M ∪ {a} and is
saturated, then there exists a K-embedding f : N → N ′ fixing M and a. We
cannot conclude anything if M is not saturated (even if we know it is λ-saturated
for some λ < ‖M‖). This contrasts sharply with the more uniform results from the
first-order context (in a totally transcendental theory, a prime model exists over
every set) and finitary AECs [HK11, Lemma 5.4] (in a simple ℵ0-stable finitary
AEC with the extension property, an f -primary model exists over every set).

We can however use the construction of this chapter to obtain that in the global
framework, categoricity on a tail of cardinals implies the existence of primes. This
gives a converse to Theorem 8.0.2. The full proof appears in Theorem 8.5.23. We
state the result again here as an additional motivation:

Corollary 12.1.1. Let K be a fully LS(K)-tame and short AEC with amal-
gamation. Write H1 := i(2LS(K))

+ . Assume that K is categorical in some cardinal

λ ≥ H1. The following are equivalent:

(1) K is categorical in all λ′ ≥ H1.
(2) K≥H1

has primes over all sets of the form M ∪ {a}.

The background required to read this chapter is a basic knowledge of AECs (for
example Chapters 4-12 of Baldwin’s book [Bal09]). Some familiarity with good
frames and their generalizations (in particular the beginning of Chapter 6, Section
6.11, and Shelah’s construction of primes [She09a, Section III.4]) would be helpful
but we state all the necessary definitions here. We rely on a few results from [Jar16]
and Chapters 6, 10 but they are used as black boxes: little understanding of the
material there is needed.

12.2. Background

We give some background on independence that will be used in the next section.
We assume familiarity with the basics of AECs as laid out in e.g. [Bal09] or the
forthcoming [Gro]. We will use the notation from the preliminaries of Chapter 2.
All throughout this section, we assume:

Hypothesis 12.2.1. K is an AEC with amalgamation.

1the precise statement uses Galois types, see Definition 12.2.13.
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This will mostly be assumed throughout the chapter (Hypothesis 12.3.1 implic-
itly implies it by Definition 12.2.2.(1b)). Note however that assuming high-enough
categoricity and a large cardinal axiom, it will hold on a tail [Bon14b].

We will work use a global forking-like independence notion that has the basic
properties of forking in a superstable first-order theory. This is a stronger notion
than Shelah’s good frame [She09a, Chapter II] because in good frames forking is
only defined for types of length one. We invite the reader to consult Chapter 6 for
more explanations and motivations on global and local independence notions.

Definition 12.2.2 (Definition 6.8.1 and Definition 8.6.2). i = (K,^) is an
almost fully good independence relation if:

(1) K is an AEC satisfying the following structural assumptions:
(a) K<LS(K) = ∅ and K 6= ∅.
(b) K has amalgamation, joint embedding, and no maximal models.
(c) K is stable in all cardinals.

(2) (a) i is a (< ∞,≥ LS(K))-independence relation (see Definition 6.3.6).
That is, ^ is a relation on quadruples (M,A,B,N) with M ≤K N
and A,B ⊆ |N | satisfying invariance, monotonicity, and normal-

ity. We write A
N

^
M
B instead of ^(M,A,B,N), and we also say

gtp(ā/B;N) does not fork over M for ran ā
N

^
M
B.

(b) i has base monotonicity, disjointness (A
N

^
M
B implies A ∩ B ⊆ |M |),

symmetry, uniqueness (whenever M ≤K N and p, q ∈ gS<∞(N) do
not fork over M and are such that p �M = q �M , then p = q), and
the local character properties:

(i) If p ∈ gSα(M), there exists M0 ≤K M with ‖M0‖ ≤ |α| +
LS(K) such that p does not fork over M0.

(ii) If 〈Mi : i ≤ δ〉 is increasing continuous, p ∈ gSα(Mδ) and
cf δ > α, then there exists i < δ such that p does not fork over
Mi.

(c) i has the following weakening of the extension property: for any
M ≤K N and any p ∈ gSα(M), there exists q ∈ gSα(N) that extends
p and does not fork over M provided at least one of the following
conditions hold:

(i) M is saturated.
(ii) ‖M‖ = LS(K).

(iii) α ≤ LS(K).

(d) i has the left and right (≤ LS(K))-witness properties: A
N

^
M
B if and

only if for all A0 ⊆ A and B0 ⊆ B with |A0| + |B0| ≤ LS(K), we

have that A0

N

^
M
B0.

(e) i has full model continuity: For all limit ordinals δ, if for ` < 4,
〈M `

i : i ≤ δ〉 are increasing continuous such that for all i < δ, M0
i ≤K

M `
i ≤K M3

i for ` = 1, 2 and M1
i

M3
i

^
M0
i

M2
i , then M1

δ

M3
δ

^
M0
δ

M2
δ .
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We say that K is almost fully good if there exists ^ such that (K,^) is almost
fully good2.

Remark 12.2.3. In Theorem 6.15.1, it was shown that AECs with amalgama-
tion that satisfy a locality condition (full tameness and shortness) and are cate-
gorical in a high-enough cardinal are (on a tail) almost fully good. The threshold
cardinals were improved in Section 8.6. We use the name “almost” fully good be-
cause we do not assume the full extension property, only the weakening above. The
problem is that it is not known how to get the full extension property with the
aforementioned hypotheses (see the discussion in Section 6.15).

We will use (in the proof of Fact 12.3.3) that almost fully good AECs are tame
(a locality property for types introduced by Grossberg and VanDieren [GV06b]).
Recall that K is µ-tame (for µ ≥ LS(K)) if for any distinct p, q ∈ gS(M) there
exists M0 ∈ K≤LS(K) with M0 ≤K M such that p � M0 6= q � M0. Using local
character and uniqueness (see e.g. [GK, p. 15]) we have:

Fact 12.2.4. If K is almost fully good, then K is LS(K)-tame.

We will also make use of limit models (see [GVV16] for history and motiva-
tion). We will use a global definition, where we permit the limit model and the
base to have different sizes. This extra generality is used: in (4) in Lemma 12.3.4,
M `
i and M `

i+1 may have different sizes.

Definition 12.2.5. Let M0 ≤K M be models in K≥LS(K). M is limit over
M0 if there exists a limit ordinal δ and a strictly increasing continuous sequence
〈Ni : i ≤ δ〉 such that N0 = M0, Nδ = M , and for all i < δ, Ni+1 is universal over
Ni.

We say that M is limit if it is limit over some M ′ ≤K M .

We will use the following notation to describe classes of saturated models:

Definition 12.2.6. For λ > LS(K), Kλ-sat is the class of λ-saturated (accord-
ing to Galois types) models in K≥λ. We order Kλ-sat with the strong substructure
relation induced from K.

In an almost fully good AEC, classes of λ-saturated models are well-behaved
and limit models are saturated. This is a combination of results of Shelah [She09a,
Chapter II] and VanDieren [Van16b], and is key in the construction of prime
models of the next section.

Fact 12.2.7. Assume that K is almost fully good. Then:

(1) If M,N ∈ K are limit and ‖M‖ = ‖N‖, then M ∼= N . In particular (if
‖M‖ > LS(K)), M and N are saturated.

(2) For any λ > LS(K), Kλ-sat is an AEC with LS(Kλ-sat) = λ. Moreover,
Kλ-sat is almost fully good.

Proof. Let i be an almost fully good independence relation on K.

(1) Let M,N ∈ K be limit models with λ := ‖M‖ = ‖N‖. First, by a back
and forth argument we can assume that M is limit over some M0 ∈ Kλ

and N is limit over some N0 ∈ Kλ (see Proposition 10.3.1). Next, note
that the restriction of i to types of length one and models of size λ induces

2the relation ^ is in fact unique, see Chapter 3.
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a good λ-frame (see [She09a, Chapter II]). The result now follows from
[She09a, Lemma II.4.8] (see [Bon14a, Theorem 9.2] for a detailed proof).

(2) We prove the result when λ is a successor cardinal, and the result for λ
limit easily follows (the moreover part is also straightforward to check).
So assume that λ = µ+. Note that K is µ-superstable in the sense
of [Van16b, Definition 5] (because nonforking implies nonsplitting, see
the proof of Fact 10.4.8). Similarly, K is µ+-superstable. By the first
part, limit models of cardinality µ+ are unique. Therefore we can ap-
ply [Van16b, Theorem 22] which tells us that the union of an increasing

chain of µ+-saturated models is µ+-saturated. That LS(Kµ+-sat) = µ+

follows from stability and the other axioms of an AEC are straightforward
to check.

�

Remark 12.2.8. Fact 12.2.7.(2) is an improvement on the threshold cardinal
in Chapter 7 (where it is shown that that Kλ-sat is an AEC for all λ ≥ i(2LS(K))

+).

Domination will be the notion replacing isolation in this chapter’s construction
of prime models:

Definition 12.2.9. Let i = (K,^) be an almost fully good independence
relation. (a,M,N) is a domination triple if M ≤K N , a ∈ |N |\|M |, and for any

N ′ ≥K N and any B ⊆ |N ′|, if a
N ′

^
M
B, then N

N ′

^
M
B.

Remark 12.2.10. This is a variation on Shelah’s uniqueness triples [She09a,
Definition II.5.3]. In fact by Lemma 6.11.7, uniqueness triples and domination
triples coincide in our framework (this will be used in the proof of Fact 12.3.3,
although an understanding of the exact definition of uniqueness triples is not needed
for this chapter).

A key property is the existence property for domination triples3:

Definition 12.2.11. Let i = (K,^) be an almost fully good independence
relation and let λ ≥ LS(K). We say that i has the λ-existence property for domi-
nation triples if for every M ∈ Kλ and every nonalgebraic p ∈ gS(M), there exists
a domination triple (a,M,N) so that p = gtp(a/M ;N).

The existence property for domination triples is a reasonable hypothesis: if the
independence relation does not have it, we can restrict ourselves to a subclass of
saturated models (see the moreover part of Fact 12.2.7.(2)).

Fact 12.2.12 (Lemma 6.11.12). Let i = (K,^) be an almost fully good in-
dependence relation. For every λ > LS(K), i � Kλ-sat (the restriction of i to
λ-saturated models) has the λ-existence property for domination triples.

Finally, we recall the definition of prime models in the framework of abstract
elementary classes. This does not need amalgamation and is due to Shelah [She09a,
Section III.3]. While it is possible to define what it means for a model to be prime
over an arbitrary set (see Definition 8.5.1), here we focus on primes over sets of

3This is analogous to Shelah’s definition of a weakly successful good λ-frame [She09a, Defi-
nition III.1.1] which means the frame has the existence property for uniqueness triples.
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the form M ∪ {a}. The technical point in the definition is that since we are not
working inside a monster model, how M ∪ {a} is embedded matters. Thus we use
a formulation in terms of Galois types: instead of saying that N is prime over
M ∪ {a}, we say that (a,M,N) is a prime triple:

Definition 12.2.13. Let K be an AEC (not necessarily with amalgamation).

(1) A prime triple is (a,M,N) such that M ≤K N , a ∈ |N |\|M | and for every
N ′ ∈ K, a′ ∈ |N ′| such that gtp(a/M ;N) = gtp(a′/M ;N ′), there exists
f : N −→

M
N ′ so that f(a) = a′.

(2) We say that K has primes if for M ∈ K and every nonalgebraic p ∈
gS(M), there exists a prime triple representing p, i.e. there exists a prime
triple (a,M,N) so that p = gtp(a/M ;N).

(3) We define localizations such as “Kλ has primes” or “Kλ-sat
λ has primes”

in the natural way (in the second case, we ask that all models in the
definition be saturated).

12.3. Building primes over saturated models

We show that in almost fully good AECs, there exists primes among the satu-
rated models (see Definition 12.2.13). For models of successor size, this is shown in
[She09a, Claim III.4.9] (or in [Jar] with slightly weaker hypotheses). We general-
izes Shelah’s proof to limit sizes here. This is the core of the chapter. Throughout
this section, we assume:

Hypothesis 12.3.1.

(1) K is an almost fully good AEC, as witnessed by i = (K,^).
(2) K is categorical in LS(K).
(3) i has the LS(K)-existence property for domination triples (see Definition

12.2.11).

We consider theses hypotheses reasonable: Remark 12.2.3 gives conditions un-
der which an AEC is almost fully good and Fact 12.2.12 shows that we can then
restrict it to a subclass of saturated models to obtain the existence property for
domination triples and categoricity in LS(K).

Note that Hypothesis 12.3.1.(3) is used in the proof of Fact 12.3.3. We do not
know whether it follows from the other two hypotheses.

We start by showing that domination triples are closed under unions. This is
a key consequence of full model continuity.

Lemma 12.3.2. Let 〈Mi : i < δ〉, 〈Ni : i < δ〉 be increasing and assume that
(a,Mi, Ni) are domination triples for all i < δ. Then (a,

⋃
i<δMi,

⋃
i<δ Ni) is a

domination triple.

Proof. For ease of notation, we work inside a monster model C and write

A^
M
B for A

C

^
M
B. Let Mδ :=

⋃
i<δMi, Nδ :=

⋃
i<δ Ni. Assume that a ^

Mδ

N with

Mδ ≤K N (by extension for types of length one, we can assume this without loss of
generality). By local character, for all sufficiently large i < δ, a^

Mi

N . By definition

of domination triples, Ni^
Mi

N . By full model continuity, Nδ ^
Mδ

N . �
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The conclusion of the next fact is a key step in Shelah’s construction of a
successor frame in [She09a, Chapter II]. The fact says that if M0 ≤K M1 are
of the same successor size, then their resolutions satisfy a natural independence
property on a club. In the framework of this chapter, this is due to Jarden [Jar16].
To give the reader a feeling for the difficulties encountered, we first explain in the
proof how the (straightforward) first-order argument fails to generalize.

Fact 12.3.3. For every µ ≥ LS(K), for every M0 ≤K M1 both in Kµ+ , if

〈M `
i : i < µ+〉 are increasing continuous resolutions of M ` and all are limit models4

in Kµ, ` = 0, 1, then the set of i < µ+ so that M0
M1

^
M0
i

M1
i is a club.

Proof. Let us first see how the first-order argument would go. By local char-

acter, for every i < µ+, there exists ji < µ+ such that M1
i

M1

^
M0
ji

M0. Pick i∗ < µ+

such that ji < i∗ for every i < i∗. Using symmetry and the fact that forking
is witnessed by a formula (this is where we use the first-order theory), it is then

straightforward to see that M0
M1

^
M0
i∗

M1
i∗ . Thus i∗ has the desired property, and the

argument shows we can find a closed unbounded subset of such i∗. Here however
we do not have that forking is witnessed by a formula, or even a finite set (we only
have the LS(K)-witness property, see Definition 12.2.2.(2d)).

Full model continuity (Definition 12.2.2.(2e)) seems to be the replacement we
are looking for, but in the argument above we do not have that M0

ji
≤K M1

i

so cannot use it! It is open whether the appropriate generalization of full model
continuity holds here.

On to the actual proof. We show the result when µ = LS(K). Once this is
done, if µ > LS(K) we can apply the “µ = LS(K)” case to the class Kµ-sat (by
Fact 12.2.7.(2) it is an almost fully good AEC and LS(Kµ-sat) = µ).

We now want to apply [Jar16, Theorem 7.8]. The conclusion there is that
for any model M0,M1 ∈ Kµ+ , M0 ≤NF

Kµ+
M1 if and only if M0 ≤K M1, where

M0 ≤NF
Kµ+

M1 is defined to hold if and only if there exists increasing continuous

resolutions of M0 and M1 as here. Let us check that the hypotheses of [Jar16,
Theorem 7.8] are satisfied. First, amalgamation in LS(K)+ and LS(K)-tameness
hold (by definition of an almost fully good AEC and Fact 12.2.4). Second, [Jar16,
Hypothesis 6.5] holds: K is categorical in LS(K), has a semi-good LS(K)-frame
(this is weaker than the existence of an almost fully good independence relation,
in fact the frame will be good), satisfies the conjugation property (by [She09a,
III.1.21] which tells us that conjugation holds in any good LS(K)-frame categorical
in LS(K)), and has the existence property for uniqueness triples by Hypothesis
12.3.1.(3) and Remark 12.2.10. Therefore the hypotheses of Jarden’s theorem are
satisfied so its conclusion holds. �

We can now generalize the proof of [She09a, Claim III.4.3] to limit cardinals.
Roughly, it tells us that every nonalgebraic type over a saturated model has a
resolution into domination triples.

4And hence if µ > LS(K) are saturated (Fact 12.2.7.(1)).
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Lemma 12.3.4. Let λ > LS(K) and let δ := cf λ. Let M0 ∈ Kλ be saturated
and let p ∈ gS(M0) be nonalgebraic. Then there exists a saturated M1 ∈ Kλ,
an element a ∈ |M1|, and increasing continuous resolutions 〈M `

i : i ≤ δ〉 of M `,
` = 0, 1 such that for all i < δ:

(1) p = gtp(a/M0;M1).
(2) a ∈ |M1

0 |.
(3) p does not fork over M0

0 .
(4) For ` = 0, 1, M `

i ∈ K[LS(K),λ) and M `
i+1 is limit over M `

i .

(5) (a,M0
i ,M

1
i ) is a domination triple.

Proof. For ` = 0, 1, we first choose by induction 〈N `
i : i ≤ λ〉 increasing

continuous and an element a that will satisfy some weaker requirements. In the
end, we will rename the N `

i ’s to get the desired M `
i ’s and M1. We require that for

all i < λ:

(i) N0
0 ≤K M0 and p does not fork over N0

0 .
(ii) a ∈ |N1

0 | and p � N0
0 = gtp(a/N0

0 ;N1
0 ).

(iii) For ` = 0, 1, N `
i ∈ K|i|+LS(K) and N0

i ≤K N1
i .

(iv) gtp(a/N0
i ;N1

i ) does not fork over N0
0 .

(v) If i is odd, and ` = 0, 1, then N `
i+1 is limit over N `

i .

(vi) If i is even and (a,N0
i , N

1
i ) is not a domination triple, then N1

i

N1
i+1

/̂
N0
i

N0
i+1.

This is possible. First pick N0
0 ∈ KLS(K) such that N0

0 ≤K M0 and p does not

fork over N0
0 . This is possible by local character. Now pick N1

0 ∈ KLS(K) such that

N0
0 ≤K N1

0 and there is a ∈ |N1
0 | with gtp(a/N0

0 ;N1
0 ) = p � N0

0 . This takes care of
the case i = 0. For i limit, take unions. Now assume that i = j + 1 is a successor.
We consider several cases:

• If j is even and (a,N0
j , N

1
j ) is not a domination triple, then there must ex-

ist witnesses N0
j+1, N

1
j+1 ∈ KLS(K)+|j| such that N0

j ≤K N0
j+1, N0

j+1 ≤K

N1
j+1, N1

j ≤K N1
j+1, a

N1
j+1

^
N0
j

N0
j+1 but N1

j

N1
j+1

/̂
N0
j

N0
j+1. This satisfies all the

conditions (we know that gtp(a/N0
j ;N1

j ) does not fork over N0
0 , so by

transitivity also gtp(a/N0
j+1;N1

j+1) does not fork over N0
0 ).

• If j is even and (a,N0
j , N

1
j ) is a domination triple, take N `

j+1 := N `
j , for

` = 0, 1.
• If j is odd, pick N0

i ∈ KLS(K)+|j| limit over N0
j and N1

i limit over N0
i and

N1
j so that gtp(a/N0

i ;N1
i ) does not fork over N0

0 . This is possible by the
extension property for types of length one.

This is enough. By the odd stages of the construction, and basic properties of

universality, for all i < λ, ` = 0, 1, N `
i+2 is universal over N `

i . Thus for ` = 0, 1 and

i ≤ λ a limit ordinal, N `
i is limit. In particular, by Fact 12.2.7.(1), N `

λ is saturated.
By uniqueness of saturated models, N0

λ
∼=N0

0
M0. By uniqueness of the nonforking

extension, without loss of generality N0
λ = M0. Now let C be the set of limit i < λ

such that (a,N0
i , N

1
i ) is a domination triple. We claim that C is a club:

• C is closed by Lemma 12.3.2.
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• C is unbounded: given α < λ, let µ := |α|+ LS(K). Let Eµ be the set of

i < µ+ such that i is limit and N0
µ+

N1
µ+

^
N0
i

N1
i . By Fact 12.3.3, Eµ is a club.

The even stages of the construction imply that for i ∈ Eµ, (a,N0
i , N

1
i ) is

a domination triple. In other words, Eµ ⊆ C. Now pick β ∈ Eµ\(α+ 1).
We have that α < β and β ∈ Eµ ⊆ C. This completes the proof that C is
unbounded.

Let 〈αi : i < δ〉 (recall that δ = cf λ) be a cofinal strictly increasing continuous
sequence of elements of C. For i < δ, ` = 0, 1, let M `

i := N `
αi and let M1 := M1

λ

(note that M1 is saturated by what has been observed above). This works: Clauses
(1), (2), (3) are straightforward to check using the monotonicity and uniqueness
properties of forking. Clause (5) holds by definition of C. As for (4), we have
observed above that for ` = 0, 1, for all i < λ, N `

i+2 is universal over N `
i . Hence for

all limit ordinals i < j < λ, N `
j is limit over N `

i . In particular because C contains

only limit ordinals, for all i < δ, N `
αi+1

is limit over N `
αi , as desired. �

In [She09a, Claim III.4.9], Shelah observes that triples as in the conclusion
of Lemma 12.3.4 are prime triples. For the convenience of the reader, we include
the proof here. We will use the following fact which follows from the uniqueness
property of forking and some renaming.

Fact 12.3.5 (Lemma 6.12.6). For ` < 2, i < 4, let M `
i ∈ K be such that for

i = 1, 2, M `
0 ≤K M `

i ≤K M `
3 .

If M `
1

M`
3

^
M`

0

M `
2 for ` < 2, fi : M1

i
∼= M2

i for i = 0, 1, 2, and f0 ⊆ f1, f0 ⊆ f2, then

f1 ∪ f2 can be extended to f3 : M1
3 →M2

4 , for some M2
4 with M2

3 ≤K M2
4 .

We can now give a proof of Theorem 12.0.23 from the abstract. For the conve-
nience of the reader we restate Hypothesis 12.3.1 here.

Theorem 12.3.6. Let K be an almost fully good AEC that is categorical in
LS(K) and has the LS(K)-existence property for domination triples.

For any λ > LS(K), Kλ-sat
λ has primes (see Definition 12.2.13). That is, for

any saturated M ∈ Kλ and any nonalgebraic p ∈ gS(M), there exists a triple
(a,M,N) such that M ≤K N , N ∈ Kλ is saturated, p = gtp(a/M ;N), and
whenever p = gtp(b/M ;N ′) with N ′ ∈ Kλ saturated, there exists f : N −→

M
N ′

such that f(a) = b.

Proof. Let M ∈ Kλ be saturated and let p ∈ gS(M) be nonalgebraic. We
must find a triple (a,M,N) such that M ≤K N , N ∈ Kλ is saturated, p =
gtp(a/M ;N), and (a,M,N) is a prime triple among the saturated models of size
λ.

Set M0 := M and let δ := cf λ. Let M1, a, 〈M `
i : i ≤ δ〉 be as described

by the statement of Lemma 12.3.4. Recall (this is key) that ‖M `
i ‖ < λ for any

i < δ. We show that (a,M0,M1) is as desired. By assumption, M0 ≤K M1, p =
gtp(a/M0;M1), and M1 ∈ Kλ is saturated. It remains to show that (a,M0,M1)
is a prime triple in Kλ-sat

λ . Let M ′ ∈ Kλ-sat
λ , a′ ∈ |M ′| be given such that

gtp(a′/M0;M ′) = gtp(a/M0;M1). We want to build f : M1 −−→
M0

M ′ so that

f(a) = a′.
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We build by induction an increasing continuous chain of embeddings 〈fi : i ≤ δ〉
so that for all i ≤ δ:

(1) fi : M1
i −−→

M0
i

M ′.

(2) fi(a) = a′.

This is enough since then f := fδ is as required. This is possible: for i = 0, we
use that M ′ is saturated, hence realizes p � M0

0 , so there exists f0 : M1
0 −−→

M0
0

M ′

witnessing it, i.e. f0(a) = a′. At limits, we take unions. For i = j + 1 successor,
let µ := ‖M1

j ‖ + ‖M0
i ‖. Pick Nj ≤K M ′ with Nj ∈ Kµ and Nj containing both

fj [M
1
j ] and M0

i .

By assumption, p does not fork overM0
0 and by assumption p = gtp(a′/M0;M ′),

so by monotonicity of forking, a′
Nj

^
M0
j

M0
j+1. We know that (a,M0

j ,M
1
j ) is a dom-

ination triple, hence applying fj and using invariance, (a′,M0
j , fj [M

1
j ]) is a dom-

ination triple. Therefore fj [M
1
j ]

Nj

^
M0
j

M0
j+1. By a similar argument, we also have

M1
j

M1
j+1

^
M0
j

M0
j+1. By Fact 12.3.5, the map fj ∪ idM0

j+1
can be extended to a K-

embedding g : Mα
j+1 → N ′j for some N ′j ≥K Nj of size µ. Since µ < λ and M ′ is

saturated, there exists h : N ′j −−→
Nj

M ′. Let fj+1 := h ◦ g. �



CHAPTER 13

µ-Abstract elementary classes and other
generalizations

This chapter is based on [BGL+16] and is joint work with Will Boney, Rami
Grossberg, Michael Lieberman, and Jǐŕı Rosický. We thank the referee for questions
that helped us clarify some aspects of this chapter.

Abstract

We introduce µ-Abstract Elementary Classes (µ-AECs) as a broad framework
for model theory that includes complete boolean algebras and metric spaces, and
begin to develop their classification theory. Moreover, we note that µ-AECs corre-
spond precisely to accessible categories in which all morphisms are monomorphisms,
and begin the process of reconciling these divergent perspectives: for example, the
preliminary classification-theoretic results for µ-AECs transfer directly to accessible
categories with monomorphisms.

13.1. Introduction

In this chapter, we offer a broad framework for model theory, µ-abstract elemen-
tary classes, and connect them with existing frameworks, namely abstract elemen-
tary classes and, from the realm of categorical model theory, accessible categories
(see [MP89], [AR94]) and µ-concrete abstract elementary classes (see [LR]).

All of the above frameworks have developed in response to the need to ana-
lyze the model theory of nonelementary classes of mathematical structures; that
is, classes in which either the structures themselves or the relevant embeddings
between them cannot be adequately described in (finitary) first order logic. This
project was well underway by the 50’s and 60’s, which saw fruitful investigations
into infinitary logics and into logics with additional quantifiers (see [Dic75] and
[BFB85] for summaries). Indeed, Shelah [She00, p. 41] recounts that Keisler and
Morley advised him in 1969 that this direction was the future of model theory and
that first-order had been mostly explored. The subsequent explosion in stability
theory and its applications suggest otherwise, naturally, but the nonelementary con-
text has nonetheless developed into an essential complement to the more classical
picture.

On the model-theoretic side, Shelah was the leading figure, publishing work on
excellent classes ([She83a] and [She83b]) and classes with expanded quantifiers
[She75b], and, of greatest interest here, shifting to a formula-free context through
the introduction of abstract elementary classes (or AECs) in [She87a]. The latter
are a purely semantic axiomatic framework for abstract model theory that encom-
passes first order logic as well as infinitary logics incorporating additional quantifiers
and infinite conjuncts and disjuncts, not to mention certain algebraically natural
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examples without an obvious syntactic presentation—see [BET07]. It is important
to note, though, that AECs still lack the generality to encompass the logic Lω1,ω1

or complete metric structures.
Even these examples are captured by accessible categories, a parallel, but sig-

nificantly more general, notion developed simultaneously among category theorists,
first appearing in [MP89] and receiving comprehensive treatments both in [MP89]
and [AR94]. An accessible category is, very roughly speaking, an abstract cate-
gory (hence, in particular, not a category of structures in a fixed signature) that is
closed under sufficiently directed colimits, and satisfies a kind of weak Löwenheim-
Skolem property: any object in the category can be obtained as a highly directed
colimit of objects of small size, the latter notion being purely diagrammatic and in-
ternal to the category in question. In particular, an accessible category may not be
closed under arbitrary directed colimits, although these are almost indispensable in
model-theoretic constructions: the additional assumption of closure under directed
colimits was first made in [Ros97]—that paper also experimented with the weaker
assumption of directed bounds, an idea that recurs in Section 13.6 below.

Subsequent work (see [BR12], [Lie11a], and [LR16]) has resulted in a precise
characterization of AECs as concrete accessible categories with added structure,
namely as pairs (K, U), where

• K is an accessible category with all morphisms monomorphisms and all
directed colimits, and

• U : K → Set (with Set the category of sets and functions) is a faithful
(“underlying set”) functor satisfying certain additional axioms.

Details can be found in Section 3 of [LR16]. Of particular importance is the extent
to which U preserves directed colimits; that is, the extent to which directed colimits
are concrete. If we assume that U preserves arbitrary directed colimits, we obtain
a category equivalent to an AEC. If we make the weaker assumption that U merely
preserves colimits of µ-directed, rather than directed, diagrams, we arrive at the
notion of a µ-concrete AEC (see [LR]). Note that, although directed colimits may
not be preserved by U (that is, they may not be “Set-like”), they still exist in
the category K—metric AECs, whose structures are built over complete metric
structures, are a crucial example of this phenomenon. One might ask, though,
what would happen if we weaken this still further: what can we say if we drop the
assumption that K is closed under directed colimits, and merely assume that the
colimits that exist in K and are “Set-like” are those that are µ-directed for some
µ?

Here we introduce a framework, called µ-abstract elementary classes, that rep-
resents a model-theoretic approximation of that generalized notion, and which,
most importantly, encompasses all of the examples considered in this introduction,
including classes of models in infinitary logics Lκ,µ, AECs, and µ-concrete AECs.
This is not done just for the sake of generalization but in order to be able to deal
with specific classes of structures that allow functions with infinite arity (like σ-
complete Boolean algebras or formal power series). Moreover, such classes also
occur naturally in the development of the classification theory for AECs, as can
be seen by their use in Chapters 6 and 7 (there the class studied is the µ-AEC of
µ-saturated models of an AEC).
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We define µ-AECs in Section 13.2. We then show that the examples discussed
above fit into this framework. We establish an analog of Shelah’s Presentation
Theorem for µ-AECs in Section 13.3. In Section 13.4 we show that µ-AECs are,
in fact, extraordinarily general: up to equivalence of categories, the µ-AECs are
precisely the accessible categories whose morphisms are monomorphisms. Although
this presents certain obstacles—it follows immediately that a general µ-AEC will
not admit Ehrenfeucht-Mostowski constructions—there is a great deal that can be
done on the µ-AEC side of this equivalence. In section 13.5, we show assuming the
existence of large cardinals that µ-AECs satisfy tameness, an important locality
property in the study of AECs. In Section 13.6, with the additional assumption of
directed bounds, we begin to develop the classification theory of µ-AECs. Note that
the results of Sections 13.5 and 13.6 transfer immediately to accessible categories
with monomorphisms.

13.2. Preliminaries

We now introduce the notion of a µ-abstract elementary class, or µ-AEC. As
with ordinary AECs, we give a semantic/axiomatic definition for a class of struc-
tures and a notion of strong substructure.

Definition 13.2.1. Fix an infinite cardinal µ.
A µ-ary language L consists of a set of function symbols 〈Fi : i ∈ IF 〉 and

relations 〈Rj : j ∈ JR〉 (here, IF , JR are index sets) so that each symbol has an
arity, denoted n(Fi) or n(Rj), where n is an ordinal valued function n : {Rj , Fi |
i ∈ IF , j ∈ JR} → µ.

Given a µ-ary language L, an L-structure M is 〈|M |, FMi , RMj 〉i∈LF ,j∈LR where

|M | is a set, called the universe of M ; FMi : n(Fi)|M | → |M | is a function of arity
n(Fi); and RMj ⊂ n(Rj)|M | is a relation of arity n(Rj).

We say that 〈K,≤K〉 is a µ-abstract class provided

(1) K is a class of L-structure for a fixed µ-ary language L := L(K).
(2) 〈K,≤K〉 is a partially pre-ordered class (that is, ≤K is reflexive and tran-

sitive) such that M ≤K N implies that M is an L-submodel of N .
(3) 〈K,≤K〉 respects L-isomorphisms; that is, if f : N → N ′ is an L-

isomorphism and N ∈ K, then N ′ ∈ K and if we also have M ∈ K
with M ≤K N , then f(M) ∈ K and f(M) ≤K N ′;

We often do not make the distinction between K and (K,≤K).

An L-homomorphism is called a substructure embedding if it is injective and
reflects all relations. Both inclusions of a substructure and isomorphisms are sub-
structure embeddings. Conversely, if h : M → N is a substructure embedding then
M is isomorphic to the substructure h(M) of N . The category of all L-structures
and substructure embeddings is denoted by Emb(L). Then an abstract class is the
same as a subcategory K of Emb(L) which is

(1) Replete, i.e., closed under isomorphic objects.
(2) Iso-full, i.e., containing isomorphisms between K-objects.

Let 〈I,≤〉 be a partially ordered set. We say that I is µ-directed, where µ is a
regular cardinal, provided that for every J ⊆ I with card (J) < µ, there exists r ∈ I
such that r ≥ s for all s ∈ J . Thus ℵ0-directed is the usual notion of directed set.
Let 〈K,≤K〉 be an abstract class. A family {Mi | i ∈ I} ⊆ K is called a µ-directed
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system provided I is a µ-directed set and i < j implies Mi ≤K Mj . This is the
same as a µ-directed diagram in K.

Definition 13.2.2. Suppose 〈K,≤K〉 is a µ-abstract class, with µ a regular
cardinal. We say that 〈K,≤K〉 is a µ-abstract elementary class if the following
properties hold:

(1) (Coherence) if M0,M1,M2 ∈ K with M0 ≤K M2, M1 ≤K M2, and M0 ⊆
M1, then M0 ≤K M1;

(2) (Tarski-Vaught chain axioms) If {Mi ∈ K : i ∈ I} is a µ-directed system,
then:
(a)

⋃
i∈IMi ∈ K and, for all j ∈ I, we have Mj ≤K

⋃
i∈IMi; and

(b) if there is some N ∈ K so that, for all i ∈ I, we have Mi ≤K N , then
we also have

⋃
i∈IMi ≤K N .

(3) (Löwenheim-Skolem-Tarski number axiom) There exists a cardinal λ =
λ<µ ≥ card (L(K)) + µ such that for any M ∈ K and A ⊆ |M |, there is

some N ≤K M such that A ⊆ |N | and card(N) ≤ card (A)
<µ

+λ. LS(K)
is the minimal cardinal λ with this property.1

Note that this definition mimics the definition of an AEC. We highlight the key
differences:

Remark 13.2.3.

(1) Functions and relations are permitted to have infinite arity.
(2) The Löwenheim-Skolem-Tarski axiom only guarantees the existence of

submodels of certain cardinalities, subject to favorable cardinal arith-
metic.

(3) Closure under unions of ≤K-increasing chains does not hold uncondition-
ally: the directed systems must in fact be µ-directed.

(4) The Tarski-Vaught axioms describe µ-directed systems rather than chains
and say that K is closed under µ-directed colimits in Emb(L). One could
have only required that every chain of models indexed by an ordinal of
cofinality at least µ has a least upper bound. When µ = ℵ0, this is well-
known to give an equivalent definition (see e.g. [AR94] 1.7, though the
central idea of the proof dates back to Iwamura’s Lemma, [Iwa44]). In
general, though, this is significantly weaker (see [AR94] Exercise 1.c).
Concretely, proving the presentation theorem becomes problematic if one
opts instead for the chain definition.

(5) Replacing the Tarski-Vaught axioms by K being closed under µ-directed
colimits in Emb(L) makes sense also when K is a λ-abstract class for
λ > µ.

(6) As a notational remark, we use card () to denote the size of sets and
(universes) of models. This breaks with convention, but is to avoid | · |
being used to denote both universe and cardinality, leading to the notation
‖M‖ for the cardinality of the universe of a model.

As promised in the introduction, µ-AECs subsume many previously studied
model theoretic frameworks:

(1) All AECs are ℵ0-AECs with the same Löwenheim-Skolem number. This
follows directly from the definition. See [Gro02] for examples of classes

1Note that LS(K) really depends on µ but µ will always be clear from context.
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of structures that are AECs; in particular, AECs subsume classical first-
order model theory.

(2) Given an AEC K with amalgamation (such as models of a first order
theory), and a regular cardinal µ > LS(K), the class of µ-saturated2

models of K is a µ-AEC with Löwenheim-Skolem number LS(K)<µ. If
K is also tame and stable (or superstable), then the results of Boney and
Vasey (Chapter 7) show that this is true even for certain cardinals below
the saturation cardinal µ.

(3) Let λ ≥ µ be cardinals with µ regular. Let LA be a fragment of Lλ,µ (recall
that a fragment is a collection of formulas closed under sub formulas and
first order connectives), and let T be a theory in that fragment. Then
K = (Mod T,�LA) is a µ-AEC with LS(K) = (card (LA) + card (T ))<µ,
where M �LA N if and only if for all φ(x̄) ∈ LA and m ∈ |M | of matching
arity (which might be infinite), we have that M |= φ[ā] if and only if
N |= φ[ā].

(4) Complete metric spaces form an ℵ1-AECs. This follows from the above
item because metric spaces are axiomatizable in first order and complete-
ness is axiomatized by the Lω1,ω1

sentence

∀〈xn : n < ω〉[(∧ε∈Q+∨N<ω∧N<n<m<ωd(xn, xm) < ε) =⇒ ∃y(∧ε∈Q+∨N<ω∧N<n<ωd(xn, y) < ε)]

Although this does not capture the [0, 1]-value nature of many treatments
of the model theory of metric structures, such as [BYBHU08], this can
be incorporated in one of two ways. One could add the real numbers
as a second sort, interpret relations as functions between the sorts, and
axiomatize all of the continuity properties. A less direct approach is taken
in [Bona], where a complete structure is approximated by a dense subset
describable in Lω1,ω.

(5) Along the lines of complete metric spaces, µ-complete boolean algebras
are µ-AECs because µ-completeness can be written as a Lµ,µ-sentence.

(6) Any µ-concrete AEC (or µ-CAEC), in the sense of [LR], is a µ-AEC.
(7) Any µ-ary functorial expansion of a µ-AEC is naturally a µ-AEC. See

Section 2.1 immediately below.
(8) Generalizing L(Q), consider classes axiomatized by Lλ,µ(Qχ), where Qχ

is the quantifier “there exist at least χ” (the standard L(Q) is Lω,ω(Qℵ1)
in this notation). As in (3), let T be a theory in Lλ,µ(Qχ) and LA
be a fragment of this logic containing T . Since Qχ is Lχ,χ expressible,
we already have K0 := (ModT,≤LA) is a (µ + χ)-AEC with LS(K0) =
(card (LA) + χ)<(µ+χ). For a stronger result, if we set M ≤∗LA N by

M ≤LA N and if Qχxφ(x, ȳ) ∈ LA with M � ¬Qχxφ(x,m), then
φ(M, ā) = φ(N, ā)

then K1 := (ModT,≤∗LA) is a µ-AEC with LS(K1) = (card (LA) + χ)<µ.

Moreover, if χ = χ+
0 and LA only contains negative instances of Qχ, then

LS(K1) = (card (LA) + χ0)<µ.

We now briefly discuss the interplay between certain µ-AECs and functorial
expansions.

2In the sense of Galois types.
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13.2.1. Functorial expansions and infinite summation. Recall from Def-
inition 2.3.1:

Definition 13.2.4. Let K be a µ-AEC with L = L(K) and let L̂ be a λ-ary

expansion of L with λ ≥ µ. A λ-ary L̂-functorial expansion of K is a class K̂ of

L̂-structures satisfying:

(1) The map M̂ 7→ M̂ � L is a bijection from K̂ onto K. For M ∈ K, we

write M̂ for the unique element of K̂ whose reduct is M .

(2) Invariance: If f : M ∼= N , then f : M̂ ∼= N̂ .

(3) Monotonicity: If M ≤K N , then M̂ ⊆ N̂ .

We order K̂ by M̂ ≤K̂ N̂ if and only if M ≤K N .

Fact 13.2.5 (Proposition 2.3.7). Let K be a µ-AEC and let K̂ be a µ-ary

functorial expansion of K. Then (K̂,≤K̂) is a µ-AEC with LS(K̂) = LS(K).

Remark 13.2.6. A word of warning: if K is an AEC and K̂ is a functorial

expansion of K, then K and K̂ are isomorphic (as categories). In particular, any

directed system in K̂ has a colimit. However, K̂ may not be an AEC if L(K̂) is

not finitary: the colimit of a directed system in K̂ may not be the union: relations
may need to contain more elements. However, if we change the definition of AEC

to allow languages of infinite arity (see Remark 13.2.3.(5)), then K̂ will be an AEC
in that new sense, i.e. an “infinitary” AEC.

Remark 13.2.7. Let K be a µ-AEC and consider a L̂-functorial expansion K̂

of K. Then any function and relation symbols from L̂ are interpretable in K in
the sense of [Ros81] (this idea goes back to [Law63]). This means that function
symbols of arity α are natural transformations ϕ : Uα → U where U : K → Set
is the forgetful functor (given as the domain restriction of the forgetful functor
Emb(L) → Set assigning underlying sets to L-structures) and Uα is the functor
Set(α,U(−)) : K → Set. Similarly, relation symbols of arity α are subfunctors R
of Uα.

If L̂ is µ-ary then subfunctors R preserve µ-directed colimits. Since K is an
LS(K)+-accessible category (see 13.4.3), both ϕ and R are determined by their
restrictions to the full subcategory KLS(K)+ of K consisting of LS(K)+-presentable
objects. Since there is only a set of such objects, there is a largest µ-ary func-

torial expansion where L̂ consists of all symbols for natural transformations and
subfunctors as above. For µ = ℵ0, this is contained in [LR16, Remark 3.5].

The main example in Chapter 2 is Galois Morleyization (Definition 2.3.3). How-
ever there are many other examples including the original motivation for defining
µ-AECs: infinite sums in boolean algebras. The point is that even though the
language of boolean algebras with a sum operator is infinitary, we really need only
to work in an appropriate class in a finitary language that we functorially expand
as needed. This shows in a precise sense that the infinite sum operator is already
implicit in the (finitary) structure of boolean algebras themselves.

Definition 13.2.8. Fix infinite cardinals λ ≥ µ. Let Φ be a set of formulas in
Lλ,µ. Let (K,≤K) be an abstract class. Define KΦ := (K,≤KΦ) by M ≤KΦ N if
and only if M ≤K N and M �Φ N .
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Lemma 13.2.9. Let λ ≥ µ, Φ be a set of formulas in Lλ,µ. Let (K,≤K) be a
µ0-AEC with µ0 ≤ µ. Then:

(1) KΦ is a µ-AEC.
(2) If all the formulas in Φ have fewer than µ0-many quantifiers, then KΦ

satisfies the first Tarski-Vaught chain axiom of µ0-AECs.

Proof. The first part is straightforward. The second is proven by induction
on the quantifier-depth of the formulas in Φ. �

Example 13.2.10. Let T be a completion of the first-order theory of boolean
algebras and let K := (Mod(T ),�). Let Φ consist of the Lω1,ω1

formula φ(x̄, y)
saying that y is a least upper bound of x̄ (here `(x̄) = ω). Then φ has only one
universal quantifier so by the Lemma, KΦ satisfies the first Tarski-Vaught chain
axiom of AECs. Of course, KΦ is also an ℵ1-AEC. Now expand each M ∈ K to

M̂ by defining RMΣ (ā, b) to hold if and only if b is a least upper bound of ā (with

`(ā) = ω). Let K̂Φ := {M̂ | M ∈ K}. Then one can check that K̂Φ is a functorial
expansion of KΦ.

Basic definitions and concepts for AECs, such as amalgamation or Galois types
(see [Bal88] or [Gro] for details), can be easily transferred to µ-AECs. In the
following sections, we begin the process of translating essential theorems from AECs
to µ-AECs.

13.3. Presentation Theorem

We now turn to the Presentation Theorem for µ-AECs. This theorem has
its conceptual roots in Chang’s Presentation Theorem [Cha68], which shows that
Lλ,ω can be captured in a larger finitary language by omitting a set of types. A
more immediate predecessor is Shelah’s Presentation Theorem, which reaches the
same conclusion for an arbitrary AEC. Unfortunately, while Chang’s Presentation
Theorem gives some insight into the original class, Shelah’s theorem does not.
However, the presentation is still a useful tool for some arguments and provides a
syntactic characterization of what are otherwise purely semantic objects.

Definition 13.3.1. Let L ⊂ L1 be µ-ary languages, T1 an (L1)µ,µ theory, and
Γ be a set of µ-ary (L1)µ,µ-types. Here we define a µ-ary (L1)µ,µ-type as a set of
(L1)µ,µ formulas in the same free variables x̄, where x̄ has arity less than µ. We
define

• ECµ(T1,Γ) = {M : Man L1-structure, M |= T1,Momits each type in Γ}
• PCµ(T1,Γ, L) = {M � L : M ∈ ECµ(T1,Γ)}

Theorem 13.3.2. Let K be a µ-AEC with LS(K) = χ. Then we can find some
L1 ⊃ L(K), a (L1)µ,µ-theory T1 of size χ, and a set Γ of µ-ary (L1)µ,µ-types with
card (Γ) ≤ 2χ so that K = PCµ(T1,Γ,L(K)).

Although we don’t state them here, the traditional moreover clauses (see e.g.
the statement of [Bal88, Theorem 4.15]) apply as well.

Proof. We adapt the standard proofs; see, for instance, [Bal88, Theorem
4.15]. Set χ := LS(K). We introduce “Skolem functions” L1 := L(K) ∪ {Fαi (x̄) :
i < χ, `(x̄) = α < µ} and make very minimal demands by setting

T1 := {∃x(x = x)} ∪ {∀x̄Fαi (x̄) = xi : i < α < µ}
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For any M1 � T1 and ā ∈ |M1|, we define NM1
ā to be the minimal L1-substructure of

M1 that contains ā. We can code the information about NM1
ā into ā’s quantifier-free

type:

pM1
ā := {φ(x̄) : φ(x̄) ∈ (L1)µ,µ is quantifier-free and M1 � φ(ā)}

Given tuples ā ∈ M1 and b̄ ∈ M2 of the same length, we have that pM1
ā = pM2

b̄

if and only if the map taking ā to b̄ induces an isomorphism NM1
ā
∼= NM2

b̄
. Since

we have this tight connection between types and structures, we precisely want to
exclude types that give rise to structures not coming from K. Thus, we set

ΓM1 :=
⋃
{pM1
ā : ∃b̄ ⊂ ā such that (NM1

b̄
) � L(K) 6≤K (NM1

ā ) � L(K)}

Γ :=
⋃

M1�T1

ΓM1

Note that the b̄ in the first line might be ā, in which case the condition be-
comes NM1

ā � L(K) 6∈ K. By counting the number of (L1)µ,µ-types, we have
that card (Γ) ≤ 2χ. Now all we have left to show is the following claim.

Claim: K = PC(T1,Γ,L(K))

First, let M1 ∈ EC(T1,Γ). Given ā ∈ <µ|M1|, we know that ā � pM1
ā so pM1

ā /∈ Γ.

Thus, {NM1
ā � L(K) : ā ∈ <µ|M1|} is a µ-directed system from K≤χ with union

M1 � L(K), so M1 � L(K) ∈ K.
Second, let M ∈ K. We need to define an expansion M1 ∈ EC(T1,Γ). We

can build a directed system {Mā ∈ Kχ : ā ∈ <µ|M |}. Since each Mā has size

χ, we can define the Fαi by enumerating |Mā| = {F `(ā)
i (ā) : i < χ} with the

condition that F
`(ā)
i (ā) = ai for i < `(ā). This precisely defines the expansion

M1 := 〈M,Fαi 〉i<χ,α<µ. It is easy to see M1 � T1. We also have NM1
ā � L(K) = Mā,

so M1 omits Γ because {Mā : ā ∈ <µ|M |} is a µ-directed system from K. So
M ∈ PCµ(T1,Γ, L). �

Remark 13.3.3. A consequence of the presentation theorem for AECs is that
an AEC K with a model of size i(2LS(K))+ has arbitrarily large models (see e.g.

[Bal88, Corollary 4.26]). The lack of Hanf numbers for Lµ,µ means that we cannot
use this to get similar results for µ-AECs. Thus the following question is still open:
Can we compute a bound for the Hanf number H(λ, µ), where any µ-AEC K with
LS(K) ≤ λ that has a model larger than H(λ, µ) has arbitrarily large models?

13.4. µ-AECs and accessible categories

Accessible categories were introduced in [MP89] as categories closely connected
with categories of models of Lκ,λ theories. Roughly speaking, an accessible category
is one that is closed under certain directed colimits, and whose objects can be built
via certain directed colimits of a set of small objects. To be precise, we say that a
category K is λ-accessible, λ a regular cardinal, if it closed under λ-directed colimits
(i.e. colimits indexed by a λ-directed poset) and contains, up to isomorphism, a
set A of λ-presentable objects such that each object of K is a λ-directed colimit of
objects from A. Here λ-presentability functions as a notion of size that makes sense
in a general, i.e. non-concrete, category: we say an object M is λ-presentable if its
hom-functor K(M,−) : K → Set preserves λ-directed colimits. Put another way,
M is λ-presentable if for any morphism f : M → N with N a λ-directed colimit
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〈φα : Nα → N〉, f factors essentially uniquely through one of the Nα, i.e. f = φαfα
for some fα : M → Nα.

For each regular cardinal κ, an accessible category K contains, up to isomor-
phism, only a set of κ-presentable objects. Any object M of a λ-accessible category
is κ-presentable for some regular cardinal κ. Given an object M , the smallest car-
dinal κ such that M is κ-presentable is called the presentability rank of M . If the
presentability rank of M is a successor cardinal κ = ‖M‖+ then ‖M‖ is called the
internal size of M (this always happens if K has directed colimits or under GCH,
see [BR12] 4.2 or 2.3.5). This notion of size internal to a particular category more
closely resembles a notion of dimension—in the category Met of complete met-
ric spaces with isometric embeddings, for example, the internal size of an object
is precisely its density character—and, even in case the category is concrete, may
not correspond to the cardinality of underlying sets. This distinction will resurface
most clearly in the discussion at the beginning of Section 13.6 below.

We consider the category-theoretic structure of µ-AECs. As we will see, for
any uncountable cardinal µ, any µ-AEC with Löwenheim-Skolem-Tarski number λ
is a λ+-accessible category whose morphisms are monomorphisms, and that (per-
haps more surprisingly) any µ-accessible category whose morphisms are monomor-
phisms is equivalent to a µ-AEC with Löwenheim-Skolem-Tarski number λ =
max(µ, ν)<µ, where ν, discussed in detail below, is the number of morphisms be-
tween µ-presentable objects.

It is of no small interest that a general µ-accessible category also satisfies a
Löwenheim-Skolem-Tarski axiom of sorts, governed by the sharp inequality relation,
E3. As we will see, this notion (see [MP89]) matches up perfectly with the behavior
of µ-AECs conditioned by axiom 13.2.2(3).

We wish to show that µ-AECs and accessible categories are equivalent. For the
easy direction—that every µ-AEC is accessible—we simply follow the argument for
the corresponding fact for AECs in Section 4 of [Lie11a].

Lemma 13.4.1. Let K be a µ-AEC with Löwenheim-Skolem-Tarski number λ.
Any M ∈ K can be expressed as a λ+-directed union of its ≤K-substructures of
size at most λ.

Proof. Consider the diagram consisting of all ≤K-substructures of M of size
at most λ and with arrows the ≤K-inclusions. To check that this diagram is λ+-
directed, we must show that any collection of fewer than λ+ many such submodels
have a common extension also belonging to the diagram. Let {Mα |α < ν}, ν < λ+,
be such a collection. Since λ+ is regular, sup{|Mα| |α < ν} < λ+, whence

card(
⋃
α<ν

Mα) ≤ ν · sup{card(Mα) |α < ν} ≤ ν · λ = λ

This set will be contained in some M ′ ≤K M with card(M ′) ≤ λ<µ+λ = λ+λ = λ,
by the Löwenheim Skolem-Tarski axiom. For each α < ν, Mα ≤K M andMα ⊆M ′.
Since M ′ ≤K M , coherence implies that Mα ≤K M ′. So we are done. �

Lemma 13.4.2. Let K be a µ-AEC with Löwenheim-Skolem-Tarski number λ.
A model M is λ+-presentable in K if and only if card(M) ≤ λ.

3The sharp inequality was introduced by Makkai and Pare [MP89, Section 2.3] and is defined
by κ E κ′ if and only if every κ-accessible category is also a κ′-accessible category, among other

equivalent conditions.
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Proof. See the proof of Lemma 4.3 in [Lie11a]. �

Taken together, these lemmas imply that any µ-AEC with Löwenheim-Skolem-
Tarski number λ contains a set of λ+-presentable objects, namely K<λ+ , and that
any model can be built as a λ+-directed colimit of such objects. As the Tarski-
Vaught axioms ensure closure under µ-directed colimits and λ ≥ µ, it follows that
K is closed under λ+-directed colimits. Thus we have:

Theorem 13.4.3. Let K be a µ-AEC with Löwenheim-Skolem-Tarski number
λ. Then K is a λ+-accessible category.

Remark 13.4.4. Theorem 13.4.3 is valid for any λ from 13.2.2(3) and not
only for the minimal one. Moreover, we only need that λ satisfies the Löwenheim-
Skolem-Tarski property for card (A) ≤ λ. In this case, we will say that λ is a weak
Löwenheim-Skolem-Tarski number.

We now aim to prove that any accessible category whose morphisms are monomor-
phisms is a µ-AEC for some µ. In fact, there are two cases delineated below, con-
crete and abstract. In Theorem 13.4.5 we consider the concrete case: K is taken
to be a κ-accessible category of L-structures and L-embeddings for some µ-ary
language L where µ + card (L) ≤ κ. In particular, we insist that K sits nicely in
Emb(L), the category of all L-structures and substructure embeddings—we may
assume L is relational. In Theorem 13.4.10, we consider abstract accessible cate-
gories, with no prescribed signature or underlying sets.

Theorem 13.4.5. Let L be a µ-ary signature and K be an iso-full, replete and
coherent κ-accessible subcategory of Emb(L) where µ+card (L) ≤ κ. If K is closed
under µ-directed colimits in Emb(L) and the embedding K → Emb(L) preserves
κ-presentable objects then K is a µ-AEC with LS(K) ≤ λ = κ<µ.

Proof. We verify that K satisfies the axioms in Definitions 13.2.1 and 13.2.2.
Given such a category, we define the relation ≤K as we must: for M,N ∈ K,

M ≤K N if and only if M ⊆ N and the inclusion is a morphism in K. Ax-
iom 13.2.1(1) follows immediately from this definition. Axiom 13.2.1(2) follows
from the assumption that the inclusion E is replete and iso-full, while 13.2.2(1) fol-
lows from the assumption that the aforementioned inclusion is a coherent functor.
13.2.2(2) is easily verified: given a µ-directed system 〈Mi | i ∈ I〉 in K, the colimit
lies in K (by µ-accessibility), and since the inclusion E preserves µ-directed colim-
its, it will be precisely the union of the system. So K is closed under µ-directed
unions. The other clauses of 13.2.2(2) are clear as well.

Axiom 13.2.2(3), the Löwenheim-Skolem-Tarski Property, poses more of a chal-
lenge. To begin, we recall that in Emb(L), an object is κ+-presentable for κ =
κ<µ ≥ µ+ card (L) precisely if its underlying set is of cardinality at most κ.

Recall that we intend to show that λ = κ<µ satisfies 13.2.2(3). Let M ∈ K and
A ⊆ |M | with |A| = α > λ. We begin by showing that K is (α<µ)+-accessible. This
is an consequence of [LR, 4.10] because κ ≤ λ < (α<µ)+ and µ E (α<µ)+. The
sharp inequality is a consequence of Example 2.13(4) in [AR94]: for any cardinals
β < (α<µ)+ and γ < µ,

βγ ≤ (α<µ)γ = α<µ < (α<µ)+.

Since K is (α<µ)+-accessible, we can express M as an (α<µ)+-directed colimit of
(α<µ)+-presentable objects in K, say 〈Mi → M | i ∈ I〉—indeed, we may assume
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without loss that this is a (α<µ)+-directed system of inclusions. Following [LR, 4.7],
E : K → Emb(L) preserves (α<µ)+-presentable objects—hence the Mi are also

(α<µ)+-presentable in Emb(L), and thus of cardinality at most α<µ = card (A)
<µ

,
by the remark in the previous paragraph. For each a ∈ A, choose Mia with a ∈
|Mia |. The set of all such Mia is of size at most α < (α<µ)+ and we have chosen the
colimit to be (α<µ)+-directed, so there is some M ′ = Mj , j ∈ I, with Mia ≤K M ′

for all a ∈ A. Hence A ⊆ |M ′|, M ′ ≤K M , and

card(M ′) ≤ α<µ ≤ α<µ + λ = card (A)
<µ

+ λ.

We now consider the case card (A) ≤ λ. Hence

card (A)
<µ ≤ λ<µ = λ

So the cardinal bound in the Löwenheim-Skolem-Tarski Property defaults to λ.
Since µ E λ+ (by [AR94] 2.13(4) again) and κ ≤ λ+, [LR, 4.7,4.10] imply that
K is λ+-accessible and the functor E : K → Emb(L) preserves λ+-presentable
objects. Thus we may use the same argument as above to find M ′ ≤K M of size λ
containing A. �

Remark 13.4.6. Following 13.4.4 and 13.4.5, any µ-abstract class from 13.2.2
with (3) weakened to the existence of a weak Löwenheim-Skolem-Tarski number λ
is a µ-AEC with LS(K) ≤ (λ+)<µ.

Assuming Vopěnka’s principle, the weak Löwenheim-Skolem-Tarski number ax-
iom is satisfied by any full subcategory K of Emb(L). This follows from [AR95]
and is related to the unpublished theorem of Stavi (see [MV11]).

To summarize, we have so far shown that any reasonably embedded κ-accessible
subcategory of a category of structures Emb(L) is a µ-AEC. We wish to go further,
however: given any µ-accessible category whose morphisms are monomorphisms,
we claim that it is equivalent—as an abstract category—to a µ-AEC, in a sense
that we now recall.

Definition 13.4.7. We say that categories C and D are equivalent if the fol-
lowing equivalent conditions (see [Lan98] V.4.1) hold:

(1) There is a functor F : C → D that is
• full : For any C1, C2 in C, the map f 7→ F (f) is a surjection from

HomC(C1, C2) to HomD(FC1, FC2).
• faithful : For any C1, C2 in C, the map f 7→ F (f) is an injection from

HomC(C1, C2) to HomD(FC1, FC2).
• essentially surjective: Any object D in D is isomorphic to F (C) for

some C in C.
(2) There are functors F : C → D and G : D → C such that the compositions

FG and GF are naturally isomorphic to the identity functors on D and
C, respectively.

One might insist that the compositions in condition (2) are in fact equal to
the identity functors, but this notion (isomorphism of categories) is typically too
strong to be of interest—equivalence of categories as described above is sufficient to
ensure that a pair of categories exhibit precisely the same properties. In particular,
if F : C → D gives an equivalence of categories, it preserves and reflects internal
sizes and gives a bijection between the isomorphism classes in C and those in D;
thus questions of, e.g., categoricity have identical answers in C and D.
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We proceed by constructing, for a general µ-accessible category K whose mor-
phisms are monomorphisms, a full, faithful, essentially surjective functor from K
to K′, where K′ is a µ-AEC. We begin by realizing a µ-accessible category as a
category of structures.

Lemma 13.4.8. LetK be a µ-accessible category whose morphisms are monomor-
phisms. There is a unary many-sorted signature L such that K is fully embedded
to an equational variety in Emb(L).

Moreover, this full embedding preserves µ-directed colimits.

Proof. Let A be the full subcategory of µ-presentable objects in K (techni-
cally, we want A to be skeletal, which makes it small). Consider the canonical
embedding

E : K → SetA
op

that takes each K ∈ K to the contravariant functor HomK(−,K)�Aop , and each
K-morphism f : K → K ′ to the natural transformation E(f) : HomK(−,K) →
HomK(−,K) given by postcomposition with f . We note that, by Proposition 2.8
in [AR94], this functor is fully faithful and preserves µ-directed colimits. In fact,

we may identify the image L1 of K in SetA
op

with an equational variety. Let
L be a signature with sorts {SA |A ∈ A}, and with unary function symbols for
each morphism in A, i.e. a function symbol f̄ of arity SA → SB for each A-map
f : B → A, subject to certain equations: whenever h = f ◦ g in A, we insist that
h̄ = ḡf̄ . Concretely, the identification is given by a functor F : L1 → Emb(L)
that takes each functor E(K) = HomK(−,K) to the structure FE(K) with sorts

S
FE(K)
A = HomK(A,K) and with each f̄ : SA → SB interpreted as the function

f̄FE(K) : HomK(A,K) → HomK(B,K) given by precomposition with f . Any
morphism g : K → K ′ in K is first sent to the natural transformation E(g) :
HomK(−,K) → HomK(−,K ′) then sent, via F , to FE(g) : FE(K) → FE(K ′),
which is given sortwise by postcomposition with g, i.e. for any A ∈ A and f ∈
S
FE(K)
A = HomK(A,K), g(f) = g ◦ f . Clearly, morphisms are injective in the

image of K under FE, as they come from monomorphisms in K, and they trivially
reflect relations, meaning that in fact F : L1 → Emb(L). �

Let L2 denote the image of K in Emb(L) under FE. So we have exhibited
K as a full subcategory of Emb(L) closed under µ-directed colimits, where Σ is a
finitary language. As a result, the induced relation ≤K is simply ⊆, and iso-fullness
and repleteness of the embedding are trivial. There is only one more wrinkle that
we need to consider: the presentability rank of structures in the image of K in
Emb(L) need not correspond to the cardinality of the union of their sorts—that is,
if U denotes the forgetful functor Emb(L) → Set, a µ-presentable object FE(K)
need not have |UFE(K)| < µ—so the argument in Theorem 13.4.5 cannot simply
be repeated here. Still, U can only do so much damage:

Lemma 13.4.9. The functor U : L2 → Set sends µ-presentable objects to
ν+-presentable objects, where ν = card (Mor(A)).

Theorem 13.4.10. Let K be a µ-accessible category with all morphisms mono.
Then K is equivalent to a µ-AEC with Löwenheim-Skolem-Tarski number λ =
max(µ, ν)<µ.
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Proof. Consider X ⊆ FE(K), and let α = card (X). Since L2 is µ-accessible,
it is (α<µ)+-accessible (provided α ≥ µ); see the proof of 13.4.5. Thus there is
an (α<µ)+-presentable L2-subobject MX of FE(K) with X ⊆ MX . By Theo-
rem 2.3.11 in [MP89], MX can be expressed as an (α<µ)+-small µ-directed col-
imit of µ-presentables in L2, meaning that U(MX) is an (α<µ)+-small µ-directed
colimit of sets of size less or equal than ν. This is of cardinality less or equal
than α<µ + max(µ, ν). This suggests max(µ, ν) might serve as our Löwenheim-
Skolem-Tarski number, but we must fulfill the requirement that λ<µ = µ. So, take
λ = max(µ, ν)<µ. �

The µ-AEC from 13.4.10 is a full subcategory of Emb(L) where L is a finitary
language. Although this equivalence destroys both the ambient language and the
underlying sets, and thus moves beyond the methods usually entertained in model
theory, it allows us to transfer intuition and concepts between the two contexts.

The equivalence allows us to generate the notion of a Löwenheim-Skolem num-
ber in an accessible concrete category, where concreteness is necessary to form the
question.

Proposition 13.4.11. Let (K, U) be a µ-accessible concrete category with all
maps monomorphisms such that U preserves µ-directed colimits. Then if M ∈ K
and X ⊂ UM , there is a subobject M0 ∈ K of M such that X ⊂ UM0 and M0 is
(card (X)

<µ
)+-presentable.

Note that we have proved that every µ-accessible category with all maps monomor-
phism has such a concrete functor: by Theorem 13.4.10, there is a (full and faith-
ful) equivalence F : K → K′, where K′ is some µ-AEC. The universe functor
U : K′ → Set if faithful and preserves µ-directed colimits, so FU : K → K′ does
as well.

Proof. Let M ∈ K, where K is µ-accessible and concrete with monomor-
phisms. Let X ⊂ UM . We want to find M0 ≤ M with X ⊂ UM0 that is
(card (X)

<µ
)+-presentable. By accessibility, we can write M as a µ-directed colimit

〈M i, fj,i | j < i ∈ I〉 where M i ∈ K is µ-presentable, I is µ-directed, and fi,∞ are
the colimit maps.

Because U preserves µ-directed colimits, there is I0 ⊂ I of size ≤ card (X)
such that, for every x ∈ X, there is some ix ∈ I0 such that x ∈ Ufix,∞M i. Close

this to a µ-directed subset I1 ⊂ I of size ≤ card (X)
<µ

and let (M∗, fi,∗) be the
colimit of {M i, fj,i | j < i ∈ I1}. Since this system also embeds into M , there is
a canonical map f∗ : M∗ → M . Set M0 = f∗M∗. Then M0 is a subobject of M
and X ⊂ UM0, so we just need to show M0 is (card (X)

<µ
)+-presentable. This

follows from [AR94] 1.16: since µ ≤ (card (X)
<µ

)+, each M i is (card (X)
<µ

)+

presentable. Since card (I1) ≤ card (X)
<µ

, M0 is (card (X)
<µ

)+-presentable by the
cited result.

�

Although the previous theorem doesn’t use any model theoretic properties di-
rectly, it is inspired by standard proofs of the downward Löwenheim-Skolem theo-
rem and seems not to have been known previously.

Going the other direction, knowledge about accessible categories allows us to
show that µ-AECs do not, in general, admit Ehrenfeucht-Mostowski constructions.
In particular, not every µ-AEC K admits a faithful functor E : Lin→ K:
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Example 13.4.12. Let K be the category of well-ordered sets and order-preserving
injections. By [AR94] 2.3(8), K is ω1-accessible, and clearly all of its morphisms
are monomorphisms. By Theorem 13.4.10, it is therefore equivalent to an ω1-AEC.
As K is isomorphism rigid—that is, it contains no nonidentity isomorphisms—it
cannot admit a faithful functor from Lin, which is far from isomorphism rigid.

Ehrenfeucht-Mostowski constructions are a very powerful tool in the study of
AECs (see for example [She99]). This suggests that µ-AECs may be too gen-
eral to support a robust classification theory. In particular, the lack Ehrenfeucht-
Mostowski models, in turn, means that there is no analogue of the Hanf number
that has proven to be very useful in the study of AECs.

A possible substitute to the notion of Hanf number is that of LS-accessibility,
which was introduced by [BR12]. Rather than looking at the cardinality of the
models, they asked about the internal size, as computed in the category. The shift
stems from the following: it is clear that there are ℵ1-AECs that don’t have models
in arbitrarily large cardinalities: looking at complete (non-discrete) metric spaces
or [BR12, Example 4.8], there can be no models in cardinalities satisfying λ < λω.
However, the internal size based on presentability rank mentioned above gives that,
e. g., complete metric spaces have models of all sizes. Thus, an accessible category
is called LS-accessible iff there is a threshold such that there are object of every
size above that threshold. Beke and Rosicky [BR12] ask if every large accessible
category is LS-accessible. This question is still open and a positive answer (even
restricting to accessible categories where all maps are mono) would aid the analysis
of µ-AECs (see the discussion at the start of Section 13.6).

Still, under the additional assumption of upper bounds for increasing chains of
structures—directed bounds, in the language of [Ros97], or the δ-chain extension
property, defined below—we can rule out Example 13.4.12, and begin to develop a
genuine classification theory.

13.5. Tameness and large cardinals

In [Bon14b], it was shown by Boney that, assuming the existence of large
cardinals, every AEC satisfies the important locality property know as tameness.
Tameness was isolated (from an argument of Shelah [She99]) by Grossberg and
VanDieren in [GV06b], and was used to prove an upward categoricity transfer
from a successor cardinal in [GV06c, GV06a]. Tame AECs have since been a
very productive area of study. For example, they admit a well-behaved notion of
independence (see Chapters 4 and 6) and many definitions of superstability can be
shown to be equivalent in the tame context (Chapter 9).

In this section, we generalize Boney’s theorem to µ-AECs (in a sense, this also
partially generalizes the recent [BZ] which proved an analogous result for metric
AECs, but for a stronger, metric specialization of tameness). We start by recalling
the definition of tameness (and its generalization: full tameness and shortness) to
this context. This generalization already appears in Definition 2.2.23.

Definition 13.5.1 (Definitions 3.1 and 3.3 in [Bon14b]). Let K be an abstract
class and let κ be an infinite cardinal.

(1) K is (< κ)-tame if for any distinct p, q ∈ gS(M), there existsA ⊆ card (M)
such that |A| < κ and4 p � A 6= q � A.

4We use here Galois types over sets as defined in Definition 2.2.17.
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(2) K is fully (< κ)-tame and short if for any distinct p, q ∈ gSα(M), there
exists I ⊆ α and A ⊆ |M | such that card (I) + card (A) < κ and pI � A 6=
qI � A.

(3) We say K is tame if it is (< κ)-tame for some κ, similarly for fully tame
and short.

Instead of strongly compact cardinals, we will (as in [BU] and [BTR17]) use
almost strongly compact cardinals:

Definition 13.5.2. An uncountable limit cardinal κ is almost strongly compact
if for every µ < κ, every κ-complete filter extends to a µ-complete ultrafilter.

Note that the outline here follows the original model theoretic arguments of
[Bon14b]. The category theoretic arguments of [LR16] and [BTR17] can also be
used.

A minor variation of the proof of  Loś’s theorem for Lκ,κ (see [Dic75, Theorem
3.3.1]) gives:

Fact 13.5.3. Let κ be an almost strongly compact cardinal. Let µ < κ, let
(Mi)i∈I be L-structures, and let U be a µ+-complete ultrafilter on I. Then for any
formula φ ∈ Lµ,µ,

∏
Mi\U |= φ[[f ]U ] if and only if Mi |= φ[f(i)] for U -almost all

i ∈ I.

Using the presentation theorem, we obtain  Loś’s theorem for µ-AECs:

Lemma 13.5.4. Let K be a µ-AEC. Let (Mi)i∈I be models in K and let U be

a
(
2LS(K)

)+
-complete ultrafilter on I. Then

∏
Mi\U ∈ K.

Proof sketch. Let µ :=
(
2LS(K)

)+
. By the presentation theorem (Theorem

13.3.2), there exists a language L′ ⊇ L(K) and a sentence φ ∈ L′µ,µ such that
K = Mod(φ) � L = K. Now use Fact 13.5.3 together with the proof of [Bon14b,
Theorem 4.3]. �

All the moreover clauses of [Bon14b, Theorem 4.3] are also obtained, thus by
the same proof as [Bon14b, Theorem 4.5], we get:

Theorem 13.5.5. Let K be a µ-AEC and let κ > LS(K) be almost strongly
compact. Then K is fully (< κ)-tame and short.

In particular, if there is a proper class of almost strongly compact cardinals,
every µ-AEC is fully tame and short. Using the recent converse for the special case
of AECs due to Boney and Unger [BU], we obtain also a converse in µ-AECs:

Theorem 13.5.6. The following are equivalent:

(1) For every µ, every µ-AEC is fully tame and short.
(2) Every AEC is tame.
(3) There exists a proper class of almost strongly compact cardinals.

Proof. (1) implies (2) is because AECs are ℵ0-AECs. (2) implies (3) is [BU]
and (3) implies (1) is Theorem 13.5.5. �
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13.6. On categorical µ-AECs

Here we show that some non-trivial theorems of classification theory for AECs
transfer to µ-AECs and, by extension, accessible categories with monomorphisms.
Most of the classification theory for AECs has been driven by Shelah’s categoricity
conjecture5. For an abstract class K, we write I(λ,K) for the number of pairwise
non-isomorphic models of K of cardinality λ. An abstract class K is said to be
categorical in λ if I(λ,K) = 1. Inspired by Morley’s categoricity theorem, Shelah
conjectured:

Conjecture 13.6.1. If an AEC is categorical in a high-enough cardinal, then
it is categorical on a tail of cardinals.

Naturally, one can ask the same question for both µ-AECs and accessible cat-
egories, where, following [Ros97], we say an accessible category is categorical in λ
if it contains exactly one object of internal size λ (up to isomorphism). By shifting
the question to these more general frameworks, of course, we make it more diffi-
cult to arrive at a positive answer. If the answer is negative, on the other hand,
counterexamples should be more readily available in our contexts: if indeed the
answer is negative, this would give us a bound on the level of generality at which
the categoricity conjecture can hold.

Question 13.6.2. If a large accessible category (whose morphisms are monomor-
phisms) is categorical in a high-enough cardinal, is it categorical on a tail of cardi-
nals?

A negative answer to the question of Beke and Rosicky from Section 13.4—an
example of an large accessible category K with arbitrarily large gaps in internal
sizes—would yield a negative answer to Question 13.6.2: as noted in [BR12] 6.3, it
suffices to take the coproduct K

∐
Set. This adds exactly one isomorphism class to

each size, resulting in a category that is (internally) categorical in arbitrarily high
cardinals—the gaps of K—but also fails to be (internally) categorical in arbitrarily
large cardinals. By taking injective mappings of sets, one can do the same for large
accessible categories whose morphisms are monomorphisms. [BR12] and [LR16]
contain sufficient conditions for LS-accessibility: in particular, it is enough to add
the assumption of the existence of arbitrary directed colimits (see [LR16, 2.7]).

For µ-AECs, the natural formulation is in terms not of the internal size, but
of the cardinality of underlying sets. Some adjustments have to be made, as a
µ-AEC need not have a model of cardinality λ when λ<µ > λ, and thus eventual
categoricity would fail more or less trivially.

Question 13.6.3. If a µ-AEC is categorical in a high-enough cardinal λ with
λ = λ<µ, is it categorical in all sufficiently high λ′ such that λ′ = (λ′)<µ.

For µ = ω, this question reduces to 13.6.1.

Remark 13.6.4. We will show that a positive answer to Question 13.6.2, the
internal version, implies, at the very least, a positive answer to Question 13.6.1.
Let K be an AEC in a language L. Then K is an accessible category and, following
[BR12] 4.1, 4.3 and 3.6, there is a regular cardinal κ such that K is κ-accessible
and E preserves sizes λ ≥ κ. We can assume that, in Emb(L), they coincide

5For more references and history, see the introduction of Shelah’s book [She09a]
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with cardinalities of underlying sets. Thus, any K1,K2 with sufficiently large and
distinct card(EK1), card(EK2) have distinct sizes card(K1), card(K2) and thus K1

and K2 are not isomorphic.
At present we do not know whether a positive answer to 13.6.2 implies a positive

answer to 13.6.3.

Of course 13.6.2 is currently out of reach, as is 13.6.3. We are not sure about
the truth value of either one: it is plausible that there are counterexamples. A
possible starting point for 13.6.3 would be to use Theorem 13.5.5 to try to general-
ize [Bon14b] to µ-AECs categorical in an appropriate successor above a strongly
compact (see also [Shed], which proves some model-theoretic results for classes of
models of Lκ,κ with κ a strongly compact cardinal).

We show here that some facts which follow from categoricity in AECs also
follow from categoricity in µ-AECs. As in [Ros97], which considers categoricity in
accessible categories with directed bounds (and, ultimately, directed colimits), we
have to add the following hypothesis:

Definition 13.6.5. Let δ be an ordinal. An abstract class K has the δ-chain
extension property if for every chain 〈Mi : i < δ〉, there exists Mδ ∈ K such that
Mi ≤K Mδ for all i < δ. We say that K has the chain extension property if it has
the δ-chain extension property for every limit ordinal δ.

Remark 13.6.6. If K is a µ-AEC, then K has the chain extension property if
and only if K has the δ-chain extension property for every limit δ < µ.

Remark 13.6.7. µ-CAECs have the chain extension property (recall the item
(6) from the list of examples). Moreover, any µ-AEC naturally derived from6 an
AEC (such as the class of µ-saturated models of an AEC) will have the chain
extension property.

We adapt Shelah’s [She09a, Theorem IV.1.12.(1)] to µ-AECs:

Theorem 13.6.8. Let K be a µ-AEC. Let λ ≥ LS(K) be such that λ = λ<µ

and Kλ has the δ-chain extension property for all limit δ < λ+. Assume K is
categorical in λ. Let M,N ∈ K≥λ. If M ≤K N , then M �L∞,µ N .

Notice that the cardinal arithmetic (λ<µ = λ) is a crucial simplifying assump-
tion in the AEC version that Shelah later worked to remove (see [She09a, Section
IV.2]). It appears naturally here in the context of a µ-AEC, but note that the
chain extension might guarantee the existence of models of intermediate sizes (i.e.
in χ < χ<µ).

Proof of Theorem 13.6.8. We first assume that M,N ∈ Kλ and M ≤K N .
Let φ(ȳ) be an L∞,µ-formula with `(ȳ) = α < µ and let ā ∈ α|M |. We show that
M |= φ[ā] if and only if N |= φ[ā] by induction on the complexity of φ. If φ is
atomic, this holds because M ⊆ N . If φ is a boolean combination of formulas
of lower complexity, this is easy to check too. So assume that φ(ȳ) = ∃x̄ψ(x̄, ȳ).
If M |= φ[ā], then using induction we directly get that N |= φ[ā]. Now assume
N |= φ[ā], and let b̄ ∈ <µ|N | be such that N |= ψ[b̄, ā].

We build an increasing chain 〈Mi : i < λ+〉 and 〈fi, gi : i < λ+〉 such that for
all i < λ+:

6This can be made precise using the notion of a skeleton, see Definition 6.5.3.



342 13. µ-ABSTRACT ELEMENTARY CLASSES

(1) Mi ∈ Kλ

(2) If cf i ≥ µ, then Mi =
⋃
j<iMj .

(3) fi : M ∼= Mi.
(4) gi : N ∼= Mi+1.
(5) fi ⊆ gi.

This is possible. If i = 0, let M0 := M . For any i, given Mi, use categoricity
to pick fi : M ∼= Mi and extend it to gi : N ∼= Mi+1. If i is limit and cf i ≥ µ, take
unions. If cf i < µ, use the chain extension property to find Mi ∈ Kλ such that
Mj ≤K M ′i for all j < i.

This is enough. For each i < λ+, let α(i) be the least α < λ+ such that

ran(fi(ā)) ⊆ |Mα|. Let S := {i < λ+ | cf i ≥ µ}. Note that S is a stationary
subset of λ+ and the map i 7→ α(i) is regressive on S. By Fodor’s lemma, there
exists a stationary S0 ⊆ S and α0 < λ+ such that for any i ∈ S0, α(i) = α0,
i.e. ran(f(āi)) ⊆ |Mα0

|. Now card (<µ|Mα0
|) = λ<µ = λ and |S0| = λ+ so by

the pigeonhole principle there exists i < j in S0 such that fi(ā) = fj(ā). Now,
since N |= ψ[b̄, ā], we must have Mi+1 |= ψ[gi(b̄), gi(ā)]. By the induction hypoth-
esis, Mj |= ψ[gi(b̄), gi(ā)]. Thus Mj |= φ[gi(ā)]. Since fi ⊆ gi, gi(ā) = fi(ā) so

Mj |= φ[fi(ā)]. Since fi(ā) = fj(ā), we have that Mj |= φ[fj(ā)]. Applying f−1
j to

this equation, we obtain M |= φ[ā], as desired.
This proves the result in case M,N ∈ Kλ. If M,N ∈ K≥λ and M ≤K N , then,

as before, we can find a µ-directed system 〈Nā ∈ Kλ : ā ∈ <µN〉 with colimit N
such that ā ∈ |Nā| and, if ā ∈ <µM , then Nā ≤K M .

As before we prove by induction on φ ∈ L∞,µ that M |= φ[ā] if and only
if N |= φ[ā]. The interesting case is when φ = ∃x̄ψ(x̄, ȳ) and the left to right
direction is straightforward, so assume N |= φ[ā], i. e., there exists b̄ ∈ <µ|N | such
that N |= ψ[b̄, ā]. By the previous part, Nā �L∞,µ Nāb̄. So there is b̄′ ∈ Nā such

that Nā � ψ[b̄′, ā]. Since Nā ≤K M , by induction, we have M � φ[ā]. �

Another result that can be adapted is Shelah’s famous combinatorial argument
that amalgamation follows from categoricity in two successive cardinals [She87a,
Theorem 3.5]. We start with some simple definitions and lemmas:

Definition 13.6.9. Let µ ≤ λ be regular cardinals. C ⊆ λ is a µ-club if it is
unbounded and whenever 〈αi : i < δ〉 is increasing in C with µ ≤ cf δ < λ, then
supi<δ αi ∈ C.

Remark 13.6.10. So ℵ0-club is the usual notion of club.

Lemma 13.6.11. Let µ be a regular cardinal. Assume K is a µ-AEC and
λ ≥ LS(K). Let 〈M `

i : i < λ+〉, ` = 1, 2, be increasing in Kλ such that for all
i < λ+ with cf i ≥ µ, M `

i =
⋃
j<iM

`
j .

If f :
⋃
i<λ+ M1

i
∼=
⋃
i<λ+ M2

i , then the set {i < λ+ | f � M1
i : M1

i
∼= M2

i } is a
µ-club.

Proof. Let C := {i < λ+ | f � M1
i : M1

i
∼= M2

i }. By cardinality considera-
tions, for each i < λ+, there is ji < λ+ such that |f(M1

i )| ⊆ |M2
ji
| (by coherence

this implies f(M1
i ) ≤K M2

ji
). Let δ have cofinality µ such that for all i < δ,

ji < δ. Then by continuity f(M1
δ ) ≤K M2

δ . Let C0 be the set of all such δ. It is
easy to check that C0 is a µ-club. Similarly, let C1 be the set of all δ such that
f−1(M2

δ ) ≤K M1
δ . C1 is also a µ-club and it is easy to check that C = C0 ∩ C1,

and the intersection of two µ-clubs is a µ-club, so the result follows. �
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Theorem 13.6.12. Let µ be a regular cardinal. Assume K is a µ-AEC, λ =

λ<µ ≥ LS(K), I(λ,K) = 1 ≤ I(λ+,K) < 2λ
+

. If:

(1) Kλ has the extension property for δ-chains (see above) for every δ < λ+.
(2) λ = λµ and 2λ = λ+.

Then K has λ-amalgamation.

Proof. Assume not. By failure of amalgamation and some renaming, we have:

(∗) If M1,M2 ∈ Kλ and f : M1
∼= M2, there are M ′l ∈ Kλ, ` = 1, 2, with

Ml ≤K M ′l , card (|M ′l | − |Ml|) = λ, such that there is no N ∈ Kλ and
gl : M ′l → N commuting with f .

In particular (taking M1 = M2 and f the identity function), the model of
size λ is not maximal. By Gregory’s theorem (see [Jec03, Theorem 23.2]), the
combinatorial principle ♦Eµ holds, where Eµ := {i < λ+ | cf i ≥ µ}. With some
coding, one can see that ♦Eµ is equivalent to:

(∗∗) There are {ηα, να : α →| α < λ+}, {gα : α → α | α < λ+} such that for
all η, ν : λ+ → 2, g : λ+ → λ+, the set {α ∈ Eµ | ηα = η � α, να = ν �
α, gα = g � α} is stationary.

We build a strictly increasing tree {Mη | η ∈ ≤λ
+

2} such that:

(1) |Mη| ⊆ λ+, card(Mη) = λ, `(η) ∈ |Mηa`| for all η ∈ <λ+

2 and ` < 2.

(2) If η ∈ ≤λ+

2 and cf `(η) ≥ µ, then Mη =
⋃
j<`(η)Mη�j .

(3) If |Mηδ | = δ, ηδ 6= νδ, and gδ : Mηδ
∼= Mνδ is an isomorphism, for any

`, `′ < 2 and any ν ⊇ νδ a `′, gδ cannot be extended to an embedding of
Mηδa` into Mν .

This is enough. We claim that for any η 6= ν ∈ λ+

2, Mη 6∼= Mν . Indeed,

assume f : Mη → Mν is an isomorphism. For i < λ+, let fi := f � Mη�i and
let C := {i < λ+ | fi : Mη�i

∼= Mν�i}. By Lemma 13.6.11, C is a µ-club. Also
{i < λ+ | |Mη�i| = i} is a club so without loss of generality is contained in C. Now
the stationary set described by (∗∗) intersects C in unboundedly many places (as
it only has points of cofinality µ), hence there is δ < λ+ such that η � δ 6= ν � δ,
ηδ = η � δ, νδ = ν � δ, gδ = f � δ, δ = |Mηδ | = |Mνδ |, and gδ : Mηδ

∼= Mνδ . But f
extends gδ and restricts to an embedding of Mηaη(δ) into Mν�γ , for some γ < λ+

with γ > δ sufficiently large. This contradicts (3).
This is possible. Take any M<> ∈ K with |M〈〉| = λ for the base case, take

unions at limits of cofinality at least µ, and use the extension property for chains
(and some renaming) at limits of cofinality less than µ.

Now if one wants to define Mηal for η ∈ δ2 (assuming by induction that Mν

for all ν ∈ ≤δ2 have been defined) take any two strict extensions, unless |Mη| = δ,
ηδ 6= νδ, gδ : Mηδ

∼= Mνδ is an isomorphism, and either η = ηδ, or η = νδ. We
show what to do when η = ηδ. The other case is symmetric. Let M ′ηδ , M

′
νδ

be as
described by (∗) and let Mηδal,Mνδal be their appropriate renaming to satisfy (1).
Now (∗) tells us that (3) is satisfied. �

Remark 13.6.13. Of course, the set-theoretic hypotheses of Theorem 13.6.12
can be weakened. For example, it is enough to require λ = λ<µ and ♦Sµ or even
(by Shelah’s more complicated proof) a suitable instance of the weak diamond. It

is not clear, however, that it follows from just 2λ < 2λ
+

.





CHAPTER 14

Downward categoricity from a successor inside a
good frame: part I: the main theorem

This chapter and the next one are based on [Vas17a]. I thank John Baldwin
and Monica VanDieren for helpful feedback on an earlier draft of this paper. I
also thank Will Boney for a conversation on Shelah’s omitting type theorem (see
Section 15.3). Finally, I thank the referee for comments that helped improve the
presentation of this paper.

Abstract

In the setting of abstract elementary classes (AECs) with amalgamation, Shelah
has proven a downward categoricity transfer from categoricity in a successor and
Grossberg and VanDieren have established an upward transfer assuming in addition
a locality property for Galois types that they called tameness.

We further investigate categoricity transfers in tame AECs. We use orthog-
onality calculus to prove a downward transfer from categoricity in a successor in
AECs that have a good frame (a forking-like notion for types of singletons) on an
interval of cardinals:

Theorem 14.0.14. Let K be an AEC and let LS(K) ≤ λ < θ be cardinals. If
K has a type-full good [λ, θ]-frame and K is categorical in both λ and θ+, then K
is categorical in all µ ∈ [λ, θ].

We deduce improvements on the threshold of several categoricity transfers that
do not mention frames. For example, the threshold in Shelah’s transfer can be
improved from ii

(2LS(K))
+ to i(2LS(K))

+ assuming that the AEC is LS(K)-tame.

The successor hypothesis can also be removed from Shelah’s result by assuming in
addition either that the AEC has primes over sets of the form M ∪ {a} or (using
an unpublished claim of Shelah) that the weak generalized continuum hypothesis
holds.

14.1. Introduction

14.1.1. Motivation and history. In his two volume book [She09a, She09b]
on classification theory for abstract elementary classes (AECs), Shelah introduces
the notion of a good λ-frame [She09a, II.2.1]. Roughly, a good λ-frame is a local
notion of independence for types of length one over models of size λ. The indepen-
dence notion satisfies basic properties of forking in a superstable first-order theory.
Good frames are the central concept of the book. In Chapter II and III, Shelah
discusses the following three questions regarding frames:

Question 14.1.1.

345
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(1) Given an AEC K, when does there exist a good λ-frame s whose under-
lying AEC Ks is Kλ (or some subclass of saturated models in Kλ)?

(2) Given a good λ-frame, under what conditions can it be extended to a good
λ+-frame?

(3) Once one has a good frame, how can one prove categoricity transfers?

Shelah’s answers (see for example II.3.7, III.1, and III.2 in [She09a]) involve a
mix of set-theoretic hypotheses (such as the weak generalized continuum hypothesis:

2θ < 2θ
+

for all cardinals θ) and strong local model-theoretic hypotheses (such as
few models in λ++). While Shelah’s approach is very powerful (for example in
[She09a, Chapter IV], Shelah proves the eventual categoricity conjecture in AECs
with amalgamation assuming some set-theoretic hypotheses, see more below), most
of his results do not hold in ZFC.

An alternate approach is to make global model-theoretic assumptions. In
[GV06b], Grossberg and VanDieren introduced tameness, a locality property which
says that Galois types are determined by their small restrictions. In [Bon14a],
Boney showed that in an AEC which is λ-tame for types of length two and has
amalgamation, a good λ-frame can be extended to all models of size at least λ (we
call the resulting object a good (≥ λ)-frame, and similarly define good [λ, θ]-frame
for θ > λ a cardinal). In Chapter 5, tameness for types of length two was improved
to tameness for types of length one. In particular, the answer to Question 14.1.1.(2)
is always positive in tame AECs with amalgamation. As for existence (Question
14.1.1.(1)), we showed in Chapter 4 how to build good frames in tame AECs with
amalgamation assuming categoricity in a cardinal of high-enough cofinality. Fur-
ther improvements were made in Chapters 6, 7, and 10. This gives answers to
Questions 14.1.1.(1),(2) in tame AECs with amalgamation:

Fact 14.1.2. Let K be an AEC with amalgamation and let λ ≥ LS(K) be such
that K is λ-tame.

(1) (Corollary 5.6.9) If there is a good λ-frame s with Ks = Kλ, then s can
be extended to a good (≥ λ)-frame (with underlying class K).

(2) (Corollary 10.6.14) If K has no maximal models and is categorical in some
µ > λ, then there is a type-full good λ+-frame with underlying class the
Galois saturated models of K of size λ+.

14.1.2. Categoricity in good frames. In this chapter, we study Question
14.1.1.(3) in the global setting: assuming the existence of a good frame together
with some global model-theoretic properties, what can we say about the categoricity
spectrum? From the two results above, it is natural to assume that we are already
working inside a type-full good (≥ λ)-frame (this implies properties such as λ-
tameness and amalgamation). It is then known how to transfer categoricity with
the additional assumption that the class has primes over sets of the form M ∪ {a}.
This has been used to prove Shelah’s eventual categoricity conjecture for universal
classes, see Chapters 8, 16.

Definition 14.1.3 (III.3.2 in [She09a]). An AEC K has primes if for any
nonalgebraic Galois type p ∈ gS(M) there exists a triple (a,M,N) such that p =
gtp(a/M ;N) and for every N ′ ∈ K, a′ ∈ |N ′|, such that p = gtp(a′/M ;N ′), there
exists f : N −→

M
N ′ with f(a) = a′.
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Fact 14.1.4 (Theorem 11.2.8). Assume that there is a type-full good [λ, θ)-
frame on the AEC K. Assume that K has primes and is categorical in λ. If K is
categorical in some µ ∈ (λ, θ], then K is categorical in all µ′ ∈ (λ, θ].

What if we do not assume existence of primes? The main result of this chapter
is a downward categoricity transfer for global good frames categorical in a successor:

Theorem 14.6.14. Assume that there is a type-full good [λ, θ]-frame on the
AEC K. Assume that K is categorical in λ. If K is categorical in θ+, then K is
categorical in all µ ∈ [λ, θ].

The proof of Theorem 14.6.14 develops orthogonality calculus in this setup
(versions of some of our results on orthogonality have been independently derived
by Villaveces and Zambrano [VZ14]). We were heavily inspired from Shelah’s de-
velopment of orthogonality calculus in successful good λ-frames [She09a, Section
III.6], and use it to define a notion of unidimensionality similar to what is defined
in [She09a, Section III.2]. We show unidimensionality in λ is equivalent to cate-
goricity in λ+ and use orthogonality calculus to transfer unidimensionality across
cardinals. While we work in a more global setup than Shelah’s, we do not assume
that the good frames we work with are successful [She09a, Definition III.1.1], so
we do not assume that the forking relation is defined for types of models (it is only
defined for types of elements). To get around this difficulty, we use the theory of
independent sequences introduced by Shelah for good λ-frames in [She09a, Section
III.5] and developed in Chapter 5 for global good frames.

14.1.3. Hypotheses of the main theorem. Let us discuss the hypotheses
of Theorem 14.6.14. We are assuming that the good frame is type-full : the basic
types are all the nonalgebraic types. This is a natural assumption to make if we
are only interested in tame AECs: by Fact 14.1.2, type-full good frames exist under
natural conditions there. Moreover by Remark 9.5.6, if a tame AECs has a good
frame, then it has a type-full one (possibly with a different class of models). We
do not know if the type-full assumption is necessary; our argument uses it when
dealing with minimal types (we do not know in general whether minimal types are
basic; if this is the case for the frame we are working with then it is not necessary
to assume that it is type-full).

What about categoricity in λ? This is assumed in order to have some starting
degree of saturation (namely all the models of size λ are limit models, see Definition
14.2.2). We do not see it as a strong assumption: in applications, we will take the
AEC to be a class of λ-saturated models, where this automatically holds. Still, we
do not know if it is necessary.

Another natural question is whether one really needs to assume the existence
of a global good frame at all. The Hart-Shelah example [HS90, BK09] shows that
it is not true that any AEC K categorical in LS(K) and in a successor λ > LS(K)
is categorical everywhere (even if K has amalgamation). One strengthening of
Theorem 14.6.14 assumes only that we have a good frame for saturated models.
Section 15.7 states this precisely and outlines a proof. Consequently, most of the
result stated above hold assuming only weak tameness instead of tameness: that
is, only types over saturated models are required to be determined by their small
restrictions. In Section 15.8 we mention in which results of the chapter tameness
can be replaced by weak tameness.
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14.1.4. Application: lowering the bounds in Shelah’s transfer. In the
second part of this chapter, we give several applications of Theorem 14.6.14 to She-
lah’s eventual categoricity conjecture, the central test problem in the classification
theory of non-elementary classes (see the introduction of Chapter 8 for a history):

Conjecture 14.1.5 (Conjecture N.4.2 in [She09a]). An AEC that is categor-
ical in a high-enough cardinal is categorical on a tail of cardinals.

For an AEC K we will call Shelah’s categoricity conjecture for K the statement
that if K is categorical in some λ ≥ i(2LS(K))

+ , then K is categorical in all λ′ ≥
i(2LS(K))

+ (that is, we explicitly require the “high-enough” threshold to be the first

Hanf number).
Shelah [She99] has proven a downward categoricity transfer from a succes-

sor in AECs with amalgamation where the threshold is the second Hanf number.
Complementing it, Grossberg and VanDieren have established an upward transfer
assuming tameness:

Fact 14.1.6 ([GV06c, GV06a]). Let K be a LS(K)-tame AEC with amalga-
mation and arbitrarily large models. Let λ > LS(K)+ be a successor cardinal. If
K is categorical in λ, then K is categorical in all λ′ ≥ λ.

Grossberg and VanDieren concluded that Shelah’s eventual categoricity con-
jecture from a successor holds in tame AECs with amalgamation. Baldwin [Bal09,
Problem D.1.(5)] has asked whether the threshold in Shelah’s downward transfer
can be lowered to the first Hanf number. The answer is not known, but we show
here that tameness is the only obstacle: assuming LS(K)-tameness, the threshold
becomes the first Hanf number, and so using Fact 14.1.6, we obtain Shelah’s cate-
goricity conjecture from a successor in tame AECs with amalgamation:

Corollary 15.4.6. Let K be a LS(K)-tame AEC with amalgamation and
arbitrarily large models. If K is categorical in some successor λ > LS(K)+, then
K is categorical in all λ′ ≥ min(λ,i(2LS(K))

+).

This can be seen as a generalization (see [Bon14b]) of the corresponding result
of Makkai and Shelah [MS90] for classes of models of an Lκ,ω-theory, κ a strongly
compact cardinal. It is a central open question whether tameness follows from
categoricity in AECs with amalgamation (see [GV06a, Conjecture 1.5]).

We can use Theorem 14.6.14 to give alternate proofs of Shelah’s downward
transfer [She99] (see Corollary 15.8.6) and for the Grossberg-VanDieren upward
transfer (see Corollary 15.10.6). We also prove a local categoricity transfer that
does not mention frames:

Corollary 15.4.3. Let K be a LS(K)-tame AEC with amalgamation and
arbitrarily large models. Let1 LS(K) < λ0 < λ. If λ is a successor cardinal and K
is categorical in both λ0 and λ, then K is categorical in all λ′ ∈ [λ0, λ].

Remark 14.1.7. We believe that the methods of [She99] are not sufficient to
prove Corollary 15.4.3 (indeed, Shelah uses models of set theory to prove the transfer

1On the case λ0 = LS(K), see Remark 15.4.4.
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of “no Vaughtian pairs”, and hence uses that the starting categoricity cardinal is
above the Hanf number, see (∗)9 in the proof of [She99, Theorem II.2.7], or [Bal09,
Theorem 14.12]). However we noticed after posting a first draft of this chapter that
they are enough to improve the threshold cardinal of [She99] from ii

(2LS(K))
+ to

i(2LS(K))
+ . We sketch the details in Section 15.3.

14.1.5. Application: categoricity in a limit, using primes. Beyond cat-
egoricity in a successor, we can appeal to Theorem 14.6.14 to give improvements
on the threshold of our previous categoricity transfer in tame AECs with amalga-
mation and primes (Chapter 11): there the threshold was the second Hanf number
(see Fact 15.4.8) and here we show that the first Hanf number suffices:

Corollary 15.4.9.. Let K be a LS(K)-tame AEC with amalgamation and
arbitrarily large models. Assume that K has primes. If K is categorical in some
λ > LS(K), then K is categorical in all λ′ ≥ min(λ,i(2LS(K))

+).

Remark 14.1.8. Compared to Fact 14.1.6 and Corollary 15.4.6, the case λ =
LS(K)+ is allowed. We can also allow λ = LS(K)+ if we assume the weak general-
ized continuum hypothesis instead of the existence of primes, see Corollary 15.5.9.

14.1.6. Categoricity in a limit, using WGCH. Finally, a natural ques-
tion is how to deal with categoricity in a limit cardinal without assuming the ex-
istence of prime models. In [She09a, Theorem IV.7.12], Shelah claims assuming
the weak generalized continuum hypothesis that if K is an AEC with amalga-
mation2, then3 categoricity in some λ ≥ i(

2
ℵ

LS(K)+
)+ implies categoricity in all

λ′ ≥ i(
2
ℵ

LS(K)+
)+ . Shelah’s argument relies on an unpublished claim (whose proof

should appear in [Sheb]), as well as PCF theory and long constructions of linear
orders from [She09a, Sections IV.5,IV.6]. We have not fully verified it. In Chapter
6, we gave a way to work around the use of PCF theory and the construction of
linear orders (though still using Shelah’s unpublished claim) by using the locality
assumption of full tameness and shortness (a stronger assumption than tameness
introduced by Will Boney in his Ph.D. thesis, see [Bon14b, Definition 3.3]).

In Section 15.5, we give an exposition of Shelah’s proof that does not use PCF
or the construction of linear orders. This uses a recent result of VanDieren and
the author (Corollary 10.7.4), showing that a model at a high-enough categoricity
cardinal must have some degree of saturation (regardless of the cofinality of the
cardinal). We deduce (using the aforementioned unpublished claim of Shelah) that
Shelah’s eventual categoricity conjecture is consistent assuming the existence of a
proper class of measurable cardinals (this was implicit in [She09a, Chapter IV]
but we give the details). Furthermore we give an explicit upper bound on the cate-
goricity threshold (see Theorem 15.5.14). This partially answers [She00, Question
6.14.(1)].

2Shelah only assumes some instances of amalgamation and no maximal models at specific

cardinals, see the discussion in Section 15.5.
3Shelah gives a stronger, erroneous statement (it contradicts Morley’s categoricity theorem)

but this is what his proof gives.
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Using Theorem 14.6.14, we also give an improvement on the categoricity thresh-
old of i(

2
ℵ

LS(K)+
)+ if the AEC is tame:

Corollary 15.5.9. Assume the weak generalized continuum hypothesis and
an unpublished claim of Shelah (Claim 15.5.2). Let K be a LS(K)-tame AEC with
amalgamation and arbitrarily large models. If K is categorical in some λ > LS(K),
then K is categorical in all λ′ ≥ min(λ,i(2LS(K))

+).

Moreover, we give two ZFC consequences of a lemma in Shelah’s proof (which
obtains weak tameness from categoricity in certain cardinals below the Hanf num-
ber): an improvement on the Hanf number for constructing good frames (Theorem
15.2.5) and a nontrivial restriction on the categoricity spectrum below the Hanf
number of an AEC with amalgamation and no maximal models (Theorem 15.2.6).

For clarity, we emphasize once again that Corollary 15.5.9 is due to Shelah
when the threshold is i(

2
ℵ

LS(K)+
)+ (and then tameness is not needed). The main

contribution of Section 15.5 is a clear outline of Shelah’s proof that avoids several
of his harder arguments.

In conclusion, the aim of the second part of this chapter is to clarify the status
of Shelah’s eventual categoricity conjecture by simplifying existing proofs and im-
proving several thresholds. We give a table summarizing the known results on the
conjecture in Section 15.6.

14.1.7. Notes and acknowledgments. After the initial circulation of this
chapter (in October 2015), we showed (Chapter 17) that if K is an AEC with
amalgamation and no maximal models that is categorical in λ > LS(K) then the
model of categoricity λ is always saturated. Thus several of the threshold cardinals
in Sections 15.2, 15.3, or 15.5 can be improved. In particular in the last two entry
of the first column of Table 1 in Section 15.6, the cardinal iiH1

can be replaced by
iH1 .

The background required to read this chapter is a solid knowledge of AECs
(at minimum Baldwin’s book [Bal09]) together with some familiarity with good
frames (e.g. the first four sections of [She09a, Chapter II]). As mentioned before,
the chapter has two parts: The first gives a proof of the main Theorem (Theorem
14.6.14), and the second gives applications. If one is willing to take Theorem 14.6.14
as a black box, the second part can be read independently from the first part. The
first part relies on Chapter 5 and the second relies on several other chapters (e.g.
Chapters 4, 11, and 10), as well as on parts of [She09a, Chapter IV] (we only use
results for which Shelah gives a full proof). We have tried to state all background
facts as black boxes that can be used with little understanding of the underlying
machinery.

We warn the reader: at the beginning of most sections, we state a global hy-
pothesis which applies to any result stated in the section.

14.2. Background

We assume that the reader is familiar with the definition of an AEC and notions
such as amalgamation, joint embedding, Galois types, and Ehrenfeucht-Mostowski
models (see for example [Bal09]). The notation we use is standard and is described
in details at the beginning of Chapter 2. For example, we write gtp(b̄/M ;N) for
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the Galois type of b̄ over M , as computed in N . Everywhere in this chapter and
unless mentioned otherwise, we are working inside a fixed AEC K.

14.2.1. Good frames. In [She09a, Definition II.2.1]4, Shelah introduces good
frames, a local notion of independence for AECs. This is the central concept of his
book and has seen several other applications, such as a proof of Shelah’s eventual
categoricity conjecture for universal classes (Chapters 8 and 16). A good λ-frame

is a triple s = (Kλ,^, gSbs) where:

(1) K is a nonempty AEC which has amalgamation in λ, joint embedding in
λ, no maximal models in λ, and is stable in λ.

(2) For each M ∈ Kλ, gSbs(M) (called the set of basic types over M) is a
set of nonalgebraic Galois types over M satisfying (among others) the
density property : if M <K N are in Kλ, there exists a ∈ |N |\|M | such

that gtp(a/M ;N) ∈ gSbs(M).
(3) ^ is an (abstract) independence relation on types of length one over

models in Kλ satisfying the basic properties of first-order forking in a su-
perstable theory: invariance, monotonicity, extension, uniqueness, transi-
tivity, local character, and symmetry (see [She09a, Definition II.2.1]).

As in [She09a, Definition II.6.35], we say that a good λ-frame s is type-full

if for each M ∈ Kλ, gSbs(M) consists of all the nonalgebraic types over M . We
focus on type-full good frames in this chapter and hence just write s = (Kλ,^).
For notational simplicity, we extend forking to algebraic types by specifying that
algebraic types do not fork over their domain. Given a type-full good µ-frame
s = (Kλ,^) and M0 ≤K M both in Kλ, we say that a nonalgebraic type p ∈ gS(M)
does not s-fork over M0 if it does not fork over M0 according to the abstract
independence relation ^ of s. When s is clear from context, we omit it and just
say that p does not fork over M0. We write Ks for the underlying class (containing
only models of size λ) of s. We say that a good λ-frame s is on Kλ if Ks = Kλ.
We might also just say that s is on K.

We more generally look at frames where the forking relation works over larger
models. For F = [λ, θ) an interval with θ ≥ λ a cardinal or∞, we define a type-full
good F-frame similarly to a type-full good λ-frame but require forking to be defined
over models in KF (similarly, the good properties hold of the class KF , e.g. K is
stable in every µ ∈ F). See Definition 4.2.19 for more details. For a type-full good
F-frame s = (KF ,^) and K′ a subclass of KF , we define the restriction s � K′ of
s to K′ in the natural way (see Notation 6.3.17).

At one point in the chapter (Section 14.3) we will look at (not necessarily
good) frames defined over types longer than one element. This was first defined in
Definition 5.3.1 but we use Definition 6.3.1. We require in addition that it satisfies
the base monotonicity property and that the underlying class is an AEC.

Definition 14.2.1. A type-full pre-(≤ λ, λ)-frame is a pair t := (Kλ,^), where
K is an AEC with amalgamation in λ and ^ is a relation on types of length at
most λ over models in Kλ satisfying invariance and monotonicity (including base
monotonicity, see Definition 6.3.12.(4)).

4The definition here is simpler and more general than the original: We will not use Shelah’s
axiom (B) requiring the existence of a superlimit model of size λ. Several papers (e.g. [JS13])

define good frames without this assumption.
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For a type-full good λ-frame s, we say that t extends s if they have the same
underlying class and forking in s and t coincide.

14.2.2. Saturated and limit models. We will make heavy use of limit mod-
els (see [GVV16] for history and motivation). Here we give a global definition,
where we permit the limit model and the base to have different sizes.

Definition 14.2.2. Let M0 ≤K M be models in K≥LS(K). M is limit over
M0 if there exists a limit ordinal δ and a strictly increasing continuous sequence
〈Ni : i ≤ δ〉 such that:

(1) N0 = M0.
(2) Nδ = M .
(3) For all i < δ, Ni+1 is universal over Ni (that is, for any N ∈ K‖Ni‖ with

N0 ≤K N , there exists f : N −−→
Ni

Ni+1).

We say that M is limit if it is limit over some M ′ ≤K M .

Definition 14.2.3. Assume that K has amalgamation.

(1) For λ > LS(K), Kλ-sat is the class of λ-saturated (in the sense of Galois
types) models in K≥λ. We order it with the strong substructure relation
inherited from K.

(2) We also define KLS(K)-sat to be the class of modelsM ∈ K≥LS(K) such that
for all A ⊆ |M | with |A| ≤ LS(K), there exists a limit model M0 ≤K M
with M0 ∈ KLS(K) and A ⊆ |M0|. We order KLS(K)-sat with the strong
substructure relation inherited from K.

Remark 14.2.4. If K has amalgamation and is stable in LS(K), then K
LS(K)-sat
LS(K)

is the class of limit models in KLS(K).

We will repeatedly use the uniqueness of limit models inside a good frame, first
proven by Shelah in [She09a, Claim II.4.8] (see also [Bon14a, Theorem 9.2]).

Fact 14.2.5. Let s be a type-full good λ-frame.
Let M0,M1,M2 ∈ Ks.

(1) If M1 and M2 are limit models, then M1
∼= M2.

(2) If in addition M1 and M2 are both limit over M0, then M1
∼=M0 M2.

For global frames, we can combine this with a result of VanDieren [Van16b]
to obtain that limit models are saturated and closed under unions:

Fact 14.2.6. Let s be a type-full good [λ, θ)-frame on the AEC K. Let µ ∈
[λ, θ).

(1) M ∈ Kµ-sat
µ if and only if M is limit.

(2) If µ > λ, then Kµ-sat
[µ,θ) is the initial segment of an AEC with Löwenheim-

Skolem-Tarski number µ.

Proof.

(1) This is trivial if λ = LS(K), so assume that λ > LS(K). If M is limit,
then by uniqueness of limit models, M is saturated. Conversely if M is
saturated, then it must be unique, hence isomorphic to a limit model.

(2) By uniqueness of limit models (Fact 14.2.5) and [Van16b, Theorem 1].
Note that there a condition called µ-superstability (see Definition 15.1.1)
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rather than the existence of a good µ-frame is used. However the existence
of a type-full good µ-frame implies µ-superstability (see Fact 15.1.2).

�

We will use Facts 14.2.5 and 14.2.6 freely.

14.3. Domination and uniqueness triples

In this section, we assume:

Hypothesis 14.3.1. s = (Kλ,^) is a type-full good λ-frame.

Remark 14.3.2. The results of this section can be adapted to non-type-full
good frames, but we assume type-fullness anyway for notational convenience.

Our aim (for the next sections) is to develop some orthogonality calculus as in
[She09a, Section III.6]. There Shelah works in a good λ-frame that is successful
(see [She09a, Definition III.1.1]). Note that by [She09a, Claim III.9.6] such a
good frame can be extended to a type-full one. Thus the framework of this section
is more general (see Chapter 18 for an example of a non-successful type-full frame).

One of the main components of the definition of successful is the existence
property for uniqueness triples (see [She09a, Definition III.1.1], [JS13, Definition
4.1.(5)], or here Definition 15.11.6). It was shown in Lemma 6.11.7 that this prop-
erty is equivalent to a version of domination assuming the existence of a global
independence relation. Using an argument of Makkai and Shelah [MS90, Propo-
sition 4.22], one can see (Lemma 6.11.12) that this version of domination satisfies
a natural existence property. We give a slight improvement on this result here by
working only locally in λ (i.e. using limit models rather than saturated ones).

Crucial in this section is the uniqueness of limit models (Fact 14.2.5). A con-
sequence is the following conjugation property [She09a, Claim 1.21]. It is stated
there for M,N superlimit but the proof goes through if M and N are limit models.

Fact 14.3.3 (The conjugation property). If M ≤K N are limit models in
Kλ and p, q ∈ gS(N) do not fork over M , then there exists f : N ∼= M so that
f(p) = p �M and f(q) = q �M .

The next definition is modeled on Definition 6.11.5:

Definition 14.3.4. Let t be a pre-(≤ λ, λ)-frame extending s (see Definition
14.2.1, we write ^ for the nonforking relation of both s and t). The triple (a,M,N)
is a domination triple for t if M,N ∈ Kλ, M ≤K N , a ∈ |N |\|M | and for any

N ′ ≥K N and M ′ ≤K N with M ≤K M ′ and M ′, N ′ ∈ Kλ, if a
N ′

^
M
M ′, then

N
N ′

^
M
M ′.

Remark 14.3.5. In this chapter, we will take t to be 1-forking (Definition
14.4.2), so the reader who wants a concrete example may substitute it for t through-
out this section.

Domination triples are related to Shelah’s uniqueness triples (see [She09a,
Definition III.1.1] or [JS13, Definition 4.1.(5)]) by the following result (this will
not be used outside of this section):
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Fact 14.3.6 (Lemma 6.11.7). Let t be a pre-(≤ λ, λ)-frame extending s. If t
has the uniqueness property, then any domination triple for t is a uniqueness triple
for s.

We now want to show the existence property for domination triples: For any
type p ∈ gS(M), there exists a domination triple (a,M,N) with p = gtp(a/M ;N).
We manage to do it when M is a limit model. The proof is a local version of Lemma
6.11.12 (which adapted [MS90, Proposition 4.22]). We will consider the following
local character properties that t may have:

Definition 14.3.7. Let t be a pre-(≤ λ, λ)-frame extending s. Let κ ≥ 2 be a
cardinal.

(1) We say that t satisfies local character for (< κ)-length types over (λ, λ+)-
limits if whenever 〈Mi : i < λ+〉 is increasing in Kλ with Mi+1 universal
over Mi for all i < λ+ and p ∈ gS<κ(

⋃
i<λ+ Mi), there exists i < λ+ such

that for any j ∈ [i, λ+), p �Mj does not fork over Mi.
(2) We say that t reflects down if whenever 〈Mi : i < λ+〉, 〈Ni : i < λ+〉 are

increasing continuous in Kλ so that for all i < λ+, Mi ≤K Ni, Mi+1 is
universal over Mi, and Ni+1 is universal over Ni, then there exists i < λ+

such that Ni
Ni+1

^
Mi

Mi+1.

(3) (Definition 6.3.12) For κ ≥ 2, we say that t has the left (< κ)-witness
property if for any three models M0 ≤K M ≤K N in Kλ and any A ⊆ |N |,

A
N

^
M0

M holds if and only if A0

N

^
M0

M for all A0 ⊆ A with |A0| < κ.

Note that the witness property implies some amount of local character:

Lemma 14.3.8. Let κ ≥ 2. Let t be a pre-(≤ λ, λ)-frame extending s. If
λ = λ<κ, t satisfies local character for (< κ)-length types over (λ, λ+)-limits, and
t has the (< κ)-witness property, then t satisfies local character for (< λ+)-length
types over (λ, λ+)-limits.

Proof. Let 〈Mi : i < λ+〉 be increasing in Kλ, with Mi+1 universal over
Mi for all i < λ+. Write Mλ+ :=

⋃
i<λ+ Mi. Let p ∈ gSα(Mλ+) with α < λ+.

Say p = gtp(ā/Mλ+ ;N). For each I ⊆ α with |I| < κ, we will write pI for
gtp(ā � I/Mλ+ ;N).

Directly from the local character assumption on t, we have that for each I ⊆ α
with |I| < κ, there exists iI < λ+ so that pI � Mj does not fork over MiI for all
j ≥ iI .

Now let i := supI⊆α,|I|<κ ik. Since λ = λ<κ, i < λ+. Using the witness
property, we get that p �Mj does not fork over Mi for all j ≥ i, as desired. �

Moreover local character together with the witness property imply that t reflects
down:

Lemma 14.3.9. Let t be a pre-(≤ λ, λ)-frame extending s. If t has local char-
acter for (< λ+)-length types over (λ, λ+)-limits and has the left (< κ)-witness
property for some regular κ ≤ λ, then t reflects down.

Proof. Fix 〈Mi : i < λ+〉, 〈Ni : i < λ+〉 as in the definition of reflecting down.

By local character for t, for each i < λ+, there exists ji < λ+ such that Ni

Nj

^
Mji

Mj
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for all j ≥ ji. Let i∗ < λ+ be such that cf i∗ = κ and ji < i∗ for all i < i∗. Then it

is easy to check using the left (< κ)-witness property that Ni∗
Nj

^
Mi∗

Mj for all j ≥ i∗,

which is as needed. �

We have arrived to the existence property for domination triples. For the
convenience of the reader, we restate Hypothesis 14.3.1

Theorem 14.3.10. Let s be a type-full good λ-frame on K and let t be a
pre-(≤ λ, λ)-frame extending s. Assume that t reflects down.

Let M ∈ Kλ be a limit model. For each nonalgebraic p ∈ gS(M), there exists
a domination triple (a,M,N) for t such that p = gtp(a/M ;N).

Proof. Assume not.
Claim. For any limit M ′ ∈ Kλ with M ′ ≥K M , if q ∈ gS(M ′) is the non-

forking extension of p, then there is no domination triple (b,M ′, N ′) such that
q = gtp(b/M ′;N ′).

Proof of claim. By the conjugation property (Fact 14.3.3), there exists f : M ′ ∼=
M such that f(q) = p. Now use that domination triples are invariant under iso-
morphisms. †Claim

We construct a, 〈Mi : i < λ+〉, 〈Ni : i < λ+〉 increasing continuous such that
for all i < λ+:

(1) M0 = M .
(2) Mi ≤K Ni are both in Kλ.
(3) Mi+1 is limit over Mi and Ni+1 is limit over Ni.

(4) gtp(a/Mi;Ni) is the nonforking extension of p. In particular, a
Ni

^
M0

Mi.

(5) Ni
Ni+1

/̂
Mi

Mi+1.

This is enough, since then we get a contradiction to t reflecting down. This
is possible: If i = 0, let N0 ∈ Kλ and a ∈ |N0| be such that p = gtp(a/M ;N0).
At limits, take unions. Now assume everything up to i has been constructed.
By the claim, (a,Mi, Ni) cannot be a domination triple. This means there exists

M ′i ≥K Mi and N ′i ≥K Ni all in Kλ such that a
N ′i

^
Mi

M ′i but Ni

N ′i

/̂
Mi

M ′i . By the

extension property of forking, pick Mi+1 ∈ Kλ limit over Mi containing M ′i and

Ni+1 ≥K N ′i such that Ni+1 is limit over Ni and a
Ni+1

^
Mi

Mi+1. �

The next corollary will not be used in the rest of this chapter. It improves on
Theorem 6.11.13 by working exclusively in λ (so there is no need to assume the
existence of a good frame below λ).

Corollary 14.3.11. Assume that K is categorical in λ. If there exists a pre-
(≤ λ, λ)-frame t extending s, reflecting down, and satisfying uniqueness, then s
has the existence property for uniqueness triples (i.e. it is weakly successful, see
[She09a, Definition III.1.1] or Definition 15.11.6).

Proof. By Theorem 14.3.10, t has the existence property for domination
triples. By Fact 14.3.6, any domination triple is a uniqueness triple. �
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Question 14.3.12. Is the converse true? Namely if K is categorical in λ and
s is a weakly successful good λ-frame on K, does there exist a pre-(≤ λ, λ)-frame t
that extends s, satisfies uniqueness, and reflects down?

It is known (see [She09a, Section II.6] and Section 6.12) that weakly successful
good λ-frame can be extended to pre-(≤ λ, λ)-frame with several good properties,
including uniqueness, but it is not clear that the pre-frame reflects down.

We finish with a slight improvement on the construction of a weakly successful
good frame from Section 8.6 (which improved the threshold cardinals of Chapter
6). Since the result is not needed for the rest of the chapter, we only sketch the
proof and quote freely. At this point, we drop Hypothesis 14.3.1.

Corollary 14.3.13. Let K be an AEC and let λ > LS(K). Let κ ≤ LS(K)
be an infinite cardinal. Assume that LS(K) = LS(K)<κ and λ = λ<κ. Assume
that K is LS(K)-tame for all types of length less than κ over saturated models of
size λ, and K is (< κ)-type short for all types of length at most λ over saturated
models of size λ (see [Bon14b, Definition 3.3] and Definition 2.2.23).

If K[LS(K),λ] has amalgamation, K is stable in LS(K), and s is a good λ-frame

on Kλ-sat
λ , then s is weakly successful.

Proof sketch. We use Corollary 14.3.11 with the pre-(≤ λ, λ)-frame t on Kλ

where t-forking is defined as follows: For M0 ≤K M both in Kλ, p ∈ gS≤λ(M) does
not t-fork over M0 if for every I ⊆ `(p) with |I| < κ, there exists M ′0 ∈ KLS(K) with

M ′0 ≤K M0 such that pI does not LS(K)-split over M ′0. We want to show that t
extends s, t has uniqueness, and t reflects down.

Following the proof of Lemma 8.6.14, we get that t extends s, has local character
for (< λ+)-length types over (λ, λ+)-limits, and has uniqueness. Also, t clearly has
the left (< κ+)-witness property and by assumption κ+ ≤ LS(K)+ ≤ λ. Thus by
Lemma 14.3.9 (where κ there is κ+ here), t reflects down, as desired. �

14.4. Local orthogonality

Hypothesis 14.4.1. s = (Kλ,^) is a type-full good λ-frame.

The next definition is what we will use for the t of the previous section. One
can see it as a replacement for a notion of forking for types over models, when
such a notion is not available. It already plays a role in [MS90] (see Lemma 4.17
there) and Definition 7.2.10). A similar notion is called “smooth independence” in
[VZ14].

Definition 14.4.2. For M ∈ Kλ and p ∈ gS<∞(M), we say that p does not
1-s-fork over M0 if M0 ≤K M and for I ⊆ `(p) with |I| = 1, we have that pI does
not s-fork over M0. We see 1-forking as inducing a pre-(≤ λ, λ)-frame (Definition
14.2.1).

Notation 14.4.3. We write [A]1
N

^
M0

M if for some (any) enumeration ā of A,

gtp(ā/M ;N) does not 1-s-fork over M0. That is, a
N

^
M0

M for all a ∈ A.

Remark 14.4.4 (Disjointness). Because nonforking extensions of nonalgebraic

types are nonalgebraic, if [A]1
N

^
M0

M , then |M | ∩A ⊆ |M0|.
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Definition 14.4.5. (a,M,N) is a weak domination triple in s if it is a dom-
ination triple (Definition 14.3.4) for the pre-frame induced by 1-forking. That is,
M,N ∈ Kλ, M ≤K N , a ∈ |N |\|M | and for any N ′ ≥K N and M ′ ≤K N with

M ≤K M ′ and M ′, N ′ ∈ Kλ, if a
N ′

^
M
M ′, then [N ]1

N ′

^
M
M ′.

From the results of the previous section, we deduce the existence property for
weak domination triples:

Lemma 14.4.6. 1-forking reflects down (see Definition 14.3.7).

Proof. It is clear that 1-forking has the left (< 2)-witness property (Definition
14.3.7) so by Lemmas 14.3.8 and 14.3.9, it is enough to show that 1-forking has
local character for (< 2)-length types over (λ, λ+)-limits. This follows from the
local character property of s (see [She09a, Claim II.2.11]). In details:

Claim. Let 〈Mi : i < λ+〉 be increasing continuous in Kλ. Let p ∈ gS(
⋃
i<λ+).

There exists i < λ+ so that p �Mj does not fork over Mi for all j ≥ i.
Proof of claim. By local character (in s), for each limit j < λ+, there exists

γj < j so that p � Mj does not fork over Mγj . By Fodor’s lemma, there exists
i < λ+ such that for unboundedly many j < λ+, γj = i. By monotonicity of
forking, i is as desired. �

Theorem 14.4.7. Let M ∈ Kλ be a limit model. For each nonalgebraic p ∈
gS(M), there exists a weak domination triple (a,M,N) such that p = gtp(a/M ;N).

Proof. By Lemma 14.4.6 and Theorem 14.3.10. �

We now give a definition of orthogonality in terms of independent sequences.

Definition 14.4.8 (Independent sequence, III.5.2 in [She09a]). Let α be an
ordinal.

(1) 〈ai : i < α〉 a 〈Mi : i ≤ α〉 is said to be independent in (M,M ′, N) when:
(a) (Mi)i≤α is increasing continuous in Kλ.
(b) M ≤K M ′ ≤K M0 and M,M ′ ∈ Kλ.
(c) Mα ≤K N and N ∈ Kλ.

(d) For every i < α , ai
Mi+1

^
M

Mi.

〈ai : i < α〉 a 〈Mi : i ≤ α〉 is said to be independent over M when it
is independent in (M,M0,Mα).

(2) ā := 〈ai : i < α〉 is said to be independent in (M,M0, N) when M ≤K

M0 ≤K N , ā ∈ α|N |, and for some 〈Mi : i ≤ α〉 and a model N+ such that
Mα ≤K N+, N ≤K N+, and 〈ai : i < α〉 a 〈Mi : i ≤ α〉 is independent
over M . When M = M0, we omit it and just say that ā is independent in
(M,N).

Remark 14.4.9. We will use the definition above when α = 2. In this case,

we have that 〈ab〉 is independent in (M,N) if and only if a
N

^
M
b (technically, the

right hand side of the ^ relation must be a model but we can remedy this by
extending the nonforking relation in the natural way, as in the definition of the
minimal closure in Definition 3.3.4).
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Definition 14.4.10. Let M ∈ Kλ and let p, q ∈ gS(M) be nonalgebraic. We

say that p is weakly orthogonal to q and write p
s

⊥
wk

q (or just p ⊥
wk

q if s is clear

from context) if for all N ∈ Kλ with N ≥K M and all a, b ∈ |N | such that
gtp(a/M ;N) = p and gtp(b/M ;N) = q, 〈ab〉 is independent in (M,N).

We say that p is orthogonal to q (written p
s

⊥ q, or just p ⊥ q if s is clear

from context) if for every N ∈ Kλ with N ≥K M , p′ ⊥
wk

q′, where p′, q′ are the

nonforking extensions to N of p and q respectively.

Remark 14.4.11. Definition 14.4.10 is equivalent to Shelah’s ([She09a, Def-
inition III.6.2]), see [She09a, Claim III.6.4.(2)] assuming that s is successful. By
a similar proof (and assuming that Ks has primes), it is also equivalent to the
definition in terms of primes in Definition 11.2.2.

We will use the following consequence of symmetry:

Fact 14.4.12 (Theorem 4.2 in [JS12]). For any M0 ≤K M ≤K N all in Kλ,
if a, b ∈ |N |\|M0|, then 〈ab〉 is independent in (M0,M,N) if and only if 〈ba〉 is
independent in (M0,M,N).

Lemma 14.4.13. Let M ∈ Kλ. Let p, q ∈ gS(M) be nonalgebraic.

(1) If M is limit, then p ⊥ q if and only if p ⊥
wk
q.

(2) p ⊥
wk
q if and only if q ⊥

wk
p.

(3) If p ⊥
wk
q, then whenever (a,M,N) is a weak domination triple representing

q, p is omitted in N . In particular, if M is limit, there exists N ∈ Kλ

with M <K N so that N realizes q but p is omitted in N .

Proof.

(1) By the conjugation property (Fact 14.3.3). See the proof of Lemma 11.2.6.
(2) By Fact 14.4.12.
(3) Let N ′ ∈ Kλ be such that N ≤K N ′ and let b ∈ |N ′| realize p. We have

that 〈ab〉 is independent in (M,N ′). Therefore there exists M ′, N ′′ ∈ Kλ

so that N ≤K N ′′, M ≤K M ′ ≤K N ′′, b ∈ |M ′|, and a
N ′′

^
M
M ′. By

domination, [N ]1
N ′′

^
M
M ′, so by disjointness (Remark 14.4.4), b /∈ |N |. The

last sentence follows from the existence property for weak domination
triple (Theorem 14.4.7).

�

14.5. Unidimensionality

Hypothesis 14.5.1. s = (Kλ,^) is a type-full good λ-frame on K and K is
categorical in λ.

In this section we give a definition of unidimensionality similar to the ones in
[She90, Definition V.2.2] or [She09a, Section III.2]. We show that s is unidimen-
sional if and only if K is categorical in λ+ (this uses categoricity in λ). In the next
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section, we will show how to transfer unidimensionality across cardinals, hence get-
ting the promised categoricity transfer. In [She09a, Section III.2], Shelah gives sev-
eral different definitions of unidimensionality and also shows (see [She09a, III.2.3,
III.2.9]) that the so-called “weak-unidimensionality” is equivalent to categoricity in
λ+ (hence our definition is equivalent to Shelah’s weak unidimensionality) but it is
unclear how to transfer weak-unidimensionality across cardinals without assuming
that the frame is successful.

Note that the hypothesis of categoricity in λ implies that the model of size λ
is limit, hence weak orthogonality and orthogonality coincide, see Lemma 14.4.13.

Rather than defining what it means to be unidimensional, we find it clearer to
define what it means to not be unidimensional:

Definition 14.5.2. s is unidimensional if the following is false: for every
M ∈ Kλ and every nonalgebraic p ∈ gS(M), there exists M ′ ∈ Kλ with M ′ ≥K M
and nonalgebraic p′, q ∈ gS(M ′) so that p′ extends p and p′ ⊥ q.

We first give an equivalent definition using minimal types:

Definition 14.5.3. For M ∈ Kλ, a type p ∈ gS(M) is minimal if for every
M ′ ∈ Kλ with M ≤K M ′, p has a unique nonalgebraic extension to gS(M ′).

Remark 14.5.4. Since we are working inside a good frame, any nonalgebraic
type will have at least one nonalgebraic extension (the nonforking one). The non-
trivial part of the definition is its uniqueness.

Remark 14.5.5. If M ≤K N are both in Kλ and p ∈ gS(N) is nonalgebraic
such that p � M is minimal, then p does not fork over M (because the nonforking
extension of p �M has to be p).

By the proof of (∗)5 in [She99, Theorem II.2.7]:

Fact 14.5.6 (Density of minimal types). For any M ∈ Kλ and nonalgebraic
p ∈ gS(M), there exists M ′ ∈ Kλ and p′ ∈ Kλ such that M ≤K M ′, p′ extends p,
and p′ is minimal.

Lemma 14.5.7. The following are equivalent:

(1) s is not unidimensional.
(2) For every M ∈ Kλ and every minimal p ∈ gS(M), there exists M ′ ∈ Kλ

with M ≤K M ′ and p′, q ∈ gS(M ′) nonalgebraic so that p′ extends p and
p′ ⊥ q.

(3) For every M ∈ Kλ and every minimal p ∈ gS(M), there exists a nonalge-
braic q ∈ gS(M) with p ⊥ q.

Proof. (1) implies (2) because (2) is a special case of (1). Conversely, (2)
implies (1): given M ∈ Kλ and p ∈ gS(M), first use density of minimal types to
extend p to a minimal p′ ∈ gS(M ′) (so M ′ ∈ Kλ M ≤K M ′). Then apply (2).

Also, if (3) holds, then (2) holds with M = M ′. Conversely, assume that (2)
holds. Let p ∈ gS(M) be minimal and let p′, q,M ′ witness (2), i.e. p′, q ∈ gS(M ′),
p′ extends p and p′ ⊥ q. By Remark 14.5.5, p′ does not fork over M . By the
conjugation property (Fact 14.3.3), there exists f : M ′ ∼= M so that f(p′) = p.
Thus p ⊥ f(q), hence (2) holds. �

We use the characterization to show that unidimensionality implies categoricity
in λ+. This is similar to [MS90, Proposition 4.25] but the proof is slightly more
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involved since our definition of unidimensionality is weaker. We start with a version
of density of minimal types inside a fixed model. We will use the following fact,
whose proof is a straightforward direct limit argument:

Fact 14.5.8 (Claim 0.32.(1) in [She01a]). Let 〈Mi : i ≤ ω〉 be an increasing
continuous chain in Kλ and for each i < ω, let pi ∈ gS(Mi) be such that j < i
implies pi � Mj = pj . Then there exists p ∈ gS(Mω) so that p � Mi = pi for all
i < ω.

Lemma 14.5.9. Let M0 ≤K M with M0 ∈ Kλ and M ∈ K>λ. Let p ∈ gS(M0).
Then there exists M1 ∈ Kλ with M0 ≤K M1 ≤K M and q ∈ gS(M1) so that q
extends p and for all M ′ ∈ Kλ with M1 ≤K M ′ ≤K M , any extension of q to
gS(M ′) does not fork over M1.

Proof. Suppose not. Build 〈Ni : i < ω〉 increasing in Kλ and 〈qi : i < ω〉
such that for all i < ω:

(1) N0 = M0, q0 = p.
(2) Ni ≤K M .
(3) qi ∈ gS(Ni) and qi+1 extends qi.
(4) qi+1 forks over Ni.

This is possible since we assumed that the lemma failed. This is enough: let
Nω :=

⋃
i<ω Ni. Let q ∈ gS(Nω) extend each qi (exists by Fact 14.5.8). By local

character, there exists i < ω such that q does not fork over Ni, so q � Ni+1 = qi+1

does not fork over Ni, contradiction. �

Lemma 14.5.10. If s is unidimensional, then K is categorical in λ+.

Proof. Assume that K is not categorical in λ+. We show that (2) of Lemma
14.5.7 holds so s is not unidimensional. Let M0 ∈ Kλ and let p ∈ gS(M0) be
minimal. We consider two cases:

Case 1. There exists M ∈ Kλ+ , M1 ∈ Kλ with M0 ≤K M1 ≤K M and an
extension p′ ∈ gS(M1) of p so that p′ is omitted in M .

Let c ∈ |M |\|M1|. Fix M ′ ≤K M in Kλ containing c so that M1 ≤K M ′ and

let q := gtp(c/M1;M ′). We claim that q ⊥
wk

p′ (and so by Lemma 14.4.13, p′ ⊥ q,

as needed). Let N ∈ Kλ be such that N ≥K M1 and let a, b ∈ |N | be such that
p′ = gtp(b/M1;N), q = gtp(a/M1;N). We want to see that 〈ba〉 is independent
in (M1, N). We have that gtp(a/M1;N) = gtp(c/M1;M ′), so let N ′ ∈ Kλ with
M ′ ≤K N ′ and f : N −−→

M1

N ′ witness it, i.e. f(a) = c. Let b′ := f(b). We have

that gtp(b′/M ′;N ′) extends p′, and b′ /∈ |M ′| since p′ is omitted in M , hence by
minimality gtp(b′/M ′;N ′) does not fork over M1. In particular, 〈cb′〉 is independent
in (M1, N

′). By invariance and monotonicity, 〈ba〉 is independent in (M1, N).
Case 2. Not Case 1: For every M ∈ Kλ+ , every M1 ∈ Kλ with M0 ≤K M1 ≤K

M , every extension p′ ∈ gS(M1) of p is realized in M .
By categoricity in λ and non-categoricity in λ+, we can find M ∈ Kλ+ with

M0 ≤K M and q0 ∈ gS(M0) omitted in M . Let M1 ∈ Kλ, M0 ≤K M1 ≤K M
and q ∈ gS(M1) extend q0 so that any extension of q to a model M ′ ≤K M in
Kλ does not fork over M1 (this exists by Lemma 14.5.9). Let p′ ∈ gS(M1) be a
nonalgebraic extension of p. By assumption, p is realized by some c ∈ |M |. Now by

the same argument as above (reversing the roles of p′ and q), p′ ⊥
wk
q, hence p′ ⊥ q,

as desired. �
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Remark 14.5.11. In fact, the second case cannot happen. Otherwise, we could
use the conjugation property to show that K has no (p, λ)-Vaughtian pair (in the
sense of [GV06c, Definition 3.1]) and apply [GV06c, Theorem 4.1] to get that K
is categorical in λ+ in that case. Since the proof of case 2 is shorter, we prefer to
let it stand.

For the converse of Lemma 14.5.10, we will use:

Fact 14.5.12 (Theorem 6.1 in [GV06a]). Assume that K is categorical in λ+.
Then there exists M ∈ Kλ and a minimal type p ∈ gS(M) which is realized in
every N ∈ Kλ with M <K N .

Remark 14.5.13. The proof of Fact 14.5.12 uses categoricity in λ in a strong
way (it uses that the union of an increasing chain of limit models is limit).

Lemma 14.5.14. If K is categorical λ+, then s is unidimensional.

Proof. By Fact 14.5.12, there exists M ∈ Kλ and a minimal p ∈ gS(M) so
that p is realized in every N >K M . Now assume for a contradiction that K is
not unidimensional. Then by Lemma 14.5.7, there exists a nonalgebraic q ∈ gS(M)
such that p ⊥ q. By Lemma 14.4.13.(3) (note that M is limit by categoricity in λ),
there exists N ∈ Kλ with N >K M so that p is omitted in N , a contradiction to
the choice of p. �

We have arrived to the main result of this section. For the convenience of the
reader, we repeat Hypothesis 14.5.1.

Theorem 14.5.15. Let s be a type-full good λ-frame on K. Assume that K is
categorical in λ. Then s is unidimensional if and only if K is categorical in λ+.

Proof. By Lemmas 14.5.10 and 14.5.14. �

14.6. Global orthogonality

Hypothesis 14.6.1.

(1) K is an AEC.
(2) θ > LS(K) is a cardinal or ∞. We set F := [LS(K), θ).
(3) s = (KF ,^) is a type-full good F-frame.

We start developing the theory of orthogonality and unidimensionality in a
more global context (with no real loss, the reader can think of θ = ∞ as being
the main case). The main problem is to show that for M sufficiently saturated, if
p, q ∈ gS(M) do not fork over M0, then p ⊥ q if and only if p �M0 ⊥ q �M0. This
can be done with the conjugation property in case ‖M0‖ = ‖M‖ but in general one
needs to use more tools from the study of independent sequences. We will use Fact
14.2.6 without further mention. We will also use a few facts about independent
sequences:

Fact 14.6.2 (Corollary 5.6.10). Independent sequences of length two satisfy
the axioms of a good F-frame. For example:

(1) Monotonicity: If 〈ab〉 is independent in (M0,M,N) and M0 ≤K M ′0 ≤K

M ′ ≤K M ≤K N ≤K N ′, then 〈ab〉 is independent in (M ′0,M
′, N ′).

(2) Continuity: If 〈Mi : i ≤ δ〉 is increasing continuous, Mδ ≤K N , and 〈ab〉
is independent in (M0,Mi, N) for all i < δ, then 〈ab〉 is independent in
(M0,Mδ, N).



362 14. CATEGORICITY INSIDE A GOOD FRAME: MAIN THEOREM

Remark 14.6.3. Inside which frame do we work in when we say that 〈ab〉 is
independent, the global frame s or its restriction to a single cardinal? By mono-
tonicity, the answer does not matter, i.e. the independent sequences are the same
either way. Similarly, if λ > LS(K) and M0,M,N ∈ Kλ-sat

[λ,θ) , then 〈ab〉 is indepen-

dent in (M0,M,N) with respect to s if and only if it is independent in (M0, N) with
respect to s � Kλ-sat

[λ,θ) (i.e. we can require the models witnessing the independence

to be saturated). This is a simple consequence of the extension property.

We now define global orthogonality.

Definition 14.6.4. Let M ∈ KF . For p, q ∈ gS(M) nonalgebraic, we write

p ⊥ q for p
s�K‖M‖
⊥ q, and p ⊥

wk
q for p

s�K‖M‖
⊥
wk

q (recall Definition 14.4.10).

Note that a priori we need not have that if p ⊥ q and p′, q′ are nonforking
extensions of p and q to big models, then p′ ⊥ q′. This will be proven first (Lemma
14.6.7).

Lemma 14.6.5. Let δ be a limit ordinal. Let 〈Mi : i ≤ δ〉 be increasing

continuous in KF . Let p, q ∈ gS(Mδ) be nonalgebraic and assume that p � Mi ⊥
wk

q �Mi for all i < δ. Then p ⊥
wk
q.

Proof. By the continuity property of independent sequences (Fact 14.6.2). �

The difference between the next lemma and the previous one is the use of ⊥
instead of ⊥

wk
.

Lemma 14.6.6. Let δ be a limit ordinal. Let 〈Mi : i ≤ δ〉 be increasing
continuous in KF . Let p, q ∈ gS(Mδ) be nonalgebraic and assume that p � Mi ⊥
q �Mi for all i < δ. Then p ⊥ q.

Proof. By local character, there exists i < δ so that both p and q do not fork
over Mi. Without loss of generality, i = 0. Let λ := ‖Mδ‖. If there exists i < δ
so that λ = ‖Mi‖, then the result follows from the definition of orthogonality. So
assume that ‖Mi‖ < λ for all i < δ. Let M ′ ∈ Kλ be such that Mδ ≤K M ′ and let
p′, q′ be the nonforking extensions to M ′ of p, q respectively. We want to see that

p′ ⊥
wk

q′. Let 〈M ′i : i ≤ δ〉 be an increasing continuous resolution of M ′ such that

Mi ≤K M ′i and ‖M ′i‖ = ‖Mi‖ for all i < δ. We know that p′ � M ′i does not fork
over M0, hence over Mi and similarly q′ �M ′i does not fork over Mi. Therefore by

definition of orthogonality, p′ �M ′i ⊥
wk
q′ �M ′i . By Lemma 14.6.5, p′ ⊥

wk
q′. �

Lemma 14.6.7. Let M0 ≤K M be both in KF . Let p, q ∈ gS(M) be nonalge-
braic so that both do not fork over M0. If p �M0 ⊥ q �M0, then p ⊥ q.

Proof. Let δ := cf ‖M‖. Build 〈Ni : i ≤ δ〉 increasing continuous such that
N0 = M0, Nδ = M , and p � Ni ⊥ q � Ni for all i ≤ δ. This is easy: at successor
steps, we require ‖Ni‖ = ‖Ni+1‖ and use the definition of orthogonality. At limit
steps, we use Lemma 14.6.6. Then p � Nδ ⊥ q � Nδ, but Nδ = M so p ⊥ q. �

Question 14.6.8. Is the converse true? That is if M0 ≤K M are in KF ,
p, q ∈ gS(M) do not fork over M0 and p ⊥ q, do we have that p �M0 ⊥ q �M0?
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An answer to this question would be useful in order to transfer unidimen-
sionality up in a more conceptual way than below. With a very mild additional
hypothesis, we give a positive answer in Theorem 15.10.4 but this is not needed for
the rest of the chapter.

We now go back to studying unidimensionality. We give a global definition:

Definition 14.6.9. For λ ∈ F , we say that s is λ-unidimensional if the fol-
lowing is false: for every limit M ∈ Kλ and every nonalgebraic p ∈ gS(M), there
exists a limit M ′ ∈ Kλ with M ≤K M ′ and p′, q ∈ gS(M ′) so that p′ extends p and
p′ ⊥ q.

Remark 14.6.10. When λ > LS(K), s is λ-unidimensional if and only if s �
Kλ-sat
λ is unidimensional (see Definition 14.5.2). If K is categorical in LS(K), this

also holds when λ = LS(K) (if K is not categorical in LS(K), we do not know that
KLS(K)-sat is an AEC).

Our next goal is to prove (assuming categoricity in LS(K)) that λ-unidimensionality
is equivalent to µ-unidimensionality for every λ, µ ∈ F . We will use another char-
acterization of λ-unidimensionality when λ > LS(K). In that case, it is enough to
check failure of unidimensionality with a single minimal type.

Lemma 14.6.11. Let λ > LS(K) be in F . The following are equivalent:

(1) s is not λ-unidimensional.
(2) There exists a saturated M ∈ Kλ and nonalgebraic types p, q ∈ gS(M)

such that p is minimal and p ⊥ q.

Proof.

• (1) implies (2): Assume that s is not λ-unidimensional. Let M ∈ Kλ-sat
λ

and let p ∈ gS(M) be minimal (exists by density of minimal types and
uniqueness of saturated models). By Lemma 14.5.7, there exists q ∈
gS(M) so that p ⊥ q, as desired.

• (2) implies (1): Let M ∈ Kλ-sat
λ and let p, q ∈ gS(M) be nonalgebraic so

that p is minimal and p ⊥ q. We show that Kλ-sat is not categorical in λ+,
which is enough by Theorem 14.5.15. Fix N ∈ KLS(K) with N ≤K M so
that p does not fork over N . Build a strictly increasing continuous chain
〈Mi : i ≤ λ+〉 such that for all i < λ+:
(1) Mi ∈ Kλ-sat

λ .
(2) M0 = M .
(3) p is omitted in Mi.

This is enough, since then p is omitted in Mλ+ so Mλ+ ∈ Kλ+ cannot
be saturated. This is possible: at limits we take unions and for i = 0
we set M0 := M . Now let i = j + 1 be given. Let p′ ∈ gS(Mj) be the
nonforking extension of p. By uniqueness of saturated models, there exists
f : Mj

∼=N M0. By uniqueness of nonforking extension, f(p′) = p. By
Lemma 14.4.13.(3), there exists M ′ ≥K M0 in Kλ-sat

λ so that p is omitted
in M ′. Let Mj+1 := f−1[M ′]. Then p′ is omitted in Mj+1. Since p is
minimal, p is omitted in |Mj+1|\|Mj |, and hence by induction in Mj+1.

�

An issue in transferring unidimensionality up is that we do not have a converse
to Lemma 14.6.7 (see Question 14.6.8), so we will “cheat”and use the following
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transfer which follows from the proof of [GV06a, Theorem 6.3] (recall that we are
assuming Hypothesis 14.6.1).

Fact 14.6.12. If K is categorical in LS(K) and LS(K)+, then K is categorical
in all µ ∈ [LS(K), θ].

For the convenience of the reader, we have repeated Hypothesis 14.6.1 in the
statement of the next two theorems.

Theorem 14.6.13. Let θ > LS(K) be a cardinal or∞. and let F := [LS(K), θ).
Let s be a type-full good F-frame on KF .

Assume that K is categorical in LS(K). Let λ and µ both be in F . Then s is
λ-unidimensional if and only if s is µ-unidimensional.

Proof. Without loss of generality, µ < λ. We first show that if s is not µ-
unidimensional, then s is not λ-unidimensional. Assume that s is not µ-unidimensional.
Let M0 ∈ Kµ-sat

µ and let p ∈ gS(M0) be minimal (exists by density of minimal
types). By definition (and the proof of Lemma 14.5.7), there exists q ∈ gS(M0)
so that p ⊥ q. Now let M ∈ Kλ-sat

λ be such that M0 ≤K M . Let p′, q′ be the
nonforking extensions to M of p and q respectively. By Lemma 14.6.7, p′ ⊥ q′. By
Lemma 14.6.11, s is not λ-unidimensional.

Conversely, assume that s is µ-unidimensional. By the first part, s is LS(K)-
unidimensional. By Theorem 14.5.15, K is categorical in LS(K)+. By Fact 14.6.12,
K, and hence Kλ-sat, is categorical in λ+. By Theorem 14.5.15 again, s is λ-
unidimensional. �

We obtain the promised categoricity transfer. Note that it suffices to assume
that Kλ-sat (instead of K) is categorical in λ+.

Theorem 14.6.14. Let θ > LS(K) be a cardinal or∞. and let F := [LS(K), θ).
Let s be a type-full good F-frame on KF .

Assume that K is categorical in LS(K) and let λ ∈ F . If Kλ-sat is categorical
in λ+, then K is categorical in every µ ∈ [LS(K), θ].

Proof. Assume that Kλ-sat is categorical in λ+. We prove by induction on
µ ∈ [LS(K), θ] that K is categorical in µ. By assumption, K is categorical in LS(K).
Now let µ ∈ (LS(K), θ] and assume that K is categorical in every µ0 ∈ [LS(K), µ).
If µ is limit, then it is easy to see that every model of size µ must be saturated,
hence K is categorical in µ. Now assume that µ is a successor, say µ = µ+

0 for
µ0 ∈ F . By assumption, Kλ-sat is categorical in λ+. By Theorem 14.5.15, s is λ-
unidimensional. By Theorem 14.6.13, s is µ0-unidimensional. By Theorem 14.5.15,
Kµ0-sat is categorical in µ+

0 . By the induction hypothesis, K is categorical in µ0,
hence Kµ0-sat = K≥µ0

, so K is categorical in µ+
0 = µ, as desired. �



CHAPTER 15

Downward categoricity from a successor inside a
good frame: part II: applications

This chapter and the preceeding one are based on [Vas17a].

Abstract

We present applications of Theorem 14.0.14 from the preceeding chapter.

15.1. Background

The definition of superstability below is already implicit in [SV99] and several
variants were studied in, e.g. [Van06, GVV16], Chapters 6 7, 9, 10. We will use
the statement from Definition 6.10.1.

Definition 15.1.1. K is µ-superstable (or superstable in µ) if:

(1) µ ≥ LS(K).
(2) Kµ is nonempty, has amalgamation, joint embedding, and no maximal

models.
(3) K is stable in µ, and:
(4) µ-splitting in K satisfies the following locality property: for every limit

ordinal δ < µ+ and every increasing continuous sequence 〈Mi : i ≤ δ〉 in
Kµ with Mi+1 universal over Mi for all i < δ, if p ∈ gS(Mδ), then there
exists i < δ so that p does not µ-split over Mi.

We will use the following without comments. See Fact 10.4.8.

Fact 15.1.2. If s is a type-full good λ-frame on K, then K is λ-superstable.

In the setup of this chapter, superstability follows from categoricity. If (as will
be the case in most of this chapter) the AEC is categorical in a successor, this is
due to Shelah and appears as [She99, Lemma 6.3]. The heart of the proof in the
general case appears as [SV99, Theorem 2.2.1] and a full axiomatic proof appears
in Chapter 20.

Fact 15.1.3 (The Shelah-Villaveces theorem). If K has amalgamation, no max-
imal models, and is categorical in a λ > LS(K), then K is LS(K)-superstable.

Together with superstability, a powerful tool is the symmetry property for
splitting, first isolated by VanDieren [Van16a]:

Definition 15.1.4. Let µ ≥ LS(K) and assume that K has amalgamation in µ.
K exhibits symmetry for µ-splitting (or µ-symmetry for short) if whenever models
M,M0, N ∈ Kµ and elements a and b satisfy the conditions 1-4 below, then there
exists M b a limit model over M0, containing b, so that gtp(a/M b) does not µ-split
over N .

365
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(1) M is universal over M0 and M0 is a limit model over N .
(2) a ∈M\M0.
(3) gtp(a/M0) is non-algebraic and does not µ-split over N .
(4) gtp(b/M) is non-algebraic and does not µ-split over M0.

When the class is tame, symmetry follows from superstability (Corollary 10.6.9)
and superstability transfers upward (Proposition 6.10.10) hence they both hold
everywhere:

Fact 15.1.5. If K has amalgamation, is LS(K)-tame, and is LS(K)-superstable,
then K is superstable and has symmetry in every µ ≥ LS(K).

One consequence of the symmetry property is given by the following more
precise statement of Fact 14.2.6 (see Lemma 10.2.20 and [Van16b, Theorem 1]):

Fact 15.1.6. Assume that K has amalgamation. Let χ > LS(K). If for every
µ ∈ [LS(K), χ), K is superstable in µ and µ+ and has symmetry in µ+, then Kχ-sat

is an AEC with LS(Kχ-sat) = χ.

We will use the following consequences of categoricity in a suitable cardinal.

Fact 15.1.7. Assume that K has amalgamation and no maximal models. Let
λ > LS(K) be such that K is categorical in λ.

(1) (Corollary 10.7.2) If λ ≥ H1 or the model of size λ is LS(K)+-saturated
(e.g. if cf λ > LS(K)), then K has LS(K)-symmetry.

(2) (Corollary 10.7.4) If λ ≥ h(LS(K)+), then the model of size λ is LS(K)+-
saturated.

As a special case, we obtain the following result that is already stated in [She99,
Claim I.6.7].

Corollary 15.1.8. Assume that K has amalgamation and no maximal mod-
els. Let λ > µ > LS(K) be such that K is categorical in λ. If the model of size λ
is µ+-saturated, then Kµ-sat is an AEC with LS(Kµ-sat) = µ.

Proof. By Fact 15.1.3, K is superstable in every χ ∈ [LS(K), λ). By Fact
15.1.7, K has symmetry in every χ ∈ [LS(K), µ]. Now apply Fact 15.1.6. �

The following fact tells us that we can often assume without loss of generality
that a categorical AECs with amalgamation also has no maximal models. The
proof is folklore (see e.g. Proposition 6.10.13).

Fact 15.1.9. Assume that K has amalgamation. Let λ ≥ LS(K) be such that
K has joint embedding in λ. Then there exists χ < i(2LS(K))

+ and an AEC K∗

such that:

(1) K∗ ⊆ K and K∗ has the same strong substructure relation as K.
(2) LS(K∗) = LS(K).
(3) K∗ has amalgamation, joint embedding, and no maximal models.
(4) K≥min(λ,χ) = K∗≥min(λ,χ).

Let us also recall the definition of tameness (first isolated in [GV06b]) and
weak tameness (already implicit in [She99]). We use the notation from [Bal09,
Definition 11.6]
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Definition 15.1.10 (Tameness). Let χ, µ be cardinals with LS(K) ≤ χ ≤ µ.
Assume that K[χ,µ] has amalgamation. K is (χ, µ)-tame if for any M ∈ Kµ, any
p, q ∈ gS(M), if p 6= q, there exists M0 ∈ Kχ with M0 ≤K M and p �M0 6= q �M0.
For θ ≥ µ, K is (χ,< θ)-tame if it is (χ, µ)-tame for every µ ∈ [χ, θ). (χ,≤ θ)-tame
means (χ,< θ+)-weakly tame. Finally, K is χ-tame if it is (χ, µ)-weakly tame for
every µ ≥ χ. We similarly define variations such as (< χ, µ)-tame.

Let us also define K is (χ, µ)-weakly tame to mean that for any saturated
M ∈ Kµ, any p, q ∈ gS(M), if p 6= q, there exists M0 ∈ Kχ with M0 ≤K M and
p �M0 6= q �M0. Define variations such as (χ,< µ)-weakly tame as above.

Remark 15.1.11. Tameness says that type over any models are determined by
their small restrictions. Weak tameness says that only types over saturated models
have this property. While there is no known example of an AEC that is weakly
tame but not tame, it is known that weak tameness follows from categoricity in a
suitable cardinal (but the corresponding result for non-weak tameness is open, see
[GV06a, Conjecture 1.5]), see Section 15.2.

It was noticed in Chapter 4 (and further improvements in Section 6.10 or Corol-
lary 10.6.14) that tameness can be combined with superstability to build a good
frame. This can also be done using only weak tameness:

Fact 15.1.12 (Theorem 10.6.4). Let λ > LS(K). Assume that K is superstable
in every µ ∈ [LS(K), λ] and has λ-symmetry.

If K is (LS(K), λ)-weakly tame, then there exists a type-full good λ-frame with
underlying class Kλ-sat

λ (so in particular, Kλ-sat
λ is the initial segment of an AEC).

Once we have a good λ-frame, we can enlarge it so that the forking relation
works over larger models.

Fact 15.1.13 (Corollary 5.6.9). Let θ > λ ≥ LS(K). Let F := [λ, θ). Assume
that KF has amalgamation. Let s be a type-full good λ-frame on Kλ. If K is (λ,<
θ)-tame, then there exists a type-full good F-frame s′ extending s: s′ � Kλ = s.

Assuming only weak tameness, we can show that if s is a (type-full) good µ-
frame and s′ is a good λ-frame with µ < λ and the underlying class of s′ is the
saturated models in the underlying class of s, then forking in s′ can be described
in terms of forking in s. This is proven as Theorem 15.7.5 and is used to replace
tameness by weak tameness in the main theorem.

15.2. Weak tameness from categoricity

We quote a result of Shelah from [She09a, Chapter IV] on deriving weak tame-
ness from categoricity and combine it with the corresponding results in Chapter 10.
We derive a small improvement on some of the Hanf numbers, positively answering
a question of Baldwin [Bal09, Question 11.16] (see also [Bal09, Remark 14.15])
which asked whether it was possible to obtain χ-weak tameness for some χ < H1

rather than (< H1)-weak tameness. We give two applications in AECs with amalga-
mation and no maximal models that are categorical in a high-enough cardinal that
is still below the Hanf number: the construction of a good frame and a non-trivial
restriction on the categoricity spectrum.

The following appears as [She99, Main Claim II.2.3] (a simplified and improved
argument is in [Bal09, Theorem 11.15]):
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Fact 15.2.1. Assume that K has amalgamation. Let λ > µ ≥ H1. Assume
that K is categorical in λ, and the model of cardinality λ is µ+-saturated. Then
there exists χ < H1 such that K is (χ, µ)-weakly tame.

As opposed to Fact 15.2.1, the following also applies when the categoricity
cardinal is below the Hanf number.

Fact 15.2.2 (Claim IV.7.2 in [She09a]). Let µ > LS(K). If:

(1) K<µ has amalgamation.
(2) cf µ > LS(K).
(3) Φ is a proper for linear orders, and if θ ∈ (LS(K), µ), I is a θ-wide1 linear

order, then EMτ(K)(I,Φ) is θ-saturated.

Then there exists χ ∈ (LS(K), µ) such that K is (χ,< µ)-weakly tame.

Condition (3) in Fact 15.2.2 can be derived from categoricity if the model in
the categoricity cardinal is sufficiently saturated. This is implicit in [She99] and
appears as [Bal09, Lemma 10.11].

Fact 15.2.3. If K has amalgamation and no maximal models, µ > LS(K), K
is categorical in a λ ≥ µ, so that the model of size λ is µ-saturated, then for every
Φ proper for linear orders, if θ ∈ (LS(K), µ) and I is a θ-wide linear order, we have
that EMτ(K)(I,Φ) is θ-saturated.

Combining these facts, we obtain the following result. Note that the second part
is a slight improvement on Fact 15.2.1, as the model of size λ is allowed to be H1-
saturated. Moreover the amount of weak tameness χ can be chosen independently
of µ:

Theorem 15.2.4. Assume that K has amalgamation. Let λ > LS(K) be such
that K is categorical in λ.

(1) Let µ be a limit cardinal such that cf µ > LS(K). If K has no maximal
models and the model of size λ is µ-saturated, then there exists χ < µ
such that K is (χ,< µ)-weakly tame.

(2) If the model of size λ is H1-saturated, then there exists χ < H1 such that
whenever µ ≥ H1 is so that the model of size λ is µ-saturated, we have
that K is (χ,< µ)-weakly tame.

Proof.

(1) By Fact 15.2.2 (using Fact 15.2.3 to see that (3) is satisfied).
(2) Without loss of generality (Fact 15.1.9), K has no maximal models. By

the first part (with µ there standing for H1 here), there exists χ < H1

such that K is (χ,< H1)-weakly tame. Now assume that the model of
size λ is µ-saturated, for µ > H1. Let µ′ ∈ [H1, µ). We show that K is
(χ, µ′)-weakly tame. By Fact 15.2.1 (with µ there standing for µ′ here),
there exists χ′ < H1 such that K is (χ′, µ′)-weakly tame. In particular, K
is (H1, µ

′)-weakly tame. Now by Corollary 15.1.8, KH1-sat is an AEC with
LS(KH1-sat) = H1. Thus we can combine (χ,H1)-weak and (H1, µ

′)-weak
tameness to get (χ, µ)-weak tameness, as desired.

�

1A linear order is θ-wide if for every θ0 < θ, I contains an increasing sequence of length θ+0 ,

see [She09a, Definition IV.0.14.(1)].



15.3. SHELAH’S OMITTING TYPE THEOREM 369

We give two applications of (the first part of) Theorem 15.2.4. First, we ob-
tain an improvement on the Hanf number for the construction of a good frame in
Corollary 10.7.9 (µ below can be less than H1, e.g. µ = ℵLS(K)+).

Theorem 15.2.5. Assume that K has amalgamation and no maximal models.
Let µ be a limit cardinal such that cf µ > LS(K) and assume that K is categorical
in a λ ≥ µ. If the model of size λ is µ-saturated, then there exists χ < µ such that
for all µ0 ∈ [χ, µ), there is a good µ0-frame on Kµ0-sat.

Proof. By Fact 15.1.7, K has µ0-symmetry for every µ0 < χ. By Fact 15.1.3,
K is also superstable in every µ0 ∈ [LS(K), λ). Now by Theorem 15.2.4, there exists
χ < µ so that K is (χ,< µ)-weakly tame. We finish by applying Fact 15.1.12. �

Second, we can study the categoricity spectrum below the Hanf number of an
AEC with amalgamation and no maximal models. While it is known that the
categoricity spectrum in such AECs must be a closed set (see the proof of [GV06c,
Corollary 4.3]), we show (in ZFC) that there are other restrictions:

Theorem 15.2.6. Assume that K has amalgamation and arbitrarily large mod-
els. Let µ be a limit cardinal such that cf µ > LS(K). If K is categorical in un-
boundedly many successor cardinals below µ, then there exists µ0 < µ such that K
is categorical in every λ ∈ [µ0, µ].

In particular (setting µ := ℵLS(K)+), if K is categorical in ℵα+1 for unboundedly

many α < LS(K)+, then there exists α0 < LS(K)+ such that K is categorical in
ℵβ for every β ∈ [α0,LS(K)+].

Before starting the proof, we make a remark:

Remark 15.2.7. Fact 14.1.6 generalizes to AECs that are only LS(K)-weakly
tame, or just (LS(K), < θ)-weakly tame (in the second case, we can only conclude
categoricity up to and including θ). This is implicit in [GV06c, GV06a] and
stated explicitly in Chapter 13 of [Bal09].

Proof of Theorem 15.2.6. Without loss of generality (Fact 15.1.9), K has
no maximal models. By amalgamation, every model of size µ is saturated. In
particular K is categorical in µ. By Theorem 15.2.4 (with λ, µ there standing for
µ, µ here), there exists µ′0 < µ such that K is (µ′0, < µ)-weakly tame. By making µ′0
bigger if necessary, we can assume without loss of generality that µ′0 > LS(K) and
K is categorical in µ0 := (χ′0)+. By the upward categoricity transfer of Grossberg
and VanDieren (Fact 14.1.6, keeping in mind Remark 15.2.7), K is categorical in
every λ ∈ [µ0, µ]. �

15.3. Shelah’s omitting type theorem

In this section, we give a nonlocal proof of the improvement of the bounds in
[She99] from iH1

to H1 using the methods of [She99]. We will present a more
powerful local proof in the next sections. We also give several partial categoricity
transfers in AECs with amalgamation, including Theorem 15.3.8 which says that in
a tame AEC with amalgamation, categoricity in some cardinal (above the tameness
cardinal) implies categoricity in a proper class of cardinals. The main tool is a
powerful generalization of Morley’s omitting type theorem (Fact 15.3.3), an early
form of which appears in [MS90].

All throughout, we assume:
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Hypothesis 15.3.1. K is an AEC with amalgamation.

As a motivation, we first state Morley’s omitting type theorem for AECs
[She99, II.1.10]. We state a slightly stronger conclusion (replacing H1 by some
χ < H1) that is implicit e.g. in [She99] but to the best of our knowledge, a proof
of this stronger result has not appeared in print before. We include a proof (similar
to the proof of [BG, Theorem 5.4], though there is an additional step involved) for
the convenience of the reader.

Fact 15.3.2 (Morley’s omitting type theorem for AECs). Let λ > LS(K). If
every model in Kλ is LS(K)+-saturated, then there exists χ < H1 such that every
model in K≥χ is LS(K)+-saturated.

Proof sketch. Without loss of generality (Fact 15.1.9), K has no maximal
models. Suppose the conclusion fails. Then for every χ ∈ [LS(K), H1), there
exists Mχ ∈ Kχ which is not LS(K)+-saturated. Pick witnesses M0,χ ≤K Mχ

and pχ ∈ gS(M0,χ) such that ‖M0,χ‖ = LS(K) and Mχ omits pχ. Now there

are only 2LS(K) isomorphism types of Galois types over models of size LS(K), and

cf H1 =
(
2LS(K)

)+
> 2LS(K), so there exists N ∈ KLS(K), p ∈ gS(M), and an

unbounded S ⊆ [LS(K), H1) such that for all χ ∈ S, pχ is isomorphic to p (in
the natural sense). Look at the AEC K¬p of all the models of K omitting p, with
constants added for N (see e.g. the definition of K+ in the proof of [BG, Theorem
5.4]). For each χ ∈ S, an appropriate expansion of a copy of Mχ is in K¬p. K¬p
has Löwenheim-Skolem-Taski number LS(K), so by Shelah’s presentation theorem
and Morley’s omitting type theorem (for first-order theories), K¬p has arbitrarily
large models, contradicting the assumptions on λ. �

A generalization of Fact 15.3.2 is what we call Shelah’s omitting type theorem.
The statement appears (in a more general form) in [She99, Lemma II.1.6], but the
full proof (for models of an Lκ,ω theory, κ a strongly compact cardinal) can already
be found in [MS90, Proposition 3.3] (see also Will Boney’s note [Bonb]). We state
a simplified version:

Fact 15.3.3 (Shelah’s omitting type theorem). Let M0 ≤K M both be in
K≥LS(K) and let p ∈ gS(M0). Assume that M omits p/ELS(K). That is, for every
a ∈ |M |, there is M ′0 ≤K M0 with ‖M ′0‖ = LS(K) such that gtp(a/M ′0;M) 6= p �
M ′0.

If i(2LS(K))+(‖M0‖) ≤ ‖M‖, then there is a non-LS(K)+-saturated model in
every cardinal.

Note that taking ‖M0‖ = LS(K), we recover Morley’s omitting type theorem
for AECs. Note also that when K is LS(K)-tame, M above omits p/ELS(K) if and
only if M omits p. The following two direct consequences are implicit in [She99].

Lemma 15.3.4. Let LS(K) < λ and let LS(K) ≤ χ < µ. Assume that:

(1) i(2LS(K))
+(χ) ≤ µ.

(2) K is (LS(K),≤ χ)-weakly tame.
(3) For every χ0 ∈ [LS(K)+, χ], Kχ0-sat is an AEC with LS(Kχ0-sat) = χ0.

If every model in Kλ is LS(K)+-saturated, then every model in Kµ is χ+-
saturated.
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Proof. Assume that every model in Kλ is LS(K)+-saturated. We prove that
for all χ0 ∈ [LS(K), χ], every model in Kµ is χ+

0 -saturated. We proceed by induc-
tion on χ0. If χ0 = LS(K), take M ∈ Kµ and M0 ≤K M of size χ0. If there is a
type over M0 omitted in Kµ, then by Fact 15.3.3, there is a non-LS(K)+-saturated
model of size λ, a contradiction. Therefore every model in Kµ is LS(K)+-saturated.

Now let χ0 > LS(K) and assume inductively that every model in Kµ is χ0-
saturated. Let M ∈ Kµ and let M0 ≤K M have size χ0. Since LS(Kχ0-sat) = χ0

and M is χ0-saturated, we take enlarge M0 if necessary to assume without loss of
generality that M0 is χ0-saturated. Let p ∈ gS(M0). Then by the weak tameness
hypothesis p/ELS(K) = p. So if M omits p, then by Fact 15.3.3, Kλ has a non-

LS(K)+-saturated model, a contradiction, so M realizes p, as needed. �

Remark 15.3.5. We only use above that LS(Kχ0-sat) = χ0, not that Kχ0-sat

is an AEC. That is, we only use that for M ∈ Kχ0-sat and A ⊆ |M |, there exists a
χ0-saturated M0 ≤K M such that ‖M0‖ ≤ |A|+ χ0.

Lemma 15.3.6. Let LS(K) < µ < λ. Assume that:

(1) K is categorical in λ.

(2) µ = iδ, for some limit ordinal δ divisible by
(
2LS(K)

)+
.

(3) K is (LS(K), < µ)-weakly tame.

If the model of size λ is µ-saturated, then K is categorical in µ.

Proof. Without loss of generality (by Fact 15.1.9), K has joint embedding
and no maximal models. Thus it is enough to show that every model of size µ is
saturated. Let χ ∈ [LS(K), µ). We have to check that the hypotheses of Lemma
15.3.4 hold. The only problematic part is to see that Kχ-sat is an AEC with
LS(Kχ-sat) = χ (when χ > LS(K)). But this holds by Corollary 15.1.8. �

We obtain the following downward transfer result that slightly improves on
Corollary 10.7.7:

Corollary 15.3.7. Let LS(K) < µ < λ be such that:

(1) K is categorical in λ.
(2) µ = iδ, for some limit ordinal δ divisible by H1.

If the model of size λ is µ-saturated (e.g. if cf λ ≥ µ or by Fact 15.1.7 if
λ ≥ supµ0<µ h(µ+

0 )), then K is categorical in µ.

Proof. By Theorem 15.2.4, there exists χ < H1 such that K is (χ,< µ)-
weakly tame. Now apply Lemma 15.3.6 to K≥χ. �

When tameness holds instead of weak tameness, we obtain the following gen-
eralization of the second main result of [MS90]:

Theorem 15.3.8. If K is LS(K)-tame, has arbitrarily large models, and is
categorical in a λ > LS(K), then K is categorical in all cardinals of the form iδ,
where

(
2LS(K)

)+
divides δ.

Proof. Without loss of generality (Fact 15.1.9), K has no maximal models.

Let δ be a limit ordinal divisible by
(
2LS(K)

)+
. Let µ := iδ. We prove that every

model in Kµ is saturated. Observe first that for every χ ≥ LS(K)+, Kχ-sat is an
AEC with LS(Kχ-sat) = χ. This follows from Facts 15.1.3, 15.1.5, and 15.1.6. In
particular, the model of size λ is LS(K)+-saturated. Therefore for each χ < µ,
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Lemma 15.3.4 tells us that every model in Kµ is χ+-saturated. Thus every model
in Kµ is saturated. �

Remark 15.3.9. We could rely on fewer background facts by directly using
Fact 15.3.3. In that case, all that one needs to show is that the model of size λ
is LS(K)+-saturated. This holds by combining Fact 15.1.3 (telling us that K is
LS(K)-superstable) and Theorem 4.5.6 (saying that K is stable in λ).

We can derive the desired improvements on the bounds of [She99].

Corollary 15.3.10. Let K be an LS(K)-tame AEC with amalgamation. If
K is categorical in some successor λ ≥ H1, then K is categorical in all λ′ ≥ H1.

Proof. By Theorem 15.3.8, K is categorical in H1. Now proceed as in the
proof of the main result of [She99], see e.g. [Bal09, Theorem 14.14]. �

Note that this method does not allow us to go lower than the Hanf number,
even if we know for example that K is categorical below it (Shelah’s argument for
transferring Vaughtian pairs is not local enough). See Corollary 15.4.6 for another
proof.

15.4. Categoricity at a successor or with primes

We apply Theorem 14.6.14 to categorical tame AECs with amalgamation when
the categoricity cardinal is a successor or the AEC has primes (recall Definition
14.1.3). All throughout, we assume:

Hypothesis 15.4.1. K is an AEC with amalgamation.

Lemma 15.4.2 (Main lemma). Assume that K has no maximal models and is
LS(K)-tame. Let λ > LS(K)+ be a successor cardinal. If K is categorical in some

successor λ > LS(K)+, then KLS(K)+-sat is categorical in all λ′ ≥ LS(K)+.

Proof. By Fact 15.1.3, K is LS(K)-superstable. By Fact 15.1.5, K is su-
perstable and has symmetry in every µ ≥ LS(K). By Facts 15.1.12 and 15.1.13,
there exists a type-full good (≥ LS(K)+)-frame s with underlying class Ks :=

KLS(K)+-sat. Moreover, Ks is categorical in LS(K)+. Thus we can apply Theorem

14.6.14 where K,LS(K), θ there stand for KLS(K)+-sat,LS(K)+,∞ here. �

Corollary 15.4.3. Assume that K has arbitrarily large models and is LS(K)-
tame. Let LS(K) < λ0 < λ. If λ is a successor and K is categorical in λ0 and λ,
then K is categorical in all λ′ ≥ λ0.

Proof. By Fact 15.1.9, we can assume without loss of generality that K has no

maximal models. By Lemma 15.4.2, KLS(K)+-sat is categorical in all λ′ ≥ LS(K)+.
Moreover by the proof of Lemma 15.4.2, K is stable in every µ ∈ [LS(K)+, λ),

hence the model of size λ0 is saturated. Therefore K
LS(K)+-sat
≥λ0

= K≥λ0 , and the
result follows. �

Remark 15.4.4. We can allow λ0 = LS(K) but then the proof is more com-
plicated: we do not know how to build a good LS(K)-frame so have to work with
LS(K)-splitting.

Remark 15.4.5. The case λ′ ≥ λ in Lemma 15.4.2 and Corollary 15.4.3 is Fact
14.1.6. The contribution of this chapter is the case λ′ < λ.
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We deduce another proof of Corollary 15.3.10. We prove a slightly stronger
result:

Corollary 15.4.6. Assume that K is LS(K)-tame and has arbitrarily large
models. If K is categorical in some successor λ > LS(K)+, then there exists χ < H1

such that K is categorical in all λ′ ≥ min(χ, λ).

Proof. By Lemma 15.4.2, KLS(K)+-sat is categorical in all µ ≥ LS(K)+. Since
λ is regular, the model of size λ is saturated hence LS(K)+-saturated, so every
model in K≥λ is LS(K)+-saturated. By Fact 15.3.2, there exists χ < H1 such
that every model in K≥χ is LS(K)+-saturated. Thus every model in K≥min(χ,λ) is

LS(K)+-saturated, that is:

K
LS(K)+-sat
≥min(χ,λ) = K≥min(χ,λ)

The result follows. �

Remark 15.4.7. An alternate proof (which just deduces categoricity in all
λ′ ≥ min(λ,H1)) goes as follows. By Theorem 15.3.8, K is categorical in H1. By
Fact 14.1.6, K is categorical in all λ′ ≥ λ. By Corollary 15.4.3 (where λ0, λ1 there
stand for min(λ,H1),max(λ+, H+

1 ) here), we get that K is categorical in every
λ′ ≥ min(λ,H1).

We can similarly deduce several consequences on tame AECs with primes. One
of the main results of Chapter 11 was (the point compared to Shelah’s downward
categoricity transfer [She99] is that λ need not be a successor):

Fact 15.4.8 (Theorem 11.3.8). Assume that K has no maximal models, is
H2-tame, and K≥H2 has primes. If K is categorical in some λ > H2, then it is
categorical in all λ′ ≥ H2.

We show that we can obtain categoricity in more cardinals provided that K
has more tameness:

Corollary 15.4.9. Assume that K is LS(K)-tame and has arbitrarily large
models. Assume also that K has primes (or just that K≥µ has prime, for some µ).
If K is categorical in some λ > LS(K), then K is categorical in all λ′ ≥ min(λ,H1).

Proof. Without loss of generality (Fact 15.1.9), K has no maximal models.
By Theorem 15.3.8, K is categorical in a proper class of cardinals. By Fact 15.4.8
(applied to K≥µ, where µ is such that K≥µ has primes), K is categorical in a
successor cardinal. By Corollary 15.4.6, K is categorical in all λ′ ≥ H1. By
Corollary 15.4.3 (with λ0, λ there standing for λ,H+

1 here), K is categorical also in
all λ′ ∈ [λ,H+

1 ]. �

Remark 15.4.10. Similarly to Corollary 15.4.6, we get that there is a χ < H1

such that K is categorical in all λ′ ≥ χ.

Specializing to universal classes, we can improve some of the Hanf number
bounds in Chapter 8, obtaining in particular the full categoricity conjecture (i.e.
the Hanf number is H1) assuming amalgamation.

Corollary 15.4.11. Let K be a universal class with amalgamation and arbi-
trarily large models. If K is categorical in some λ > LS(K), then K is categorical
in all λ′ ≥ min(λ,H1).
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Proof. By a result of Boney [Bonc] (a full proof appears as Theorem 8.3.6),
K is LS(K)-tame. Also (Remark 8.5.3), K has primes. Thus we can apply Corollary
15.4.9. �

15.5. Categoricity in a limit without primes

In this section, we give an exposition of Shelah’s proof of the eventual categoric-
ity conjecture in AECs with amalgamation [She09a, Theorem IV.7.12] (assuming
the weak generalized continuum hypothesis), see Corollary 15.5.12. We improve
the threshold cardinal to H1 assuming tameness (Corollary 15.5.9), and moreover
give alternate proofs for several of the hard steps in Shelah’s argument.

Most of the results of this section will use the weak generalized continuum
hypothesis. We adopt the following notation:

Notation 15.5.1. For a cardinal λ, WGCH(λ) is the statement “2λ < 2λ
+

”.
More generally, for S a class of cardinals, WGCH(S) is the statement “WGCH(λ)
for all λ ∈ S”. WGCH will stand for WGCH(Card), where Card is the class of all
cardinals.

We assume familiarity with the definitions of a weakly successful, successful,
and ω-successful good λ-frame (see [She09a, Definition III.1.1], and on weakly
successful see Definition 15.11.6). We use the notation from [JS13]. We will say
a good λ-frame is successful+ if it is successful and ≤NF

Kλ+
is just ≤Kλ+ on the

saturated models in Kλ+ , see [JS13, Definition 6.1.4]. We say a good λ-frame is
ω-successful+ if it is ω-successful and successful+.

We first state the unpublished Claim of Shelah mentioned in the introduction.
This stems from [She09a, Discussion III.12.40]. A proof should appear in [Sheb].

Claim 15.5.2. Let s be an ω-successful+ good λ-frame on K. Assume WGCH([λ, λ+ω)).

If Kλ+ω-sat is categorical in some µ > λ+ω, then Kλ+ω-sat is categorical in all
µ′ > λ+ω. Moreover, for any µ′ > λ, Kµ′-sat has amalgamation in µ′.

Next, we discuss how to obtain an ω-successful+ good frame from a good frame.
The proof of the following fact is contained in the proof of [She09a, Theorem
IV.7.12] (see �4 there). We give a full proof in Section 15.11. Note that as opposed
to the results in [She09a, Section II.5], we do not assume that K has few models
in λ+2.

Fact 15.5.3. Assume WGCH(λ). If s is a good λ-frame on K, K is categorical
in λ, has amalgamation in λ+ and is stable in λ+, then s is weakly successful.

We can obtain the stability hypothesis and successfulness using weak tameness:

Fact 15.5.4 (Theorem 4.5 in [BKV06]). Let λ ≥ LS(K), be such that K has
amalgamation in λ and λ+, and K is stable in λ. If K is (λ, λ+)-weakly tame, then
K is stable in λ+.

Fact 15.5.5 (Corollary 7.19 in [Jar16]). If s is a weakly successful good λ-frame
on K, K is categorical2 in λ, K has amalgamation in λ+, and K is (λ, λ+)-weakly
tame, then s is successful+.

2Note that by [She09a, Claim III.1.21], this implies the conjugation property, so Hypothesis
6.5 in [Jar16] is satisfied.
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Remark 15.5.6. Although we will not need it, the converse (i.e. obtaining weak
tameness from being successful+) is also true, see [JS13, Theorem 7.1.13.(b)].

Corollary 15.5.7. Assume WGCH(λ). If s is a good λ-frame on K, K is
categorical in λ, has amalgamation in λ+, and is (λ, λ+)-weakly tame, then s is
successful+.

Proof. By Fact 15.5.4, K is stable in λ+. By Fact 15.5.3, s is weakly success-
ful. By Fact 15.5.5, s is successful+. �

Using Fact 15.1.12 to build the good frame, we obtain:

Lemma 15.5.8. Assume that K has amalgamation and no maximal models.
Assume WGCH([LS(K),LS(K)+ω)) and Claim 15.5.2. If K is categorical in a
λ > LS(K)+ω and:

(1) The model of size λ is LS(K)++-saturated.
(2) K is (LS(K), < LS(K)+ω)-weakly tame.

Then KLS(K)+ω-sat is categorical in all λ′ > LS(K)+ω. In particular, K is
categorical in all λ′ ≥ min(λ, supn<ω h(LS(K)+n)).

Proof. By Fact 15.1.7, K has symmetry in LS(K) and LS(K)+. By Fact
15.1.3, K is superstable in every χ ∈ [LS(K), λ). By Fact 15.1.12, there is a good

LS(K)+-frame s on KLS(K)+-sat. By repeated applications of Corollary 15.5.7, s is

ω-successful+. By Claim 15.5.2, KLS(K)+ω-sat is categorical in all λ′ > LS(K)+ω,
and hence by Fact 15.3.2, K is categorical in every λ′ ≥ supn<ω h(LS(K)+ω).
In particular by Fact 15.1.3, K is stable in λ, so the model of size λ is sat-
urated (hence LS(K)+ω-saturated), and so K must be categorical in all λ′ ≥
min(λ, supn<ω h(LS(K)+ω)). �

Corollary 15.5.9. Assume WGCH([LS(K),LS(K)+ω)) and Claim 15.5.2.
Assume that K has amalgamation, arbitrarily large models, and is LS(K)-tame. If
K is categorical in a λ > LS(K), then there exists χ < H1 such that K is categorical
in all λ′ ≥ min(λ, χ).

Proof. By Fact 15.1.9, without loss of generality K has no maximal models.
By Theorem 15.3.8 we can assume without loss of generality that λ ≥ H1 (then
we can use Corollary 15.4.3 to transfer categoricity downward). By Fact 15.1.3, K
is LS(K)-superstable. By3 Fact 15.1.5, K is stable in λ, hence the model of size
λ is saturated. By Lemma 15.5.8, K is categorical in all λ′ ≥ h(LS(K)+ω). In

particular, K is categorical in (h(LS(K)+ω))
+

. By Corollary 15.4.6, there exists
χ < H1 such that K is categorical in all λ′ ≥ χ. �

Without tameness, we can obtain the hypotheses of Lemma 15.5.8 from cate-
goricity in a high-enough cardinal. More precisely, to obtain enough weak tameness,
we use Theorem 15.2.4. To obtain the first condition in Lemma 15.5.8 (i.e. that
the model in the categoricity cardinal is sufficiently saturated), we will use4 Fact
15.1.7.

3In our case, we only use stability in λ, which follows by Theorem 4.5.6.
4Shelah claims [She09a, Claim IV.7.8] a slightly different result using PCF theory and the

existence of certain linear orders: under amalgamation and no maximal models, for µ > LS(K),

categoricity in some λ so that λ ≥ ℵµ+4 + 22
µ

implies that the model of size λ is µ-saturated.
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This allows us to give a proof of [She09a, Theorem IV.7.12]. Note that, while
we give a slightly different proof to attempt to convince doubters, the result is
due to Shelah. In fact, Shelah assumes amalgamation more locally but we haven’t
fully verified his general proof. As explained in the introduction, we avoid relying
on PCF theory or on Shelah’s construction of certain linear orders in [She09a,
Sections IV.5, IV.6].

Fact 15.5.10. Assume Claim 15.5.2. Assume that K has amalgamation. Let
λ and µ be cardinals such that:

(1) K is categorical in λ.
(2) µ is a limit cardinal with cf µ > LS(K).
(3) For all χ < µ, h(χ) < λ.
(4) For unboundedly many χ < µ, WGCH([χ, χ+ω)).

Then there exists µ∗ < µ such that K is categorical in all λ′ ≥ h(µ∗).

Proof. By Fact 15.1.9, without loss of generality K has no maximal models.
By Fact 15.1.7 (used with K there standing for K≥χ+ here, for each χ < µ), the
model of size λ is µ-saturated. By Theorem 15.2.4, there exists χ < µ so that K is
(χ,< µ)-weakly tame. Increasing χ if necessary, assume without loss of generality
that WGCH((χ, χ+ω]) holds. Now apply Lemma 15.5.8 with K there standing for
K≥χ here. We get that K is categorical in all λ′ ≥ h(χ+ω), so we obtain the desired
conclusion with µ∗ := χ+ω. �

Remark 15.5.11. The proof of Fact 15.5.10 given above goes through assuming
only that K has amalgamation below the categoricity cardinal λ (using the moreover
part of Claim 15.5.2 to check uniqueness of saturated models).

Corollary 15.5.12. Assume Claim 15.5.2 and WGCH. If K has amalga-
mation and is categorical in some λ ≥ h(ℵLS(K)+), then K is categorical in all
λ′ ≥ h(ℵLS(K)+).

Proof. Set µ := ℵLS(K)+ in Fact 15.5.10. �

We can also state a version using large cardinals instead of amalgamation. This
is implicit in Shelah’s work (see the remark after [She09a, Theorem IV.7.12]), but
to the best of our knowledge, the details have not appeared in print before. We
will use the following fact, which follows from [SK96, She01b]. Note that while
the results there are stated when K is the class of models of an Lκ,ω-theory, Boney
observed that the proofs go through just as well in an AEC K with κ > LS(K), see
the discussion around [Bon14b, Theorem 7.6].

Fact 15.5.13. Let K be an AEC and let κ > LS(K) be a measurable cardinal.
Let λ ≥ h(κ) be such that K is categorical in λ. Then:

(1) [SK96] K[κ,λ) has amalgamation and no maximal models.
(2) [She01b, Claim 1.16] The model of size λ is saturated.
(3) [She01b, Corollary 3.7] K is (κ,< λ)-tame.
(4) [She01b, Theorem 3.16] If λ is a successor cardinal, then K is categorical

in all λ′ ≥ h(κ).

Corollary 15.5.14. Assume Claim 15.5.2 and WGCH. Let κ > LS(K) be a
measurable cardinal. If K is categorical in some λ ≥ h(κ), then K is categorical in
all5 λ′ ≥ h(κ)

5The proof gives that there exists χ < h(κ) such that K is categorical in all λ′ ≥ χ.
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Proof. By Fact 15.5.13.(1), K[κ,λ) has amalgamation (and no maximal mod-
els, by taking ultrapowers). Note that by Remark 15.5.11 we do not need amalgama-
tion in K≥λ. By Fact 15.5.13.(2, the model of size λ is saturated. Let µ := ℵκ+ . By
Theorem 15.2.4, there exists χ < µ so that K is (χ,< µ)-weakly tame. By Lemma
15.5.8 (with K there standing for K≥χ here), K is categorical in all λ′ ≥ h(µ).
In particular, K is categorical in (h(µ))+. By Fact 15.5.13.(4) (or by Corollary
15.4.6, since by Fact 15.5.13.(3) K has enough tameness), K is also categorical in
all λ′ ∈ [h(κ), h(µ)). �

The same proof gives:

Corollary 15.5.15. Assume Claim 15.5.2 and WGCH. Let κ be a measurable
cardinal and let T be a theory in Lκ,ω. If T is categorical in some λ ≥ h(|T |+ κ),
then T is categorical in all λ′ ≥ h(|T |+ κ).

15.6. Summary

Table 1 summarizes several known approximations of Shelah’s eventual cate-
goricity conjecture, for a fixed AEC K. The topmost line and leftmost column
contain properties that are either model-theoretic, set-theoretic, or about the cate-
goricity cardinal. The intersection of a line and a column gives a known categoricity
transfer for a class having these properties. “AP” stands for “K has the amalga-
mation property”, “Primes” is short for “K has primes” (Definition 14.1.3), “s.c.”
is short for “strongly compact”, and (∗)K is the statement “LS(K) = κ, K has
amalgamation, and K is LS(K)-tame”.

Each transfer is described by its type, a comma, and a threshold µ. A “Full”
type means that categoricity in some λ ≥ µ implies categoricity in all λ′ ≥ µ.
A “Down” type means that we only know a downward transfer: categoricity in
some λ ≥ µ implies categoricity in all λ′ ∈ [µ, λ] (in this case, we can still do an
argument similar to the existence of Hanf numbers [Han60] to deduce Shelah’s
eventual categoricity conjecture, see [Bal09, Conclusion 15.13]). A “Partial” type
means that we only know that categoricity in some λ ≥ µ implies categoricity
in some λ′ with λ′ 6= λ (we do not require that λ′ ≥ µ). When reading the
line beginning with “categ. in a successor”, one should assume that the starting
categoricity cardinal λ is a successor.

For example, the first entry says that if an AEC K satisfies the amalgamation
property and WGCH together with Claim 15.5.2 hold, then categoricity in some
λ ≥ h(ℵLS(K)+) implies categoricity in all λ′ ≥ h(ℵLS(K)+).

Note that in the first column, it is enough to assume amalgamation below
the categoricity cardinal (see Remark 15.5.11). So by Fact 15.5.13.(1) and because
strongly compact cardinals are measurable, we can see the properties in the topmost
row as being arranged in increasing order of strength. Moreover, the existence of a
strongly compact cardinal implies (∗): amalgamation follows from the methods of
[MS90, Proposition 1.13] and tameness from the main theorem of [Bon14b].

Fact 15.6.1. Let K be an AEC and let κ > LS(K) be a strongly compact
cardinal. Let λ ≥ h(κ). If K is categorical in λ, then (∗)K≥κ holds.

Remark 15.6.2. An analog of (∗)K in the case κ is measurable would be given
by conclusions (1)-(3) in Fact 15.5.13.
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AP κ > LS(K) measurable κ > LS(K) s.c. or (∗)K
WGCH and 15.5.2 Full, h(ℵLS(K)+) Full, h(κ) Full, h(κ)
Categ. in a successor Down, iH1

Down, h(κ) Full, h(κ)
Primes Partial, iiH1

Down, h(κ) Full, h(κ)

No extra hypothesis Partial, iiH1
Partial, h(κ)+ Partial, h(κ)

Table 1. Some approximations to Shelah’s categoricity conjec-
ture. Properties in the top row are consequences of large cardinal
axioms while properties in the first column do not follow (or are
not known to follow) from large cardinals. Each entry gives a type
of transfer (full, down, or partial) as well as a cardinal threshold.
See the beginning of this section for more information on how to
read the table.

The results in the first row are Corollary 15.5.12 and Corollary 15.5.14 (for
the strongly compact case, recall that the properties in the topmost row are in
increasing order of strength). The first result in the second row is the downward
transfer of [She99] (see also Corollary 15.8.6 for an alternate proof). The second
is Fact 15.5.13.(4). The third is given by Corollary 15.4.3 (recalling Fact 15.6.1).

The last two results in the first column are given by Corollary 15.3.7 (categoric-
ity above iiH1

implies categoricity in iH1
). As for the last column, the third result

is by Corollary 15.4.9, and the fourth is by Theorem 15.3.8. Very similar proofs
(using Fact 15.5.13 to deduce the needed amount of amalgamation and tameness)
give the corresponding results in the second column.

15.7. Shrinking good frames

We state a generalization of Theorem 14.6.14 to frames that are only defined
over classes of saturated models (Shelah studies these frames in more details in
[Sheb]). This allows us to replace the assumption of tameness by only weak tame-
ness in several results (see Section 15.8).

We start by giving a precise definition of these frames (we call them shrinking
frames for reasons that will soon become apparent).

Definition 15.7.1 (Shrinking frame). Let λ be an infinite cardinal and let
θ > λ be a cardinal or ∞. Let F := [λ, θ) and let K be an AEC.

We say that 〈sµ : µ ∈ F〉 is a shrinking type-full good F-frame on KF (or on
K) if:

(1) K is (λ,< θ)-weakly tame.
(2) sλ has underlying class Kλ.
(3) For each µ ∈ F , sµ is a type-full good µ-frame with Ksµ = Kµ-sat

µ . In
particular, K is categorical in λ.

The reason for the name shrinking is that if µ < µ′ are in F , then the AEC
generated by Ksµ′ is Kµ′-sat, but the underlying class Ksµ is only Kµ-sat which

could be a proper subclass of Kµ′-sat (if K is not categorical in µ′). Note that that
a type-full good [λ, θ)-frame (which is categorical in λ) induces a shrinking frame
in a natural way.
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Proposition 15.7.2. If s is a type-full good [λ, θ)-frame and Ks is categorical
in λ, then 〈s � Kµ-sat : µ ∈ [λ, θ)〉 is a shrinking type-full good [λ, θ)-frame.

Proof. Straightforward, recalling Fact 14.2.6. �

Shrinking frames can be built using Fact 15.1.12:

Theorem 15.7.3. Let K be an AEC. Let λ > LS(K). Assume that for every
µ ∈ [LS(K), λ), K is µ-superstable and has µ-symmetry.

If K is (LS(K), < λ)-weakly tame, then there exists a shrinking type-full good
[LS(K)+, λ)-frame on K.

Proof. Let F := [LS(K)+, λ). By Fact 15.1.12, for each µ ∈ F , there exists a
type-full good µ-frame on Kµ-sat

µ . The result follows. �

We now study how forking in two different cardinals interact in a shrinking
frame. The following notion is key:

Definition 15.7.4. Let K be an AEC. Let LS(K) ≤ λ < µ. Let sλ be a
type-full good λ-frame on Kλ-sat

λ and sµ be a type-full good µ-frame on Kµ-sat
µ . We

say that sλ and sµ are compatible if for any M ≤K N in Ksµ , and p ∈ gS(N), p
does not sµ-fork over M if and only if there exists M0 ≤K M with M0 ∈ Ksλ so
that p � N0 does not sλ-fork over M0 for every N0 ∈ Ksλ with M0 ≤K N0 ≤K N .

Intuitively, compatibility says that that forking in sµ can be computed using
forking in sλ. In fact, it can be described in a canonical way (i.e. using Shelah’s
description of the extended frame, see [She09a, Section II.2]). The following result
is key:

Theorem 15.7.5. Let 〈sµ : µ ∈ F〉 be a shrinking type-full good F-frame on
the AEC K. Let λ < µ be in F . Then sλ and sµ are compatible.

For the proof, we will use the following result which gives an explicit description
of forking in any categorical good frame:

Fact 15.7.6 (The canonicity theorem, see Lemma 6.9.6). Let s be a type-full
good λ-frame with underlying class Kλ. If M ≤K N are limit models in Kλ, then
for any p ∈ gS(N), p does not s-fork over M if and only if there exists M ′ ∈ Kλ

such that M is limit over M ′ and p does not λ-split over M ′.

Proof of Theorem 15.7.5. Note that by uniqueness of limit models, every
model in Ksµ is limit.

For M,N ∈ Ksµ with M ≤K N , let us say that p ∈ gS(N) does not (≥ sλ)-
fork over M if it satisfies the condition in Definition 15.7.4, namely there exists
M0 ≤K M with M0 ∈ Ksλ so that p � N0 does not sλ-fork over M0 for every
N0 ∈ Ksλ with M0 ≤K N0 ≤K N . Let us say that p does not µ-fork over M if it
satisfies the description of the canonicity theorem, namely there exists M ′ ∈ Ksµ

such that M is limit over M ′ and p does not µ-split over M ′. Notice that by the
canonicity theorem (Fact 15.7.6), p does not sµ-fork over M if and only if p does
not µ-fork over M . Thus it is enough to show that p does not (≥ sλ)-fork over M
if and only if p does not µ-fork over M . We first show one direction:

Claim. Let M ≤K N both be in Ksµ and let p ∈ gS(N). If p does not (≥ sλ)-
fork over M , then p does not µ-fork over M .
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Proof of Claim. We know that M is limit, so let 〈Mi : i < δ〉 witness it, i.e. δ
is limit, for all i < δ, Mi ∈ Ksµ , Mi+1 is universal over Mi, and

⋃
i<δMi = M .

By [She09a, Claim II.2.11.(5)], there exists i < δ such that p � M does not
(≥ sλ)-fork over Mi. By [She09a, Claim II.2.11.(4)], p does not (≥ sλ)-fork over
Mi. By weak tameness and the uniqueness property of s, (≥ sλ)-forking has the
uniqueness property (see the proof of [Bon14a, Theorem 3.2]). By Lemma 3.4.2,
(≥ sλ)-nonforking must be extended by µ-nonsplitting, so p does not µ-split over
Mi. Therefore p does not µ-fork over M , as desired. †Claim.

Now as observed above, (≥ sλ)-forking has the uniqueness property. Also,
µ-forking has the extension property (as sµ-forking has it). The claim tells us
that µ-nonforking extends (≥ sλ)-forking and hence by Lemma 3.4.1, they are the
same. �

Thus we can define a global notion of forking inside the frame:

Definition 15.7.7. Assume that 〈sµ : µ ∈ F〉 is a shrinking type-full good
[λ, θ)-frame. Let µ ≤ µ′ be in F and let M ≤K N be such that M ∈ Ksµ and
M ′ ∈ Ksµ′ . Let p ∈ gS(N). We say that p does not fork over M if there exists
M0 ≤K M so that M0 ∈ Ksλ and for every N0 ∈ Ksλ with M0 ≤K N0 ≤K N ,
p � N0 does not sλ-fork over M0.

Theorem 15.7.8. Assume that 〈sµ : µ ∈ F〉 is a shrinking type-full good [λ, θ)-
frame. Then forking (as defined in Definition 15.7.7) has the usual properties:
invariance, monotonicity, extension, uniqueness, transitivity, local character, and
symmetry.

Proof sketch. Invariance, monotonicity, transitivity, and local character are
straightforward. Symmetry is also straightforward (once we have it when the do-
main and the base have the same size, it is a simple use of monotonicity). Unique-
ness is by weak tameness, and extension is as in Proposition 10.5.1. �

We can now state a generalization of Theorem 14.6.14 and sketch a proof:

Theorem 15.7.9. Let 〈sµ : µ ∈ [λ, θ)〉 be a shrinking type-full good [λ, θ)-frame
on K. Let µ ∈ [λ, θ). If Kµ-sat is categorical in µ+, then K is categorical in every
µ ∈ [λ, θ].

Proof sketch. First note that in the upward transfer of Grossberg and VanDieren
(Fact 14.6.12), it is implicit that tameness can be weakened to weak tameness (Re-
mark 15.2.7). The rest of the proof of Theorem 14.6.14 (the downward part) is as
before: we use Theorem 15.7.8 and make sure that anytime a resolution is taken,
all the components are saturated. �

15.8. More on weak tameness

We use Theorem 15.7.9 to replace tameness by weak tameness in some of the
results of the second part of this chapter. Everywhere in this section, we assume:

Hypothesis 15.8.1. K is an AEC with amalgamation.

First, we state a stronger version of the main lemma (Lemma 15.4.2):

Lemma 15.8.2. Assume that K has no maximal models. Let θ ≥ λ > LS(K)+

be such that K is (LS(K), < θ)-weakly tame. Assume that λ is a successor cardinal.

If K is categorical in λ, then KLS(K)+-sat is categorical in all µ ∈ [LS(K)+, θ].
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Proof. By the upward transfer of Grossberg and VanDieren (Fact 14.1.6), K

(and therefore KLS(K)+-sat) is categorical in every λ′ ∈ [λ, θ]. It remains to show
the downward part. By Fact 15.1.3, K is superstable in every µ ∈ [LS(K), λ).
Since λ is a successor, the model of size λ is saturated. By Fact 15.1.7, K has
symmetry in every µ ∈ [LS(K), λ). By Theorem 15.7.3, there is a shrinking type-

full good [LS(K)+, λ)-frame on K. By Theorem 15.7.9, KLS(K)+-sat is categorical
in all λ′ ∈ [LS(K)+, λ]. �

We can improve on Corollary 15.4.3:

Corollary 15.8.3. Assume that K has arbitrarily large models. Let LS(K) <
λ0 < λ. Assume that K is (LS(K), < λ)-weakly tame. If λ is a successor cardinal
and K is categorical in λ0 and λ, then K is categorical in all λ′ ∈ (λ0, λ).

Proof. As in the proof of Corollary 15.4.3, using Lemma 15.8.2 (with λ, θ
there standing for λ, λ here). �

Corollary 15.4.6 can similarly be generalized:

Corollary 15.8.4. Let λ ≥ H1 be a successor cardinal and assume that K is
(LS(K), < λ)-weakly tame. If K is categorical in λ, then there exists χ < H1 such
that K is categorical in all λ′ ∈ [χ, λ).

Proof. As in the proof of Corollary 15.4.6, using Lemma 15.8.2 (with λ, θ
there standing for λ, λ here). �

Remark 15.8.5. It is unclear how to generalize the results using primes: the
proof of Fact 15.4.8 uses tameness (for all models) heavily, and we do not know
how to generalize it to weakly tame AECs.

We can use Corollary 15.8.4 to give an alternate proof to the main theorem of
[She99].

Corollary 15.8.6. If K is categorical in some successor λ ≥ iH1 , then there
exists µ < iH1 such that K is categorical in all λ′ ∈ [µ, λ).

Proof. Without loss of generality (Fact 15.1.9), K has no maximal models.
By Fact 15.1.3, K is stable below λ, so the model of size λ is saturated. By
Theorem 15.2.4, there exists χ < H1 such that K is (χ,< λ)-weakly tame. By
Corollary 15.8.4 (applied to K≥χ), there exists µ < h(χ) < iH1

such that K is
categorical in all λ′ ∈ [µ, λ). �

Generalizing Corollary 15.5.9 is harder. The problem is how to ensure that the
model in the categoricity cardinal has enough saturation. We give a consistency
result in case λ ≥ H1.

Corollary 15.8.7. Assume that 2LS(K) = 2LS(K)+

, WGCH([LS(K)+,LS(K)+ω)),
and Claim 15.5.2 holds. Assume that K is (LS(K), < H1)-weakly tame. If K is
categorical in some λ ≥ H1, then there exists χ < H1 such that K is categorical in
all λ′ ≥ χ.

Proof. Without loss of generality (Fact 15.1.9), K has no maximal models.

By Fact 15.1.3, K is superstable in every µ ∈ [LS(K), λ). Since 2LS(K) = 2LS(K)+

,
H1 = h(LS(K)+), so by Fact 15.1.7, K has symmetry in LS(K)+. By Fact 15.1.6,

KLS(K)+-sat is an AEC with LS(KLS(K)+-sat) = LS(K)+. In particular, the model of
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size λ is LS(K)+-saturated. By Fact 15.1.12, there exists a type-full good LS(K)+-

frame s on K
LS(K)+-sat
LS(K)+ . By iterating Corollary 15.5.7, s is ω-successful+. As in

the proof of Corollary 15.5.9, we get that K is categorical on a tail of cardinals.
By Theorem 15.2.4, K is χ-weakly tame, so combining this with the hypothesis of
(LS(K), < H1)-tameness, K is LS(K)-weakly tame. Now apply Corollary 15.8.4.

�

15.9. Superstability for long types

We generalize Definition 15.1.1 to types of more than one element and use it
to prove an extension property for 1-forking (recall Definition 14.4.2). This is used
to give a converse to Lemma 14.6.7 in the next section (but is not needed for the
main body of this chapter). Everywhere below, K is an AEC.

Definition 15.9.1. Let α ≤ ω be a cardinal. K is (< α, µ)-superstable (or
(< α)-superstable in µ) if it satisfies Definition 15.9.1 except that in addition in
condition (4) there we allow p ∈ gS<α(Mδ) rather than just p ∈ gS(Mδ) (that is,
p need not have length one). (≤ α, µ)-superstable means (< α+, µ)-superstable.
When α = 2, we omit it (that is, µ-superstable means (< 2, µ)-superstable which
is the same as (≤ 1, µ)-superstable).

While not formally equivalent (although we do not know of any examples sep-
arating the two), µ-superstability and (< ω, µ)-superstability are very close. For
example, the proof of Fact 15.1.3 also gives:

Fact 15.9.2. Let µ ≥ LS(K). If K has amalgamation, no maximal models,
and is categorical in a λ > µ, then K is (< ω, µ)-superstable.

Even without categoricity, we can obtain eventual (< ω)-superstability from
just (≤ 1)-superstability and tameness. This uses another equivalent definition of
superstability: solvability:

Theorem 15.9.3. Assume K has amalgamation, no maximal models, and is
LS(K)-tame. If K is LS(K)-superstable, then there exists µ0 < H1 such that K is
(< ω)-superstable in every µ ≥ µ0.

Proof sketch. By Theorem 9.4.9, there exists µ0 < H1 such that K is
(µ0, µ)-solvable for every µ ≥ µ0. This means [She09a, Definition IV.1.4.(1)]
that for every µ ≥ µ0, there exists an EM Blueprint Φ so that EMτ(K)(I,Φ) is a
superlimit in K for every linear order I of size µ. Intuitively, it gives a weak version
of categoricity in µ. As observed in Chapter 20, this weak version is enough for the
proof of the Shelah-Villaveces theorem to go through, hence by Fact 15.9.2, K is
(< ω)-superstable in µ for every µ ≥ µ0. �

Remark 15.9.4. If K has amalgamation, is LS(K)-tame for types of length
less than ω, and is (< ω,LS(K))-superstable, then (by the proof of Proposition
6.10.10) K is (< ω)-superstable in every µ ≥ LS(K). However here we want to
stick to using regular tameness (i.e. tameness for types of length one).

To prove the extension property for 1-forking, we will use:

Fact 15.9.5 (Extension property for splitting, Proposition 10.5.1). Let K be an
AEC, θ > LS(K). Let α ≤ ω be a cardinal and assume that K is (< α)-superstable
in every µ ∈ [LS(K), θ). Let M0 ≤K M ≤K N be in K[LS(K),θ), with M limit over
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M0. Let p ∈ gS<α(M) be such that p does not LS(K)-split over M0. Then there
exists an extension q ∈ gS<α(N) of p which does not LS(K)-split over M0.

Theorem 15.9.6. Let θ > LS(K). Write F := [LS(K), θ). Let s be a type-full
good F-frame with underlying class KF . Let α ≤ ω be a cardinal and assume that
K is (< α, µ)-superstable for every µ ∈ F . Let M ≤K N be in KF with M a limit
model. Let p ∈ gS<α(M). Then there exists q ∈ gS<α(N) that extends p so that q
does not 1-s-fork over M (recall Definition 14.4.2).

Proof. Without loss of generality, N is a limit model. Let µ := ‖M‖. By
(< α)-superstability, there exists M0 ∈ Kµ such that M is limit over M0 and p
does not µ-split over M0. By Fact 15.9.5, there exists q ∈ gS(N) extending p so
that q does not µ-split over M0. We claim that q does not 1-s-fork over M . Let
I ⊆ `(p) have size one. By monotonicity of splitting, qI does not µ-split over M0.
By local character, let N0 ≤K N be such that M ≤K N0, N0 ∈ Kµ, N0 is limit,
and qI does not s-fork over N0. By monotonicity of splitting again, qI � N0 does
not µ-split over M0. By the canonicity theorem (Fact 15.7.6) applied to the frame
s � Kµ, qI � N0 does not s-fork over M . By transitivity, qI does not s-fork over M ,
as desired. �

15.10. More on global orthogonality

Assuming superstability for types of length two, we prove a converse to Lemma
14.6.7, partially answering Question 14.6.8. We then prove a few more facts about
global orthogonality and derive an alternative proof of the upward categoricity
transfer of Grossberg and VanDieren (Fact 14.1.6). This material is not needed for
the main body of this chapter.

Hypothesis 15.10.1.

(1) K is an AEC.
(2) θ > LS(K) is a cardinal or ∞. We set F := [LS(K), θ).
(3) s = (KF ,^) is a type-full good F-frame.
(4) K is (≤ 2)-superstable in every µ ∈ F .

Remark 15.10.2. Compared to Hypothesis 14.6.1, we have added (≤ 2)-superstability.
Note that this would follow automatically if s was a type-full good frame for types
of length two, hence it is a minor addition. It also holds if K is categorical above
F (Fact 15.9.2) or even if it is just tame (Theorem 15.9.3).

Lemma 15.10.3. Let M0 ≤K M be both in KF with M0 ∈ KLS(K) limit. Let

p, q ∈ gS(M) be nonalgebraic so that both do not fork over M0. If p ⊥
wk

q, then

p �M0 ⊥
wk
q �M0.

Proof. Assume that p � M0 6⊥
wk

q � M0. We show that p 6⊥
wk

q. Fix N ∈ KF

with M0 ≤K N and let a, b ∈ |N | realize in N p � M0 and q � M0 respectively.
Assume that 〈ab〉 is not independent in (M0, N). Let r := gtp(ab/M0;N). By
Theorem 15.9.6, there exists r′ ∈ gS2(M) that extends r and so that r′ does not
1-s-fork over M0 (recall Definition 14.4.2). Let N ′ ≥K M and let 〈a′b′〉 realize r′ in
N ′. Then gtp(a′/M ;N ′) does not fork over M0 and extends p �M0, hence a′ must
realize p in N ′. Similarly, b′ realizes q. We claim that 〈a′b′〉 is not independent
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in (M,N ′), hence p 6⊥
wk

q. If 〈a′b′〉 were independent in (M,N ′), there would exist

N ′′ ≥K N ′ and M ′ ≤K N ′′ so that M ≤K M ′, b ∈ |M ′|, and gtp(a′/M ′;N ′′) does
not fork over M . By transitivity, gtp(a′/M ′;N ′′) does not fork over M0. This shows
that 〈a′b′〉 is independent in (M0, N

′′), so since gtp(a′b′/M0;N ′′) = gtp(ab/M0;N),
we must have that 〈ab〉 is independent in (M0, N), a contradiction. �

We obtain:

Theorem 15.10.4. Let M ∈ KF and p, q ∈ gS(M). Then:

(1) If M ∈ K
LS(K)-sat
F , then p ⊥ q if and only if p ⊥

wk
q.

(2) If M ∈ K
LS(K)-sat
F , then p ⊥ q if and only if q ⊥ p.

(3) If M0 ∈ K
LS(K)-sat
F is such that M0 ≤K M and both p and q do not fork

over M0, then p ⊥ q if and only if p �M0 ⊥ q �M0.

Proof.

(1) If p ⊥ q, then p ⊥
wk

q by definition. Conversely, assume that p ⊥
wk

q. Fix

a limit M0 ∈ KLS(K) such that M0 ≤K M and both p and q do not fork

over M0. By Lemma 15.10.3, p � M0 ⊥
wk

q � M0. By Lemma 14.4.13.(1),

p �M0 ⊥ q �M0. By Lemma 14.6.7, p ⊥ q.
(2) A similar proof, using (2) instead of (1) in Lemma 14.4.13.
(3) By local character and transitivity, we can fix a limit M ′0 ∈ KLS(K) such

that M ′0 ≤K M0 and both p and q do not fork over M ′0. Now by what
has been proven above and Lemmas 14.6.7 and 15.10.3, p ⊥ q if and only
if p �M ′0 ⊥ q �M ′0 if and only if p �M0 ⊥ q �M0.

�

We can now give another proof of the upward transfer of unidimensionality (the
second part of the proof of Theorem 14.6.13). This does not use Fact 14.6.12.

Lemma 15.10.5. Let µ < λ be in F . If s is µ-unidimensional, then s is λ-
unidimensional.

Proof. Assume that s is not λ-unidimensional. Let M0 ∈ Kµ be limit and
let p0 ∈ gS(M0) be minimal. We show that there exists a limit M ′0 ∈ Kµ, p′0, q

′
0 ∈

gS(M ′0) such that p′0 extends p0 and p′0 ⊥ q′0. This will show that K is not µ-
unidimensional by Lemma 14.5.7. Let M ∈ Kλ be saturated such that M0 ≤K M
and let p ∈ gS(M) be the nonforking extension of p0. By non-λ-unidimensionality
(and Lemma 14.5.7), there exists q ∈ gS(M) so that p ⊥ q. Let M ′0 ∈ Kµ be limit
such that M0 ≤K M ′0 ≤K M and q does not fork over M ′0. Let p′0 := p � M ′0,
q′0 := q �M ′0. By Theorem 15.10.4, p′0 ⊥ q′0, as desired. �

We obtain the promised alternate proof to Grossberg-VanDieren. For this corol-
lary, we drop Hypothesis 15.10.1.

Corollary 15.10.6. Let K be an AEC with amalgamation and arbitrarily
large models. If K is LS(K)-tame and categorical in a successor λ > LS(K)+, then
K is categorical in all µ ≥ λ.

Proof. By Fact 15.1.9, we can assume without loss of generality that K has
no maximal models. By Fact 15.1.3, K is LS(K)-superstable. By Fact 15.1.5, K
is superstable and has symmetry in every µ ≥ LS(K). By Theorem 15.3.8, K is
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categorical in a proper class of cardinals. By Fact 15.9.2, K is (< ω)-superstable
in every µ ≥ LS(K). Now say λ = λ+

0 . By Facts 15.1.12 and 15.1.13, there exists a

type-full good (≥ λ0)-frame s with underlying class K
LS(K)+-sat
≥LS(K)+ . By Fact 14.2.6, we

can restrict the frame further to have underlying class Kλ0-sat
≥λ0

. By Corollary 14.6.14

(using Lemma 15.10.5 to transfer unidimensionality up), Kλ0-sat is categorical in

every µ ≥ λ0. Now Kλ0-sat
≥λ = K≥λ (by categoricity in λ), so the result follows. �

Remark 15.10.7. Similarly to what was said in Remark 15.4.4, it is also possi-
ble to use this argument to prove that a LS(K)-tame AEC with amalgamation and
arbitrarily large models categorical in LS(K) and LS(K)+ is categorical everywhere
[GV06a, Theorem 6.3]. However we do not know that we have a good frame in
LS(K), so the proof is more complicated.

Remark 15.10.8. As opposed to Grossberg and VanDieren’s proof, our proof
of Corollary 15.10.6 is global: it cannot be turned into an argument for Fact 14.6.12
(e.g. if θ there is LS(K)+ω we cannot use Theorem 15.3.8). It is also not clear how
to replace tameness with weak tameness in the proof.

15.11. A proof of Fact 15.5.3

Hypothesis 15.11.1. K is an AEC, λ ≥ LS(K).

We give a full proof of Fact 15.5.3. Shelah’s proof in �4 of the proof of [She09a,
Theorem IV.7.12] skips some steps (for example it is not clear how we can make
sure there that fηa0[M`(η)+1] = fηa1[M`(η)+1]). The proof we give here is similar
in spirit to Shelah’s, but we use a stronger blackbox (relying on weak diamond)
which avoids having to deal with all of Shelah’s renaming steps.

We will use the combinatorial principle Θλ+ introduced (for λ = ℵ0) in [DS78].

Definition 15.11.2. Θλ+ holds if for every 〈fη ∈ λ+

λ+ : η ∈ λ+

2〉, there exists

η ∈ λ+

2 such that the set

Sη := {δ < λ+ | ∃ν ∈ λ+

2 : fη � δ = fν � δ ∧ η � δ = ν � δ ∧ η(δ) 6= ν(δ)}
is stationary.

Remark 15.11.3. Instead of requiring that fη ∈ λ+

λ+, we can assume only
that fη is a partial function from λ+ to λ+ (we can always extend fη arbitrarily to
an actual function).

Fact 15.11.4 (6.1 in [DS78]). If 2λ < 2λ
+

, then Θλ+ holds.

In [She01a, Claim 1.4.(2)], Shelah shows assuming the weak diamond that
given a tree witnessing failure of amalgamation in λ, there cannot be a universal
model of cardinality λ+. A similar proof gives a two-dimensional version:

Lemma 15.11.5. Assume 2λ < 2λ
+

. Let 〈Mη : η ∈ ≤λ+

2〉 be a strictly increasing

continuous tree with Mη ∈ Kλ for all η ∈ <λ+

2. Let 〈Mα : α ≤ λ+〉 be an

increasing continuous chain and let 〈fη : η ∈ ≤λ+

2〉 be such that for any η ∈ ≤λ+

2,
fη : M`(η) →Mη and for any α < `(η), fη �Mα = fη�α.

Assume that there exists N ∈ Kλ+ with Mλ+ ≤K N such that for all η ∈ λ+

2,
there exists gη : Mη → N such that the following diagram commutes:
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N

Mλ+

OO

fη

// Mη

gη

bb

Then there exists ρ ∈ <λ+

2, η, ν ∈ λ+

2, δ < λ+ such that ρ = η � δ = ν � δ,
0 = η(δ) 6= ν(δ) = 1, and the following diagram commutes:

Mρa0

gη�Mρa0 // N

Mδ+1

fρa0

;;vvvvvvvvv
fρa1 // Mρa1

gν�Mρa1

OO

Mδ

OO

fρ

// Mρ

OO

;;vvvvvvvvv

Proof. Fix N ∈ Kλ+ , fη, gη as in the statement of the lemma. By renaming
everything, we can assume without loss of generality that |N | ⊆ λ+ and |Mη| ⊆ λ+

for all η ∈ ≤λ+

2.

By Fact 15.11.4, Θλ+ holds. We use it with the sequence 〈gη : η ∈ λ+

2〉 (see

Remark 15.11.3). We obtain η ∈ λ+

2 such that the set Sη of Definition 15.11.2 is
stationary. Let C := {δ < λ+ | |Mη�δ| ⊆ δ}. Clearly, C is club so let δ ∈ Sη∩C and

let ν ∈ λ+

2 be as given by the definition of Sη (i.e. gη � δ = fν � δ, η � δ = ν � δ,
and without loss of generality 0 = η(δ) 6= ν(δ) = 1). Let ρ := η � δ = ν � δ. Then
ρ, η, ν, δ are as desired. The main point is that since |Mρ| ⊆ δ (by definition of δ),
gη �Mρ = gν �Mρ.

�

The next technical property is of great importance in Chapter II and III of
[She09a]. The definition below follows [JS13, Definition 4.1.5] (but as usual, we
work only with type-full frames).

Definition 15.11.6.

(1) For M0 ≤K M` all in Kλ, ` = 1, 2, an amalgam of M1 and M2 over M0

is a triple (f1, f2, N) such that N ∈ Kλ and f` : M` −−→
M0

N .

(2) Let (fx1 , f
x
2 , N

x), x = a, b be amalgams of M1 and M2 over M0. We
say (fa1 , f

a
2 , N

a) and (f b1 , f
b
2 , N

b) are equivalent over M0 if there exists
N∗ ∈ Kλ and fx : Nx → N∗ such that f b◦f b1 = fa◦fa1 and f b◦f b2 = fa◦fa2 ,
namely, the following commutes:
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Na fa // N∗

M1

fa1

=={{{{{{{{
fb1
// N b

fb

OO

M0

OO

// M2

fa2

OO

fb2

==||||||||

Note that being “equivalent overM0” is an equivalence relation ([JS13,
Proposition 4.3]).

(3) Let s be a type-full good λ-frame on K.

(a) Let K3,uq
s denote the set of triples (a,M,N) such that M ≤K N are

in Kλ, a ∈ |N |\|M | and for any M1 ≥K M in Kλ, there exists a
unique (up to equivalence over M) amalgam (f1, f2, N1) of N and
M1 over M such that gtp(f1(a)/f2[M1];N1) does not fork over M .

We call the elements of K3,uq
s uniqueness triples. When s is clear

from context, we just write K3,uq.

(b) K3,uq
s has the existence property if for any M ∈ Kλ and any nonal-

gebraic p ∈ gS(M), one can write p = gtp(a/M ;N) with (a,M,N) ∈
K3,uq

s .
(c) We say that s has the existence property for uniqueness triples or s

is weakly successful if K3,uq
s has the existence property.

Remark 15.11.7. Let M0 ≤K M1,M0 ≤K M2 all be in Kλ.

(1) If (f1, f2, N) is an amalgam of M1 and M2 over M0, there exists an equiv-
alent amalgam (g1, g2, N

′) of M1 and M2 over M0 with g2 = idM2
.

(2) For x = a, b, assume that (fx1 , f
x
2 , N

x) are non-equivalent amalgams of
M1 and M2 over M0. We have the following monotonicity properties:
(a) For x = a, b, if Nx ≤K Nx

∗ , then (fx1 , f
x
2 , N

x
∗ ) are non-equivalent

amalgams of M1 and M2 over M0.
(b) If M1 ≤K M ′1, M2 ≤K M ′2 (with M ′1,M

′
2 ∈ Kλ), and for x = a, b,

there exists gx1 ⊇ fx1 , g
x
2 ⊇ fx2 such that (gx1 , g

x
2 , N

x) is an amalgam
of M ′1 and M ′2 over M0, then (ga1 , g

a
2 , N

a) and (gb1, g
b
2, N

b) are not
equivalent over M0.

We are now ready to prove the desired result.

Theorem 15.11.8 (Shelah). Assume 2λ < 2λ
+

. Let s be a good λ-frame on
K. If K is categorical in λ and for any saturated M ∈ Kλ+ there exists N ∈ Kλ+

universal over M , then s is weakly successful.

Proof. Below, we assume to simplify the notation that s is type-full but the
same proof goes through in the general case. Suppose that the conclusion of the
theorem fails. Fix 〈Mα : α < λ+〉 increasing continuous in Kλ such that Mα+1

is limit over Mα for all α < λ+. Let Mλ+ :=
⋃
α<λ+ Mα. Since s is not weakly

successful, there exists a nonalgebraic type p ∈ gS(M0) which cannot be represented
by a uniqueness triple. Say p = gtp(a/M0;M).
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We build a strictly increasing continuous tree 〈Mη : η ∈ ≤λ+

2〉 with Mη ∈ Kλ

for η ∈ <λ+

2, as well as a strictly increasing continuous tree of embeddings 〈fη :

η ∈ ≤λ+

2〉 such that for any η ∈ <λ+

2:

(1) fη : M`(η) →Mη.
(2) M<> = M and f<> = idM0

.
(3) gtp(a/fη[M`(η)];Mη) does not fork over M0.
(4) There is no N ∈ Kλ and g` : Mηal → N , ` = 0, 1, such that the following

diagram commutes:

Mηa0
g0 // N

M`(η)+1

fηa0

::uuuuuuuuu
fηa1 // Mηa1

g1

OO

M`(η)

OO

fη

// Mη

OO

;;wwwwwwwww

This is enough: We have that Mλ+ is saturated and we know by assumption

that there is a universal model N over Mλ+ in Kλ+ . In particular, for every η ∈ λ+

2,
there exists gη : Mη → N such that f−1

η ⊆ gη. By Lemma 15.11.5, requirement (4)
must fail somewhere in the construction, contradiction.

This is possible: The construction is by induction on the length of η ∈ ≤λ+

2.
If `(η) = 0, then (2) specifies what to do and if the length is limit, we take unions
(and use the local character and transitivity properties of forking to see that (3) is
preserved). Assume now that α < λ+ and that η ∈ α2 is such that Mη, fη have been
defined. We want to build Mηa`, fηa` for ` = 0, 1. Let q := gtp(a/fη[Mα];Mη).
We know that q is the nonforking extension of p (by (3) and the definition of p), so
by the conjugation property (Fact 14.3.3, note that by assumption K is categorical
in λ) p and q are conjugates, hence q cannot be represented by a uniqueness triple.
Therefore (a, fη[Mα],Mη) is not a uniqueness triple. This means that there exists
M ′α ∈ Kλ with fη[Mα] ≤M ′α and two non-equivalent amalgams (f `1 , f

`
2 ,Mηa`) such

that gtp(f `2(a)/f `1 [M ′α];Mηa`) does not fork over Mη for ` = 0, 1. Without loss of
generality (Remark 15.11.7) f `2 is the identity for ` = 0, 1:

Mηa0

M ′α

f0
1

::uuuuuuuuu
f1
1
// Mηa1

fη[Mα]

OO

// Mη

OO

;;wwwwwwwww

By the monotonicity property of being non-equivalent amalgams (Remark 15.11.7)
and the extension property of forking, we can increase M ′α, M0

η , and M1
η to assume

without loss of generality that M ′α is limit over fη[Mα]. In particular, there exists
g : Mα+1

∼= M ′α with fη ⊆ g. For ` = 0, 1, let fηa` := f `1 ◦ g. �



15.11. A PROOF OF FACT 15.5.3 389

Proof of Fact 15.5.3. Note that amalgamation and stability in λ+ imply
that over every M ∈ Kλ+ there exists N ∈ Kλ+ universal over M . Thus the
hypotheses of Theorem 15.11.8 hold. �





CHAPTER 16

Shelah’s eventual categoricity conjecture in
universal classes: part II

This chapter is based on [Vas17c]. I thank John Baldwin for inviting me to
visit UIC in Fall 2015 to present a preliminary version of Chapter 8. The present
chapter is an answer to several questions he asked me. This paper was also pre-
sented at seminars in Harvard and Rutgers University. I thank the organizers of
these seminars for showing interest in my work and inviting me to talk. I thank
the participants of these seminars for helpful feedback that helped me refine the
presentation and motivation for this paper. I thank the referee for a detailed report
that helped me improve the presentation of this paper. Finally, this chapter would
not exist without the constant support and encouragements of Samaneh. I would
like to dedicate this work to her.

Abstract

We prove that a universal class categorical in a high-enough cardinal is cate-
gorical on a tail of cardinals. As opposed to other results in the literature, we work
in ZFC, do not require the categoricity cardinal to be a successor, do not assume
amalgamation, and do not use large cardinals. Moreover we give an explicit bound
on the “high-enough” threshold:

Theorem 16.0.9. Let ψ be a universal Lω1,ω sentence (in a countable vocabu-
lary). If ψ is categorical in some λ ≥ iiω1

, then ψ is categorical in all λ′ ≥ iiω1
.

As a byproduct of the proof, we show that a conjecture of Grossberg holds in
universal classes:

Corollary 16.0.10. Let ψ be a universal Lω1,ω sentence (in a countable vo-
cabulary) that is categorical in some λ ≥ iiω1

, then the class of models of ψ has
the amalgamation property for models of size at least iiω1

.

We also establish generalizations of these two results to uncountable languages.
As part of the argument, we develop machinery to transfer model-theoretic prop-
erties between two different classes satisfying a compatibility condition (agreeing
on any sufficiently large cardinals in which either is categorical). This is used as a
bridge between Shelah’s milestone study of universal classes (which we use exten-
sively) and a categoricity transfer theorem of the author for abstract elementary
classes that have amalgamation, are tame, and have primes over sets of the form
M ∪ {a}.

16.1. Introduction

In 1965, Morley [Mor65] started what is now called stability theory by proving:

391
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Fact 16.1.1. If a countable first-order theory is categorical1 in some uncount-
able cardinal, then it is categorical in all uncountable cardinals.

In 1976, Shelah proposed [She90, Open Problem D.(3a)] the following far-
reaching generalization:

Conjecture 16.1.2 (Shelah’s categoricity conjecture for Lω1,ω). Let ψ be an
Lω1,ω sentence. If ψ is categorical in some cardinal λ ≥ iω1

, then ψ is categorical
in all cardinals λ′ ≥ iω1

.

This is now recognized as the central test question in nonelementary model the-
ory. In 1977, Shelah introduced abstract elementary classes (AECs) [She87a], an
abstract framework encompassing classes of models of an Lλ+,ω(Q) theory and sev-
eral other examples of interest. Shelah has stated in [She09b, N.4.2] the following
version of the conjecture:

Conjecture 16.1.3 (Shelah’s eventual categoricity conjecture for AECs). If
an AEC is categorical in a high-enough cardinal, then it is categorical on a tail of
cardinals.

While many pages of approximations exist (see the references given after the
statement of the main theorem below) both conjectures are still open.

In this chapter, we prove an approximation of Conjecture 16.1.2 when ψ is a
universal (see Definition 16.2.3) sentence (iω1

is replaced by iiω1
, see more below).

More generally, we confirm Conjecture 16.1.3 for universal classes: classes of models
of a universal L∞,ω theory, or equivalently classes of models K in a fixed vocabulary
τ(K) closed under isomorphisms, substructure, and unions of ⊆-increasing chains.

Main Theorem 16.7.3. Let K be a universal class. If K is categorical in
some λ ≥ ii

(2|τ(K)|+ℵ0)
+ , then K is categorical in all λ′ ≥ ii

(2|τ(K)|+ℵ0)
+ .

Let us compare the main theorem to earlier approximations to Shelah’s eventual
categoricity conjecture2: In a series of papers [GV06b, GV06c, GV06a], Gross-
berg and VanDieren isolated tameness, a locality properties of AECs, and (using
earlier work of Shelah [She99]) proved Shelah’s eventual categoricity conjecture
in tame AECs with amalgamation assuming that the starting categoricity cardinal
is a successor. Boney [Bon14b] later showed (building on work of Makkai-Shelah
[MS90]) that tameness (as well as amalgamation, if in addition categoricity in a
high-enough cardinal is assumed) follows from a large cardinal axiom (a proper class
of strongly compact cardinals exists). Therefore the eventual categoricity conjec-
ture follows from the following two extra assumptions: the categoricity cardinal is a
successor, and a large cardinal axiom holds. In [She09a, IV.7.12], Shelah removes
the successor hypothesis assuming amalgamation3 and the generalized continuum
hypothesis (GCH)4. Shelah’s proof is clarified in Section 15.5, but it relies on a
claim which Shelah has yet to publish a proof of.

1We say that a class of structures is categorical in a cardinal λ if it has a unique (up to

isomorphism) model of size λ. We say that a theory or sentence (in some logic) is categorical in
λ if its class of models is.

2We do not present a complete history or an exhaustive list of recent results here. See the

introduction of Chapter 8 for the former and [BVd] for the latter.
3By [Bon14b, Theorem 7.6], this can also be replaced by a large cardinal axiom.
4It is enough to assume the existence of a suitable family of cardinals θ such that 2θ < 2θ

+
.
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In any case, all known categoricity transfers (which do not make model-theoretic
assumptions on the AEC) rely on the existence of large cardinals together with ei-
ther GCH or the assumption that the categoricity cardinal is a successor.

In the prequel to this chapter (Chapter 8) we showed that some of these limi-
tations could be overcome in the case of universal classes:

Fact 16.1.4 (Corollary 8.5.28). Let K be a universal class.

(1) If K is categorical in cardinals of arbitrarily high cofinality, then K is
categorical on a tail of cardinals.

(2) If κ > |τ(K)|+ ℵ0 is a measurable cardinal and K is categorical in some
λ ≥ iiiκ

then K is categorical in all λ′ ≥ iiiκ
.

Still, requirements on the categoricity cardinal in the first case and the existence
of large cardinals in the second case could not be completely eliminated. These
hypotheses were made to prove the amalgamation property, which is known to be
the only obstacle:

Fact 16.1.5 (Corollary 15.4.11). Let K be a universal class with amalgamation.
If K is categorical in some λ ≥ i(2|τ(K)|+ℵ0)

+ , then K is categorical in all λ′ ≥
i(2|τ(K)|+ℵ0)

+ .

Note that (see Chapters 8, 11) all the facts stated above hold in a much wider
context than universal classes: tame AECs with primes. However for the specific
case of universal classes there is a well-developed structure theory [She87b]. This
chapter uses it to remove the assumption of amalgamation from Fact 16.1.5 and
prove the main theorem. Further, a conjecture of Grossberg [Gro02, Conjecture
2.3] says that any AEC categorical in a high-enough cardinal should have amal-
gamation on a tail. A byproduct of this chapter is that Grossberg’s conjecture
holds in universal classes (see the proof of Theorem 16.7.3). Note that the behavior
of amalgamation in universal classes is nontrivial: Kolesnikov and Lambie-Hanson
have shown [KLH16] that for each α < ω1, there is a universal class in a countable
vocabulary that has amalgamation up to iα but fails amalgamation everywhere
above iω1

(the example is not categorical in any uncountable cardinal).
One might think that Grossberg’s conjecture should be established before trans-

ferring categoricity (in order to be able to assume amalgamation in the transfer),
but our proof of Theorem 16.7.3 is more subtle. First we use Shelah’s structure
theory of universal classes to show that there exists an ordering ≤ (potentially dif-
ferent from substructure) such that (K,≤) has amalgamation and other structural
properties. We then work inside (K,≤) to transfer categoricity (proving Theorem
16.7.3 since its statement does not depend on the ordering of the class). It is only
after that we are able to conclude that ≤ is actually substructure (on a tail of
cardinals), and hence that Grossberg’s conjecture holds in universal classes.

The main difficulty in the argument just outlined is that it is unclear that (K,≤)
is an AEC (it may fail the smoothness axiom). The hard part of this chapter is
proving that it actually is an AEC. This is done by working inside a framework
for forking-like independence in (K,≤) that Shelah calls AxFri1 and proving new
results for that framework, including Theorem 16.5.40 telling us how to copy a
chain witnessing the failure of smoothness into an independent tree of models.

It should be noted that these new results (in Section 16.5) are really the only
new pieces needed to prove the main theorem. The rest of the chapter is about
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combining the structure theory of universal classes developed by Shelah [She09b,
Chapter V] with known categoricity transfers (Chapters 8, 11, 14, 15). Another
contribution of this chapter is Section 16.3 which considers two weak AECs K1,K2

satisfying a compatibility condition (the isomorphism types of models in a cate-
goricity cardinal is the same). The motivation here is the aforementioned change
from K1 = (K,⊆) to K2 = (K,≤): In general, we may want to study an AEC K1

by changing its ordering, giving a new class K2 which has certain properties P of
K1 together with some new properties P ′ that K1 may not have. We may know
a theorem telling us that a single class that has both P and P ′ is well-behaved.
Section 16.3 gives tools to generalize the original theorem to the case when we do
not have a single class (i.e. K1 = K2) but instead have potentially different classes
K1 and K2.

Note in passing that this chapter does not make Chapter 8 obsolete: the results
there hold for a wider context than universal classes, whereas we do not know how
to generalize the proof of the main theorem here. Furthermore, we rely heavily here
on Chapter 8.

A natural question is why, the threshold in Theorem 16.0.9 is iiω1
and not

iω1
as in Conjecture 16.1.2. The iiω1

comes from the fact that, in the argument

outlined in the second paragraph after Fact 16.1.5, the class (K,≤) has Löwenheim-
Skolem-Tarski number χ, for some χ < iω1

. After proving that it is an AEC,
we apply known categoricity transfers to this class, hence the final threshold for
categoricity is of order i(2χ)+ ≤ iiω1

(a similar phenomenon occurs in [She99],
where Shelah proves that the class K is χ-weakly tame for some χ < i(2LS(K))+

and then obtains a threshold of i(2χ)+). We do not know whether the threshold in
Theorem 16.0.9 can be lowered to iω1 .

Let us discuss the background required to read this chapter. It is assumed that
the reader has a solid knowledge of AECs (including at minimum the material in
[Bal09]). Still, except for the basic concepts, we have tried to explicitly state all
the definitions and facts. Only little understanding of Chapters 8, 11, 14, 15 is
required: they are used only as black boxes. While some results in Chapter 8 rely
on deep results of Shelah from the first sections of Chapter IV of [She09a], we
do not use them5. At one point (Lemma 16.3.4) we rely on Shelah’s construction
of a certain linear order [She09a, IV.5]. This can also be taken as a black box.
Last but not least, we rely on part of Shelah’s original study of universal classes
[She87b] (we quote from the updated version in Chapter V of [She09b]). All the
results that we use from there have full proofs. We do not rely on any of Shelah’s
nonstructure results.

16.2. Preliminaries

We state definitions and facts that will be used later. All throughout this
chapter, we use the letters M,N for models and write |M | for the universe of a
model M and ‖M‖ for the cardinality of its universe. We may abuse notation and
write e.g. a ∈M when we really mean a ∈ |M |.

Recall the definition of a universal class (for examples, see e.g. Example 8.2.2).

Definition 16.2.1 ([Tar54, She87b]). A class of structure K is universal if:

5The one exception is [She09a, IV.1.12.(2)] (see Fact 16.2.13), but the proof is short and
elementary.
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(1) It is a class of τ -structures for a fixed vocabulary τ = τ(K), closed under
isomorphisms.

(2) If 〈Mi : i < δ〉 is ⊆-increasing in K, then
⋃
i<δMi ∈ K.

(3) If M ∈ K and M0 ⊆M , then M0 ∈ K.

Remark 16.2.2. Notice the following fundamental property of a universal class
K. Given a subset A of N ∈ K, clN (A), the closure of A under the functions of N
(or equivalently

⋂
{N0 ∈ K | A ⊆ |N |, N0 ⊆ N}) is in K.

It is known that universal classes can be characterized syntactically. We will
use the following definition.

Definition 16.2.3. A sentence ψ of L∞,ω is universal if it is of the form
∀x0∀x1 . . . ∀xnφ(x0, x1, . . . , xn), where φ is a quantifier-free L∞,ω formula. An
L∞,ω-theory is universal if it consists only of universal L∞,ω formulas.

The following is essentially due to Tarski [Tar54]. Only “(2) implies (1)” will
be used. Tarski proved the result for Lω,ω, so we sketch a proof of the L∞,ω case
for the convenience of the reader.

Fact 16.2.4. Let K be a class of structures in a fixed vocabulary τ = τ(K).
Set λ := |τ |+ ℵ0. The following are equivalent.

(1) K is a universal class.
(2) K = Mod(T ), for some universal Lλ+,ω theory T with |T | ≤ λ.

Proof sketch. (2) implies (1) is straightforward. We show (1) implies (2).
Note that for any fixed finitely generated τ -structure M , the class K¬M of τ -
structures that do not contain (as a substructure) a copy of M is axiomatized by
a universal Lλ+,ω-sentence. Further, there are only λ-many isomorphism types of
finitely generated τ -structures.

Now for any universal class K in the vocabulary τ , let Γ be the class of finitely
generated τ -structures that are not contained in any member of K. With a directed
system argument, one sees that K is exactly the class of τ -structures that do not
contain a copy of a member of Γ. �

Remark 16.2.5. Fact 16.2.4 shows that K is axiomatized by a single Lλ+,ω-
sentence (take the conjunctions of all the formulas in T ). However it need not be
true that K is axiomatized by a single universal Lλ+,ω-sentence: consider the class
of directed graphs that do not contain a finite cycle. Confusingly, Malitz [Mal69]
calls a sentence universal (we will say it is Malitz-universal) if it has no existential
quantifiers and negations are only applied to atomic formulas. Thus the class of
directed graphs without finite cycles is axiomatizable by a single Malitz-universal
sentence but not by a single universal sentence. Even worse, the class of all finite
sets is axiomatizable by a single Malitz-universal sentence but is not a universal
class (it is not closed under unions).

Universal classes are abstract elementary classes:

Definition 16.2.6 (Definition 1.2 in [She87a]). An abstract elementary class
(AEC for short) is a pair K = (K,≤K), where:

(1) K is a class of τ -structures, for some fixed vocabulary τ = τ(K).
(2) ≤K is a partial order (that is, a reflexive and transitive relation) on K.
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(3) (K,≤K) respects isomorphisms: If M ≤K N are in K and f : N ∼= N ′,
then f [M ] ≤K N ′. In particular (taking M = N), K is closed under
isomorphisms.

(4) If M ≤K N , then M ⊆ N .
(5) Coherence: If M0,M1,M2 ∈ K satisfy M0 ≤K M2, M1 ≤K M2, and

M0 ⊆M1, then M0 ≤K M1;
(6) Tarski-Vaught axioms: Suppose δ is a limit ordinal and 〈Mi ∈ K : i < δ〉

is an increasing chain. Then:
(a) Mδ :=

⋃
i<δMi ∈ K and M0 ≤K Mδ.

(b) Smoothness: If there is some N ∈ K so that for all i < δ we have
Mi ≤K N , then we also have Mδ ≤K N .

(7) Löwenheim-Skolem-Tarski axiom: There exists a cardinal λ ≥ |τ(K)|+ℵ0

such that for any M ∈ K and A ⊆ |M |, there is some M0 ≤K M such
that A ⊆ |M0| and ‖M0‖ ≤ |A|+λ. We write LS(K) for the minimal such
cardinal.

Remark 16.2.7.

(1) When we write M ≤K N , we implicitly also mean that M,N ∈ K.
(2) We write K for the pair (K,≤K), and K (no boldface) for the actual class.

However we may abuse notation and write for example M ∈ K instead of
M ∈ K when there is no danger of confusion. Note that in this chapter
we will sometimes work with two AECs K1, K2 that happen to have the
same underlying class K but not the same ordering.

Notice that if K is a universal class, then K := (K,⊆) is an AEC with LS(K) =
|τ(K)|+ ℵ0. Throughout this chapter we will use the following notation:

Notation 16.2.8. Let K be a universal class. We think of K as the AEC
K := (K,⊆), and may write “K is a universal class” instead of “K is a universal
class”.

We will also have to deal with AECs that may not satisfy the smoothness
axiom:

Definition 16.2.9 (I.1.2.(2) in [She09a]). A weak AEC is a pair K = (K,≤K)
satisfying all the axioms of AECs except perhaps smoothness ((6b) in Definition
16.2.6).

Shelah introduced the following parametrized version of smoothness:

Definition 16.2.10 (V.1.18.(3) in [She09b]). Let K be a weak AEC. Let
λ ≥ LS(K) and let δ be a limit ordinal. We say that K is (≤ λ, δ)-smooth if for
any increasing chain 〈Mi : i ≤ δ〉 with ‖Mi‖ ≤ λ for all i < δ and ‖Mδ‖ ≤ λ + δ,
we have that

⋃
i<δMi ≤K Mδ. (≤ λ,≤ κ)-smooth means (≤ λ, δ)-smooth for all

δ ≤ κ, and similarly for the other variations.

Remark 16.2.11. Above, we could have allowed ‖Mδ‖ > λ + δ and gotten
an equivalent definition. Indeed, if Mi ≤K Mδ for all i < δ and we want to see
that

⋃
i<δMi ≤K Mδ, we can use the Löwenheim-Skolem-Tarski axiom to take

N ≤K Mδ containing
⋃
i<δ |Mi| and having size at most λ + δ. Then we can use

coherence to see that Mi ≤K N for all i < δ, hence by smoothness,
⋃
i<δMi ≤K N

and so by transitivity of ≤K,
⋃
i<δMi ≤K Mδ.
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We now list a several known facts about AECs that we will use. First, recall
that an AEC K is determined by its restriction KLS(K) to models of size LS(K).
More precisely:

Fact 16.2.12 (II.1.23 in [She09a]). Assume K1 and K2 are AECs with λ :=
LS(K1) = LS(K2). If K1

λ = K2
λ (so also ≤K1 and ≤K2 coincide on the models of

size λ), then K1
≥λ = K2

≥λ.

We will use the relationship between the ordering of any AEC and elementary
equivalence in a sufficiently powerful infinitary logic:

Fact 16.2.13. Let K be an AEC and let M,N ∈ K.

(1) [Kue08, Theorem 7.2.(b)] If M �L∞,LS(K)+
N , then M ≤K N .

(2) [She09a, IV.1.12.(2)] Let λ be an infinite cardinal such that K is cat-
egorical in λ and λ = λLS(K). If M,N ∈ Kλ and M ≤K N , then
M �L∞,LS(K)+

N .

Remark 16.2.14. Shelah’s proof of Fact 16.2.13.(2) is short and elementary
but in [She09a, Section IV.2], he attempts to remove the “λ = λLS(K)” restriction.
We rely on parts of Shelah’s argument to get amalgamation in Chapter 8 (e.g. in
the proof of Fact 16.1.4.(1)), but in this chapter we have a different strategy to get
amalgamation and hence do not need to rely on the deep results from [She09a,
Chapter IV].

We will also use that AECs have a Hanf number. Below, we write δ(λ) for
the pinning down ordinal at λ: the first ordinal that is not definable in Lλ+,ω. We
will also deal with the more general δ(λ, κ) (the least ordinal not definable using
a PCλ,κ class, see [She90, VII.5.5.1] for a precise definition). Recall the following
well-known facts about this ordinal (see e.g. [She90, VII.5]):

Fact 16.2.15.

(1) (Lopez-Escobar) δ(ℵ0) = ω1.
(2) (Morley and C.C. Chang) For any infinite cardinals λ and κ, δ(λ, κ) ≤

(2λ)+.

Definition 16.2.16. Let K be an AEC.

(1) Let λ(K) be the least cardinal λ ≥ LS(K) such that there exists a vocab-
ulary τ1 ⊇ τ(K), a first-order τ1-theory T1, and a set of T1-types Γ such
that:
(a) K = PC(T1,Γ, τ(K)).
(b) For M,N ∈ EC(T1,Γ), if M ⊆ N , then M � τ(K) ≤K N � τ(K).
(c) |T1|+ |τ1| ≤ LS(K) and |Γ| ≤ λ.

(2) Let δ(K) := δ(LS(K), λ(K)).
(3) Let h(K) := iδ(K).

Remark 16.2.17. By Chang’s presentation theorem [Cha68], if K is axioma-
tized by an Lλ+,ω sentence, and the ordering is just substructure (as for universal
classes), then λ(K) ≤ λ. In particular (see Fact 16.2.4) λ(K) = |τ(K)|+ℵ0 for any
universal class K.

It makes sense to talk of λ(K) because of Shelah’s presentation theorem:
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Fact 16.2.18 (I.1.9 in [She09a]). For any AEC K, there exists a vocabulary
τ1 ⊇ τ(K), a first-order τ1-theory T1, and a set of T1-types Γ such that (1a) and
(1b) in Definition 16.2.16 hold and |T1|+ |τ1| ≤ LS(K). Thus λ(K) ≤ 2LS(K).

Remark 16.2.19. By Facts 16.2.15 and 16.2.18, For any AEC K, h(K) ≤
h(LS(K)).

The reason h(K) is interesting is because it is a Hanf number for K (this follows
from Chang’s result on the Hanf number of PC classes [Cha68]).

Fact 16.2.20. Let K be an AEC. If K has a model of size h(K), then K has
arbitrarily large models.

In the rest of this section, we quote categoricity transfer results that we will
use. We assume that the reader is familiar with notions such as amalgamation,
joint embedding, Galois types, Ehrenfeucht-Mostowski models, and tameness (see
for example [Bal09]). The notation we use is standard and is described in details at
the beginning of Chapter 2 (for Ehrenfeucht-Mostowski models, we use the notation
in [She09a, IV.0.8]6). For example, we write gtp(b̄/M ;N) for the Galois type of b̄
over M , as computed in N . This assumes that we are working inside an AEC K that
is clear from context. When we want to emphasize K, we will write gtpK(b̄/M ;N).

The following result is implicit in the proof of [GV06c, Corollary 4.3]. For
completeness, we sketch a proof.

Fact 16.2.21. If K is an AEC with amalgamation and arbitrarily large models,
then the categoricity spectrum (i.e. the class of cardinals λ ≥ LS(K) such that K
is categorical in λ) is closed. That is, if λ > LS(K) is a limit cardinal and K is
categorical in unboundedly many cardinals below λ, then K is also categorical in
λ.

Proof. Let λ > LS(K) be a limit cardinal such that K is categorical in un-
boundedly many cardinals below λ. We show that K is categorical in λ. We proceed
in several steps:

(1) K is (Galois) stable in every µ ∈ [LS(K), λ). [Why? Pick µ′ ∈ (µ, λ) such
that K is categorical in µ′. Since K has arbitrarily large models, we can
use Ehrenfeucht-Mostowski models and the standard argument of Morley
(see e.g. the proof of [Shea, Claim I.1.7]) to see that K is stable in µ.].

(2) For every categoricity cardinal µ ∈ (LS(K), λ), the model of size µ is
(Galois) saturated. [Why? Using stability we can build a µ0-saturated
model of size µ for every µ0 ∈ (LS(K), µ), and then use categoricity.]

(3) Every model of size λ is saturated. [Why? Let M ∈ Kλ. Let N ∈ K<λ

be such that N ≤K M . Let p ∈ gS(N). Let µ := ‖N‖ and let µ′ ∈ (µ, λ)
be a categoricity cardinal. Let N ′ ∈ Kµ′ be such that N ≤K N ′ ≤K M .
By the previous step, N ′ is saturated, and therefore realizes p. Since
N ′ ≤K M , M also realizes p.

(4) K is categorical in λ. [Why? By uniqueness of saturated models.]

�

To state the next categoricity transfer, we first recall Shelah’s notion of an AEC
having primes. The intuition is that the AEC has prime models over every set of
the form M ∪ {a}, for M ∈ K. This is described formally using Galois types.

6For K an AEC, we call Φ an EM blueprint for K if Φ ∈ Υor
K.
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Definition 16.2.22 (III.3.2 in [She09a]). Let K be an AEC.

(1) (a,M,N) is a prime triple if M ≤K N , a ∈ |N |\|M |, and for every
N ′ ∈ K, a′ ∈ |N ′|, such that gtp(a/M ;N) = gtp(a′/M ;N ′), there exists
f : N −→

M
N ′ with f(a) = a′.

(2) K has primes if for any nonalgebraic Galois type p ∈ gS(M) there exists
a prime triple (a,M,N) such that p = gtp(a/M ;N).

By taking the closure of the relevant set under the functions of an ambient
model, we obtain:

Fact 16.2.23 (Remark 8.5.3). Any universal class K = (K,⊆) has primes.

Remark 16.2.24. Having primes is a property of the AEC K = (K,≤K),
not just of the class K. Thus even though for any universal class K, (K,⊆) has
primes, changing the order may lead to an AEC (K,≤K) that may not have primes
anymore.

The following is a ZFC approximation of Shelah’s eventual categoricity con-
jecture in tame AECs with amalgamation. It combines works of Makkai-Shelah
[MS90], Shelah [She99], Grossberg and VanDieren [GV06c, GV06a], and the
author Chapters 8, 11, 14, 15.

Fact 16.2.25. Let K be a LS(K)-tame AEC with amalgamation and arbitrarily
large models. Let λ > LS(K) be such that K is categorical in λ.

(1) (Theorem 15.3.8)7 If δ is a limit ordinal that is divisible by
(
2LS(K)

)+
,

then K is categorical in iδ.
(2) K is categorical in all λ′ ≥ min(λ, h(LS(K))) when at least one of the

following holds:
(a) (Corollaries 15.4.3, 15.4.6)8 There exists a successor cardinal µ >

LS(K)+ such that K is categorical in µ.
(b) (Corollary 15.4.9)9 K has primes.

Remark 16.2.26. In Fact 16.2.25, we do not use that K has joint embedding:
we can find a sub-AEC K0 of K that has joint embedding and work within K0.
See Definition 16.6.11.

Remark 16.2.27. If in Fact 16.2.25 we start instead with a χ-tame AEC (with
χ > LS(K)), the same conclusions hold for K≥χ.

7The version for classes of models axiomatized by an Lκ,ω theory, κ strongly compact, appears

in [MS90]. It generalizes to AECs with amalgamation when the model in the categoricity cardinal
is saturated (see [She99, Lemma II.1.6] or [Bal09, Theorem 14.8]). In the tame case, the model in

the categoricity cardinal is always saturated (by the Shelah-Villaveces theorem [SV99, Theorem

2.2.1] together with the upward superstability transfer of the author, Proposition 6.10.10). In all
these arguments, it seems that the amalgamation property is used in a strong way.

8The upward part of this transfer (i.e. concluding categoricity in all µ′ ≥ µ is due to Grossberg
and VanDieren [GV06a]).

9The main ideas of the transfer with primes appear in Chapters 8 and 11 but there the

threshold is higher (around ih(LS(K))). The improved threshold of h(LS(K)) can be obtained

from Fact 16.2.25.(2a).
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16.3. Compatible pairs of AECs

Let K be a universal class. A central result of Shelah [She09b, V.B] is that
if K does not have the order property, there is an ordering ≤ such that (K,≤)
has several structural properties, including amalgamation. The downside is that
(K,≤) might loose the smoothness axiom, i.e. it may only be a weak AEC. We will
give the precise statement of Shelah’s result and discuss its implications in the next
sections.

Here, we look at the situation abstractly: we consider pairs of weak AECs
K1 = (K1,≤K1) and K2 = (K2,≤K2) satisfying a compatibility condition. The
case of interest is K1 = (K,⊆) and K2 = (K,≤).

Definition 16.3.1. For ` = 1, 2, let K` = (K`,≤K`) be weak AECs. K1 and
K2 are compatible if:

(1) τ(K1) = τ(K2).
(2) For any λ > LS(K1)+LS(K2), if either K1 or K2 is categorical in λ, then

K1
λ = K2

λ.

We write LS(K1,K2) instead of LS(K1) + LS(K2).

Remark 16.3.2. This definition is really only useful when one of the classes is
categorical. Note that in (2), we only ask for K1

λ = K2
λ, i.e. the isomorphism type

of the model of size λ must be the same in both classes, but the orderings need not
agree.

For the rest of this section, we assume (and will emphasize the compatibility
hypothesis again):

Hypothesis 16.3.3. K1 = (K1,≤K1) and K2 = (K2,≤K2) are compatible
weak AECs. We set τ := τ(K1) = τ(K2).

Assume that K1 is categorical in a λ > LS(K1,K2). What can we say about
K2? If K1 is a universal class and K2 is as above, K1 is an AEC, and one of our
ultimate goal is to show that K2 is also an AEC. The following result will turn out
to be key. Under some assumptions, K2 is stable below the categoricity cardinal.

Lemma 16.3.4. Assume:

(1) K1 is an AEC with arbitrarily large models.
(2) K2 has amalgamation and joint embedding.
(3) K1 and K2 are compatible.

Let λ > LS(K1,K2). If K2 (and so by compatibility also K1) is categorical in
λ, then K2 is (< ω)-stable in all µ ∈ [LS(K1,K2), λ) such that µ+ < λ. That is,
for any such µ and any M ∈ K2

µ, | gS<ωK2 (M)| ≤ µ

Before starting the proof, a few comments are in order. First note that the case
K1 = K2 is a classical result that can be traced back to Morley [Mor65, Theorem
3.7]. It appears explicitly as [She99, Claim I.1.7]. The proof uses Ehrenfeucht-
Mostowski (EM) models. Here, we have additional difficulties since the EM models
are well-behaved really only for K1 and not for K2 (in fact, K2 may be only a weak
AEC, so may not have any suitable EM blueprint). More precisely, if Φ is an EM
blueprint for K1 and I ⊆ J are linear orders, then EMτ (I,Φ) ≤K1 EMτ (J,Φ) but
possibly EMτ (I,Φ) 6≤K2 EMτ (J,Φ). Thus a Galois type of K2 computed inside
EMτ (I,Φ) may not be the same as one computed in EMτ (J,Φ). For this reason,
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we want to use only that Galois types are invariant under isomorphisms in the
proof, and hence want to use the existence of certain linear orderings with many
automorphisms.

Fortunately, Shelah gives a proof of the case K1 = K2 in [Shea, Claim I.1.7]
(the online version of [She99]) that we can imitate. It uses the following fact:

Fact 16.3.5 (IV.5.1.(2) in [She09a]). Let θ < λ be infinite cardinals with θ
regular. There exists a linear order I of size λ such that for every I0 ⊆ I of size
less than θ, there is J ⊆ I such that:

(1) I0 ⊆ J .
(2) ‖J‖ = ‖I0‖+ ℵ0.
(3) For any ā ∈ <ωI, there is f ∈ AutI0(I) such that f(ā) ∈ <ωJ .

Proof of Lemma 16.3.4. Since K1 has arbitrarily large models and is an
AEC, it has an Ehrenfeucht-Mostowski blueprint Φ. Let µ ∈ [LS(K1,K2), λ) and
let M ∈ K2

µ. We want to see that | gSK2(M)| ≤ µ. Let I be as described by Fact

16.3.5 (where θ there stands for µ+ here, we are using that µ+ < λ). Suppose for a
contradiction that | gS<ωK2 (M)| > µ. Then using amalgamation we can find N ∈ K2

with M ≤K2 N and a sequence 〈āi ∈ <ω|N | : i < µ+〉 such that for i < j < µ+,
gtpK2(āi/M ;N) 6= gtpK2(āj/M ;N).

By joint embedding and categoricity, without loss of generality N = EMτ (I,Φ).
Now let I0 ⊆ I be such that |I0| = µ and M ⊆ EMτ (I0,Φ). Let J be as given
by the definition of I and let M1 := EMτ (J,Φ). We have that for each i < µ+,
there is a finite linear order Ii ⊆ I generating āi, so pick fi ∈ AutI0(I) such that

fi[Ii] ⊆ J . Let f̂i ∈ AutM1
(N) be the automorphism of N = EMτ (I,Φ) naturally

induced by fi. Then f̂i(āi) ∈ |M1|. By the pigeonhole principle, without loss of

generality there is b̄ ∈ |M1| such that for all i < µ+, f̂i(āi) = b̄. But this means
that for i < µ+:

gtpK2(āi/M ;N) = gtpK2(f̂i(āi)/M ;N) = gtpK2(b̄/M ;N)

So for i < j < µ+, gtpK2(āi/M ;N) = gtpK2(āj/M ;N), a contradiction. �

Remark 16.3.6. We emphasize that Lemma 16.3.4 establishes stability for all
finite types and not just stability for types of length one (in the framework of weak
AECs we do not know if the two notions are the same). This slightly stronger
statement will be used in the proof of Theorem 16.7.2. There we want to derive
a contradiction with Theorem 16.6.16, which only concludes unstability for finite
types, not unstability for types of length one.

For the rest of this section, we assume that K1 and K2 are both AECs and
discuss categoricity transfers (generalizing Fact 16.2.25) to this setup. First, we
show that categoricity in a suitable cardinal implies that the two classes (and their
ordering) are equal on a tail.

Lemma 16.3.7. Assume K1 and K2 are compatible AECs. Let λ be an infinite
cardinal such that:

(1) K1 is categorical in λ.

(2) λ = λLS(K1,K2).

Then K1
≥λ = K2

≥λ (so also the orderings are equal).
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Proof. By compatibility, K1
λ = K2

λ. By Fact 16.2.12 (where K1,K2 there
stand for K1

≥λ, K2
≥λ here), it is enough to show that the orderings of K1 and K2

coincide on K1
λ. So let M,N ∈ K1

λ. We show that M ≤K1 N implies M ≤K2 N
(the converse is symmetric).

So assume that M ≤K1 N . By Fact 16.2.13.(2) (where K, λ there stand for
K1
≥LS(K1,K2), λ here), M �L∞,LS(K1,K2)+

N . By Fact 16.2.13.(1) (where K there

stands for K2
≥LS(K1,K2) here), M ≤K2 N , as desired. �

The next result shows that if one of the classes has amalgamation, we can find
a categoricity cardinal satisfying the condition of the previous lemma.

Theorem 16.3.8. Assume K1 and K2 are compatible AECs categorical in a
proper class of cardinals. If K1 has amalgamation, then there exists λ such that
K1
≥λ = K2

≥λ (so also the orderings are equal).

Proof. Because K1 is categorical in a proper class of cardinals, it has arbi-
trarily large models, so by Fact 16.2.21, K1 is categorical on a closed unbounded
class of cardinals. In particular, one can find an infinite cardinal λ such that K1 is

categorical in λ and λ = λLS(K1,K2). By Lemma 16.3.7, K1
≥λ = K2

≥λ. �

We end this section with a categoricity transfer. Intuitively, this shows that if
we start with an AEC K1 with primes, it is enough to change its ordering (getting
an AEC K2) so that K2 has amalgamation and is tame (it may lose existence of
primes, see Remark 16.2.24). This is especially relevant to universal classes, since
they always have primes (Fact 16.2.23). Note that Fact 16.2.25.(2b) is the case
K1 = K2.

Theorem 16.3.9. Assume K1 and K2 are compatible AECs such that:

(1) K1 has primes.
(2) K2 has amalgamation, arbitrarily large models, and is LS(K2)-tame.

If K2 is categorical in a λ > LS(K2), then K2 is categorical in all λ′ ≥
min(λ, h(LS(K2))).

Proof. By Fact 16.2.25.(1), K2 is categorical in a proper class of cardinals. By
Theorem 16.3.8 (where the role of K1 and K2 is switched), we can fix a cardinal λ0

such that K1
≥λ0

= K2
≥λ0

. In particular, their orderings also coincide and so K2
≥λ0

has primes. By Fact 16.2.25.(2b), K2
≥λ0

is categorical on a tail, and in particular

in a successor cardinal. Applying Fact 16.2.25.(2a) to K2, this implies that K2 is
categorical in all λ′ ≥ min(λ, h(LS(K2)), as desired. �

16.4. Independence in weak AECs

AxFri1 is an axiomatic framework for independence in weak AECs that Shelah
introduces in [She87b]. The main motivation for the axioms is that if K is a
universal class that does not have the order property, then there is an ordering ≤
such that (K,≤) satisfies AxFri1 (see Section 16.6). Here, we repeat the definition
and state some facts that we will use. We quote from Chapter V of [She09b], an
updated version of [She87b].

Definition 16.4.1 (AxFri1, V.B in [She09b]). (K,^, cl) satisfies10 AxFri1 if:

10In order to be consistent with Chapter 8, we write cl rather than Shelah’s 〈〉gn.
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(1) K is a weak AEC.

(2) For each N ∈ K, clN is a function from P(|N |) to P(|N |). Often, clN (A)

induces a τ(K)-substructure M of N . In this case, we identify clN (A)
with M . We require cl to satisfy the following axioms: For N,N ′ ∈ K,
A,B ⊆ |N |:
(a) Invariance: If f : N ∼= N ′, then clN

′
(f [A]) = f [clN (A)].

(b) Monotonicity 1: If A ⊆ B, then clN (A) ⊆ clN (B).

(c) Monotonicity 2: If N ≤K N ′, then clN (A) = clN
′
(A).

(d) Idempotence: clN (clN (A)) = clN (A).

(3) ^ is a 4-ary relation on K. We writeM1

M3

^
M0

M2 instead of^(M0,M1,M2,M3).

We require that ^ satisfies the following axioms:

(a) M1

M3

^
M0

M2 implies that for ` = 1, 2, M0 ≤K M` ≤K M3.

(b) Invariance: If f : M3
∼= M ′3 and M1

M3

^
M0

M2, then f [M1]
M ′3

^
f [M0]

f [M2].

(c) Monotonicity 1: If M1

M3

^
M0

M2 and M3 ≤K M ′3, then M1

M ′3

^
M0

M2.

(d) Monotonicity 2: IfM1

M3

^
M0

M2 andM0 ≤K M ′2 ≤K M2, thenM1

M3

^
M0

M ′2.

(e) Base enlargement: If M1

M3

^
M0

M2 and M0 ≤K M ′2 ≤K M2, then

clM3(M ′2 ∪M1)
M3

^
M ′2

M2.

(f) Symmetry: If M1

M3

^
M0

M2, then M2

M3

^
M0

M1.

(g) Existence: If M0 ≤K M`, ` = 1, 2, then there exists N ∈ K and

f` : M` −−→
M0

N , ` = 1, 2, such that f [M1]
N

^
M0

f [M2].

(h) Uniqueness: If for ` = 1, 2, M `
1

M`
3

^
M`

0

M `
2 and fori < 3, fi : M1

i
∼= M2

i

are such that f0 ⊆ f1, f0 ⊆ f2, then there exists N ∈ K with
M2

3 ≤K N and h : M1
3 → N such that f1 ∪ f2 ⊆ h.

(i) Finite character: If δ is a limit ordinal, 〈M2,i : i ≤ δ〉 is increasing and

continuous, M0 ≤K M1,0, and M1

M3

^
M0

M2,δ, then clM3(M1 ∪M2,δ) =⋃
i<δ clM3(M1 ∪M2,i).

We say that a weak AEC K satisfies AxFri1 if there exists ^ and cl such that
(K,^, cl) satisfies AxFri1.

Remark 16.4.2. The definition we give is slightly different from Shelah’s: She-
lah does not assume that K has a Löwenheim-Skolem-Tarski number. We do not
need the extra generality, although there are places (e.g. Section 16.5) where the
existence of a Löwenheim-Skolem-Tarski number is not used.
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Remark 16.4.3. There is an example (derived from the class of metric graphs,
see [She09b, V.B.1.22]) of a triple (K,^, cl) that satisfies AxFri1 but where K is
not an AEC.

Remark 16.4.4. If a weak AEC K satisfies AxFri1, then by the existence
property for ^, K has amalgamation.

In the rest of this section, we assume:

Hypothesis 16.4.5. (K,^, cl) satisfies AxFri1.

The following is easy to see from the definition of the closure operator.

Fact 16.4.6. Let N ∈ K and let 〈Ai : i ∈ I〉 be a sequence of subsets of |N |,
I 6= ∅. Then:

(1)
⋃
i∈I clN (Ai) ⊆ clN (

⋃
i∈I Ai).

(2) clN (
⋃
i∈I Ai) = clN (

⋃
i∈I clN (Ai)).

The following are consequences of the axioms and will all be used in the rest
of this chapter (as forking calculus tools for Sections 16.5 and 16.6).

Fact 16.4.7.

(1) [She09b, V.B.1.21.(1)] If M1

M3

^
M0

M2, then clM3(M1 ∪ M2) ≤K M3 and

M1

clM3 (M1∪M2)

^
M0

M2.

(2) [She09b, V.C.1.3] Transitivity: IfM1

M3

^
M0

M2 andM3

M5

^
M2

M4, thenM1

M5

^
M0

M4.

(3) [She09b, V.C.1.6] Let δ be a limit ordinal. Let 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉

be ⊆-increasing continuous chains such that for all i < j < δ, Mj

Nj

^
Mi

Ni.

Then for all i ≤ δ, Mδ

Nδ

^
Mi

Ni.

(4) [She09b, V.C.1.10.(1)] Let δ be a limit ordinal. Let 〈Mi : i ≤ δ + 1〉,
〈Na

i : i ≤ δ〉, 〈N b
i : i ≤ δ〉 be increasing continuous chains such that for

all i < δ, Na
i

Nbi

^
Mi

Mδ+1 and N b
i = clN

b
i (Mδ+1 ∪Na

i ). Then Na
δ

Nbδ

^
Mδ

Mδ+1.

(5) Let δ be a limit ordinal. Let 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 be increasing

continuous so that for i, j < δ, Mj

Nj

^
Mi

Ni. Let M ∈ K be such that

Mi ≤K M for all i < δ (but possibly Mδ 6≤K M). Then there exists
N ∈ K and an embedding f : M −−→

Mδ

N such that for all i < δ:

(a) Ni ≤K N .

(b) f [M ]
N

^
Mi

Ni.

(c) N = clN (f [M ] ∪Nδ).

Proof of (5). This is given by the proof of [She09b, V.C.1.11], but Shelah
omits the end of the proof. We give it here. We build 〈Na

i , N
b
i , fi : i ≤ δ〉 such

that:
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(1) 〈Nx
i : i ≤ δ〉 is increasing continuous for x ∈ {a, b}.

(2) For i < δ, M
Nbi

^
Mi

Na
i .

(3) For i < δ, N b
i = clN

b
i (M ∪Na

i ).
(4) For i ≤ δ, fi : Ni ∼=Mi

Na
i .

This is possible by the proof of [She09b, V.C.1.11]. Let us see that it is enough.
Find N ∈ K and f : N b

δ
∼= N that extends f−1

δ . We claim that this works. First

observe that f � M : M
N−−→
Mδ

as f fixes Mi for each i < δ and M ≤K N b
0 ≤K N b

δ .

Now:

(1) For all i < δ, Ni ≤K N , since Na
i ≤K N b

i ≤K N b
δ and f−1

i : Na
i
∼= Ni.

(2) For all i < δ, we have that M
Nbi

^
Mi

Na
i by construction, so applying f to this

we get f [M ]
f [Nbi ]

^
Mi

f [Na
i ], i.e. f [M ]

f [Nbi ]

^
Mi

Ni, so f [M ]
N

^
Mi

Ni by monotonicity.

(3) N = clN (f [M ] ∪Nδ): Why? Note that by continuity N b
δ =

⋃
i<δ N

b
i and

the latter is
⋃
i<δ clN

b
δ (M ∪Na

i ) by construction. Now, N b
δ = clN

b
δ (N b

δ ) =

clN
b
δ (
⋃
i<δ clN

b
δ (M ∪ Na

i )). By Fact 16.4.6, this is clN
b
δ (
⋃
i<δM ∪ Na

i ) =

clN
b
δ (M ∪Na

δ ). We have shown that N b
δ = clN

b
δ (M ∪Na

δ ). Applying f to

this equation, we obtain N = clN (f [M ] ∪Nδ), as desired.

�

The next notion is studied explicitly in [She09b, [V.E.1.2] and Definition 3.3.4
(where it is called the minimal closure of ^). It is a way to extend ^ to take sets
on the left and right hand side.

Definition 16.4.8. We write A
M3

^
M0

B if M0 ≤K M3, A ∪ B ⊆ |M3|, and there

exists M ′3 ≥K M3, M1 ≤K M ′3, and M2 ≤K M ′3 such that A ⊆ |M1|, B ⊆ |M2|,

and M1

M ′3

^
M0

M2.

Lemma 16.4.9.

(1) M1

M3

^
M0

M2 if and only if M1

M3

^
M0

M2 and M0 ≤K M` ≤K M3 for ` = 1, 2.

(2) Invariance: if A
M3

^
M0

B and f : M3
∼= M ′3, then f [A]

M ′3

^
f [M0]

f [B].

(3) Monotonicity: if A
M3

^
M0

B and A0 ⊆ A, B0 ⊆ B, and M3 ≤K M ′3, then

A0

M ′3

^
M0

B0.

Proof. Straight from the definitions. �

Notation 16.4.10.
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(1) When N ∈ K, M ≤K N , B ⊆ |N |, and ā ∈ <∞|N |, we write ā
N

^
M
B for

ran(ā)
N

^
M
B.

(2) For p ∈ gS<∞(B;N) and M ≤K N , we say p does not fork over M if

whenever p = gtp(ā/B;N), we have that ā
N

^
M
B. Note that this does not

depend on the choices of representatives by Lemma 16.4.9.

The following properties all appear either in Section 3.5.1 or Sections 6.4, 6.12.
We will use them without comments.

Fact 16.4.11.

(1) Normality: If A
M3

^
M0

B, then A ∪ |M0|
M3

^
M0

B ∪ |M0|.

(2) Base monotonicity: if A
M3

^
M0

B and M0 ≤K M ′0 ≤K M3 is such that |M ′0| ⊆

B, then A
M3

^
M ′0

B.

(3) Symmetry: If A
M3

^
M0

B, then B
M3

^
M0

A.

(4) Extension: Let M ≤K N and B ⊆ C ⊆ |N | be given. If p ∈ gS<∞(B;N)
does not fork over M , then there exists N ′ ≥K N and q ∈ gS<∞(C;N ′)
extending p and not forking over M .

(5) Uniqueness: Let M ≤K N and let |M | ⊆ B ⊆ |N |. If p, q ∈ gS<∞(B;N)
do not fork over M and p �M = q �M , then p = q.

(6) Transitivity: If A
N

^
M0

M , A
N

^
M
B, and M0 ≤K M , then A

N

^
M0

B.

The following is a form of local character that ^ may have:

Definition 16.4.12 (V.C.3.7 in [She09b]). We say that ^ is χ-based if when-
ever M ≤K M∗ and A ⊆ |M∗| then there are N0 and N1 so that ‖N1‖ ≤ |A|+ χ,

N0 = M ∩N1, A ⊆ |N1|, and N1

M∗

^
N0

M .

Interestingly, if ^ is based then smoothness for small lengths implies smooth-
ness for all lengths.

Fact 16.4.13 (V.D.1.2 in [She09b]). If K is (≤ LS(K),≤ LS(K)+)-smooth
(recall Definition 16.2.10) and ^ is LS(K)-based, then K is smooth, i.e. it is an
AEC.

A consequence of ^ being based is that the class is tame. The argument is
folklore and appears already in [GK, p. 15].

Lemma 16.4.14. Assume that ^ is LS(K)-based.

(1) Set local character: if p ∈ gS<∞(M), then there are M0 ≤K M such that
‖M0‖ ≤ |`(p)|+ LS(K) and p does not fork over M0.
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(2) K is LS(K)-tame.

Proof.

(1) Straight from the definitions.
(2) Combine (1) with the uniqueness property.

�

16.5. Enumerated trees and generalized symmetry

Hypothesis 16.5.1. (K,^, cl) satisfies AxFri1. Eventually, we will also assume
Hypotheses 16.5.8 and 16.5.26

Consider a minimal failure of smoothness: an increasing chain 〈Mi : i ≤ δ〉
that is continuous below δ but so that

⋃
i<δMi 6≤K Mδ. We would like to copy this

chain into a tree indexed by ≤δλ. The branches of the tree should be as independent
as possible. The main theorem of this section, Theorem 16.5.40, shows that it can
be done. We show in Theorem 16.6.16 that the resulting tree of failures witnesses
unstability.

The main difficulty in the proof of Theorem 16.5.40 is that we cannot assume
smoothness when we construct the tree, so we have difficulties at limits (because,
to quote the referee, the tree is “wider than it is high”). We work around this by
studying trees enumerated in some order, giving a definition of a closed subset of
such tree (Definition 16.5.9) and proving a generalized symmetry theorem for these
sets (Theorem 16.5.35). Generalized symmetry says intuitively (as in [She83a,
She83b]) that whether a tree is independent does not depend on its enumeration,
so closed sets will be as independent of each other as possible. Once generalized
symmetry is proven, the construction of the desired tree can be carried out.

This section draws a lot of inspiration from [She09b, V.C.4], where Shelah de-
fines a notion of stable construction which is supposed to accomplish similar goals
than here. Shelah even states Theorem 16.5.40 as an exercise [She09b, V.C.4.14].
However, we cannot solve it when smoothness fails. It seems that clause (vi) in
[She09b, Definition V.C.4.2] is too restrictive and precisely prevents us from copy-
ing a non-smooth chain into a tree.

We start by setting up the notation of this section for trees. The universe of
the trees we will use is always an ordinal α, and we think of (α,≤) as giving the
order in which the tree is enumerated and (α,E) as being the tree order.

Definition 16.5.2. An enumerated tree is a pair (α,E), where α is an ordinal
and E is a partial order on α such that for all i, j < α:

(1) 0 E i (i.e. 0 is the root of the tree).
(2) i E j implies i ≤ j (i.e. if j is above i in the tree, then it is enumerated

later).
(3) ({k < α | k E i},E) is a well-ordering.

Definition 16.5.3. Let (α,E) be an enumerated tree.

(1) For i < α, and R ∈ {/,E}, let predR(i) := {k ≤ i | kRi}. When R = /,
we omit the subscript.

(2) A branch of (α,E) is a set b ⊆ α such that:
(a) E linearly orders b.
(b) i ∈ b implies pred(i) ⊆ b.



408 16. CATEGORICITY IN UNIVERSAL CLASSES: PART II

(3) A branch b ⊆ α is bounded (in (α,E)) if either it has a maximum or
b = pred(i) for some i < α. It is unbounded otherwise. We say that a set
u ⊆ α is bounded if any branch b ⊆ u is bounded.

(4) We say that (α,E) is continuous when for any i, j < α, if pred(i) = pred(j)
and pred(i) does not have a maximum, then i = j.

(5) When (α,E) is continuous and b ⊆ α is a bounded branch, we let:

top(b) :=

{
max(b) if b has a E -maximum

The unique i < α such that b = pred(i) otherwise.

(6) When u ⊆ α, let:

B(u) := {b ⊆ u | b is a branch and for any branch b′, b ⊆ b′ ⊆ u implies b′ = b}
be the set of branches in u that are maximal in u.

(7) When (α,E) is continuous and u ⊆ α is a bounded set, we let top(u) :=
supb∈B(u) top(b) (this will only be used when B(u) is finite, so in that case

the supremum is actually a maximum).

Lemma 16.5.4. If u ⊆ v and b ∈ B(u), then there is a branch b′ ∈ B(v) such
that b ⊆ b′. Consequently, |B(u)| ≤ |B(v)|.

Proof. Straightforward from the definition of B(u). The last sentence is be-
cause the map b 7→ b′ (for some choice of b′) is an injection from B(u) to B(v). �

We now define a tree of structures coming from the class K. Note that conti-
nuity of chains of models is only required when the chain is smooth (see (5) below).

Definition 16.5.5. A continuous enumerated tree of models is a tuple (〈Mi :
i < α〉, N, α,E) satisfying:

(1) (α,E) is a continuous enumerated tree.
(2) N ∈ K.
(3) For all i < α, Mi ≤K N .
(4) For all i, j < α, i E j implies Mi ≤K Mj .
(5) For all i < α, if pred(i) has no maximum and

⋃
j/iMj ≤K N , then

Mi =
⋃
j/iMj .

Remark 16.5.6. By coherence, for all i < α,
⋃
j/iMj ≤K N if and only if⋃

j/iMj ≤K Mi

Remark 16.5.7. In Definition 16.5.5, N is just an ambient model. Eventually,
we will want to also ensure that it satisfies a minimality condition (see the conclusion
of Theorem 16.5.39).

From now on until Lemma 16.5.37, we assume:

Hypothesis 16.5.8. T := (〈Mi : i < α〉, N, α,E) is a continuous enumerated
tree of models.

The following is a key definition. Intuitively, a set is closed if it is closed under
initial segments and all its branches smoothly embed inside N .

Definition 16.5.9. u ⊆ α is closed if:
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(1) i ∈ u implies pred(i) ⊆ u.
(2) b ∈ B(u)\{∅} implies

⋃
i∈bMi ≤K N .

Lemma 16.5.10.

(1) An arbitrary intersection of closed sets is closed.
(2) A finite union of closed sets is closed.

Proof.

(1) Let 〈ui : i < γ〉 be closed, γ > 0. Let u :=
⋂
i<γ ui. We show that u

is closed. It is easy to check that u satisfies (1) from the definition of
a closed set. We check (2). Let b ∈ B(u)\{∅}. We want to see that⋃
j∈bMj ≤K N . By Lemma 16.5.4, for each i < γ there exists bi ∈ B(ui)

such that b ⊆ bi. Since ui is closed, we have that
⋃
j∈biMj ≤K N . If

there exists j < γ such that b = bj , we are done so assume that this is not
the case. This implies that b is bounded. Let k := top(b). We know that
b ( bj for all j < γ, so by downward closure we must have that k ∈ bj for
all j < γ. But then this means that k ∈ u, so k ∈ b, a contradiction.

(2) Let u, v be closed. We show that u∪v is closed. As before, (1) is straight-
forward to see. As for (2), let b ∈ B(u∪v). It is straightforward to see that
either b ∈ B(u) or b ∈ B(v). In either case we get that

⋃
i∈bMi ≤K N , as

desired.

�

Remark 16.5.11. Lemma 16.5.10 almost tells us that closed sets induce a
topology on α. While it is easy to check that the empty set is closed, α itself may
not be closed (think of a chain 〈Mi : i ≤ δ〉 where

⋃
i<δMi 6≤K Mδ. The tree

could consist of 〈Mi : i < δ〉 and N = Mδ). However α will be closed when all
the maximal branches of the tree have a maximum (e.g. if (α,E) looks like ≤δλ for
some cardinal λ ≥ 2 and limit ordinal δ).

The next definition describes the model Mu generated by a set u ⊆ α. Typi-
cally, u will be closed and in case the tree is sufficiently independent (see Definition
16.5.25), Mu will be in K.

Definition 16.5.12. For u ⊆ α, Mu := clN (|M0| ∪
⋃
i∈u |Mi|).

Lemma 16.5.13. Let u, v ⊆ α. Mu∪v = clN (Mu ∪Mv).

Proof. By Fact 16.4.6. �

Lemma 16.5.14. If b is a closed and bounded branch, then M b = Mi, where
i := top(b).

Proof. If i is a maximum of b or b is empty, this is clear. If not, we know
since b is closed that

⋃
j/iMj =

⋃
j∈bMj ≤K N . By (5) in Definition 16.5.5,

Mi =
⋃
j/iMj . Note that

⋃
j/iMj = clN (

⋃
j/iMj) and by Fact 16.4.6, this is equal

to M b. So
⋃
j/iMj = M b, as desired. �

The next definition describes when two (typically closed) sets u and v are
“as independent as possible”, i.e. the model generated by u is independent of the
one generated by v over the model generated by u ∩ v. There are two variations
depending on whether the ambient model is N or the model generated by u ∪ v.
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Generalized symmetry (Theorem 16.5.35) will say that under appropriate con-
ditions, if the tree is independent then any closed sets u and v are as independent
as possible.

Definition 16.5.15. Let u, v ⊆ α.

(1) We write uv for u ∪ v.

(2) We write u^v if Mu
Muv

^
Mu∩v

Mv.

(3) We write u
N

^v if Mu
N

^
Mu∩v

Mv.

Note that to make the notation lighter we omit the base and write u^v instead
of e.g. u ^

u∩v
v.

The following will be used without comment.

Lemma 16.5.16. u
N

^v if and only if [u^v and Muv ≤K N ].

Proof. If u
N

^v, then by Fact 16.4.7.(1), Muv ≤K N and u^v. The converse
is by the monotonicity 2 property of ^ in Definition 16.4.1. �

If u ⊆ v, there is an easy way to determine whether u^v.

Lemma 16.5.17. If u ⊆ v, Mu ≤K N , and Mv ≤K N , then u
N

^v.

Proof. Straight from the definition. �

We now translate the properties of Section 16.4 into properties of the relations

u^v and u
N

^v.

Lemma 16.5.18. Let u, v, w ⊆ α be closed.

(1) Symmetry: If u^v, then v^u. If u
N

^v, then v
N

^u.

(2) Base enlargement: If u
N

^v, u∩v ⊆ w ⊆ v, and Mw ≤K Mv, then uw
N

^v.

(3) Transitivity: If u
N

^v, uv
N

^w, uv ∩ w = u, and Mv∩w ≤K Mw, then

v
N

^w.

Proof.

(1) Straightforward from the symmetry axiom.
(2) Directly from the base enlargement axiom (note that uw ∩ v = w), see

Definition 16.4.1.
(3) Let M0 := Mu∩v, M1 := Mv, M2 := Mu, M3 := Muv, M4 := Mw,

M5 := N . We know that u
N

^v, so Muv ≤K N and u^v, hence

M1

M3

^
M0

M2 holds. We know that uv
N

^w (so in particular Muvw ≤K N)

and uv ∩ w = u, i.e. Muv∩w = Mu = M2, so M3

M5

^
M2

M4 holds. Apply-

ing Fact 16.4.7.(2), we obtain M1

M5

^
M0

M4, i.e. Mv
N

^
Mu∩v

Mw. Now since
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uv ∩ w = u, we must have that u ⊆ w and v ∩ w ⊆ u. Therefore
u ∩ v ⊆ w ∩ v. By coherence, Mu∩v ≤K Mv∩w ≤K Mw. By base

enlargement, Mv
N

^
Mv∩w

Mw, i.e. v
N

^w.

�

A key part of the proof of generalized symmetry is a concatenation property

telling us when uv
N

^w if we know something about u and v separately. We start
with the following result:

Lemma 16.5.19. Let u, v, w ⊆ α be closed. If:

(1) u(v ∩ w)
N

^w.

(2) v
N

^uw.
(3) Mu(v∩w) ≤K Muw.
(4) Muv∩w ≤K Muv.

Then uv
N

^w.

Proof. We apply base enlargement with u, v, w in 16.5.18.(2) standing for

v, uw, u(v ∩w) here. The hypotheses hold by (2) and (3). We obtain uv
N

^uw. We
want to apply transitivity, where u, v, w in 16.5.18.(3) stand for u(v ∩ w), w, uv
here. The conditions there are:

• u
N

^v, which translates to u(v ∩ w)
N

^w here (holds by (1)).

• uv
N

^w, which translates to uw
N

^uv here (holds by the paragraph above
and symmetry).

• uv ∩w = u, which translates to u(v ∩w)w∩uv = u(v ∩w), i.e. uw∩uv =
u(v ∩ w), which is true.

• Mv∩w ≤K Mw, which translates to Mw∩uv ≤K Muv, which is true by
(4).

Therefore the conclusion of transitivity holds. In our case, this means that

w
N

^uv. By symmetry, uv
N

^w, as desired. �

Lemma 16.5.20. Let u, v, w ⊆ α be closed. If:

(1) u
N

^w.
(2) Muv∩w ≤K N .
(3) Mu(v∩w) ≤K Mu(v∩w).

Then u(v ∩ w)
N

^w.

Proof. We use Lemma 16.5.19 with u, v, w there standing for w∩v, u, w here.
Let us check the hypotheses:

• (1) there translates to (w∩v)(u∩w)
N

^w here. So it is enough to see that
Mw ≤K N and Muv∩w ≤K N . This holds by (1) and (2).

• (2) there translates to u
N

^w here, which is (1).
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• (3) there translates to Muv∩w ≤K Mw here. This holds by (1), (2), and
coherence.

• (4) there translates to Muv∩w ≤K Mu(v∩w) here. This holds by (3).

The hypotheses hold, so we obtain that u(v ∩ w)
N

^w, as needed. �

Finally, we obtain a usable concatenation property.

Lemma 16.5.21 (Concatenation). Let u, v, w ⊆ α be closed. If:

(1) u
N

^w.

(2) v
N

^uw.
(3) Muv∩w ≤K N .
(4) Mu(v∩w) ≤K N .
(5) Muv ≤K N .

Then uv
N

^w.

Proof. We use Lemma 16.5.19. Let us check the hypotheses:

• (1) says u(v ∩w)
N

^w. This holds by Lemma 16.5.20. Note that (1) there
holds by (1), (2) there holds by (3), and (3) there holds by (3), (4), and
coherence.

• (2) there is (2) here.
• (3) there is given by (1), (4), and coherence.
• (4) there is given by (3), (5), and coherence.

The hypotheses hold, so we obtain that uv
N

^w, as needed. �

Another key ingredient of the proof of generalized symmetry is a continuity
property that tells us how to deal with increasing chains 〈ui : i < δ〉 of closed sets.
At that point, the following hypothesis will appear in some of the statements (we
do not assume it globally).

Definition 16.5.22. We say that cl is algebraic if for any M,N ∈ K with
M ⊆ N and any A ⊆ |M |, clM (A) = clN (A).

Recall that we are working under Hypothesis 16.5.1, so cl is in particular a fixed
operator satisfying Monotonicity 2 (Definition 16.4.1.(2c)). The difference here is
that we assume that closure is the same whenever M ⊆ N (not only under the
stronger condition M ≤K N).

Note that if clN (A) is the closure of A under the functions of N , then cl is
algebraic. This will be the closure operator when we study universal classes, so
we do not lose much by assuming it here. In fact, we could have assumed from
the beginning that clN (A) was the closure of A under the functions of N . For the
purpose of proving the main result of this chapter, we would not lose anything.

Lemma 16.5.23. Assume that cl is algebraic. Let δ be a limit ordinal and let
〈ui : i ≤ δ〉 be an increasing continuous chain of closed sets. If for all i < δ, Mui is
a τ(K)-structure, then Muδ =

⋃
i<δM

ui .

Proof. Let Mδ :=
⋃
i<δM

ui .
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First observe that Mδ ⊆ N , because for all i < δ, Mui ⊆ N (as we are
assuming it is a τ(K)-structure and by definition it must inherit the function sym-

bols from N). Therefore because cl is algebraic, clN (Mδ) = clMδ(Mδ) = Mδ.

But clN (Mδ) = clN
(⋃

i<δ clN (M0 ∪
⋃
j∈uiMj)

)
. By Fact 16.4.6, this is just

clN
(⋃

i<δ(M0 ∪
⋃
j∈uiMi)

)
= clN (M0 ∪

⋃
i∈uδ Mi) = Muδ . Combining the chains

of equalities, we have the result. �

Lemma 16.5.24 (Continuity). Assume that cl is algebraic.
Let δ be a limit ordinal and let 〈ui : i ≤ δ〉, 〈vi : i ≤ δ〉 be increasing continuous

chains of closed sets. If for all i, j < δ:

(1) ui^vj .
(2) uδ ∩ vi^vj .
(3) vδ ∩ ui^uj .

Then uδ^vδ.

Proof. Claim 1: Muδ∩vδ ≤K Mvδ .
Proof of Claim 1: We use Fact 16.4.7.(3) where Mi, Ni there stand for Muδ∩vi ,

Mvi here. Why is 〈Muδ∩vi : i ≤ δ〉 ⊆-increasing and continuous? Note that Muδ∩vi

is a member of K for each i < δ (by (2)), and the chain is increasing by definition
of Muδ∩vi . The continuity is because 〈vi : i ≤ δ〉 is itself continuous (use Lemma
16.5.23). Similarly, 〈Mvi : i ≤ δ〉 is ⊆-increasing continuous. Also, (2) ensures that
the independence hypothesis of Fact 16.4.7.(3) is satisfied. Therefore we have in
particular that Mδ ≤K Nδ there. That is, Muδ∩vδ ≤K Mvδ . †Claim.

Claim 2: For all j < δ, uj^vδ.
Proof of Claim 2: Fix j < δ. We will show that vδ^uj . For this, we use Fact

16.4.7.(4) where Mi, Mδ+1, Na
i , N b

i there stand for Muj∩vj+i , Muj , Mvj+i , Mujvj+i

here (so we see Mδ+1 as really the “fixed” part and the Na
i ’s as the “growing”

part). All the hypotheses of Fact 16.4.7.(4) are satisfied. In detail, we have to
check that there Mδ ≤K Mδ+1, which here translates to Muj∩vδ ≤K Muj , but

this holds by (3). Also, N b
i = clN

b
i (Mδ+1 ∪ Na

i ) there translates to Mujvj+i =

clMujvj+i (Muj ∪Mvj+i). This holds because Mujvj+i ⊆ N (by (1), Mujvj+i ∈ K,
and hence by definition it must be a substructure of N), and hence because cl is

algebraic, clN (A) = clM
ujvj+i

(A) for any set A. The other conditions are checked
similarly. Applying Fact 16.4.7.(4), we obtain that vδ^uj , and hence by symmetry
uj^vδ as desired. †Claim 2.

To prove that uδ^vδ, we use Fact 16.4.7.(4) again where Mi,Mδ+1, Na
i , N b

i

there stand for Mui∩vi , Mvδ , Mui , Muivδ here. We need to know there that
Mδ ≤K Mδ+1, i.e. Muδ∩vδ ≤K Mvδ , but this is given by Claim 1. Further by
Claim 2, ui^vδ for every i < δ, so the hypotheses of Fact 16.4.7.(4) hold. �

With the forking calculus out of the way, we are ready to start proving gener-
alized symmetry. First, we state what it means for a tree to be independent. The
intuition is that for any i E j, Mj is independent over Mi of as much as possible
that comes before j in the enumeration of the tree. We use a slightly different
notation than in e.g. [She83a, She83b] but the notion described is the same.

Definition 16.5.25. T is independent if for any i E j < α:
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Mj

N

^
Mi

⋃
k∈Ai,j

Mk

where ^ is from Definition 16.4.8 and:

Ai,j := {k < j | predE(k) ∩ predE(j) ⊆ predE(i)}

From now on until Lemma 16.5.37, we assume:

Hypothesis 16.5.26. T (from Hypothesis 16.5.8) is independent.

Our aim is to prove Theorem 16.5.35 which gives conditions under which u^v
for any closed sets u and v. We prove increasingly stronger approximations to this
result, each time using the previously proven approximations. First, we prove it
when u and v are closed bounded branches.

Lemma 16.5.27. If a and b are closed bounded branches, then a
N

^b.

Proof. Let i := top(a), j := top(b). By Lemma 16.5.14, Ma = Mi, M
b = Mj .

By Definition 16.5.5.(3), Ma ≤K N and M b ≤K N . Note that a∩ b is also a closed
bounded branch so Ma∩b ≤K N also. By coherence, Ma∩b ≤K Mx for x ∈ {a, b}.
By symmetry, we can assume without loss of generality that j ≤ i. Furthermore, if
i = j then Lemma 16.5.17 gives the result, so assume j < i. Let k := top(a∩b). By
Lemma 16.5.14 again, Ma∩b = Mk. Now by Definition 16.5.25, we must have that

Mi

N

^
Mk

Mj . By what we have argued, we must actually have Mi

N

^
Mk

Mj , i.e. a
N

^b, as

needed. �

Next, we prove it when u is a closed and bounded branch and v is a bounded
finite union of closed branches that comes before u in the enumeration of the tree
(see Condition (3) below).

Lemma 16.5.28. If:

(1) a is a closed and bounded branch.
(2) v is a closed and bounded set with B(v) finite.
(3) top(a) ≥ top(v).

Then a
N

^v.

Proof. Let n := |B(v)|. We work by induction on n. If n = 1, the result
holds by Lemma 16.5.27. Otherwise, say B(v) = {b0, . . . , bn−1}, where without loss
of generality top(b0) < top(b1) < . . . < top(bn−1). By the induction hypothesis,

bn−1

N

^b0 . . . bn−2. In particular, Mv = M b0...bn−1 ≤K N . Now using Definition
16.5.25 (or Lemma 16.5.17 if top(a) = top(v), so a ⊆ v), it is easy to check that

Ma
N

^
Ma∩v

Mv, so the result follows. �

Next, we can show that Mu ≤K N when u is a bounded finite union of closed
branches.

Lemma 16.5.29. If u and v are bounded closed sets with B(u) and B(v) both
finite, then:
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(1) Mu ≤K N .
(2) u ⊆ v implies Mu ≤K Mv.

Proof. The second part follows from the first and coherence. For the first part,
let n := |B(u)| and write B(u) = {b0, . . . , bn−1} with top(b0) < . . . < top(bn−1).
If n = 1, the result follows from Lemma 16.5.27 (where a, b there stand for u, u
here) so assume that n ≥ 2. Apply Lemma 16.5.28 where a, v there stand for bn−1,
b0 . . . bn−2 here. �

We now use the previous result together with concatenation to show that u
N

^v
when u and v are bounded finite union of closed branches.

Lemma 16.5.30. If u and v are closed bounded sets with B(u) and B(v) both

finite, then u
N

^v.

Proof. Work by induction on |B(u)|+ |B(v)|. By symmetry, without loss of
generality top(u) ≥ top(v). Let n := |B(u)|. Write B(u) = {a0, . . . , an−1} with
top(a0) < . . . < top(an−1). If n = 1, the result is given by Lemma 16.5.28, so
assume now that n ≥ 2. We use concatenation (Lemma 16.5.21) with u, v, w there
standing for a0 . . . an−2, an−1, v here. Let us check the hypotheses:

• (1) there translates to a0 . . . an−2

N

^v here. This holds by the induction
hypothesis.

• (2) there translates to an−1

N

^a0 . . . an−2v here. This holds by Lemma
16.5.28.

• (3)-(5) there hold by Lemma 16.5.29.

The hypotheses hold, so we obtain a0 . . . an−1

N

^v, as desired. �

Next, we can use the continuity property to prove generalized symmetry for all
closed bounded sets.

Lemma 16.5.31. Assume that cl is algebraic. If u and v are closed bounded
sets, then u^v.

Proof. Let λ := |B(u ∪ v)|. We work by induction on λ. If λ < ℵ0, then
this is taken care of by Lemma 16.5.30. Otherwise, say B(u) = 〈ai : i < λ〉 and
B(v) = 〈bi : i < λ〉 (we allow repetition in the enumerations). For i ≤ λ, let
ui :=

⋃
j<i bj and vi :=

⋃
j<i bj . It is easy to check that 〈ui : i ≤ λ〉, 〈vi : i ≤ λ〉 are

increasing continuous resolutions of u and v respectively. Moreover, each member
of the chain is a closed bounded set. We apply Lemma 16.5.24 (where δ there
stands for λ here). Its hypotheses hold by the induction hypothesis. We obtain
that uλ^vλ, as desired. �

When u or v is not bounded, we will make an additional hypothesis which
says that branches do not have too many non-smooth points. In the case we are
interested in (see Theorem 16.5.40), each branch will have at most one nonsmooth
point, so this hypothesis is reasonable. Note again that we do not assume this
globally, only in some statements.

Definition 16.5.32. T is resolvable if for any branch b ⊆ α, {i ∈ b |
⋃
j/iMj 6≤K

N} is finite.
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Definition 16.5.33. For u ⊆ α, let B′(u) := {b ∈ B(u) | b is unbounded}.

Assuming that T is resolvable, we show that every closed set has a resolution
with fewer unbounded branches than the original set. This will allow us to do a
proof by induction on |B′(u)|.

Lemma 16.5.34. Assume that T is resolvable.

(1) Let b be a closed branch. Then there is a limit ordinal δ and an increasing
continuous sequence of closed bounded branches 〈bi : i ≤ δ〉 such that
b = bδ.

(2) Let u be a closed unbounded set. Then there is a limit ordinal δ and an
increasing continuous sequence 〈ui : i ≤ δ〉 of closed sets such that uδ = u
and for all i < δ, |B′(ui)| < |B′(u)|.

Proof.

(1) If b is bounded, we can take b = bi for all i ≤ δ, so assume that b is
unbounded. Since T is resolvable, we know that there exists i ∈ b such
that for all i′ ≥ i,

⋃
j/i′Mj ≤K N . In other words, pred(i′) is closed. So

let δ := gtp(b) and write b\i = 〈ij : j < δ〉. For j < δ, let bj := pred(ij).
(2) Say B′(u) = {bi : i < λ}. Let v := u\

⋃
i<λ bi. Note that v is closed and

bounded. If λ is infinite, we can let δ := λ and for i ≤ δ, ui := v∪
⋃
j<i bj .

So assume that λ is finite. By the first part, for each i < λ there exists
a limit ordinal δi and a resolution 〈bji : j < δi〉 of bi into closed bounded
branches. Let δ :=

∑
i<λ δi. Now for j < δ, there are unique i < λ

and k < δi such that j =
∑
i0<i

δi0 + k. Set uj :=
⋃
i0<i

bi0 ∪ bki . It is
straightforward to check that this works.

�

Theorem 16.5.35 (Generalized symmetry). Assume that T is resolvable and
cl is algebraic. If u and v are closed sets, then u^v.

Proof. Work by induction on λ := |B′(u)|+ |B′(v)|. If λ = 0, this is given by
Lemma 16.5.31. If λ is infinite, we can use an argument analogous to the proof of
Lemma 16.5.31, so assume that λ is finite and non-zero.

By Lemma 16.5.34, we can find limit ordinals δ1, δ2 and 〈ui : i ≤ δ1〉, 〈vi : i ≤
δ2〉 that are increasing continuous resolutions of u and v respectively so that each
member in the chain is closed, and for all i < δ1, |B′(ui)| < |B′(u)|, and similarly
for v.

By symmetry, without loss of generality, δ1 ≤ δ2. We first use Lemma 16.5.24
with δ there standing for δ1 here. The hypotheses hold by the induction hypoth-
esis. So we obtain u^vδ1 . If δ1 = δ2, we are done. Otherwise by the induction
hypothesis (using that λ is finite) we have that u^vi for all i < δ2. So we use
Lemma 16.5.24 a second time with δ, ui, vi there standing for δ2, u, vi here. We
obtain that u^vδ2 , as desired. �

For the remainder of this section, we focus on building independent trees. We
“start from scratch” and drop Hypotheses 16.5.8 and 16.5.26. It will be convenient
to have the tree enumerated in a particular order:

Definition 16.5.36. An enumerated tree (α,E) is in pre-order if for any i < α
and any b ∈ B(i), either b = pred(i) or b ∈ B(α).
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The idea is that (Lemma 16.5.38) if the tree is in pre-order, then the set Ai,j
from Definition 16.5.25 is closed, so we can use generalized symmetry (Theorem
16.5.35) on it. Before proving this, we show that the tree we care about has an
enumeration in pre-order. For this, we simply keep building the same branch until
it becomes maximal, then start a different branch.

Lemma 16.5.37. Let δ be a limit ordinal and let λ be a cardinal with λ ≥ 2.
Then there exists an enumeration 〈ηi : i < α〉 of ≤δλ such that defining i E j if and
only if ηi is an initial segment of ηj , we have that (α,E) is a continuous enumerated
tree which is in pre-order.

Proof. Let 〈νj : j < β〉 be an enumeration (without repetitions) of ≤δλ such
that if νj is an initial segment of νj′ , then j ≤ j′. We define α and 〈ηi : i < α〉 by
induction on i such that:

(1) (i,E) is a continuous enumerated tree.
(2) If b ∈ B(i), then either there is j ∈ b such that ηj ∈ δλ, or b = pred(i).

There are three cases:

• {ηj : j < i} = {νj : j < β}. Then we are done and let α := i.
• If there is b ∈ B(i) such that for some j < β,

⋃
k∈b ηk is an initial segment

of νj but νj /∈ {ηk | k ∈ b}, then pick any such b and the least such j, and
let ηi := νj .

• Otherwise, let j < β be least such that νj 6= ηk for any k < i. Let ηi := νj .

It is straightforward to see that this works. �

We can now prove that Ai,j is closed:

Lemma 16.5.38. Let T := (〈Mi : i < α〉, N, α,E) be a continuous enumerated
tree of models. If:

(1) (α,E) is in pre-order.
(2) For any b ∈ B(α), b is bounded.

Then for any i E j < α, Ai,j = {k < j | predE(k) ∩ predE(j) ⊆ predE(i)} (see
Definition 16.5.25) is closed (see Definition 16.5.9).

Proof. Let b ∈ B(Ai,j). We have to see that
⋃
k∈bMk ≤K N . Now either

b = predE(i), in which case
⋃
k∈bMk = Mi ≤K N , or b 6⊆ predE(j). In this case,

it is easy to check that b ∈ B(j) (otherwise we could just extend the branch), so
since (α,E) is in pre-order, either b = pred(j) or b ∈ B(α). The first case was dealt
with before and in the second case, b is bounded so has a maximum j′ (otherwise
it would not be in B(α)) and so

⋃
k∈bMk = Mj′ ≤K N . �

We can now prove that any reasonable tree can be “made independent” (and
further, it will generate its ambient model N). This can be seen as a generalization
of the existence axiom (see Definition 16.4.1.(3g)). Note that generalized symmetry
is used in the proof.

Lemma 16.5.39. Assume that cl is algebraic and we are given a resolvable
continuous enumerated tree of models T 0 := (〈M0

i : i < α〉, N0, α,E). If:

(1) (α,E) is in pre-order.
(2) For any b ∈ B(α), b is bounded.

Then we can find 〈Mi : i < α〉, N , and 〈fi : i < α〉 such that:



418 16. CATEGORICITY IN UNIVERSAL CLASSES: PART II

(1) T := (〈Mi : i < α〉, N, α,E) is a resolvable independent continuous enu-
merated tree.

(2) For all i, j < α, fi : M0
i
∼= Mi and i E j implies fi ⊆ fj .

(3) N = Mα := clN (
⋃
i<αMi).

Proof. We build 〈Ni : i < α〉, 〈Mi : i < α〉, 〈fi : i < α〉 such that:

(1) 〈Ni : i ≤ α〉 is increasing.
(2) 〈fi : i < α〉 satisfies (2).
(3) For all i ∈ (0, α), Ti := (〈Mj : j < i〉,

⋃
j<iNj , i,E) is a resolvable inde-

pendent continuous enumerated tree of models.
(4) For all i < α, Ni = clNi(M0 ∪

⋃
j<iMj) (= M i).

This is enough, as we can then take N :=
⋃
i<αNi. This is possible. When i =

0, set N0 := M0 := M0
0 , f0 := idM0

0
. Now assume that i > 0. Let N ′i :=

⋃
j<iNj .

There are two cases:

• Case 1: pred(i) has a maximum: Let j := max(pred(i)). Use the exis-

tence axiom (Definition 16.4.1.(3g)) to find fi extending fj and Ni ≥K N ′i

so that fi : M0
i
∼= Mi, Mi

Ni

^
Mj

N ′i , and Ni = clNi(Mi ∪ N ′i). It is easy to

check that this works.
• Case 2: pred(i) does not have a maximum: Let M ′i :=

⋃
j/iMj , (M0

i )′ :=⋃
j/iM

0
j , f ′i :=

⋃
j/i fj . Let M ′′i , g : M0

i
∼= M ′′i be such that g extends f ′i .

Let δ := gtp(pred(i)). Note that δ is a limit ordinal. Let 〈ij : j < δ〉
list pred(i) in increasing order. For j < i, let uj := Ai,j , where Ai,j is
as in Definition 16.5.25. Note that

⋃
j<δ uj = i. By Lemma 16.5.38, uj

is closed in T 0, hence (taking the image of T 0 by
⋃
j<i fj) in Ti. We

use Fact 16.4.7.(5) with Mj , Nj , M there standing for Mij , M
uij , M ′′i

here. The hypotheses are satisfied by Theorem 16.5.35 (applied to Ti) and
monotonicity. We obtain Ni ∈ K and a map f : M ′′i −−→

M ′i

Ni such that for

all j < δ:
(1) Nij ≤K Ni.

(2) f [M ′′i ]
Ni

^
Mij

Muij .

(3) Ni = clNi(f [M ′′i ] ∪M i).
Let fi := f ◦ g and let Mi := f [M ′′i ]. This works by the above

properties.

�

A specialization of Lemma 16.5.39 yields the main theorem of this section.

Theorem 16.5.40 (Tree construction). Assume that cl is algebraic. Let δ be
a limit ordinal and let λ ≥ 2 be a cardinal. Let 〈Mi : i ≤ δ〉 be an increasing chain
(we do not need to assume that the models have size λ).

If 〈Mi : i < δ〉 is continuous but
⋃
i<δMi 6≤K Mδ (so δ is the least failure of

smoothness for the chain 〈Mi : i < δ〉), then there is 〈Mη | η ∈ ≤δλ〉, 〈fη | η ∈ ≤δλ〉
and N ∈ K such that for all η, ν ∈ ≤δλ:

(1) Mη ≤K N , fη : M`(η)
∼= Mη.

(2) If η is an initial segment of ν, then Mη ≤K Mν and fη ⊆ fν .
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(3) If η 6= ν have length δ and α < δ is least such that η � (α+1) 6= ν � (α+1),

then Mη

N

^
Mν�α

Mν .

Proof. By Lemma 16.5.37, we can find an enumeration 〈ηi : i < α〉 of ≤δλ
such that (α,E) is a continuous enumerated tree in pre-order and i E j < α implies
that ηi is an initial segment of ηj . For i < α, let M0

i := M`(ηi) and let N0 := Mδ.

Then it is straightforward to check that T 0 := (〈M0
i : i < α〉, N0, α,E) satisfies the

hypotheses of Lemma 16.5.39. We obtain 〈Mi : i < α〉, N , and 〈fi : i < α〉 there
that correspond to 〈Mηi : i < α〉, N , and 〈fηi : i < α〉 here. Since the resulting
tree is independent, we obtain the independence condition via Lemma 16.5.27. �

16.6. Structure theory of universal classes

In this section, we precisely state a result of Shelah saying that for a universal
class K which does not have the order property there is an ordering ≤ so that
K0 := (K,≤) is a weak AEC satisfying AxFri1 (see Definition 16.6.9). To simplify
matters, we partition K0 into disjoint classes, each of which has joint embedding,
pick an appropriate such class and name it K∗ (Definition 16.6.11). We then use
the tree construction theorem (Theorem 16.5.40) to show that failure of smoothness
in K∗ implies unstability at certain cardinals (see Theorem 16.6.16).

We start by specializing the order property from [She09b, Definition V.A.1.1]
(or Definition 2.4.2) to the quantifier-free version for universal classes:

Definition 16.6.1. A universal class K has the order property of length χ
if there exists a quantifier-free first-order formula φ(x̄, ȳ, z̄), a model M ∈ K, a
sequence c̄ ∈ `(z̄)|M |, and sequences 〈āi : i < χ〉, 〈b̄i : i < χ〉 from M (with
`(āi) = `(x̄), `(b̄i) = `(ȳ) for all i < χ) so that for all i, j < χ, M |= φ[āi; b̄j ; c̄] if
and only if i < j. We say that K has the order property if it has the order property
of length χ for all cardinals χ.

Remark 16.6.2. In the next section, we will show (Lemma 16.7.1) that cate-
goricity in some λ > LS(K) implies failure of the order property.

The following result is proven (in a more general form) in §2 of [GS86b].

Fact 16.6.3. Let K be a universal class. If K does not have the order property,
then there exists χ < h(K) (recall Definition 16.2.16) such that K does not have
the order property of length χ.

From failure of the order property, Shelah shows that there exists a certain

ordering ≤χ+,µ+

on K such that (K,≤χ+,µ+

) satisfies AxFri1 (recall Definition
16.4.1). We now proceed to define this ordering.

Definition 16.6.4 (Averages, V.A.2 in [She09b]). Let K be a universal class.
Let M ∈ K, let I be an index set, and let I := 〈āi : i ∈ I〉 be a sequence of elements
of M of the same finite arity n < ω. Let χ ≤ µ be infinite cardinals such that11

|I| ≥ χ.

(1) For A ⊆ |M |, we let Avχ(I/A;M) (the χ-average of I over A in M) be the
set of quantifier-free first-order formulas φ(x̄) over A such that `(x̄) = n
and |{i ∈ I |M |= ¬φ[āi]}| < χ.

11We sometimes think of I as just the set of its elements (i.e. as if it was only ran I), e.g. we
write |I| instead of | ran I| and I ⊆ nA instead of ran I ⊆ nA.
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(2) We say that I is (χ, µ)-convergent in M if |I| ≥ µ and for every A ⊆ |M |,
p := Avχ(I/A;M) is complete over A (i.e. for every quantifier-free formula
φ(x̄) over A with `(x̄) = n, either φ(x̄) ∈ p or ¬φ(x̄) ∈ p).

(3) Let A,B ⊆ |M | and let p be a set of quantifier-free formulas over B (all
of the same arity n < ω). We say that p is (χ, µ)-averageable over A in
M if there exists a sequence I ⊆ nA that is (χ, µ)-convergent in M and
with p = Avχ(I/B;M).

Remark 16.6.5. In the above notation, the usual notion of average from the
first-order framework [She90, Definition III.1.5] can be written Avℵ0(I/A;C), mod-
ulo the fact that here all the formulas are quantifier-free.

Remark 16.6.6 (Monotonicity).

(1) Since the formulas under consideration are quantifier-free, we have the
following monotonicity properties: if M0 ⊆ M and A, I ⊆ |M0|, then
Avχ(I/A;M0) = Avχ(I/A;M). Similarly, if I is (χ, µ)-convergent in M ,
then it is (χ, µ)-convergent in M0, and if A ⊆ B ⊆ |M0| and p is a
quantifier-free type over B that is (χ, µ)-averageable over A in M , then it
is (χ, µ)-averageable over A in M0.

(2) If p over B as in (1) is (χ, µ)-averageable over A in M , then whenever
A ⊆ A′ ⊆ B0 ⊆ B, we have that p � B0 is (χ, µ)-averageable over A′ in
M .

Definition 16.6.7 (V.A.4.1 in [She09b]). Let K be a universal class and let
χ ≤ µ be infinite cardinals. For M,N ∈ K, we write M ≤χ,µ N if M ⊆ N and
for every c̄ ∈ <ω|N |, the quantifier-free type of c̄ over M in N , tpqf(c̄/M ;N), is
(χ, µ)-averageable over M .

Note that if M,N ∈ K<µ, then we never have M ≤χ,µ N . From now on we
assume:

Hypothesis 16.6.8.

(1) K = (K,⊆) is a universal class with arbitrarily large models.
(2) χ ≥ LS(K) is such that K does not have the order property of length χ+.
(3) Set µ := 22χ .

Definition 16.6.9. Let K0 := (K,≤χ+,µ+

).

The following is the key structure theorem for universal classes: from failure
of the order property, Shelah [She09b, Chapter V.B] shows that one can make
K0 into a weak AEC satisfying AxFri1. Note that by Fact 16.6.3 one can take
χ, µ < i(2LS(K))

+ .

Fact 16.6.10.

(1) K0 is a weak AEC with LS(K0) ≤ µ+.

(2) For M ∈ K and A ⊆ |M |, let clM (A) be the closure of A under the

functions of M . We can define a 4-ary relation ^ on K by M1

M3

^
M0

M2 if

and only if all of the following conditions are satisfied:
(a) M0 ≤K0 M1 and M0 ≤K0 M2.
(b) M1 ⊆M3 and M2 ⊆M3.

(c) clM3(M1 ∪M2) ≤K0 M3.
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(d) For any c̄ ∈ <ω|M1|, tpqf(c̄/M2;M3) is (χ+, µ+)-averageable over M0.

We then have that (K0,^, cl) satisfies AxFri1. Moreover cl is alge-
braic (see Definition 16.5.22) and ^ is µ+-based (see Definition 16.4.12).

Proof. That (K0,^, cl) satisfies AxFri1 and has Löwenheim-Skolem-Tarski
number bounded by µ+ is the content of [She09b, V.B.2.9]. Since cl is just closure
under the functions, it is clearly algebraic. That ^ is µ+-based is observed (but
not explicitly proven) in [She09b, V.C.5.7]. We give the proof here.

Claim: ^ is µ+-based.
Proof of Claim:
First, we show:
Subclaim: For any cardinal λ, K0 is (≤ λ, µ+)-smooth. That is, if 〈Mi : i < µ+〉

is increasing in K0 and M ∈ K0 is such that Mi ≤K0 M for all i < µ+, then⋃
i<µ+ Mi ≤K0 M .

Proof of Subclaim:
In [She09b, V.A.4.4], it is shown that for any N,N ′ ∈ K0, N ≤K0 N ′ if and

only if N �∆ N ′, where ∆ is a certain fragment of Lµ+,µ+ . The result now follows
from the basic properties of ∆-elementary substructure. †Subclaim

Let M ≤K0 M∗ and let A ⊆ |M∗| be given. By definition of ≤K0=≤χ+,µ+

, for
each c̄ ∈ <ω|M∗| there exists Ic̄ ⊆ `(c̄)|M | that is (χ+, µ+)-convergent and so that
Av(Ic̄/M ;M∗) = tpqf(c̄/M ;M∗). Without loss of generality, |Ic̄| ≤ µ+.

We build increasing 〈M0
i : i < µ+〉, 〈M1

i : i < µ+〉 such that for all i < µ+:

(1) M0
i ≤K0 M .

(2) M0
i ≤K0 M1

i ≤K0 M∗.
(3) ‖M1

i ‖ ≤ |A|+ µ+.

(4) |M | ∩ |M1
i | ⊆ |M

i+1
0 |.

(5) For all c̄ ∈ <ωM1
i , Ic̄ ⊆ |M0

i+1|.

This is enough: let N0 :=
⋃
i<µ+ M0

i , N1 :=
⋃
i<µ+ M1

i . By the claim, N0 ≤K0

N1 ≤K0 M∗ and by requirements (1) and (4), M ∩N1 = N0. Finally, N1

M∗

^
N0

M by

definition of Ic̄ and requirement (5).
This is possible: assume that 〈M `

j : j < i〉 have been defined for ` = 0, 1.

Let M0
i,0 :=

⋃
j<iM

0
j , M1

i,0 :=
⋃
j<iM

1
j . Use that LS(K0) ≤ µ+ to pick M0

i

such that M0
i ≤K0 M , |M | ∩M1

i,0 ⊆ |M0
i |, Ic̄ ⊆ |M0

i | for all c̄ ∈ <ω|M1
i,0|, and

‖M0
i ‖ ≤ |A|+ µ+. Note that by coherence, M0

j ≤K0 M0
i . Now pick M1

i such that

M1
i ≤K0 M∗, A ∪ |M1

i,0| ∪ |M0
i | ⊆ M1

i , and ‖M1
i ‖ ≤ |A| + µ+. It is easy to check

that this satisfies all the requirements. †Claim �

Note that K0 has amalgamation (Remark 16.4.4). However, we do not know if
it satisfies joint embedding, so we partition K0 into disjoint AECs, each of which
has joint embedding. We will then concentrate on just one of these AECs. This
trick appears in [She87b, Section II.3].
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Definition 16.6.11. For M,N ∈ K0, write M ∼ N if they can be ≤K0 -
embedded inside a common model. This is an equivalence relation and the equiva-
lence classes partition K0 into disjoint weak AECs 〈K0

i : i ∈ I〉 that have amalga-
mation and joint embedding. There is only a set of such classes, so there exists12

i ∈ I such that K0
i has arbitrarily large models. Let K∗ :=

(
K0
i

)
≥µ+ .

From now on, we will work with K∗. We note a few trivial properties of
independence there:

Lemma 16.6.12.

(1) K∗ is a weak AEC with amalgamation, joint embedding, and arbitrarily
large models.

(2) LS(K∗) = µ+.
(3) K and K∗ are compatible (recall Definition 16.3.1).

(4) (K∗,^ � K∗, cl) satisfies AxFri1, where for M ∈ K∗, clM is closure under
the functions of M and ^ � K∗ is the natural restriction of ^ (from Fact
16.6.10) to K∗.

Proof. Straightforward. �

Notation 16.6.13. We abuse notation and write ^ for ^ � K∗ (where again

^ is from Fact 16.6.10).

Lemma 16.6.14.

(1) If A
M3

^
M0

B and c̄ ∈ <ωA, then tpqf(c̄/B;M3) is (χ+, µ+)-averageable over

M0.
(2) cl is algebraic.
(3) ^ is LS(K)-based.

Proof. (1) follows directly from the definition of ^. For the rest, cl is alge-
braic because cl satisfies this property in K0 (Fact 16.6.10). Similarly in K0, ^ is
µ+-based (Fact 16.6.10) and it is straightforward to check that this carries over to
K∗. �

Next, we study what happens if smoothness fails in K∗. Recall that our goal
is to see that this is incompatible with categoricity (in a high-enough cardinal).
Shelah has shown [She09b, V.C.2.6], that failure of smoothness implies that K∗

has 2λ-many nonisomorphic models at every high-enough regular cardinal λ. So
in particular K∗ cannot be categorical in a regular cardinal. However we are also
interested in the singular case. Shelah states as an exercise [She09b, V.C.4.13]
that K∗ has (at least) 2<λ-many nonisomorphic models if λ is singular. However
we have been unable to prove it.

Instead, we aim to see that failure of smoothness implies that K∗ has many
types, i.e. it is Galois unstable in some suitable cardinals. This will contradict
Lemma 16.3.4. The argument is similar to [She09b, V.E.3.15], which shows that
failure of superstability (in the sense that there is an increasing chain 〈Mi : i < δ〉
and a type p ∈ gS(

⋃
i<δMi) that forks over every Mi, i < δ) implies unstability at

12There could be many and for our purpose the choice of i does not matter. Moreover i is
unique if K is categorical in some λ ≥ µ+.
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suitable cardinals. The extra difficulty here is that smoothness fails, but the hard
work in constructing the tree has already been done in Theorem 16.5.40.

First observe that any failure of smoothness must be witnessed by a small chain:

Lemma 16.6.15. If K∗ is (≤ LS(K∗),≤ LS(K∗)+)-smooth (recall Definition
16.2.10), then K∗ is smooth, i.e. it is an AEC.

Proof. By Lemma 16.6.14.(3), K∗ is LS(K∗)-based, so apply Fact 16.4.13. �

We now show that failure of smoothness implies unstability at some not too
high cardinal. A technical subtlety is that we can only show (< ω)-unstability, i.e.
there are many types of some fixed finite length. In this framework, we do not
know whether this implies that there are also many types of length one (see also
Remark 16.3.6).

Theorem 16.6.16. Assume that K∗ is not (≤ LS(K∗),≤ LS(K∗)+)-smooth.
Let κ ≤ LS(K∗)+ be least such that (≤ LS(K∗),≤ κ)-smoothness fails. If λ ≥
LS(K∗)+ is such that λ = λ<κ and λ < λκ, then K∗ is (< ω)-unstable in λ.

Proof. Fix an increasing sequence 〈Mi : i ≤ κ〉 such that ‖Mi‖ ≤ LS(K∗)+

for all i ≤ κ and
⋃
i<κMi 6≤K∗ Mκ. Without loss of generality (using minimality

of κ) the sequence is continuous below κ, i.e. Mi =
⋃
j<iMj for every i < κ. Let

N ∈ K∗ and 〈Mη, fη | η ∈ ≤κλ〉 be as given by Theorem 16.5.40 (where δ,K
there stands for κ,K∗ here; note that cl is algebraic by Lemma 16.6.14.(2) so the
hypotheses of the theorem hold).

By definition of ≤K∗ (so really of ≤K0 , see Definitions 16.6.9 and 16.6.7), we

have that
⋃
i<κMi 6≤χ

+,µ+

Mκ. By definition of ≤χ+,µ+

, there exists c̄ ∈ <ω|Mκ|
such that q := tpqf(c̄/

⋃
i<κMi;Mκ) is not (χ+, µ+)-averageable over

⋃
i<κMi in

Mκ. For η ∈ κλ, let c̄η := fη(c̄).
Note that by (1) in Theorem 16.5.40, for all η ∈ ≤κλ, ‖Mη‖ = ‖M`(η)‖ ≤

LS(K∗)+ ≤ λ, so fix M ≤K∗ N such that ‖M‖ = λ and
⋃
η∈<κλ |Mη| ⊆ |M |. For

η ∈ κλ, let pη := gtpK∗(c̄η/M ;N).
Because λ < λκ, it is enough to prove the following:
Claim: For η, ν ∈ κλ, if η 6= ν, then pη 6= pν .
Proof of claim: Let α < κ be least such that η � (α+1) 6= ν � (α+1). By (3) in

Theorem 16.5.40 and the monotonicity property of ^ (see Lemma 16.4.9) we have

that c̄η

N

^
Mν�α

Mν . By monotonicity again, c̄η

N

^
Mν�α

⋃
β<κMν�β . Now assume for a con-

tradiction that pη = pν . Then by monotonicity and invariance, c̄ν

N

^
Mν�α

⋃
β<κMν�β

so c̄ν

Mν

^
Mν�α

⋃
β<κMν�β . Applying f−1

ν to this, we get that c̄
Mκ

^
Mα

⋃
i<κMi. In particu-

lar, by Lemma (16.6.14).(1), q is (χ+, µ+)-averageable over Mα in Mκ. By Remark
16.6.6, q is (χ+, µ+)-averageable over

⋃
i<κMi in Mκ. This contradicts the choice

of c̄. †Claim. �

16.7. Categoricity in universal classes

In this section, we derive the main theorem of this chapter. First, we explain
why, in a universal class, categoricity (in some λ > LS(K)) implies failure of the
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order property. Note that Shelah argues [She09b, Claim V.B.2.6] that if K has
the order property, then it has 2µ-many models of size µ (for any µ > LS(K)). In
particular, this violates categoricity but Shelah’s construction of many models is
very technical and when categoricity is assumed there is an easier proof. Note that
we do not even need to work with Galois types and can use syntactic (first-order)
quantifier-free types instead.

Lemma 16.7.1. Assume that a universal class K is categorical in a λ > LS(K).
Then K does not have the order property (recall Definition 16.6.1).

Proof. If K does not have arbitrarily large models, then K does not have
the order property. Now assume that K has arbitrarily large models. We can
use Ehrenfeucht-Mostowski models and the standard argument (due to Morley, see
[Mor65, Theorem 3.7]) shows that if M ∈ Kλ, µ ∈ [LS(K), λ), and A ⊆ |M | is such
that |A| ≤ µ, then M realizes at most µ-many first-order syntactic quantifier-free
types over A. However if K had the order property, we would be able to build a
set A ⊆ |M | with |A| ≤ LS(K) but with at least LS(K)+ (syntactic quantifier-free)
types over A realized in M (using Dedekind cuts, see e.g. the proof of Fact 3.5.12).
This is a contradiction. �

Next, we deduce more structure from categoricity:

Theorem 16.7.2. Let K be a universal class. If K is categorical in some
λ ≥ ih(K), then there exists K∗ such that:

(1) K∗ is an AEC.
(2) LS(K) ≤ LS(K∗) < h(K).
(3) K and K∗ are compatible (recall Definition 16.3.1).
(4) K∗ has amalgamation, joint embedding, and arbitrarily large models.
(5) K∗ is LS(K∗)-tame.

Proof. Let K be a universal class and let λ ≥ ih(K) be such that K is
categorical in λ. By Fact 16.2.20, K has arbitrarily large models. By Lemma 16.7.1,
K does not have the order property. By Fact 16.6.3, we can fix χ ∈ [LS(K), h(K))
such that K does not have the order property of length χ+. Thus Hypothesis 16.6.8
is satisfied, and so Shelah’s structure theorem for universal classes (Fact 16.6.10)
applies. Let K∗ be as in Definition 16.6.11. We have to check that it has all the
required properties. First, K∗ is a weak AEC with amalgamation, joint embedding,
and arbitrarily large models (Lemma 16.6.12.(1)). Moreover (Lemma 16.6.12.(2)),

LS(K) ≤ LS(K∗) = µ+ =
(
22χ
)+

< h(K). Also, K and K∗ are compatible (Lemma
16.6.12.(3)). This takes care of (2), (3), and (4) in the statement of Theorem 16.7.2.
Combining Lemma 16.4.14.(2) and Lemma 16.6.14, we obtain that K∗ is LS(K∗)-
tame, so (5) also holds.

It remains to see (1): K∗ is an AEC, i.e. it satisfies the smoothness axiom.
Suppose not. Then by Lemma 16.6.15, there is a small counter-example: K∗ is not
(≤ LS(K∗),≤ LS(K∗)+)-smooth. Let κ ≤ LS(K∗)+ be least such that K∗ is not
(≤ LS(K∗),≤ κ)-smooth. Note that κ is regular. Let λ0 := iκ(LS(K∗)). Note:

• λ0 ≥ LS(K∗)+.
• λ0 = λ<κ0 and λ0 < λκ0 (because cf λ0 = κ).
• Since κ ≤ LS(K∗) < h(K), we have that λ0 ≤ iLS(K∗)+κ < ih(K) ≤ λ.

Similarly, λ+
0 < λ.
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By Lemma 16.3.4 (where K1,K2, µ, λ there stand for K,K∗, λ0, λ here, note
that we are using that λ+

0 < λ), K∗ is (< ω)-stable in λ0. However Theorem
16.6.16 (where λ there stands for λ0 here) says that K∗ is (< ω)-unstable in λ0, a
contradiction. �

Finally, we have all the results we need to prove the main theorem:

Theorem 16.7.3. Let K be a universal class. If K is categorical in some
λ ≥ ih(K), then there exists χ < ih(K) such that K is categorical in all λ′ ≥ χ.
Moreover, K≥χ has amalgamation.

Proof. Let K∗ be as given by Theorem 16.7.2. In particular, K∗ is tame
and has amalgamation. By Fact 16.2.23, K has primes, so we can use Theorem
16.3.8, compatibility, and the categoricity transfer theorem for tame AECs with
primes (Fact 16.2.25.(2b)). That is, by Theorem 16.3.9 (where K1, K2 there stand
for K, K∗ here), K∗ is categorical in all λ′ ≥ χ := h(LS(K∗)). By compatibility
(recalling that LS(K) ≤ LS(K∗)), K is also categorical in all λ′ ≥ χ. Finally, since
LS(K∗) < h(K), we have that χ = h(LS(K∗)) = i(2LS(K∗))

+ < ih(K).

For the moreover part, note that χLS(K,K∗) = χLS(K∗) = χ so by Lemma 16.3.7,
K≥χ = K∗≥χ. Since the latter has amalgamation, so does the former. �

Remark 16.7.4. In fact, K≥χ satisfies much more than amalgamation. This
is because K≥χ is a locally universal class (see Definition 8.2.19). Thus it is fully
χ-tame and short (see Corollary 8.3.8) and admits a global notion of independence
(for types over arbitrary sets) that is similar to forking in a first-order superstable
theory (see Section 8.8).

Proof of Theorem 16.0.9 and Corollary 16.0.10. Let ψ be a universal
Lω1,ω sentence. The class K of models of ψ is a universal class (Fact 16.2.4) with
h(K) = iω1

(see Remark 16.2.17 and Fact 16.2.15). Now apply Theorem 16.7.3. �

Remark 16.7.5. By Fact 16.2.4 and Remark 16.2.17, Theorem 16.0.9 and
Corollary 16.0.10 apply more generally to any universal class in a countable vo-
cabulary.





CHAPTER 17

Saturation and solvability in abstract elementary
classes with amalgamation

This chapter is based on [Vase].

Abstract

Theorem 17.0.6. Let K be an abstract elementary class (AEC) with amalga-
mation and no maximal models. Let λ > LS(K). If K is categorical in λ, then the
model of cardinality λ is Galois-saturated.

This answers a question asked independently by Baldwin and Shelah. We
deduce several corollaries: K has a unique limit model in each cardinal below λ,
(when λ is big-enough) K is weakly tame below λ, and the thresholds of several
existing categoricity transfers can be improved.

We also prove a downward transfer of solvability (a version of superstability
introduced by Shelah):

Corollary 17.0.7. Let K be an AEC with amalgamation and no maximal
models. Let λ > µ > LS(K). If K is solvable in λ, then K is solvable in µ.

17.1. Introduction

17.1.1. Motivation. Morley’s categoricity theorem [Mor65] states that if a
countable theory has a unique model of some uncountable cardinality, then it has
a unique model in all uncountable cardinalities. The method of proof led to the
development of stability theory, now a central area of model theory. In the mid
seventies, Shelah conjectured a similar statement for classes of models of an Lω1,ω-
theory [She90, Open problem D.3(a)] and more generally for abstract elementary
classes (AECs) [She09a, Conjecture N.4.2]1. A key step in Morley’s proof was to
show that the model in the categoricity cardinal is saturated. In this chapter, we
lift this step to the framework of AECs which satisfy the amalgamation property
and have no maximal models.

In this context, saturation is defined in terms of Galois (orbital types). Shelah
[She87b, II.3.10] (see also [Gro02, Theorem 6.7]) has justified this definition by
showing that (with the hypotheses of amalgamation and no maximal models, which
we make for the remainder of this section) this notion of saturation is equivalent to
being model-homogeneous2 (in particular there can be at most one saturated model
of a given cardinality). In a milestone paper, Shelah [She99] has shown that (again

1see the introduction of Chapter 8 for more on the history of the conjecture.
2where M ∈ K is model-homogeneous if for every M0, N ∈ K with M0 ≤K M , M0 ≤K N ,

and ‖N‖ < ‖M‖, there is a K-embedding f : N −−→
M0

M .

427
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assuming amalgamation and no maximal models) a downward analog of Morley’s
categoricity theorem holds if the starting categoricity cardinal is high-enough and
a successor. One reason3 for making the successor assumption was exactly to show
that the model in the categoricity cardinal was saturated. Indeed, Shelah observes
[She99, Claim 1.7.(b)] that if K is categorical in λ and cf λ > LS(K), then the
model of cardinality λ is cf λ-saturated. In particular, if λ is regular then the model
of cardinality λ is saturated. Shelah [She09a, Question IV.7.11] and independently
Baldwin [Bal09, Problem D.1.(2)] have asked whether the model of cardinality λ
is saturated even when λ is singular. The present chapter answers positively (this
is Theorem 17.0.6 from the abstract, proven here as Corollary 17.4.11).

17.1.2. Earlier work. Shelah and Villaveces (see Fact 17.4.4) have shown
that (regardless of the cofinality of λ) categoricity in λ implies that a certain local
superstability condition (see Definition 17.4.1) holds below λ. In Theorem 4.5.6, we
showed that the local superstability condition implies stability (defined in terms of
the number of Galois types) in all cardinals if the class K is LS(K)-tame (a local-
ity property for Galois types introduced by Grossberg and VanDieren [GV06b]).
Therefore if K is LS(K)-tame and categorical in λ > LS(K), then K is stable in
λ and hence the model of cardinality λ is saturated. This gives a new proof (even
for uncountable theories) of the corresponding first-order fact. However without
assuming tameness, we cannot in general conclude stability in the categoricity car-
dinal λ (there is a counterexample due to Hart and Shelah and analyzed in details
by Baldwin and Kolesnikov [HS90, BK09]), thus different ideas are needed.

Shelah [She09a, Theorem IV.7.8] claims that the model of cardinality λ is µ+-
saturated (for µ ≥ LS(K)) if 22µ + ℵµ+4 ≤ λ. We have not fully verified Shelah’s
proof, which uses PCF theory as well as the theory of Ehrenfeucht-Mostowski (EM)
models4.

With VanDieren (Corollary 10.7.4), we showed that the model of cardinality λ
is µ+-saturated if λ ≥ i(2µ+)

+ . Assuming the generalized continuum hypothesis

(GCH), i(2µ+)
+ = ℵµ+3 so the bound is better than Shelah’s (but if GCH fails

badly then Shelah’s bound is better). We conclude that if λ = iλ then the model
of cardinality λ is saturated (and assuming Shelah’s bound, “λ = iλ” can be
replaced by “λ = ℵλ and λ is strong limit”). We show here that these hypotheses
are not needed (the simplest new case is when LS(K) = ℵ0 and λ = ℵω).

17.1.3. Description of the proof. The proof uses the symmetry property
for splitting first isolated by VanDieren [Van16a]. It follows from an earlier result
of VanDieren [Van16b] that if symmetry holds in a successor cardinal µ then the
model in the categoricity cardinal λ is µ-saturated. Further if symmetry in µ fails
then K must satisfy a variant of the order property (defined in terms of Galois
types) of length λ (Lemma 10.5.3). It turns out that if the length of this order
property is bigger than γ := i(2µ)+ then K is unstable below λ and this contradicts
categoricity. The aforementioned result with VanDieren used that λ ≥ γ. The
key argument of this chapter (Theorem 17.3.4) shows that K will have the order
property of length γ even when λ < γ.

3but not the only one, see the discussion on [BVd, p. 20].
4Shelah even claims that it is enough to assume amalgamation and no maximal models in

a small subset of cardinal below λ, but we are unable to verify Shelah’s claim that “(i) + (iii)
suffices” in clause (e)(β) of the theorem.
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The main ingredient is a little known result of Shelah [She99, Claim 4.15]
proving from categoricity in λ that any sequence of length λ contains a strictly
indiscernible subsequence. Here, indiscernible is as usual defined in terms of Galois
types and an indiscernible sequence is strict when (roughly) it can be extended to
a longer indiscernible sequence of arbitrary size. For the convenience of the reader
(and because Shelah omits several details), we give a full proof of Shelah’s claim
here (Fact 17.2.5).

17.1.4. Solvability. We can generalize Fact 17.2.5 using a weakening of cat-
egoricity called solvability (see Definition 17.3.1 here). Solvability was introduced
by Shelah in [She09a, Chapter IV] as a possible definition of superstability in the
AEC framework (it is equivalent to superstability in the first-order case, see The-
orem 9.4.9). Shelah has asked [She09a, Question N.4.4] whether the solvability
spectrum satisfies an analog of the categoricity conjecture. Inspired by this ques-
tion, we showed with Grossberg (Theorem 9.5.4) that the solvability spectrum is
either bounded or a tail provided that the AEC is tame (and has amalgamation
and no maximal models). As an application of the main result of this chapter, we
show here without assuming tameness (but still using amalgamation and no maxi-
mal models) that the solvability spectrum satisfies a downward analog of Shelah’s
categoricity conjecture (this is Corollary 17.0.7 from the abstract proven here as
Corollary 17.5.1). Assuming tameness, we can also improve the threshold cardinal
of our aforementioned work with Grossberg (Corollary 17.5.3).

17.1.5. Other applications. Other applications of our result can be obtained
by taking known theorems that assumed that the model in the categoricity cardi-
nal had some degree of saturation, and removing this saturation assumption from
the hypotheses of the theorem! Several consequences are listed in Section 17.5.
Especially notable is that uniqueness of limit models5 holds everywhere below the
categoricity cardinal (Corollary 17.5.7.(2). This gives a proof of the (in)famous
[SV99, Theorem 3.3.7] (where a gap was identified in VanDieren’s Ph.D. thesis
[Van02]) provided that the class has full amalgamation. The original statement as-
suming only density of amalgamation bases remains open but we also make progress
toward it, improving a recent result of VanDieren [Van] and fixing a gap of [Van06]
isolated in [Van13]. This is presented in Section 17.5.4.

17.1.6. Notes. The background required to read the core (i.e. the first four
sections) of this chapter is only a modest knowledge of AECs (for example Chapters
4 and 8 of [Bal09]) although we rely on (as black boxes) several facts and defini-
tions from the recent literature (especially [Van16a, Van16b] and Chapter 10).
To understand some of the applications in Section 17.5, a more solid background
(described in the chapters and papers referenced there) may be needed.

17.2. Extracting strict indiscernibles

Everywhere in this chapter, K denotes a fixed AEC (not necessarily satisfying
amalgamation or no maximal models). We assume that the reader is familiar with
the definitions of amalgamation, no maximal models, Galois types, and (Galois)
saturation. We will use the notation from the preliminaries of Chapter 2.

5The reader can consult [GVV16] for more background and motivation on limit models.
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In particular, gtp(b̄/A;N) denotes the Galois types of b̄ over the set A as
computed inside N (so we make use of Galois types over sets, defined as for Galois
types over models; note also that the definition does not assume amalgamation).
We let gSα(A;N) denote the set of all Galois types of sequences of length α over A
computed in N , and let gSα(M) denote the set of all Galois types of sequences of
length α over M (computed in any extension N of M). When α = 1, we omit it.

When working with EM models, we will use the notation from [She09a, Chap-
ter IV]:

Definition 17.2.1. [She09a, Definition IV.0.8] For µ ≥ LS(K), let Υµ[K] be
the set of Φ proper for linear orders (that is, Φ is a set {pn : n < ω}, where pn
is an n-variable quantifier-free type in a fixed vocabulary τ(Φ) and the types in Φ
can be used to generate a τ(Φ)-structure EM(I,Φ) for each linear order I; that is,
EM(I,Φ) is the closure under the functions of τ(Φ) of the universe of I and for any
i0 < . . . < in−1 in I, i0 . . . in−1 realizes pn) with:

(1) |τ(Φ)| ≤ µ.
(2) If I is a linear order of cardinality λ, EMτ(K)(I,Φ) ∈ Kλ+|τ(Φ)|+LS(K),

where τ(K) is the vocabulary of K and EMτ(K)(I,Φ) denotes the reduct of
EM(I,Φ) to τ(K). Here we are implicitly also assuming that τ(K) ⊆ τ(Φ).

(3) For I ⊆ J linear orders, EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ).

We call Φ as above an EM blueprint.

The following follows from Shelah’s presentation theorem. We will use it with-
out explicit mention.

Fact 17.2.2. Let µ ≥ LS(K). K has arbitrarily large models if and only if
Υµ[K] 6= ∅.

The next notions (due to Shelah) generalize the concept of an indiscernible
sequence in a first-order theory. We prefer not to work inside a monster model (one
reason is that some of our application will assume only weak versions of amalgama-
tion, e.g. the Shelah-Villaveces context [SV99]), so give more localized definitions
here (but assuming a monster model the definitions below coincide with Shelah’s).

Definition 17.2.3 (Indiscernibles, Definition 4.1 in [She99]). Let K be an
AEC. Let N ∈ K. Let α be a non-zero cardinal, θ be an infinite cardinal, and let
〈āi : i < θ〉 be a sequence of distinct elements with āi ∈ α|N | for all i < θ. Let
A ⊆ |N | be a set.

(1) We say that 〈āi : i < θ〉 is indiscernible over A in N if for every n < ω,
every i0 < . . . < in−1 < θ, j0 < . . . < jn−1 < θ, gtp(āi0 . . . āin/A;N) =
gtp(āj0 . . . ājn/A;N). When A = ∅, we omit it and just say that 〈āi : i <
θ〉 is indiscernible in N .

(2) We say that 〈āi : i < θ〉 is strictly indiscernible in N if there exists an
EM blueprint Φ (whose vocabulary is allowed to have arbitrary size) and
a map f so that, letting N ′ := EMτ(K)(θ,Φ):

(a) f : N → N ′ is a K-embedding. For i < θ, let b̄i := f(āi).
(b) If for i < θ, b̄i = 〈bi,j : j < α〉, then for all j < α there exists a unary

τ(Φ)-function symbol ρj such that for all i < θ, bi,j = ρN
′

j (i).
(3) Let A ⊆ |N |. We say that 〈āi : i < θ〉 is strictly indiscernible over A in

N if there exists an enumeration ā of A such that 〈āiā : i < θ〉 is strictly
indiscernible in N .
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Because the compactness theorem is not available, indiscernible sequences may
in general fail to extend to arbitrarily length. The point of strict indiscernibles is
to correct that defect:

Fact 17.2.4. Assume that I := 〈āi : i < θ〉 is strictly indiscernible over A in
N . Then:

(1) I is indiscernible over A in N .
(2) For every θ′ ≥ θ, there exists N ′ ≥K N and 〈āi : i ∈ θ′\θ〉 such that
〈āi : i < θ′〉 is strictly indiscernible over A in N ′.

Proof sketch.

(1) Because I is indiscernible (in the first-order sense, in the vocabulary τ(Φ))
inside EM(I,Φ), and this transfers to Galois types in K.

(2) Use the (first-order) compactness theorem on the theory of the EM(θ,Φ),
expanded with constant symbols for the sequence witnessing the strict
indiscernibility.

�

The following fact is key to all the subsequent results. It shows that inside
an EM model (generated by an ordinal), one can extract a strictly indiscernible
subsequence from any long-enough sequence. It is due to Shelah and appears as
[She99, Claim 4.15]. For the convenience of the reader, we give a full proof.

Fact 17.2.5. Let K be an AEC with arbitrarily large models and let LS(K) <
θ ≤ λ be cardinals with θ regular. Let κ < θ be a (possibly finite) cardinal. Let
Φ ∈ ΥLS(K)[K] be an EM blueprint for K.

Let N := EMτ(K)(λ,Φ). Let M ∈ K≤LS(K) be such that M ≤K N . Let
〈āi : i < θ〉 be a sequence of distinct elements such that for all i < θ, āi ∈ κ|N |.

If θκ0 < θ for all θ0 < θ, then there exists w ⊆ θ with |w| = θ such that
〈āi : i ∈ w〉 is strictly indiscernible over M in N .

Remark 17.2.6. We do not assume amalgamation (we will work entirely inside
EMτ(K)(λ,Φ)).

Remark 17.2.7. The main case for us is κ < ℵ0, where the cardinal arithmetic
assumption holds trivially and the proof is simpler.

Remark 17.2.8. We are assuming that ‖M‖ ≤ LS(K) only to simplify the
notation: if µ := ‖M‖ ∈ (LS(K), θ), we can just replace K by K≥µ.

Proof of Fact 17.2.5. First we claim that one can assume without loss of
generality that κ < LS(K). Assume that the statement of the lemma has been
proven for that case. If κ > LS(K) one can replace K with K≥κ (and increase M)

so assume that κ ≤ LS(K). Now if κ = LS(K), then 2LS(K) = κκ < θ so we can
replace K by K≥LS(K)+ and work there. Thus assume without loss of generality
that κ < LS(K).

Pick u ⊆ λ such that |u| = θ, M ≤K N0 := EMτ(K)(u,Φ), and āi ∈ κ|N0| for
all i < θ. Increasing M if necessary, we can assume without loss of generality that
M = EMτ(K)(u

′,Φ) for some u′ ⊆ u with |u′| = LS(K).

For each i < θ, we can also pick ui ⊆ u with |ui| < κ+ + ℵ0 such that āi ∈
κ|EMτ(K)(ui,Φ)|. Without loss of generality u = u′ ∪

⋃
i<θ ui. By the pigeonhole

principle, we can without loss of generality fix an ordinal α < κ+ + ℵ0 such that
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gtp(ui) = α for all i < θ. List ui in increasing order as ūi := 〈ui,j : j < α〉. By
pruning further (using that LS(K)κ < θ), we can assume without loss of generality
that for each i, i′ < θ and j < α, the u′-cut of ui,j and ui′,j are the same (i.e. for
any γ ∈ u′, γ < ui,j if and only if γ < ui′,j).

Pruning again with the ∆-system lemma, we can assume without loss of gener-
ality that 〈ui : i < θ〉 forms a ∆-system (see Definition II.1.4 and Theorem II.1.6 in
[Kun80]; at that point we are using that θκ0 < θ for all θ0 < θ). All these pruning
steps ensure that 〈ūi : i < θ〉 is indiscernible over u′ in the vocabulary of linear
orders.

Now list āi as 〈ai,j : j < κ〉. Fix i < θ. Since āi ∈ κ|EMτ(K)(ui)|, for each

j < κ there exists a τ(Φ)-term ρi,j of arity n := ni,j and ji,j0 < . . . < ji,jn−1 < α such

that ai,j = ρi,j

(
ui,ji,j0

. . . ui,ji,jn−1

)
. By the pigeonhole principle applied to the map

i 7→ 〈(ρi,j , ni,j , ji,j0 , . . . , ji,jni,j−1) : j < κ〉 (using that LS(K)κ < θ), we can assume

without loss of generality that these depend only on j, i.e. ρi,j = ρj , ni,j = nj , and

ji,j` = jj` .
Let ū′ be an enumeration of u′, and let ā′i := āiū

′. We are assuming that
κ < LS(K) so `(ā′i) < LS(K). Let b̄i be ā′i followed by ai,0 repeated LS(K)-many
times (we only do this to make the order type of each element of our sequence
LS(K) and hence simplify the notation). Then `(b̄i) = LS(K). As before, say
b̄i = 〈bi,j : j < LS(K)〉. Let u′i := ui ∪ u′. Let ū′i be an enumeration of u′i of type
LS(K) (so not necessarily increasing). Say ū′i = 〈u′i,j : j < LS(K)〉.

By the pruning carried out previously and the definition of u′, we have that
for each i < θ and each j < LS(K), there exists a τ(Φ)-term ρj of arity nj and

jj0 < . . . < jjn−1 < LS(K) (the point is that they do not depend on i) such that
bi,j = ρj(u

′
i,jj0

, . . . , u′
i,jjnj−1

). We will build an EM blueprint Ψ witnessing that

〈b̄i : i < θ〉 is strictly indiscernible.
For each n-ary τ(Φ)-term ρ, each γ0 < . . . < γn−1 < LS(K), and each i0 <

. . . < in−1 < θ, we define a function g = gρ,γ0...γn−1,i0...in−1
as follows: for i < θ,

j < LS(K), let g(u′i,j) := ρ(u′i+i0,j+γ0
, . . . , u′i+in−1,j+γn−1

). We naturally extend

g to have domain N0 = EM(u,Φ) (recall from the beginning of the proof that
u = u′ ∪

⋃
i<θ ui). The vocabulary of Ψ will consist of the vocabulary of τ(Φ)

together with a unary function symbol for each gρ,γ0...γn−1,i0...in−1
. For n < ω, let

pn := tpτ(Ψ)(u
′
0,0u

′
1,0 . . . u

′
n−1,0/∅;N0) and let Ψ := {pn : n < ω}. Then Ψ is as

desired. �

We will use this fact to study lengths of the (Galois) order property (recall
Definition 2.4.3). An easy consequence of Fact 17.2.5 is that if a long-enough
order property holds, then we can assume that the sequence witnessing it is strictly
indiscernible, and hence extend it:

Theorem 17.2.9. Let K be an AEC with arbitrarily large models and let
LS(K) < λ. Let κ < λ be a (possibly finite) cardinal. Let Φ ∈ ΥLS(K)[K] be an
EM blueprint for K.

Let N := EMτ(K)(λ,Φ). If N has the (κ,LS(K))-order property of length

(LS(K)κ)
+

and LS(K)κ < λ, then K has the (κ,LS(K))-order property (of any
length).



17.3. SOLVABILITY AND FAILURE OF THE ORDER PROPERTY 433

Proof. Set θ := (LS(K)κ)
+

. Fix 〈āi : i < θ〉 and A witnessing that N has
the (κ,LS(K))-order property of length θ. Using the Löwenheim-Skolem-Tarski
axiom, pick M ∈ KLS(K) such that A ⊆ |M | and M ≤K N . By Fact 17.2.5,
there exists w ⊆ θ such that |w| = θ and 〈āi : i ∈ w〉 is strictly indiscernible
over M in N . Without loss of generality, w = θ. Let θ′ ≥ θ be an arbitrary
cardinal. By Fact 17.2.4.(2), we can find N ′ ≥K N and 〈āi : i ∈ θ′\θ〉 such that
I := 〈āi : i < θ′〉 is strictly indiscernible over M in N ′. By Fact 17.2.4.(1), I is indis-
cernible over M in N ′. We claim that I witnesses that N ′ has the (κ,LS(K))-order
property of length θ′. Indeed, if i0 < i1 < θ′, j0 < j1 < θ′, then by indiscerni-
bility, p := gtp(āi0 āi1/M ;N ′) = gtp(ā0ā1/M ;N ′) and q := gtp(āj1 āj0/M ;N ′) =
gtp(ā1ā0/M ;N ′). Because the original sequence 〈āi : i < θ〉 was witnessing the
(κ,LS(K))-order property, we have that p 6= q, as desired. �

Remark 17.2.10. By appending an enumeration of the base set to each element
of the sequence, we get that the (κ, µ)-order property implies the (κ + µ)-order
property. However Theorem 17.2.9 applies more easily to the (κ, µ)-order property:
think for example of the case κ < ℵ0, when we always have that LS(K)κ = LS(K) <
λ.

17.3. Solvability and failure of the order property

We recall Shelah’s definition of solvability [She09a, Definition IV.1.4], and
mention a more convenient notation for it with only one cardinal parameter. We
also introduce semisolvability, which only asks for the EM model to be universal
(instead of superlimit). Both variations are equivalent to superstability in the first-
order case (see Corollary 9.5.3). Shelah writes that solvability is perhaps the true
analog of superstability in abstract elementary classes [She09a, N§4(B)].

Definition 17.3.1. Let LS(K) ≤ µ ≤ λ.

(1) M ∈ K is universal in λ if M ∈ Kλ and for any N ∈ Kλ there exists
f : N →M .

(2) [She09a, Definition IV.0.5] M ∈ K is superlimit in λ if:
(a) M is universal in λ.
(b) M has a proper extension.
(c) For any limit ordinal δ < λ+ and any increasing continuous chain
〈Mi : i ≤ δ〉 in Kλ, if M ∼= Mi for all i < δ, then M ∼= Mδ.

(3) [She09a, Definition IV.1.4.(1)] We say that Φ witnesses (λ, µ)-solvability
if:
(a) Φ ∈ Υµ[K].
(b) If I is a linear order of size λ, then EMτ(K)(I,Φ) is superlimit in λ.

(4) Φ witnesses (λ, µ)-semisolvability if:
(a) Φ ∈ Υµ[K]
(b) If I is a linear order of size λ, then EMτ(K)(I,Φ) is universal in λ.

(5) K is (λ, µ)-[semi]solvable if there exists Φ witnessing (λ, µ)-[semi]solvability.
(6) K is λ-[semi]solvable (or [semi]solvable in λ) if K is (λ,LS(K))-[semi]solvable.

Remark 17.3.2. By a straightforward argument (similar to the proof of Corol-
lary 17.4.11.(2) here), superlimit models must be unique.

Remark 17.3.3. Because superlimit models are universal, if K is (λ, µ)-solvable,
then K is (λ, µ)-semisolvable. Also, the model in a categoricity cardinal must be
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superlimit (if it has a proper extension), so if K has arbitrarily large models and is
categorical in λ ≥ LS(K), then K is solvable in λ.

The reader not especially interested in solvability can simply remember the last
remark and read “categorical” instead of “solvable” whenever appropriate.

We can combine Theorem 17.2.9 with semisolvability (we are still not assuming
amalgamation):

Theorem 17.3.4. Let λ > LS(K). If K is semisolvable in λ, then for any
cardinals µ, κ, and any M ∈ Kλ, M does not have the (κ, µ)-order property of

length ((µ+ LS(K))κ)
+

.

Remark 17.3.5. The statement is interesting only when (µ + LS(K))κ < λ,
but is still vacuously true otherwise (no M of size λ can witness an order property
of length longer than λ). The main case for us is κ < ℵ0, µ ∈ [LS(K), λ), where
the result tells us that the (κ, µ) order property of length µ+ must fail.

Remark 17.3.6. A similar result is [She09a, Claim IV.1.5.(2)]. There the
conclusion is weaker (only the (κ, µ)-order property fails, nothing is said about the
length), and the hypothesis uses solvability instead of semisolvability. The proof
relies on Shelah’s construction of many models from the order property.

Proof of Theorem 17.3.4. Replacing µ by (µ + LS(K))κ if necessary, we
can assume without loss of generality that µ ≥ LS(K) and µ = µκ. If µ ≥ λ the
result is vacuously true (see Remark 17.3.5) so assume without loss of generality
that µ < λ. Replacing K by K≥µ if necessary, we can also assume without loss of
generality that µ = LS(K). Fix M ∈ Kλ and assume for a contradiction that M
has the (κ, µ)-order property of length µ+.

Let Φ be an EM blueprint witnessing semisolvability. By definition of semi-
solvability, we can embed M inside EMτ(K)(λ,Φ), hence EMτ(K)(λ,Φ) has the

(κ, µ)-order property of length µ+. So assume without loss of generality that
M = EMτ(K)(λ,Φ). By Theorem 17.2.9, K has the (κ, µ)-order property. As
in the proof of Fact 3.5.12 (first observed by Shelah [She99, Claim 4.7.(2)]), we
can build a linear order I of cardinality λ and a set A ⊆ N := EMτ(K)(I,Φ) such
that |A| = µ but | gSκ(A;N)| > µ.

Now by an argument of Morley [Mor65, Theorem 3.7] (similar to the pruning
done in the proof of Fact 17.2.5), for any A ⊆ |M |, if |A| = µ, then | gSκ(A;M)| = µ.
This is a contradiction because N embeds inside M (recall that M is universal by
the semisolvability assumption). �

17.4. Solvability and saturation

In this section, we prove Theorem 17.0.6 from the abstract (the model in the
categoricity cardinal is saturated). We will rely on the following local version of
superstability, already implicit in [SV99] and since then studied in many papers,
e.g. [Van06, GVV16, Van16a], Chapters 6, 7, 9. We quote Definition 6.10.1:

Definition 17.4.1. K is µ-superstable (or superstable in µ) if:

(1) µ ≥ LS(K).
(2) Kµ is nonempty, has joint embedding, amalgamation, and no maximal

models.
(3) K is stable in µ.
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(4) There are no long splitting chains in µ:
For any limit ordinal δ < µ+, for every sequence 〈Mi | i < δ〉 of

models of cardinality µ with Mi+1 universal over Mi and for every p ∈
gS(
⋃
i<δMi), there exists i < δ such that p does not µ-split over Mi.

We will also use the concept of symmetry for splitting isolated in [Van16a]:

Definition 17.4.2. For µ ≥ LS(K), we say that K has µ-symmetry (or sym-
metry in µ) if whenever models M,M0, N ∈ Kµ and elements a and b satisfy the
conditions (1)-(4) below, then there exists M b a limit model over M0, containing
b, so that gtp(a/M b) does not µ-split over N .

(1) M is universal over M0 and M0 is a limit model over N .
(2) a ∈ |M |\|M0|.
(3) gtp(a/M0) is non-algebraic and does not µ-split over N .
(4) gtp(b/M) is non-algebraic and does not µ-split over M0.

Remark 17.4.3. We will only use the consequences of Definitions 17.4.1 and
17.4.2, not their exact content.

By an argument of Shelah and Villaveces [SV99, Theorem 2.2.1] (see also
Chapter 20), superstability holds below the categoricity (or just semisolvability)
cardinal:

Fact 17.4.4 (The Shelah-Villaveces Theorem). Let λ > LS(K). Assume that
K<λ has amalgamation and no maximal models. If K is semisolvable in λ, then K
is superstable in any µ ∈ [LS(K), λ).

Remark 17.4.5. Here and below, we are assuming amalgamation and no max-
imal models but only (strictly) below λ. In at least one case (λ ≥ i(2χ)+ where

χ > LS(K) is a measurable cardinal [SK96, Bon14b]), these assumptions are
known to follow (inside K≥χ for the example just mentioned) from categoricity in
λ but they are not known to hold above λ.

It is also known that failure of symmetry implies the order property. The proof
of Lemma 10.5.3 gives:

Fact 17.4.6. Let λ > µ ≥ LS(K). Assume that K is superstable in every
χ ∈ [µ, λ). If K does not have µ-symmetry, then K has the (2, µ)-order property
of length λ (recall Definition 2.4.3).

Remark 17.4.7. We have not explicitly assumed amalgamation and no max-
imal models, as this is implied (at the relevant cardinals) by the definition of su-
perstability.

We conclude that µ-symmetry follows from categoricity (or just semisolvability)
in some λ > µ. This improves on Corollary 10.7.2 which asked for the model of
cardinality λ to be µ+-saturated (we will see next that this saturation also follows).

Corollary 17.4.8. Let λ > LS(K). Assume that K<λ has amalgamation and
no maximal models. If K is semisolvable in λ, then for any µ ∈ [LS(K), λ), K has
µ-symmetry.

Proof. By Fact 17.4.4, K is superstable in any µ ∈ [LS(K), λ). Fix such a
µ. Suppose for a contradiction that K does not have µ-symmetry. By Fact 17.4.6,
K has the (2, µ)-order property of length λ. In particular, K has the (2, µ)-order
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property of length µ+. This contradicts Theorem 17.3.4 (where κ there stands for
2 here). �

We will make strong use of the relationship between symmetry and chains of
saturated models (due to VanDieren):

Fact 17.4.9 (Theorem 1 in [Van16b]). If K is µ-superstable, µ+-superstable,
and has µ+-symmetry, then the union of any increasing chain of µ+-saturated
models is µ+-saturated.

We have arrived to Theorem 17.0.6 from the abstract. We first prove a lemma:

Lemma 17.4.10. Let λ > LS(K). If for every µ ∈ [LS(K), λ), K is µ-superstable
and has µ-symmetry, then K has a saturated model of cardinality λ.

Proof. If λ is a successor, then we can build the desired model using stability
below λ, so assume that λ is limit.

Let δ := cf λ. Fix an increasing sequence 〈µi : i < δ〉 cofinal in λ such that
LS(K) ≤ µ0. We build an increasing chain 〈Mi : i < δ〉 in Kλ such that for all
i < δ, Mi is µ+

i -saturated. This is enough since then it is easy to check that
⋃
i<δMi

is saturated. This is possible: Using Fact 17.4.9, for any i < δ, any union of an
increasing chain of µ+

i -saturated models is µ+
i -saturated (note that µ+

i < λ as λ is
limit). Thus it is straightforward to carry out the construction. �

Corollary 17.4.11. Let λ > LS(K). Assume that K<λ has amalgamation
and no maximal models.

(1) If K is semisolvable in λ, then K has a saturated model of cardinality λ.
(2) If Φ is an EM blueprint witnessing that K is solvable in λ, then for any

linear order I of cardinality λ, EMτ(K)(I,Φ) is saturated.
(3) If K has arbitrarily large models and is categorical in λ, then the model

of cardinality λ is saturated.

Proof.

(1) By Fact 17.4.4 and Corollary 17.4.8, K is superstable and has symmetry
in any µ ∈ [LS(K), λ). Now apply Lemma 17.4.10.

(2) We show more generally that if K is semisolvable in λ and M is superlimit
in λ, then M is saturated. We build increasing continuous chains 〈Mi :
i ≤ λ〉, 〈Ni : i ≤ λ〉 in Kλ such that for any i < λ:
(a) Mi

∼= M .
(b) Mi ≤K Ni ≤K Mi+1.
(c) Ni+1 is saturated.

This is possible by the first part (noting that the saturated model must
be universal). This is enough: because M is superlimit, M ∼= Mλ = Nλ.
Further, Nλ must be saturated: if λ is a successor this is clear and if λ
is limit this is because for any µ < λ the union of any increasing chain
of µ-saturated models is µ-saturated. Since Nλ is saturated, M is also
saturated, as desired.

(3) By Remark 17.3.3, K is solvable in λ, so apply the previous part.

�
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17.5. Applications

17.5.1. Solvability transfers. We can now prove Corollary 17.0.7 from the
abstract.

Corollary 17.5.1 (Downward solvability transfer). Let λ > LS(K). Assume
that K<λ has amalgamation and no maximal models. If K is solvable in λ, then
there exists an EM blueprint Ψ which witnesses that K is solvable in µ for any
µ ∈ (LS(K), λ].

Proof. Let Φ be an EM blueprint witnessing that K is solvable in λ. By
Corollary 17.4.11, EMτ(K)(J,Φ) is saturated for any linear order J of cardinality λ.
We now use [She99, Subfact 6.8] (a full proof is given in [Shea], the online version
of [She99]). It says that there exists an EM blueprint Ψ ∈ ΥLS(K)[K] such that:

(1) For any linear order I there exists a linear order J with, EMτ(K)(I,Ψ) =
EMτ(K)(J,Φ). In particular, Ψ still witnesses that K is solvable in λ.

(2) For any µ ∈ (LS(K), λ] and any linear order I of cardinality µ, EMτ(K)(I,Ψ)
is saturated.

By Fact 17.4.4 and Corollary 17.4.8, K is superstable and has symmetry in
every µ ∈ [LS(K), λ). Now let µ ∈ (LS(K), λ]. We want to see that Ψ witnesses
solvability in µ. By the above, Ψ witnesses solvability in λ, so assume that µ < λ.
Using Fact 17.4.9 it is straightforward to see that the union of any increasing chain
of µ-saturated models will be µ-saturated. In other words, the saturated model of
cardinality µ is superlimit and therefore Ψ witnesses that K is solvable in µ. �

Remark 17.5.2. It is natural to ask what happens if µ = LS(K). In that case,
if Ψ witnesses solvability in LS(K)+ we can find a linear order J of size LS(K)
such that EMτ(K)(J,Ψ) is limit (see the proof of [She99, Lemma I.6.3]). This
implies that EMτ(K)(I × J,Ψ) is limit for any linear order I of size at most LS(K)
(here I ×J is ordered with the lexicographical ordering). The class of linear orders
of the form I × J is an AEC with arbitrarily large models and hence has an EM
blueprint. Composing this blueprint with Ψ, we can find a blueprint Ψ′ such that
EMτ(K)(I,Ψ

′) = EMτ(K)(I × J,Ψ) for any linear order I. In particular, Ψ′ also
witnesses solvability in (LS(K), λ]. Moreover, EMτ(K)(I,Ψ

′) is limit for any linear
order I of cardinality LS(K). This implies that Ψ′ witnesses semisolvability in
LS(K), but it is not clear that the limit model is superlimit (even though it is
unique), see Question 10.6.12. Therefore we do not know if Ψ′ witnesses solvability
in LS(K), but it will if there is any superlimit in LS(K).

Assuming tameness, we can also get an upward transfer. Note that here only
semisolvability is assumed so also the downward part of Corollary 17.5.3 is inter-
esting.

Corollary 17.5.3. Assume that K is LS(K)-tame and has amalgamation and

no maximal models. Write µ0 := (iω+2(LS(K)))
+

. If K is semisolvable in λ for
some λ > 2LS(K), then K is (µ, µ0)-solvable for all µ ≥ µ0.

Remark 17.5.4. This improves on the threshold from Theorem 9.5.4: there µ0

was around i(2LS(K))
+ . We quote freely from there in the proof.

Remark 17.5.5. In the conclusion, the same blueprint will witness (µ, µ0)-
solvability for all µ.
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Proof of Corollary 17.5.3. In the proof of Theorem 9.5.4, the only reason
for the threshold to be around i(2LS(K))

+ was a bound on a cardinal χ0 so that

K does not have the LS(K)-order property of length χ0. Now using Theorem

17.3.4, we get that K does not have the LS(K)-order property of length
(
2LS(K)

)+
.

Following Section 9.4, we obtain that K is (µ, µ0)-solvable for all µ ≥ µ0. �

17.5.2. Structure of categorical AECs with amalgamation. Directly
from existing results and Corollary 17.4.11, we obtain a good understanding of the
structure below the categoricity cardinal of an AEC with amalgamation. For the
convenience of the reader, we have added a few statements that we have already
proven. We quote freely and refer the reader to the sources for more motivation on
the results. We will use the following notation from [Bal09, Chapter 14]:

Notation 17.5.6. H1 := i(2LS(K))
+ .

Corollary 17.5.7. Let λ > LS(K). Assume that K<λ has amalgamation and
no maximal models. If K is semisolvable in λ, then:

(1) For any µ ∈ [LS(K), λ), K is µ-superstable and has µ-symmetry.
(2) For any µ ∈ [LS(K), λ), any M0,M1,M2 ∈ Kµ, if M1 and M2 are limit

over M0, then M1
∼=M0

M2.
(3) For any µ ∈ [LS(K), λ), the union of any increasing chain of µ-saturated

models is µ-saturated.
(4) If K is solvable in λ, then there exists an EM blueprint Ψ ∈ ΥLS(K)[K]

such that EMτ(K)(I,Ψ) is saturated for any linear order I of cardinality
in (LS(K), λ].

(5) If K is solvable in λ and either cf λ > LS(K) or λ ≥ H1, then there exists
χ < min(λ,H1) such that:
(a) K is (χ,< λ)-weakly tame.
(b) For any µ ∈ (χ, λ), there is a type-full good µ-frame with underlying

AEC the saturated models in Kµ.

Proof. Item (1) is Fact 17.4.4 and Corollary 17.4.8. As for (2), let µ ∈
[LS(K), λ). By the previous part, K is µ-superstable and has µ-symmetry. By the
main result of [Van16a], this implies uniqueness of limit models as stated here.

Items (3) and (4) are part of the proof of Corollary 17.5.1. As for (5a), we use
the relevant facts (due to Shelah) which assumes that the model in the categoricity
(or just solvability) cardinal is saturated. They appear in [She09a, Claim IV.7.2]
and [She99, Main claim II.2.3] (depending on whether cf λ > LS(K) or λ ≥ H1),
see also Theorem 15.2.4. Now (5b) follows from (5a) by Theorem 10.6.4. �

Remark 17.5.8. Corollary 17.5.7.(2) proves [SV99, Theorem 3.3.7] with the
additional assumption that the class has amalgamation and improves on Corol-
lary 10.7.3 which assumed that the categoricity cardinal λ was “big-enough”. See
Section 17.5.4 for more on the uniqueness of limit models.

17.5.3. Some categoricity transfers. We mention improvements on several
existing categoricity transfers. The partial downward transfer below improves on
Corollary 10.7.7 and Corollary 15.3.7. The essence of the proof is a powerful omit-
ting type theorem of Shelah [She99, Lemma II.1.6]. Indeed the result is already
implicit in [She99] when the categoricity cardinal λ is regular (see also [Bal09,
Theorem 14.9]).
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Corollary 17.5.9. Let K be an AEC with arbitrarily large models and let
λ > LS(K). Assume that K<λ has amalgamation and no maximal models. If K is
categorical in λ, then there exists χ < H1 such that K is categorical in any cardinal
of the form iδ, where δ is divisible by χ and iδ < λ.

Proof. By (the proof of) Corollary 15.3.7, using that the model of categoricity
λ is saturated (Corollary 17.4.11). �

We can also improve the thresholds of Shelah’s proof of the eventual categoricity
conjecture in AECs with amalgamation [She09a, Theorem IV.7.12] assuming the
weak generalized continuum hypothesis. Shelah showed (assuming an unpublished
claim) that in an AEC with amalgamation, categoricity in some λ ≥ i(

2
ℵ

LS(K)+
)+

implies categoricity in all λ′ ≥ i(
2
ℵ

LS(K)+
)+ .

Shelah’s proof was revisited and expanded on in Section 15.5, from which we
quote. Here, we improve the main lemma to:

Lemma 17.5.10. Assume an unpublished claim of Shelah (Claim 15.5.2). As-
sume that K has arbitrarily large models. Let λ ≥ µ > LS(K). Assume that K<λ

has amalgamation. If:

(1) K is categorical in λ.
(2) µ is a limit cardinal with cf µ > LS(K).

(3) For unboundedly many χ < µ, 2χ
+n

< 2χ
+(n+1)

for all n < ω.

Then there exists µ∗ < µ such that K is categorical in any λ′ ≥ min(λ,i(2µ∗ )+).

Proof. As in the proof of Fact 15.5.10, using that we know that the model
of categoricity λ is saturated (it is shown there that we can assume without loss of
generality that K<λ has no maximal models). �

We deduce that one can start with λ ≥ ℵLS(K)+ instead of λ ≥ i(
2
ℵ

LS(K)+
)+ .

Corollary 17.5.11. Assume an unpublished claim of Shelah (Claim 15.5.2)

and 2µ < 2µ
+

for all cardinals µ. Assume that K has arbitrarily large models. Let
λ ≥ ℵLS(K)+ be such that K<λ has amalgamation. If K is categorical in λ, then K
is categorical in any λ′ ≥ min(λ,i(

2
<ℵ

LS(K)+
)+).

Proof. Set µ := ℵLS(K)+ in Lemma 17.5.10. �

We showed in Corollary 15.5.9 that if K is LS(K)-tame and has amalgamation,
then categoricity in some λ ≥ H1 implies categoricity in all λ′ ≥ H1 (still assuming
weak GCH and Shelah’s unpublished claim). In Corollary 15.8.7, we showed that
it was consistent (using additional cardinal arithmetic assumptions) that one could
replace tameness by just weak tameness. Here we prove it unconditionally.

Corollary 17.5.12. Assume an unpublished claim of Shelah (Claim 15.5.2)

and there exists µ < ℵLS(K)+ such that 2µ
+n

< 2µ
+(n+1)

for all n < ω. Assume that
K is (LS(K), < H1)-weakly tame and has arbitrarily large models. Let λ ≥ ℵLS(K)+

be such that K<λ has amalgamation. If K is categorical in λ, then there exists
χ < H1 such that K is categorical in any λ′ ≥ min(λ, χ).
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Proof. Proceed as in the proof of Corollary 15.8.7 (as before, we can assume
without loss of generality that K<λ has no maximal models, hence the model
of cardinality λ is saturated). We use the better transfer we have just proven
(Corollary 17.5.11). �

We also obtain more information on the author’s categoricity transfer in univer-
sal classes (Chapters 8, 16). There it was shown (Theorem 16.7.3) that if a universal
class K is categorical in some λ ≥ iH1

, then it is categorical in all λ′ ≥ iH1
. The

reason that the threshold is iH1
rather than H1 is that the proof works inside an

auxiliary AEC K∗ whose Löwenheim-Skolem-Tarski number is around H1. A closer
look at the proof reveals that LS(K∗) is related to the length of a failure of the
order property, so we can use Theorem 17.3.4 to improve the bound on LS(K∗). We
are unable to do so unconditionally so will assume that the class has no maximal
models:

Lemma 17.5.13. Let K be a universal class. Set µ := 22LS(K)

, χ1 := iµ++ , χ2 :=

i(2µ+)
+ . Let λ > χ1. If K is categorical in λ and K<λ has no maximal models6 ,

then there exists χ < χ2 such that K is categorical (and has amalgamation) in all
λ′ ≥ min(λ, χ).

Proof sketch. First observe that χ1 ≥ H1, so K has arbitrarily large models.
Second, by Theorem 17.3.4 and the no maximal models hypothesis, for any κ < ℵ0,
K does not have the (κ,LS(K))-order property of length LS(K)+.

We now follow the proof of Theorems 16.7.2, 16.7.3. We define an auxiliary class

K∗ which will have Löwenheim-Skolem-Tarski number
(
22χ0

)+
, where χ0 ≥ LS(K)

is least such that K does not have a syntactic version of the order property of
length χ+

0 . It is straightforward to see that if K has the order property (in the
sense there) of length χ+

0 , then for some κ < ℵ0 K has the (κ, 0)-order property
(in the sense of Definition 2.4.3) of length χ+

0 . This means that χ0 = LS(K), and
hence LS(K∗) = µ+.

Now K∗ may not satisfy the smoothness axiom of AECs and to ensure this the

proof of Theorem 16.7.2 uses categoricity in a λ with
(
iµ++

)+
< λ. However if

λ =
(
iµ++

)+
, then λ is regular so by [She87b, Theorem IV.1.11] (building many

models in the categoricity cardinal from failure of smoothness) we also get that K∗

is an AEC. Therefore K∗ is an AEC whenever λ > iµ++ = χ1. and we can then
continue exactly as in the proof of Theorem 16.7.3. �

A more quotable version of Lemma 17.5.13 is below. Compared to Theorem
16.7.3, ii

(2LS(K))
+ is replaced by the much lower ii5(LS(K)).

Corollary 17.5.14. Let K be a universal class with no maximal models. If K
is categorical in some λ ≥ ii5(LS(K)), then K is categorical in all λ′ ≥ ii5(LS(K)).

Proof. In the statement of Lemma 17.5.13, χ1 < χ2 ≤ ii5(LS(K)). �

Remark 17.5.15. One can ask what happens if instead of no maximal models,
one makes the stronger assumption of amalgamation below the categoricity cardi-
nal. Then we obtain the best possible result as in Corollary 15.4.11 (this is proven
using amalgamation also above the categoricity cardinal, but we can use Theorem
8.4.16 to get away with just amalgamation below).

6It suffices to assume that for every M ∈ KLS(K)+ there exists N ∈ Kλ with M ≤K N .
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17.5.4. More on the uniqueness of limit models. The main result of
[SV99] claims that assuming no maximal models and GCH (with instances of ♦),
limit models of cardinality µ are unique for any µ below the categoricity cardinal
λ. In VanDieren’s Ph.D. thesis [Van02], two additional hypotheses that it seemed
the proof needed were identified (see [Van06] or the recent [Van] for background
and terminology):

(1) The union of any increasing chain of limit models in Kµ of length less
than µ+ is a limit model.

(2) Reduced towers in Kµ are continuous.

In [Van06, Theorem III.10.3], VanDieren claimed to prove (2) assuming (1).
VanDieren later found a gap [Van13] and fixed the gap assuming in addition that
λ = µ+. In [Van, Theorem 5], VanDieren improved this condition to λ = µ+n, for
some natural number n ≥ 1, and characterized [Van, Theorem 1] when (1) holds
(showing in particular that when µ is a successor it is equivalent to the uniqueness of
limit models). Here we prove the original statement of [Van06, Theorem III.10.3]
(still using (1)). This also shows that we can remove the hypothesis “λ = µ+n”
from VanDieren’s characterization.

The key is the next result which generalizes Corollary 17.4.8 and improves [Van,
Theorem 5]. Note that we do not assume (1). Note also that, below, we use only
the model-theoretic consequences (in the context described above [SV99]) of GCH
and appropriate instances of ♦. Finally, note that we have replaced the assumption
of categoricity in λ mentioned above by the weaker assumption of semisolvability
in λ (see Remark 17.3.3).

Corollary 17.5.16. Let λ > LS(K). Assume that K<λ has no maximal mod-
els. Assume that K semisolvable in λ and fix µ ∈ [LS(K), λ). If in Kµ amalgama-
tion bases are dense, universal extensions exist, and limit models are amalgamation
bases, then K has µ-symmetry (Definition 17.4.2 has to be slightly adapted, see
[Van, Definition 7]).

Proof sketch. We follow the proof of Corollary 17.4.8. Fact 17.4.4 was orig-
inally proven in the context here, and the proof of Fact 17.4.6 shows that failure
of µ-symmetry implies the (2, µ)-order property of length µ+ (in that case it is not
clear that the construction can be continued all the way to λ). Theorem 17.3.4
(with κ there standing for 2 here) and the no maximal models hypothesis shows
that K cannot have the (2, µ)-order property of length µ+, so symmetry in µ must
hold. �

We obtain the desired proof of [Van06, Theorems II.9.1, III.10.3]. This also
generalizes Corollary 17.5.7.(2).

Corollary 17.5.17. Let λ > LS(K). Assume that K<λ has no maximal
models. Assume that K is semisolvable in λ and fix µ ∈ [LS(K), λ). If in Kµ

amalgamation bases are dense, universal extensions exist, limit models are amalga-
mation bases, and (1) above holds7, then reduced towers in Kµ are continuous. In
particular, whenever M0,M1,M2 ∈ Kµ are such that M1 and M2 are limit models
over M0, we have that M1

∼=M0 M2.

7or just: the union of any increasing chain of limit models in Kµ of length less than µ+ is

an amalgamation base.
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Proof. By Corollary 17.5.16, K has symmetry in µ. By [Van, Theorem
3], reduced towers in Kµ are continuous. As pointed out in [Van13], the proof
of [Van06, Theorem II.9.1] now goes through to prove the uniqueness of limit
models. �

Remark 17.5.18. We can similarly use Corollaries 17.5.16 and 17.5.17 to re-
place the assumption “λ = µ+n” in [Van, Theorem 1] by only “λ > µ”.



CHAPTER 18

Good frames in the Hart-Shelah example

This chapter is based on [BVc] and is joint work with Will Boney. We would
like to thank the referees for comments that helped improve the presentation of this
chapter.

Abstract

For a fixed natural number n ≥ 1, the Hart-Shelah example is an abstract
elementary class (AEC) with amalgamation that is categorical exactly in the infinite
cardinals less than or equal to ℵn.

We investigate recently-isolated properties of AECs in the setting of this ex-
ample. We isolate the exact amount of type-shortness holding in the example and
show that it has a type-full good ℵn−1-frame which fails the existence property for
uniqueness triples. This gives the first example of such a frame. Along the way, we
develop new tools to build and analyze good frames.

18.1. Introduction

In his milestone two-volume book on classification theory for abstract elemen-
tary classes (AECs) [She09a, She09b], Shelah introduces a central definition:
good λ-frames. These are an axiomatic notion of forking for types of singletons
over models of cardinality λ (see [She09a, II.2.1] or Definition 18.2.7 here). One
can think of the statement “an AEC K has a good λ-frame” as meaning that K is
well-behaved in λ, where “well-behaved” in this context means something similar
to superstability in the context of first-order model theory. With this in mind, a
key question is:

Question 18.1.1 (The extension question). Assume an AEC K has a good
λ-frame. Under what conditions does it (or a subclass of saturated models) have a
good λ+-frame?

Shelah’s answer in [She09a, II] involves two dividing lines: the existence prop-
erty for uniqueness triples, and smoothness of a certain ordering ≤NF

Kλ+
(see Def-

initions 18.2.10, 18.2.13). Shelah calls a good frame satisfying the first property
weakly successful and a good frame satisfying both properties is called successful.
Assuming instances of the weak diamond, Shelah shows [She09a, II.5.9] that the
failure of the first property implies many models in λ++. In [She09a, II.8.7] (see
also [JS13, 7.1.3]), Shelah shows that if the first property holds, then the failure of

the second implies there exists 2λ
++

many models in λ++.
However, Shelah does not give any examples showing that these two properties

can fail (this is mentioned as part of the “empty half of the glass” in Shelah’s in-
troduction [She09a, N.4(f)]). The present chapter investigates these dividing lines
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in the specific setup of the Hart-Shelah example [HS90]. For a fixed1 n ∈ [3, ω),
the Hart-Shelah example is an AEC Kn that is categorical exactly in the interval
[ℵ0,ℵn−2]. It was investigated in details by Baldwin and Kolesnikov [BK09] who
proved that Kn has (disjoint) amalgamation, is (Galois) stable exactly in the infi-
nite cardinals less than or equal to ℵn−3, and is (< ℵ0,≤ ℵn−3)-tame (i.e. Galois
types over models of size at most ℵn−3 are determined by their restrictions to finite
sets, see Definition 18.2.1).

The Hart-Shelah example is a natural place to investigate good frames, since it
has good behavior only below certain cardinals (around ℵn−3). Boney has shown
[Bon14a, 10.2] that Kn has a good ℵk frame for any k ≤ n−3, but cannot have one
above since stability is part of the definition of a good frame. Therefore at ℵn−3,
the last cardinal when Kn has a good frame, the answer to the extension question
must be negative, so one of the two dividing lines above must fail, i.e. the good
frame is not successful. The next question is: which of these properties fails? We
show that the first property must fail: the frame is not weakly successful. In fact,
we give several proofs (Theorem 18.6.6, Corollary 18.7.4). On the other hand, we
show that the frames strictly below ℵn−3 are successful2. This follows both from a
concrete analysis of the Hart-Shelah example (Theorem 18.6.3) and from abstract
results in the theory of good frames (Theorem 18.5.1).

Regarding the abstract theory, a focus of recent research has been the interac-
tion of locality properties and frames. For example, Boney [Bon14a] (see also the
slight improvements in Corollary 5.6.9) has shown that amalgamation and tame-
ness (a locality property for types isolated by Grossberg and VanDieren [GV06b])
implies a positive answer to the extension question (in particular, the Hart-Shelah
example is not (ℵn−3,ℵn−2)-tame3). A relative of tameness is type-shortness, in-
troduced by Boney in [Bon14b, 3.2]: roughly, it says that types of sequences are
determined by their restriction to small subsequences. Sufficient amount of type-
shortness implies (with a few additional technical conditions) that a good frame is
weakly successful (Section 6.11).

As already mentioned, Baldwin and Kolesnikov have shown that the Hart-
Shelah example is (< ℵ0,≤ ℵn−3)-tame (see Fact 18.3.2); here (Theorem 18.4.1)
we refine their argument to show that it is also (< ℵ0, < ℵn−3)-type short over
models of size less than or equal to ℵn−3 (i.e. types of sequences of length less than
ℵn−3 are determined by their finite restrictions, see Definition 18.2.1). We prove
that this is optimal: the result cannot be extended to types of length ℵn−3 (see
Corollary 18.8.12).

We can also improve Boney’s aforementioned construction of a good ℵk-frame
(when k ≤ n − 3) in the Hart-Shelah example: the good frame built there is not
type-full: forking is only defined for a certain (dense family) of basic types. We
prove here that the good frame extends to a type-full one. This uses abstract
constructions of good frames from Chapter 4 (as well as results of VanDieren on
the symmetry property [Van16a]) when k ≥ 1. When k = 0 we have to work more
and develop new general tools to build good frames (see Section 18.8).

1Note that our indexing follows [HS90] and [BK09] rather than [Bon14a].
2While there are no known examples, it is conceivable that there is a good frame that is not

successful but can still be extended.
3This was already noticed by Baldwin and Kolesnikov using a different argument [BK09,

6.8].
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The following summarizes our main results:

Theorem 18.1.2. Let n ∈ [3, ω) and let Kn denote the AEC induced by the
Hart-Shelah example. Then:

(1) Kn is (< ℵ0, < ℵn−3)-type short over ≤ ℵn−3-sized models and (< ℵ0,≤
ℵn−3)-tame for (< ℵn−3)-length types.

(2) Kn is not (< ℵn−3,ℵn−3)-type short over ℵn−3-sized models.
(3) For any k ≤ n− 3, there exists a unique type-full good ℵk-frame s on Kn.

Moreover:
(a) If k < n− 3, s is successful good+.
(b) If k = n− 3, s is not weakly successful.

Proof.

(1) By Theorem 18.4.1.
(2) By Corollary 18.8.12.
(3) By Theorems 18.5.1 and Corollary 18.8.11. Note also that by canonicity

(Fact 18.2.20), s is unique, so extends sk,n (see Definition 18.3.3).
(a) By Theorem 18.6.3, sk,n is successful. By Lemma 18.5.2, sk,n is

good+. Now apply Facts 18.2.20 and 18.2.17.
(b) By Proposition 18.6.6, sk,n is not weakly successful and since s ex-

tends sk,n, s is not weakly successful either.

�

We discuss several open questions. First, one can ask whether the aforemen-
tioned second dividing line can fail:

Question 18.1.3 (See also 7.1 in [Jar16]). Is there an example of a good
λ-frame that is weakly successful but not successful?

Second, one can ask whether there is any example at all of a good frame where
the forking relation can be defined only for certain types4:

Question 18.1.4. Is there an example of a good λ-frame that does not extend
to a type-full frame?

We have not discussed good+ in our introduction: it is a technical property
of frames that allows one to extend frames without changing the order (see the
background in Section 18.2). No negative examples are known.

Question 18.1.5. Is there an example of a good λ-frame that is not good+?
Is there an example that is successful but not good+?

In a slightly different direction, we also do not know of an example of a good
frame failing symmetry:

Question 18.1.6 (See also Question 10.4.14). Is there an example of a triple

(K,^, gSbs) satisfying all the requirements from the definition of a good λ-frame
except symmetry?

4After the initial circulation of this chapter in July 2016, it was found that an example of
Shelah [She09b, VII.5.7] has a good frame that cannot be extended to be type-full, see [Vasd,

Section 5].
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In the various examples, the proofs of symmetry either uses disjoint amalga-
mation (as in [She09a, II.3.7]) or failure of the order property (see e.g. Theorem
3.5.13). Recently we (Corollary 17.4.8) have shown that symmetry follows from
(amalgamation, no maximal models, and) solvability in any µ > λ (see [She09a,
IV.1.4(1)]; roughly it means that the union of a short chain of saturated model of
cardinality µ is saturated, and there is a “constructible” witness). We do not know
of an example of a good λ-frame where solvability in every µ > λ fails.

The background required to read this chapter is a solid knowledge of AECs
(including most of the material in [Bal09]). Familiarity with good frames and
the Hart-Shelah example would be helpful, although we have tried to give a self-
contained presentation and quote all the black boxes we need.

18.2. Preliminaries: The abstract theory

Everywhere in this chapter, K denotes a fixed AEC (that may or may not
have structural properties such as amalgamation or arbitrarily large models). We
assume the reader is familiar with concepts such as amalgamation, Galois types,
tameness, type-shortness, stability, saturation, and splitting (see for example the
first twelve chapters of [Bal09]). Our notation is standard and is described in the
preliminaries of Chapter 2.

On tameness and type-shortness, we use the notation from [Bon14b, 3.1,3.2]:

Definition 18.2.1. Let λ ≥ LS(K) and let κ, µ be infinite cardinals5

(1) K is (< κ, λ)-tame for µ-length types if for any M ∈ Kλ and distinct
p, q ∈ gSµ(M), there exists A ⊆ |M | with |A| < κ such that p � A 6= q � A.
When µ = 1 (i.e. we are only interested in types of length one), we omit
it and just say that K is (< κ, λ)-tame.

(2) K is (< κ, µ)-type short over λ-sized models if for any M ∈ Kλ and
distinct p, q ∈ gSµ(M), there exists I ⊆ µ with |I| < κ and pI 6= qI .

We similarly define variations such as “K is (< κ,≤ µ)-type short over ≤ λ-
sized models.

18.2.1. Superstability and symmetry. We will rely on the following local
version of superstability, already implicit in [SV99] and since then studied in many
papers, e.g. [Van06, GVV16, Van16a], Chapters 6, 7, 9. We quote Definition
6.10.1:

Definition 18.2.2. K is µ-superstable (or superstable in µ) if:

(1) µ ≥ LS(K).
(2) Kµ is nonempty, has joint embedding, amalgamation, and no maximal

models.
(3) K is stable in µ.
(4) There are no long splitting chains in µ:

For any limit ordinal δ < µ+, for every sequence 〈Mi | i < δ〉 of
models of cardinality µ with Mi+1 universal over Mi and for every p ∈
gS(
⋃
i<δMi), there exists i < δ such that p does not µ-split over Mi.

We will also use the concept of symmetry for splitting isolated in [Van16a]:

5As opposed to Boney’s original definition, we allow κ ≤ LS(K) by making use of Galois
types over sets, see the preliminaries of Chapter 2.
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Definition 18.2.3. For µ ≥ LS(K), we say that K has µ-symmetry (or sym-
metry in µ) if whenever models M,M0, N ∈ Kµ and elements a and b satisfy the
conditions (1)-(4) below, then there exists M b a limit model over M0, containing
b, so that gtp(a/M b) does not µ-split over N .

(1) M is universal over M0 and M0 is a limit model over N .
(2) a ∈ |M |\|M0|.
(3) gtp(a/M0) is non-algebraic and does not µ-split over N .
(4) gtp(b/M) is non-algebraic and does not µ-split over M0.

By an argument of Shelah and Villaveces [SV99, 2.2.1] (see also Chapter 20),
superstability holds below a categoricity cardinal.

Fact 18.2.4 (The Shelah-Villaveces Theorem). Let λ > LS(K). Assume that
K<λ has amalgamation and no maximal models. If K has arbitrarily large models
and is categorical in λ, then K is superstable in any µ ∈ [LS(K), λ).

Remark 18.2.5. We will only use the result when λ is a successor (in fact
λ = µ+, where µ is the cardinal where we want to derive superstability). In this
case there is an easier proof due to Shelah. See [She99, I.6.3] or [Bal09, 15.3].

VanDieren [Van16a] has shown that (in an AEC with amalgamation and no
maximal models) symmetry in µ follows from categoricity in µ+. This was improved
in Corollary 10.7.3 and recently in Corollary 17.4.8, but we will only use VanDieren’s
original result:

Fact 18.2.6. If K is µ-superstable and categorical in µ+, then K has symmetry
in µ.

18.2.2. Good frames. Good λ-frames were introduced by Shelah in [She09a,
II] as a bare-bone axiomatization of superstability. We give a simplified definition
here:

Definition 18.2.7 (II.2.1 in [She09a]). A good λ-frame is a triple s = (Kλ,^, gSbs)
where:

(1) K is an AEC such that:
(a) λ ≥ LS(K).
(b) Kλ 6= ∅.
(c) Kλ has amalgamation, joint embedding, and no maximal models.
(d) K is stable6 in λ.

(2) For each M ∈ Kλ, gSbs(M) (called the set of basic types over M) is a set of
nonalgebraic Galois types over M satisfying the density property : if M <K

N are both in Kλ, there exists a ∈ |N |\|M | such that gtp(a/M ;N) ∈
gSbs(M).

(3) ^ is an (abstract) independence relation on the basic types satisfying
invariance, monotonicity, extension existence, uniqueness, continuity, local
character, and symmetry (see [She09a, II.2.1] for the full definition of
these properties).

We say that s is type-full [She09a, III.9.2(1)] if for any M ∈ Kλ, gSbs(M) is the
set of all nonalgebraic types over M . Rather than explicitly using the relation ^,

6In Shelah’s original definition, only the set of basic types is required to be stable. However
full stability follows, see [She09a, II.4.2].
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we will say that gtp(a/M ;N) does not fork over M0 if a
N

^
M0

M (this is well-defined

by the invariance and monotonicity properties). We say that a good λ-frame s is
on K if the underlying AEC of s is Kλ, and similarly for other variations.

Remark 18.2.8. We will not use the axiom (B) [She09a, II.2.1] requiring the
existence of a superlimit model of size λ. In fact many papers (e.g. [JS13]) define
good frames without this assumption.

Remark 18.2.9. We gave a shorter list of properties that in Shelah’s original
definition, but the other properties follow, see [She09a, II.2].

The next technical property is of great importance in Chapter II and III of
[She09a]. The definition below follows [JS13, 4.1.5].

Definition 18.2.10. Let λ ≥ LS(K).

(1) For M0 ≤K M` all in Kλ, ` = 1, 2, an amalgam of M1 and M2 over M0

is a triple (f1, f2, N) such that N ∈ Kλ and f` : M` −−→
M0

N .

(2) Let (fx1 , f
x
2 , N

x), x = a, b be amalgams of M1 and M2 over M0. We
say (fa1 , f

a
2 , N

a) and (f b1 , f
b
2 , N

b) are equivalent over M0 if there exists
N∗ ∈ Kλ and fx : Nx → N∗ such that f b◦f b1 = fa◦fa1 and f b◦f b2 = fa◦fa2 ,
namely, the following commutes:

Na fa // N∗

M1

fa1

=={{{{{{{{
fb1
// N b

fb

OO

M0

OO

// M2

fa2

OO

fb2

==||||||||

Note that being “equivalent overM0” is an equivalence relation ([JS13,
4.3]).

(3) Let s = (Kλ,^, gSbs) be a good λ-frame on K.
(a) A triple (a,M,N) is a uniqueness triple (for s) if M ≤K N are both in

Kλ, a ∈ |N |\|M |, gtp(a/M ;N) ∈ gSbs(M), and for any M1 ≥K M
in Kλ, there exists a unique (up to equivalence over M) amalgam
(f1, f2, N1) of N and M1 over M such that gtp(f1(a)/f2[M1];N1)
does not fork over M .

(b) s has the existence property for uniqueness triples (or is weakly suc-

cessful) if for any M ∈ Kλ and any p ∈ gSbs(M), one can write
p = gtp(a/M ;N) with (a,M,N) a uniqueness triple.

The importance of the existence property for uniqueness triples is that it allows
us to extend the nonforking relation to types of models (rather than just types
of length one). This is done by Shelah in [She09a, II.6] but was subsequently
simplified in [JS13], so we quote from the latter.

Definition 18.2.11. Let s be a weakly successful good λ-frame on K, with K
categorical in λ.
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(1) [JS13, 5.3.1] Define a 4-ary relation NF∗ = NF∗s on Kλ by NF∗(N0, N1, N2, N3)
if there is α∗ < λ+ and for ` = 1, 2 there are increasing continuous se-
quences 〈N`,i : i ≤ α∗〉 and a sequence 〈di : i < α∗〉 such that:
(a) ` < 4 implies N0 ≤K N` ≤K N3.
(b) N1,0 = N0, N1,α∗ = N1, N2,0 = N2, N2,α∗ = N3.
(c) i ≤ α∗ implies N1,i ≤K N2,i.
(d) di ∈ |N1,i+1|\|N1,i|.
(e) (di, N1,i, N1,i+1) is a uniqueness triple.
(f) gtp(di/N2,i;N2,i+1) does not fork over N1,i.

(2) [JS13, 5.3.2] Define a 4-ary relation NF = NFs on Kλ by NF(M0,M1,M2,M3)
if there are models N0, N1, N2, N3 such that N0 = M0, ` < 4 implies
M` ≤K N` and NF∗(N0, N1, N2, N3).

By [JS13, 5.5.4], NF satisfies several of the basic properties of forking:

Fact 18.2.12. If NF(M0,M1,M2,M3), then M1 ∩M2 = M0. Moreover, NF
respects s and satisfies monotonicity, existence, weak uniqueness, symmetry, and
long transitivity (see [JS13, 5.2.1] for the definitions).

Shelah [She09a, III.1.1] says a weakly successful good frame is successful if an
ordering ≤NF

Kλ+
defined in terms of the relation NF induces an AEC. We quote the

full definition from [JS13].

Definition 18.2.13. Let s be a weakly successful good λ-frame on K, with K
categorical in λ.

(1) [JS13, 6.1.2] Define a 4-ary relation N̂F = N̂Fs on K by N̂F(N0, N1,M0,M1)
if:
(a) ` < 2 implies that Nn ∈ Kλ, Mn ∈ Kλ+ .
(b) There is a pair of increasing continuous sequences 〈N0,α : α < λ+〉,
〈N1,α : α ≤ λ+〉 such that for every α < λ+, NF(N0,α, N1,α, N0,α+1, N1,α+1)
and for ` < 2, N0,` = N`, M` = N`,λ+ .

(2) [JS13, 6.1.4] For M0 ≤K M1 both in Kλ+ , M0 ≤NF
Kλ+

M1 if there exists

N0, N1 ∈ Kλ such that N̂F(N0, N1,M0,M1).
(3) [JS13, 10.1.1] s is successful if ≤NF

Kλ+
satisfies smoothness on the saturated

models in Kλ+ : whenever δ < λ++ is limit, 〈Mi : i ≤ δ〉 is a ≤NF
Kλ+

-

increasing continuous sequence of saturated models of cardinality λ+, and
N ∈ Kλ+ is saturated such that i < δ implies Mi ≤NF

Kλ+
N , then Mδ ≤NF

Kλ+

N .

The point of successful good frames is that they can be extended to a good
λ+-frame on the class of saturated model of cardinality λ+ (see [JS13, 10.1.9]).
The ordering of the class will be ≤NF

Kλ+
. Shelah also defines what it means for a

frame to be good+. If the frame is successful, being good+ implies that ≤NF
Kλ+

is

just ≤K and simplifies several arguments [She09a, III.1.3, III.1.8]:

Definition 18.2.14. A good λ-frame s on K is good+ when the following is
impossible:

There exists an increasing continuous 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, a basic
type p ∈ gS(M0), and 〈ai : i < λ+〉 such that for any i < λ+:

(1) i < λ+ implies that Mi ≤K Ni and both are in Kλ.
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(2) ai+1 ∈ |Mi+2| and gtp(ai+1/Mi+1;Mi+2) is a nonforking extension of p,
but gtp(ai+1/N0;Ni+2) is not.

(3)
⋃
j<λ+ Mj is saturated.

Fact 18.2.15. Let s be a successful good λ-frame on K. The following are
equivalent:

(1) s is good+.
(2) For M,N ∈ Kλ+ both saturated, M ≤NF

Kλ+
N if and only if M ≤K N .

Proof. (1) implies (2) is [She09a, III.1.8]. Let us see that (2) implies (1):
Suppose for a contradiction that 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, p, 〈ai : i < λ+〉
witness that s is not good+. Write Mλ+ :=

⋃
i<λ+ Mi, Nλ+ :=

⋃
i<λ+ Ni. Using

[JS13, 6.1.6], we have that there exists a club C ⊆ λ+ such that for any i < j both in
C, NF(Mi,Mj , Ni, Nj). In particular (by monotonicity), NF(Mi,Mi+2, Ni, Ni+2).
Pick any i ∈ C. Because NF respects s (Fact 18.2.12), gtp(ai+1/Ni;Ni+2) does
not fork over Mi. By the properties of 〈ai : i < λ+〉, gtp(ai+1/Mi+1;Mi+2) is a
nonforking extension of p. By transitivity, gtp(ai+1/Ni;Ni+2) also is a nonforking
extension of p, contradicting the definition of good+. �

Fact 18.2.16 (III.1.8 in [She09a]). Let s be a successful good+ λ-frame on K.
Then there exists a good λ+-frame s+ with underlying AEC the saturated models
in K of size λ+ (ordered with the strong substructure relation inherited from K).

We will also use that successful good+ frame can be extended to be type-full.

Fact 18.2.17 (III.9.6(2B) in [She09a]). If s is a successful good+ λ-frame on
K and K is categorical in λ, then there exists a type-full successful good+ λ-frame
t with underlying class Kλ.

The next result derives good frames from some tameness and categoricity. The
statement is not optimal (e.g. categoricity in λ+ can be replaced by categoricity in
any µ > λ) but suffices for our purpose.

Fact 18.2.18. Assume that K has amalgamation and arbitrarily large models.
Let LS(K) < λ be such that K is categorical in both λ and λ+. Let κ ≤ LS(K) be
an infinite regular cardinal such that LS(K) = LS(K)<κ and λ = λ<κ.

If K is (LS(K),≤ λ)-tame, then there is a type-full good λ-frame s on K. If in
addition K is (LS(K),≤ λ)-tame for (< κ)-length types and (< κ,≤ λ)-type-short
over λ-sized models, then s is weakly successful.

Proof. By Facts 18.2.4 and 18.2.6, K is superstable in any µ ∈ [LS(K), λ],
and has λ-symmetry. By Theorem 10.6.4, there is a type-full good λ-frame s on
Kλ. The last sentence is by Corollary 14.3.13. �

Fact 18.2.18 gives a criteria for when a good frame is weakly successful, but
when is it successful? This is answered by the next result, due to Adi Jarden
[Jar16, 7.19] (note that the conjugation hypothesis there follows from [She09a,
III.1.21]).

Fact 18.2.19. Let s be a weakly successful good λ-frame on K. If K is cat-
egorical in λ, has amalgamation in λ+, and is (λ, λ+)-tame, then s is successful
good+.
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We will also make use of the following result, which tells us that if the AEC is
categorical, there can be at most one good frame (Theorem 6.9.7):

Fact 18.2.20 (Canonicity of categorical good frames). Let s and t be good
λ-frame on K with the same basic types. If K is categorical in λ, then s = t.

18.3. Preliminaries: Hart-Shelah

Definition 18.3.1. Fix n ∈ [2, ω). Let Kn be the AEC from the Hart-Shelah
example. This class is Lω1,ω-definable and a model in Kn consists of the following:

• I, some arbitrary index set
• K = [I]3 with a membership relation for I
• H is a copy of Z2 with addition
• G = ⊕u∈KZ2 with the evaluation map from G×K to Z2

• G∗ is a set with a projection πG∗ onto K such that there is a 1-transitive
action ofG on each stalkG∗u = π−1

G∗ (u); we denote this action by tG(u, γ, x, y)
for u ∈ K, γ ∈ G, and x, y ∈ G∗u

• H∗ is a set with a projection πH∗ onto K such that there is a 1-transitive
action of Z2 on each stalk H∗u = π−1

H∗(u) denoted by tH
• Q is a (n+ 1)-ary relation on (G∗)n ×H∗ satisfying the following:

– We can permute the first n elements (the one from G∗) and preserve
holding.

– If Q(x1, . . . , xn, y) holds, then the indices of their stalks are compat-
ible, which means the following: x` ∈ G∗u` and y ∈ H∗v such that
{u1, . . . , un, v} are all n element sets of some n+ 1 element subset of
I.

– Q is preserved by “even” actions in the following sense: suppose
∗ u1, . . . , un, v ∈ K are compatible
∗ x`, x′` ∈ G∗u` and y, y′ ∈ H∗v
∗ γ` ∈ G and ` ∈ Z2 are the unique elements that send x` or y

to x′` or y′

then the following are equivalent
∗ Q(x1, . . . , xn, y) if and only if Q(x′1, . . . , x

′
n, y
′)

∗ γ1(v) + · · ·+ γn(v) + ` = 0 mod 2

For M,N ∈ Kn, M ≤Kn N if and only if M ≺Lω1,ω
N .

Fact 18.3.2 ([BK09]). Let n ∈ [2, ω).

(1) Kn has disjoint amalgamation, joint embedding, and arbitrarily large
models.

(2) Kn is model-complete: For M,N ∈ Kn, M ≤Kn N if and only if M ⊆ N .
(3) For any infinite cardinal λ, Kn is categorical in λ if and only if λ ≤ ℵn−2.
(4) Kn is not stable in any λ ≥ ℵn−2.
(5) If n ≥ 3, then Kn is (< ℵ0,≤ ℵn−3)-tame, but it is not (ℵn−3,ℵn−2)-tame.

Note that the entire universe of a model of Kn is determined by the index I,
so if M ( N , then I(M) ( I(N). Thus it is natural to define a frame whose basic
types are just the types of elements in I and nonforking is just nonalgebraicity. The
following definition appears in the proof of [Bon14a, 10.2]:

Definition 18.3.3. Let n ∈ [3, ω). For k ≤ n− 3, let sk,n = (Kn
ℵk ,^, gSbs) be

defined as follows:
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• p ∈ gSbs(M) if and only if p = gtp(a/M ;N) for a ∈ I(N)\I(M).
• gtp(a/M1;M2) does not fork over M0 if and only if a ∈ I(M2)\I(M1).

Remark 18.3.4. By [Bon14a, 10.2], sk,n is a good ℵk-frame.

The notion of a solution is key to analyzing models of Kn.

Definition 18.3.5 (2.1 and 2.3 in [BK09]). Let M ∈ Kn.

(1) h = (f, g) is a solution for W ⊆ K(M) if and only if f ∈ Πu∈WG
∗
u(M)

and g ∈ Πu∈WH
∗
u(M) such that, for all compatible u1, . . . , un, v ∈W , we

have

M � Q (f(u1), . . . .f(un), g(v))

(2) h = (f, g) is a solution over A ⊆ I(M) if and only if it is a solution for
[A]n.

(3) h = (f, g) is a solution for M if and only if it is a solution for K(M).

Given f : M ∼= N and solutions hM for M and hN , we say that hM and hN are
conjugate by f if

fN = f ◦ fM ◦ f−1 and gN = f ◦ gM ◦ f−1

We write this as hN = f ◦ hM ◦ f−1.

A key notion is that of extending and amalgamating solutions.

Definition 18.3.6 (2.9 in [BK09]).

(1) A solution h = (f, g) extends another solution h′ = (f ′, g′) if f ′ ⊆ f and
g′ ⊆ g.

(2) We say that Kn has k-amalgamation for solutions over sets of size λ
if given any M ∈ Kn, A ⊆ I(M) of size λ, {b1, . . . , bn} ⊆ I(M), and
solutions hw over A∪{bi | i ∈ w} for every w ∈ [{b1, . . . , bb}]n−1 such that⋃
w hw is a function, there is a solution h for A∪{bi | i ≤ n} that extends

all hw.

0-amalgamation is often referred to simply as the existence of solutions and
1-amalgamation is the extension of solutions.

Forgetting the Q predicate, M ∈ Kn is a bunch of affine copies of GM , so an
isomorphism is determined by a bijection between the copies and picking a 0 from
each affine copy. However, adding Q complicates this picture. Solutions are the
generalization of picking 0’s to Kn. Thus, amongst the models of Kn admitting
solutions (which is at least Kn

ℵn−2
, see Fact 18.3.9), there is a strong, functorial

correspondence between isomorphisms between M and N and pairs of solutions for
M and N .

The following is implicit in [BK09], see especially Lemma 2.6 there.

Fact 18.3.7. We work in Kn.

(1) Given f : M ∼= N and a solution hM of M , there is a unique solution hN

of N that is conjugate to hM by f . Moreover, if f ′ : M ′ ∼= N ′ extends7 f
and hM

′
is a solution of M ′ extending hM , then the resulting hN

′
extends

hN .

7So M ≤Kn M
′ and N ≤Kn N

′.
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(2) Given solutions hM for M and hN for N and a bijection h0 : I(M) →
I(N), there is a unique isomorphism f : M ∼= N extending h0 such that

hM and hN are conjugate by f . Moreover, if hM
′

and hN
′

are solutions
for M ′ and N ′ that extend hM and hN , then the resulting f ′ extends f .

(3) These processes are inverses of each other: if we have [f : M ∼= N and a
solution hM of M ]/[solutions hM and hN for M and N and a bijection
h0 : I(M) → I(N)] and then apply [(1) and then (2)]/[(2) and then (1)],
then [the resulting isomorphism is f ]/[the resulting solutions for N is hN ],

Lemma 18.3.8. Suppose M,N ∈ Kn and f0 : I(M) → I(N) is an injection.
Then there is a unique extension to f1 with domain M − (G∗(M) ∪H∗(M)) that
must be extended by any strong embedding extending f0.

Proof. M − (G∗(M) ∪H∗(M)) is the definable closure of I(M), so the value
of f0 on I(M) determines the value on M − (G∗(M) ∪H∗(M)). �

For the following, write ℵ−1 for finite.

Fact 18.3.9. Let n ∈ [2, ω), k0 < ω, and k1 ∈ {−1} ∪ ω. The following are
equivalent:

(1) Kn has k0-amalgamation of solutions over ℵk1 -sized sets.
(2) k0 + k1 ≤ n− 2.

Proof. (1) implies (2) by the examples of [BK09, Section 6]. (2) implies (1)
by combining [BK09, 2.11, 2.14]. �

We could do many more variations on the following, but I think this statement
suffices for what we need to show.

Definition 18.3.10. For n ∈ [2, ω) and I an index set, the standard model for
I is the unique M ∈ Kn such that G∗(M) = K ×GK , where K := [I]n.

Lemma 18.3.11. Let n ∈ [3, ω). Given any M ≤Kn N from Kn
≤ℵn−3

, we may

assume that they are standard. That is, if we write M∗ for the standard model
of I(M) and N∗ for the standard model on I(N), then there is an isomorphism
f : N ∼=I(N) N

∗ that restricts to an isomorphism M ∼=I(M) M
∗.

Proof. Find a solution hM for M and extend it to a solution hN for N ; this
is possible by Fact 18.3.9 since (n−3)+1 ≤ n−2. We have solutions hM

∗
and hN

∗

for M∗ and N∗ because they are the standard models and, thus, have solutions.
Then Theorem 18.3.7 allows me to build an isomorphism between M and M∗ and
extend it to f : N ∼= N∗, each of which extend the identity on I. �

18.4. Tameness and shortness

The following is a strengthening of [BK09, 5.1] to include type-shortness.

Theorem 18.4.1. For n ∈ [3, ω), Kn is (< ℵ0, < ℵn−3)-type short over ≤ ℵn−3-
sized models and (< ℵ0,≤ ℵn−3)-tame for (< ℵn−3)-length types. Moreover, these
Galois types are equivalent to first-order existential (syntactic) types.

Proof. For this proof, write tp∃ for the first-order existential type. We prove
the type-shortness claim. The tameness result follows from [BK09, 5.1].

Let M ∈ Kn
≤ℵn−3

and M ≤Kn NA, NB with A ⊆ |NA|, B ⊆ |NB | of size

≤ ℵn−4 (we use our convention from Fact 18.3.9 that ℵ−1 means finite) such that
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tp∃(A/M ;NA) = tp∃(B/M ;NB). By [BK09, 4.2], we can find minimal, full sub-
structures MA and MB . Additionally, for each finite ā ∈ A and b̄ ∈ B, we can find
minimal full substructures M ā and M b̄ in MA and MB . It’s easy to see that MA

is the directed union of {M ā | ā ∈ A} and similarly for MB ; note that we don’t

necessarily have M ā,M ā′ ⊆ |M ā∪ā′ |, but they are in MM ā∪M ā′

.
Set M0 = MA ∩M . We want to build f0 : MA →M0

NB such that f0(A) = B.
Similarly, construct MB . Note that

M0 = MA ∩M = ∪ā∈M (M ā ∩M0) = ∪b̄∈M (M b̄ ∩M0) = MB ∩M0

By assumption, we have tp∃(A/M0;MA) = tp∃(B/M0;MA). Set X = {πMA

(x) |
x ∈ A ∩G∗(MA)} and Y = {πMB

(x) | x ∈ B ∩G∗(MB)}, indexed appropriately.

Claim: tp∃(AX/M0;MA) = tp∃(BY/M0;MA)
This is true because all of the added points are in the definable closure via an

existential formula.

Thus, the induced partial map f : AX → BY is ∃-elementary. By Fact 18.3.9,

we have extensions of solutions. Let hM
A

be a solution for MA. Then we can
restrict this to hX which is a solution for X. Then we can define a solution hY

for Y by conjugating it with f . Finally, we can extend hY to a solution hM
B

for
MB . Since they satisfy the same existential type and the extensions are minimally
constructed, we can define a bijection h0 : I(MA) → I(MB) respecting the type.
Given the two solutions and the bijection h0, we can use Theorem 18.3.7 to find an
isomorphism f0 : MA ∼= MB extending h0 and making these solutions conjugate.
By construction, f0 fixes M0 and sends A to B.

Resolve M as 〈Mi | i < α〉 starting with M0 so ‖Mi‖ ≤ ℵn−4. Then find
increasing continuous 〈MA

i ,M
B
i | i < α〉 by setting MA

0 = MA and MA
i+1 to be a

disjoint amalgam8 of Mi+1 and MA
i over Mi, and similarly for MB

i .
Using extension of solutions, we can find an increasing chain of solutions 〈hMi |

i < α〉 for Mi. Using 2-amalgamation of solutions over ≤ αn−4 sized sets9, we can

find increasing chains of solutions 〈hMA
i , hM

B
i | i < α〉 forMA

i andMB
i , respectively,

such that hM
A
i also extends hMi .

By another application of Theorem 18.3.7.(2), this gives us an increasing se-
quence of isomorphism 〈fi : MA

i
∼=Mi

MB
i | i < α〉; here we are using that

I(MA
i+1)−I(MA

i ) = I(MB
i+1)−I(MB

i ). At the top, we have that fα : MA ∼=M MB .

This demonstrates that gtp(A/M ;NA) = gtp(B/M ;NB). �

Baldwin and Kolesnikov [BK09] have shown that tameness fails at the next
cardinal and we will see later (Corollary 18.8.12) that Kn is not (< ℵn−3,ℵn−3)-
type short over ℵn−3-sized models.

18.5. What the abstract theory tells us

We combine the abstract theory with the facts derived so far about the Hart-
Shelah example.

8Crucially, it is an amalgam such that I(MA
i+1) = I(MA

i ) ∪ I(Mi+1) with the union disjoint

over I(Mi); this is guaranteed by the second clause of the claim.
9Crucially, this holds here, but fails at the next cardinal. Thus, we couldn’t use this argument

to get (< ℵ0,ℵn−3)-type shortness or over ℵn−2 sized models.
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We first give an abstract argument that in the Hart-Shelah example good frames
below ℵn−3 are weakly successful (in fact successful):

Theorem 18.5.1. Let n ∈ [3, ω). For any k ∈ [1, n − 3], there is a type-full
good ℵk-frame s on Kn. Moreover, s (and therefore sk,n) is successful if k < n− 3.

Proof. Let λ := ℵk. First, assume that k < n − 3. By Fact 18.3.2, Kn is
categorical in λ, λ+ and is (< ℵ0,≤ λ+)-tame. By Theorem 18.4.1, K is (< ℵ0, λ)-
type-short over λ-sized models. Thus one can apply Fact 18.2.18 (where κ there
stands for ℵ0 here) to get a weakly successful type-full good λ-frame s on Kn.
By Fact 18.2.19, s is actually successful. This implies that sk,n is successful by
canonicity (Fact 18.2.20).

Second, assume k = n− 3. We can still apply Fact 18.2.18 to get the existence
of a type-full good λ-frame s, although we do not know it will be weakly successful
(in fact this will fail, see Proposition 18.6.6). Then Fact 18.2.20 implies that sk,n

is s restricted to types in I. �

Note that the case k = 0 is missing here, and will have to be treated differently
(see Theorem 18.6.3 and Corollary 18.8.11). On the negative side, we show that
sn−3,n cannot be successful. First, we show that it is good+ (Definition 18.2.14).

Lemma 18.5.2. For n ∈ [3, ω) and k ≤ n− 3, sk,n is good+.

Proof. Essentially this is because forking is trivial. In details, suppose that
sk,n is not good+ and fix 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, 〈ai : i < λ+〉 and p
witnessing it. The set of i < λ+ such that Mλ+ ∩ Ni = Mi is club, so pick such
an i. Since gtp(ai+1/Mi+1;Mi+2) is a nonforking extension of p, we know that
ai+1 ∈ I(Mi+2)\I(Mi+1). Because Mλ+ ∩ Ni = Mi, we have that ai+1 /∈ |Ni|.
Since ai+1 ∈ I(Mi+2), also ai+1 ∈ I(Ni+2). Therefore gtp(ai+1/Ni;Ni+2) does not
fork over M0, contradicting the defining assumption on 〈Ni : i < λ+〉. �

Corollary 18.5.3. For n ∈ [3, ω), sn−3,n is not successful.

Proof. Suppose for a contradiction that sn−3,n is successful. Let λ := ℵn−3.
By Fact 18.2.16, we can get a good λ+-frame on the saturated models of Kn

λ+ .
Since Kn is categorical in λ+, this gives a good λ+-frame on Kn

λ+ . In particular,
Kn is stable in λ+, contradicting Fact 18.3.2. �

Notice that the proof gives no information as to which part of the definition of
successful fails: i.e. whether sn−3,n has the existence property for uniqueness triples
(and then smoothness for ≤NF

Kn
λ+

must fail) or not. To understand this, we take a

closer look at uniqueness triples in the specific context of the Hart-Shelah example.

18.6. Uniqueness triples in Hart-Shelah

In this section, we show that the frame sn−3,n is not weakly successful. This
follows from the fact that the existence of uniqueness triples corresponds exactly
to amalgamation of solutions.

The following says that it is sufficient to check one point extensions when trying
to build uniqueness triples.

Lemma 18.6.1. Let n ∈ [3, ω) and let k ≤ n− 3. The good ℵk-frame sk,n (see
Definition 18.3.3) is weakly successful if the following holds.
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(∗) Whenever M,Ma,Mb,Mab ∈ Kℵk are such that:
(1) I(Mx) = I(M) ∪ {x} for x = a, b, ab;
(2) M ≤Kn Ma,Mb and Mb ≤Kn Mab; and
(3) there is f` : Ma →M Mab such that f`(a) = a.

Then there is f∗ : Mab
∼=Mb

Mab such that f∗ ◦ f1 = f2

Remark 18.6.2. By an easy renaming exercise, we could have the range of f`
be distinct one point extensions of Mb with f`(a) being that point.

Proof of Lemma 18.6.1. Suppose that (∗) holds. Let p = gtp(a/M ;N+) ∈
gSbs(M) and find some10 Ma ≤Kn N+ so I(Ma) = I(M) ∪ {a}. We want to
show that this is a uniqueness triple. To this end, suppose that we have N � M ,
N ≤Kn M`, and f` : Ma →M M` with f`(a) 6∈ N . Enumerate I(N)− I(M) = {ai |
i < µ ≤ ℵk}; Without loss of generality I(M1) ∩ I(M2) = I(N). Let M−` ≤Kn M`

be such that I(M−` ) = {f`(a)} ∪ I(N).

Claim: We can find f∗− : M−1
∼=N M−2 such that (f∗−)−1 ◦ f1 = f2.

This is enough: from the claim, we have M−1 ≤Kn M1 and f∗− : M−1 → M2.
The class has disjoint amalgamation by Fact 18.3.2, so find a disjoint amalgam N∗

with maps g` : M` → N∗ such that g1 �M
−
1 = g2 ◦ f∗−. This is the witness required

to have that (a,M,Ma) is a uniqueness triple.
Proof of the claim: We can find resolutions 〈Ni : i < µ〉 and 〈M `

i | i < µ〉
such that:

(1) M ≤Kn Ni ≤Kn M `
i ≤Kn M−` and f`(Ma) ≤Kn M `

i ; and

(2) I(N) = I(M) ∪ {aj | j < i} and I(M `
i ) = I(Ni) ∪ {f`(a)}.

The values of I for these models is specified, which determines K and G. Then
G∗ and H∗ are just picked to be subsets of the larger models version that is closed
under the relevant action. Since there are embeddings going everywhere, this can
be done.

We build increasing, continuous f∗i : M1
i
∼=Ni M

2
i such that f∗i ◦ f1 = f2 by

induction on i ≥ 1.

• For i = 1, we use (∗) taking b = a0 (and using the renamed formulation).
This gives f∗1 : M1

1
∼=N1

M2
1 .

• For i limit, we take unions of everything.
• For i = j + 1, we have an instance of (∗):

M1
j+1

M1
j

==zzzzzzzz

f∗i

// M2
j+1

Nj //

OO

Nj+1

OO

;;wwwwwwww

Then we can find f∗i+1 : M1
j+1
∼= M2

j+1 that works.

�

We can now give a direct proof of Theorem 18.5.1 that also treats the case
k = 0.

10Ma is not unique, but there is such an Ma
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Theorem 18.6.3. Let n ∈ [3, ω). For any k < n− 3, sk,n is successful.

Proof. By Fact 18.2.19 (as in the proof of Theorem 18.5.1), it is enough to
show that sk,n is weakly successful. It suffices to show (∗) from Lemma 18.6.1.
We start with a solution h on I(M). Working inside Mab, we can find extensions
h1
a, h

2
a, hb of h that are solutions for f1(Ma), f2(Ma),Mb by the extension property

of solutions (which holds because 2-amalgamation does). Now, for ` = 1, 2, amal-
gamate h`a and hb over h into h`ab, which is a solution for Mab. We use this to get
a isomorphism f∗.

Set f∗ to be the identity on I(Mab) = I(M)∪ {a, b}. This determines its value
on K, G, and Z2.

Let x ∈ G∗u(Mab) for u ∈ K(Mab). There is a unique γ ∈ G(Mab) such that

tMab

G∗ (u, f1
ab(u), x, γ). Then, there is a unique y ∈ G∗u(Mab) such that tMab

G∗ (u, f2
ab(u), y, γ).

Set f∗(x) = y.
Let x ∈ H∗u(Mab) for u ∈ K(Mab). There is a unique n ∈ H(Mab) such that

tMab

H∗ (u, f1
ab(u), x, n). Then, there is a unique y ∈ H∗u(Mab) such that tMab

H∗ (u, f2
ab(u), y, n).

Set f∗(x) = y.
This is a bijection on the universes, and clearly preserves all structure ex-

cept maybe Q. So we show it preserves Q. It suffices to show one direction
for positive instances of Q. So let u1, . . . , uk, v be compatible from K(Mab) and
xj ∈ G∗uj (Mab), y ∈ H∗v (Mab) such that

Mab � Q(x1, . . . , xk, y)

Note, by definition of solutions, we have

Mab � Q
(
f1
ab(u1), . . . , f1

ab(uk), g1
ab(v)

)
Mab � Q

(
f2
ab(u1), . . . , f2

ab(uk), g2
ab(v)

)
By the properties of Q, we get γj ∈ G(Mab) and n ∈ H(Mab) such that

(1) tMab

G∗ (uj , f
1
ab(uj), xj , γj)

(2) tMab

H∗ (v, g1
ab(v), y, n)

(3) γ1(v) + · · ·+ γk(v) + n ≡ 0 mod 2

Then, by definition of f∗, we have

(1) tMab

G∗ (uj , f
2
ab(uj), f∗(xj), γj)

(2) tMab

H∗ (v, g2
ab(v), f∗(y), n)

By the evenness of these shifts, we have that

Mab � Q (f∗(x1), . . . , f∗(xk), f∗(y))

Perfect.
The commutativity condition is easy to check. �

The next two lemmas show that the uniqueness triples (if they exist) must
be exactly the one point extensions. This can be seen from the abstract theory
[She09a, III.3.5] but we give a direct proof here.

Lemma 18.6.4. Let n ∈ [3, ω) and let k ≤ n− 3. If (a,M,M+) is a uniqueness
triple of sk,n, then I(M+) = I(M) ∪ {a}.

Recall (Definition 18.3.10) that the standard model is the one where G∗ is
literally equal to K ×G, so that we can easily recover 0’s.
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Proof. Deny. By Lemma 18.3.11, without loss of generality, we have that M is
the standard model on I(M) = X and M+ is the standard model on I(M+) = X ∪
X+∪{a} (those unions are disjoint) with X+ nonempty. Set N to be the standard
model on X ∪ (2×X+) and N0, N1 to be standard models on X ∪ 2×X+ ∪ {a}.
For ` = 0, 1, define f` : M+ →M N` by

(1) f` is the identity on X ∪ {a} and sends x ∈ X+ to (`, x).
(2) The above determines the map on K, H, and G.
(3) (u, x) ∈ G∗(M+) goes to (f`(u), x) ∈ G∗(N`).
(4) (u, n) ∈ H∗(M+) goes to (f`(u), n) ∈ H∗(N`).

Then this is clearly a set-up for weak uniqueness. However, suppose there were a
N∗ with g` : N` →N N∗ such that g0 ◦ f0 = g1 ◦ f1. Let x ∈ X+. Then

(0, x) = g0(x) = f0(g0(x)) = f1(g1(x)) = f1(1, x) = (1, x)

which is false. �

Lemma 18.6.5. Let n ∈ [3, ω) and let k ≤ n − 3. Let M ≤Kn N both be in
Kn
ℵk . If sk,n is weakly successful, then (a,M,N) is a uniqueness triple of sk,n if and

only if I(N) = I(M) ∪ {a}.

Proof. Lemma 18.6.4 gives one direction. Conversely, let (a,M,N) with
I(N) = I(M) ∪ {a}. Since sk,n is weakly successful, there is some uniqueness
triple (b,M ′, N ′) representing gtp(a/M ;N). By Lemma 18.6.4, we must have
I(N ′) = I(M ′) ∪ {b}. By Lemma 18.3.11, we have (M,N) ∼= (M ′, N ′) since they
are both isomorphic to the standard model. This isomorphism must take a to b.
Since (a,M,N) ∼= (b,M ′, N ′), the former is a uniqueness triple as well. �

We deduce that sn−3,n is not even weakly successful.

Theorem 18.6.6. For n ∈ [3, ω), sn−3,n is not weakly successful.

Proof. Let λ := ℵk−3. At this cardinal, 2-amalgamation of solutions over sets
of size λ fails. To witness this, we have:

• M of size λ with solution h = (f, g)
• Ma has a solution ha = (fa, ga)
• Mb has a solution hb = (fb, gb)
• Mab has no solution that extends them both
• I(Mx) = I(M) ∪ {x} for x = a, b, ab

However, λ does have extension of solutions, so let hab = (fab, gab) be a solution for
Mab that extends hb. hab is a solution for I(Ma) in Mab.

11 Set f1 : Ma →M Mab

to be the identity. Define f2 : Ma →M Mab as follows:

• identity on I(M) ∪ {a}, which determines it except on the affine stuff (in
the sense of Lemma 18.3.8)
• Let x ∈ G∗u(Ma) for u ∈ K(Ma). Set f2 to send fa(u) to fab(u) and the

rest falls out by the G action
• Let x ∈ H∗u(Ma) for u ∈ K(Ma). Set f2 to send ga(u) to gab(u) and the

rest falls out by the G action.

11Note that it isn’t a solution in Ma as fab(u) might not be in Ma for u ∈Ma.



18.7. NONFORKING IS DISJOINT AMALGAMATION 459

This map commutes on M because if u ∈ K(M), then fab(u) = fa(u) = f(u) .
We claim that gtp(a/M ;Ma) does not have a uniqueness triple. Suppose it

does. By Lemma 18.6.5, (a,M,Ma) is one.
Suppose that we had N∗ and g` : Mab →Mb

N∗ such that g1 = g2f2 and
g1(a) = g2(f2(a)) (recalling that f1 is the identity).

Claim: If u ∈ K(Ma), then g1(G∗u(Mab)) = g2(G∗u(Mab)).

There is γu ∈ G(Mab) such that fab(u) = fa(u) + γu. Given x ∈ G∗u(Mab),

g1(x) = g2(f2(x)) = g2(x+ γu) = g2(x) + γu

Thus g1(G∗u(Mab)) and g2(G∗u(Mab)) are both subsets of G∗u(N∗) that have a 1-
transitive action of G(Mab) and share points. †Claim

Now define h+ = (f+, g+) on Mab by

f+(u) = g−1
1 ◦ g2 ◦ fab(u)

g+(u) = g−1
1 ◦ g2 ◦ gab(u)

We claim h+ extends both ha and hb. If u ∈ K(Mb), then fab(u) = fb(u) ∈Mb, so

f+(u) = g−1
1 ◦ g2 ◦ fab(u) = fab(u) = fb(u)

since the g`’s fix Mb. Suppose u ∈ K(Ma). First note that g−1
1 ◦ g2 = f−1

2

by assumption. Also, since f2(fa(u)) = fab(u) and f2 respects the group action,
f2(fab(u)) = fa(u). Thus

f+(u) = g−1
1 ◦ g2 ◦ fab(u) = f−1

2 ◦ fab(u) = fa(u)

Similarly for g+.
But this is our contradiction! ha and hb were not amalgamable, so there is no

isomorphism. �

18.7. Nonforking is disjoint amalgamation

Recall that if a good frame is weakly successful, one can define an independence
relation NF for models (see Definition 18.2.11). We show here that NF in the Hart-
Shelah example is just disjoint amalgamation, i.e. NF(M0,M1,M2,M3) holds if and
only if M0 ≤Kn M` ≤Kn M3 for ` < 4 and M1 ∩M2 = M0. We deduce another
proof of Theorem 18.6.6.

We will use the following weakening of [BK09, 4.2]

Fact 18.7.1. Let n ∈ [2, ω). If M0,M1 ≤Kn N , then there is M2 ≤Kn N such
that I(M2) = I(M0) ∪ I(M1) and M0,M1 ≤Kn M2.

Theorem 18.7.2. Let n ∈ [3, ω) and let k ≤ n − 3. Let λ := ℵk and let
M0,M1,M2,M3 ∈ Kn

λ with M0 ≤Kn M` ≤Kn M3 for ` < 4. If sk,n is weakly
successful, then NFsk,n(M0,M1,M2,M3) if and only if M1 ∩M2 = M0.

Proof. Write NF for NFsk,n . The left to right direction follows from the
properties of NF (Fact 18.2.12). Now assume that M1 ∩M2 = M0.

Write I(M1)− I(M0) = {di | i < α∗}. By induction, build increasing, continu-
ous M1,i ≤Kn M1 for i < α∗ so I(M1,i) = I(M0)∪{dj | j < i}. Again by induction,
build increasing continuous M2,i ≤Kn M3 for i ≤ α∗ such that

• I(M2,i) = I(M2) ∪ {dj | j < i}
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• M1,i ≤Kn M2,i

The successor stage of this construction is possible by Fact 18.7.1 and the limit
is easy. Now it’s easy to see that gtp(di/M2,i;M2,i+1) does not fork over M1,i.
Furthermore by Lemma 18.6.5, (di,M1,i,M1,i+1) is a uniqueness triple. Thus letting
M ′3 := M2,α∗ , we have that NF∗(M0,M1,M2,M

′
3), so NF(M0,M1,M2,M

′
3). By the

monotonicity property of NF, NF(M0,M1,M2,M3) also holds. �

We deduce another proof of Theorem 18.6.6. First we show that weakly suc-
cessful implies successful in the context of Hart-Shelah:

Lemma 18.7.3. Let n ∈ [3, ω) and let k ≤ n−3. If sk,n is weakly successful, then
s is successful (recall Definition 18.2.13). Moreover for M0,M1 ∈ Kn

λ+ , M0 ≤NF
Kn
λ+

M1 if and only if M0 ≤Kn M1.

Proof. This is straightforward from Definition 18.2.13 and Theorem 18.7.2.
�

Corollary 18.7.4. For n ∈ [3, ω), sn−3,n is not weakly successful.

Proof. Assume for a contradiction that sn−3,n is weakly successful. By Lemma
18.7.3, sn−3,n is successful. This contradicts Corollary 18.5.3. �

18.8. A type-full good frame at ℵ0

We have seen that when k < n − 3, sk,n is successful good+ and therefore by
Fact 18.2.17 extends to a type-full frame. When k = n − 3, sk,n is not successful,
but by Theorem 18.5.1, it still extends to a type-full frame if k ≥ 1. In this section,
we complete the picture by building a type-full frame when k = 0 and n = 3.

Recall that (when n ≥ 3) Kn is a class of models of an Lω1,ω sentence, categori-
cal in ℵ0 and ℵ1. Therefore by [She09a, II.3.4] (a generalization of earlier results in
[She75a, She83a]), there will be a good ℵ0-frame on Kn provided that 2ℵ0 < 2ℵ1 .
Therefore the result we want is at least consistent with ZFC, but we want to use the
additional structure of the Hart-Shelah example to remove the cardinal arithmetic
hypothesis.

So we take here a different approach than Shelah’s, giving new cases on when an
AEC has a good ℵ0-frame. As opposed to Shelah, we use Ehrenfeucht-Mostowski
models (so assume that the AEC has arbitrarily large models).

We start by studying what limit models look like in the Hart-Shelah example:
Recall that we’re working in a zone where we have extensions of solutions.

Theorem 18.8.1. Let n ∈ [3, ω). Let k ≤ n− 3 and let M0,M1 ∈ Kn
ℵk . Then

M1 is universal over M0 if and only if |I(M1)− I(M0)| = ‖M1‖. In particular, M1

is universal over M0 if and only if M1 is limit over M0.

Proof. First suppose that M1 is universal over M0. We don’t have maximal
models, so let M0 ≤Kn N∗ be such that |I(N∗) − I(M0)| = ‖M1‖. We have that
‖N∗‖ = ‖M1‖, so there is an embedding f : N∗ →M0

M1. Then f(I(N∗)) ⊆ I(M1).
Now suppose that |I(M1)− I(M0)| = ‖M1‖ and let M0 ≤Kn N∗ with ‖N∗‖ =

‖M1‖. Let I− ⊆ I(M1) − I(M0) be of size |I(N∗) − I(M0)| and let M− ≤Kn M1

have I(M−) = I(M0) ∪ I(M−). Let (f, g) be a solution for M0. Since we have
extensions of solutions, we can extend this to solutions (f−, g−) on M− and (f∗, g∗)
on N∗. The whole point of solutions is that this allows us to build an isomorphism
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between M− and N∗ over M0 by mapping the solutions to each other (see Theorem
18.3.7). �

Shelah has defined a similar property [She09a, 1.3(2)]12:

Definition 18.8.2. K is λ-saturative (or saturative in λ) if for any M0 ≤K

M1 ≤K M2 all in Kλ, if M1 is limit over M0, then M2 is limit over M0.

So an immediate consequence of Theorem 18.8.1 is:

Corollary 18.8.3. Let n ∈ [3, ω). For any k ≤ n− 3, Kn is saturative in ℵk.

We will use the following consequence of being saturative:

Lemma 18.8.4. Assume that LS(K) = ℵ0, and Kℵ0
has amalgamation, no

maximal models, and is stable in ℵ0. Let 〈Mi : i ≤ ω〉 be an increasing continuous
chain in Kℵ0 . If K is categorical in ℵ0 and saturative in ℵ0, then there exists an
increasing continuous chain 〈Ni : i ≤ ω〉 such that:

(1) For i < ω, Mi is limit over Ni.
(2) For i < ω, Ni+1 is limit over Ni.
(3) Nω = Mω.

Proof. Let {an : n < ω} be an enumeration of |Mω|. We will build 〈Ni :
i ≤ ω〉 satisfying (1) and (2) above and in addition that for each i < ω, {an : n <
i} ∩ |Mi| ⊆ |Ni|. Clearly, this is enough.

This is possible. By categoricity in ℵ0, any model of size ℵ0 is limit, so pick any
N0 ∈ Kℵ0 such that M0 is limit over N0. Now assume inductively that Ni has been
defined for i < ω. Since K is saturative in ℵ0, Mi+1 is limit over Ni. Since all limit
models of the same cofinality are isomorphic, Mi+1 is in particular (ℵ0, ω · ω)-limit
over Ni. Fix an increasing continuous sequence 〈Mi+1,j : j ≤ ω · ω〉 witnessing
it: Mi+1,0 = Ni, Mi+1,ω·ω = Mi+1, and Mi+1,j+1 is universal over Mi+1,j for all
j < ω ·ω. Now pick j < ω ·ω big enough so that {an : n < i+1}∩|Mi+1| ⊆ |Mi+1,j |.
Let Ni+1 := Mi+1,j+ω. �

Remark 18.8.5. We do not know how to replace ℵ0 by an uncountable cardinal
in the argument above: it is not clear what to do at limit steps.

To build the good frame, we will also use the transitivity property of splitting:

Definition 18.8.6. We say that K satisfies transitivity in µ (or µ-transitivity)
if whenever M0,M1,M2 ∈ Kµ, M1 is limit over M0 and M2 is limit over M1, if
p ∈ gS(M2) does not µ-split over M1 and p �M1 does not µ-split over M0, we have
that p does not µ-split over M0.

The following result of Shelah [She99, 7.5] is key:

Fact 18.8.7. Let µ ≥ LS(K). Assume that Kµ has amalgamation and no
maximal models. If K has arbitrarily large models and is categorical in µ+, then
K has transitivity in µ.

We will also use two lemmas on splitting isolated by VanDieren [Van06, I.4.10,
I.4.12].

12Shelah defines saturative as a property of frames, but it depends only on the class.
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Fact 18.8.8. Let µ ≥ LS(K). Assume that Kµ has amalgamation, no maximal
models, and is stable in µ. Let M0 ≤K M ≤K N all be in Kµ such that M is
universal over M0.

(1) Weak extension: If p ∈ gS(M) does not µ-split over M0, then there ex-
ists q ∈ gS(N) extending p and not µ-splitting over M0. Moreover q is
algebraic if and only if p is algebraic.

(2) Weak uniqueness: If p, q ∈ gS(N) do not µ-split over M0 and p �M = q �
M , then p = q.

We are now ready to build the good frame:

Theorem 18.8.9. If:

(1) K is superstable in ℵ0.
(2) K has symmetry in ℵ0.
(3) K has transitivity in ℵ0.
(4) K is categorical in ℵ0.
(5) K is saturative in ℵ0.

Then there exists a type-full good ℵ0-frame with underlying class Kℵ0
.

Proof. By the superstability assumption, Kℵ0 has amalgamation and no max-
imal models and is stable in ℵ0. By the categoricity assumption, Kℵ0

also has joint
embedding. It remains to define an appropriate forking notion. For M ≤K N both
in Kℵ0

, let us say that p ∈ gS(N) does not fork over M if there exists M0 ∈ Kℵ0

such that M is universal over M0 and p does not ℵ0-split over M0. We check that
it has the required properties (see Definition 18.2.7):

(1) Invariance, monotonicity: Straightforward.
(2) Extension existence: By the weak extension property of splitting (Fact

18.8.8).
(3) Uniqueness: Let M ≤K N both be in Kℵ0

and let p, q ∈ gS(N) be
nonforking over M such that p � M = q � M . Using the extension
property, we can make N bigger if necessary to assume without loss of
generality that N is limit over M . By categoricity, M is limit. Pick
〈Mi : i ≤ ω〉 increasing continuous witnessing it (so Mω = M and Mi+1 is
universal over Mi for all i < ω). By the superstability assumption, there
exists i < ω such that p � M does not ℵ0-split over Mi and there exists
j < ω such that q � M does not ℵ0-split over Mj . Let i∗ := i + j. Then
both p �M and q �M do not ℵ0-split over Mi∗ . By ℵ0-transitivity, both
p and q do not ℵ0-split over Mi∗ . Now use the weak uniqueness property
of splitting (Fact 18.8.8).

(4) Continuity: In the type-full context, this follows from local character (see
[She09a, II.2.17(3)]).

(5) Local character: Let δ < ω1 be limit and let 〈Mi : i ≤ δ〉 be increasing
continuous in Kℵ0

. Let p ∈ gS(Mδ). We want to see that there exists i < δ
such that p does not fork over Mi. We have that cf δ = ω, so without loss
of generality δ = ω. Let 〈Ni : i ≤ ω〉 be as given by Lemma 18.8.4 (we are
using saturativity here). By superstability, there exists i < ω such that p
does not ℵ0-split over Ni. Because Mi is limit (hence universal) over Mi,
this means that p does not fork over Mi, as desired.

(6) Symmetry: by ℵ0-symmetry (see Theorem 10.4.13).
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�

Corollary 18.8.10. Assume that LS(K) = ℵ0. If:

(1) K has amalgamation in ℵ0.
(2) K is categorical in ℵ0.
(3) K is saturative in ℵ0.
(4) K has arbitrarily large models and is categorical in ℵ1.

Then there exists a type-full good ℵ0-frame with underlying class Kℵ0
.

Proof. It is enough to check that the hypotheses of Theorem 18.8.9 are sat-
isfied. First note that K has no maximal models in ℵ0 because it has a model
in ℵ1 (by solvability) and is categorical in ℵ0. Therefore by Fact 18.2.4, K is ℵ0-
superstable. By Fact 18.2.6, K has ℵ0-symmetry. Finally by Fact 18.8.7, K has
ℵ0-transitivity. �

Corollary 18.8.11. For n ∈ [3, ω), there exists a type-full good ℵ0-frame on
Kn.

Proof. By Fact 18.3.2 and Corollary 18.8.3, Kn satisfies the hypotheses of
Corollary 18.8.10. �

The argument also allows us to prove that Theorem 18.4.1 is optimal, even
when n = 3:

Corollary 18.8.12. For n ∈ [3, ω), Kn is not (< ℵn−3,ℵn−3)-type short over
ℵn−3-sized models.

Proof. Let λ := ℵn−3. By Theorem 18.5.1 (or Corollary 18.8.11 if λ = ℵ0),
there is a type-full good λ-frame s on Kλ. Assume for a contradiction that Kn is
(< λ, λ)-type short over λ-sized models. We will prove that s is weakly successful.
This will imply (by Fact 18.2.20 and the definition of uniqueness triples) that sn−3,n

is weakly successful, contradicting Theorem 18.6.6. First observe that by Theorem
18.4.1, Kn must be (< ℵ0, λ)-type short over λ-sized models.

We now consider two cases.

• If λ > ℵ0, then (recalling Facts 18.3.2 and 18.2.20) by Fact 18.2.18 (where
κ there stands for ℵ0 here), s is weakly successful, which is the desired
contradiction.

• If λ = ℵ0, we proceed similarly: For M ≤K N both in Kℵ0
and p ∈

gSα(N) with α < ℵ1, let us say that p does not fork over M if for every
finite I ⊆ α there exists M0 ≤K M with M universal over M0 such that
pI does not µ-split over M0. As in the proof of Theorem 18.8.9 (noting
that in Fact 18.8.7 transitivity holds for any type of finite length), this
nonforking relation has the uniqueness property for types of finite length.
By the shortness assumption, it has it for types of length at most ℵ0

too. It is easy to see that nonforking satisfies local character for (< ℵ0)-
length types over (ℵ0,ℵ1)-limits and has the left (< ℵ0)-witness property
(see Definition 14.3.7). Therefore by Lemmas 14.3.8 and 14.3.9 it reflects
down (see Definition 14.3.7). By Corollary 14.3.11, s is weakly successful,
as desired.

�





CHAPTER 19

Toward a stability theory of tame abstract
elementary classes

This chapter is based on [Vash].

Abstract

We initiate a systematic investigation of the abstract elementary classes that
have amalgamation, satisfy tameness (a locality property for orbital types), and are
stable (in terms of the number of orbital types) in some cardinal. Assuming the
singular cardinal hypothesis (SCH), we prove a full characterization of the (high-
enough) stability cardinals, and connect the stability spectrum with the behavior
of saturated models.

We deduce (in ZFC) that if a class is stable on a tail of cardinals, then it has
no long splitting chains (the converse is known). This indicates that there is a clear
notion of superstability in this framework.

We also present an application to homogeneous model theory: for D a homo-
geneous diagram in a first-order theory T , if D is both stable in |T | and categorical
in |T | then D is stable in all λ ≥ |T |.

19.1. Introduction

19.1.1. Motivation and history. Abstract elementary classes (AECs) are
partially ordered classes K = (K,≤K) which satisfy several of the basic category-
theoretic properties of classes of the form (Mod(T ),�) for T a first-order theory.
They were introduced by Saharon Shelah in the late seventies [She87a] and encom-
pass infinitary logics such as Lλ+,ω(Q) as well as several algebraic examples. One of
Shelah’s test questions is the eventual categoricity conjecture: an AEC categorical
in some high-enough cardinal should be categorical in all high-enough cardinals.

Toward an approximation, work of Makkai and Shelah [MS90] studied classes
of models of an Lκ,ω theory categorical in a high-enough cardinal, when κ is a
strongly compact cardinal. They proved [MS90, 1.13] that such a class has (even-
tual) amalgamation, joint embedding, and no maximal models. Thus one can work
inside a monster model and look at the corresponding orbital types. Makkai and
Shelah proved that the orbital types correspond to certain syntactic types, imply-
ing in particular that two orbital types are equal if all their restrictions of size less
than κ are equal. They then went on to develop some theory of superstability and
concluded that categoricity in some high-enough successor implies categoricity in
all high-enough cardinals.

A common theme of recent work on AECs is to try to replace large cardi-
nal hypotheses with their model-theoretic consequences. For example, regardless
of whether there are large cardinals, many classes of interests have a monster

465
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model and satisfy a locality property for their orbital types (see the introduction
to [GV06b] or the list of examples in the recent survey [BVd]). Toward that end,
Grossberg and VanDieren made the locality property isolated by Makkai and Shelah
(and later also used by Shelah in another work [She99]) into a definition: Call an
AEC µ-tame if its orbital types are determined by their µ-sized restrictions. Will
Boney [Bon14b] has generalized the first steps in the work of Makkai and Shelah to
AECs, showing that tameness follows from a large cardinal axiom (amalgamation
also follows if one assumes categoricity). Earlier, Shelah had shown that Makkai
and Shelah’s downward part of the transfer holds assuming amalgamation (but not
tameness) [She99] and Grossberg and VanDieren used Shelah’s proof (their ac-
tual initial motivation for isolating tameness) to show that the upward part of the
transfer holds in tame AECs with amalgamation.

Recently, the superstability theory of tame AECs with a monster model has
seen a lot of development (see [Bon14a] and Chapters 4,7, 10, and 9) and one
can say that most of Makkai and Shelah’s work has been generalized to the tame
context (see also [Bal09, D.9(3)]). New concepts not featured in the Makkai and
Shelah paper, such as good frames and limit models, have also seen extensive studies
(e.g. in the previously-cited papers and in Shelah’s book [She09a]). The theory
of superstability for AECs has had several applications, including a full proof of
Shelah’s eventual categoricity conjecture in universal classes, see Chapter 16.

While we showed with Grossberg in Chapter 9 that several possible definitions
of superstability are all equivalent in the tame case, it was still open whether
stability on a tail of cardinals implied these possible definitions (e.g. locality of
forking).

The present chapter answers positively (see Corollary 19.4.24) by developing
the theory of strictly stable tame AECs with a monster model. We emphasize
that this is not the first work on strictly stable AECs. In their paper introducing
tameness [GV06b], Grossberg and VanDieren proved several fundamental results
(see also [BKV06]). Shelah [She99, §4,§5] has made some important contributions
without even assuming tameness; see also his work on universal classes [She09b,
V.E]. Several recent works [BG, BVa] (as well as Chapters 2 and 7 in this thesis)
establish results on independence, the first stability cardinal, chains of saturated
models, and limit models. The present chapter aims to put these works together and
improve some of their results using either the superstability machinery mentioned
above or (in the case of Shelah’s tameness-free results) assuming tameness.

19.1.2. Outline of the main results. Fix an LS(K)-tame AEC K with a
monster model. Assume that K is stable (defined by counting Galois types) in some
cardinal. Let χ(K) be the class of regular cardinals χ such that for all high-enough
stability cardinals µ, any type over the union of a (µ, χ)-limit chain 〈Mi : i < χ〉
does not µ-split over some Mi. Note that we do not know whether χ(K) must
be an end segment of regular cardinals or whether it can have gaps (we can give
a locality condition implying that it is an end segment, see Corollary 19.2.6 and
Theorem 19.3.7).

Using results from the theory of averages in tame AECs (developed in Chapters
7, 9), we show assuming the singular cardinal hypothesis (SCH1) that for all high-
enough cardinals µ, K is stable in µ if and only if cf µ ∈ χ(K) (see Corollary

1That is, for every infinite singular cardinal λ, λcf λ = 2cf λ + λ+.
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19.4.22). The right to left direction is implicit in Theorem 4.5.7 but the left to right
direction is new. A consequence of the proof of Corollary 19.4.22 is that stability
on a tail implies that χ(K) contains all regular cardinals (Corollary 19.4.24, note
that this is in ZFC).

We then prove that χ(K) connects the stability spectrum with the behavior
of saturated models: assuming SCH, a stable tame AEC with a monster model
has a saturated in a high-enough λ if and only if [λ = λ<λ or K is stable in λ].
In ZFC, we deduce that having saturated models on a tail of cardinals implies
superstability (Corollary 19.5.9). We conclude with Theorem 19.6.3, giving (in
ZFC) several equivalent definitions of χ(K), in terms of uniqueness of limit models,
existence of saturated models, or the stability spectrum. Sections 19.7-19.11 adapt
the study of strict stability from [She99] to the tame context and use a weak
continuity property for splitting (as assumed in [BVa]) to improve on some of the
results mentioned earlier. Section 17.5 gives a quick application to homogeneous
model theory: categoricity in |T | and stability in |T | imply stability in all λ ≥ |T |.

The reader may ask how SCH is used in the above results. Roughly, it makes
cardinal arithmetic well-behaved enough that for any big-enough cardinal λ, K will
either be stable in λ or in unboundedly many cardinals below λ. This is connected
to defining the locality cardinals in χ(K) using chains rather than as the least
cardinal κ for which every type does not fork over a set of size less than κ (indeed,
in AECs it is not even clear what exact form such a definition should take). Still
several results of this chapter hold (in ZFC) for “most” cardinals, and the role of
SCH is only to deduce that “most” means “all”.

By a result of Solovay [Sol74], SCH holds above a strongly compact. Thus our
results which assume SCH hold also above a strongly compact. This shows that a
stability theory (not just a superstability theory) can be developed in the context
of the Makkai and Shelah paper, partially answering [She00, 6.15].

19.1.3. Future work. We believe that an important test question is whether
the aforementioned SCH hypothesis can be removed:

Question 19.1.1. Let K be an LS(K)-tame AEC with a monster model. Can
one characterize the stability spectrum in ZFC?

By the present work, the answer to Question 19.1.1 is positive assuming the
existence of large cardinals.

Apart from χ(K), several other cardinal parameters (λ(K), λ′(K), and κ̄(K))
are defined in this chapter. Under some assumptions, we can give loose bounds
on these cardinals (see e.g. Theorem 19.11.3) but focus on eventual behavior. We
believe it is a worthy endeavor (analog to the study of the behavior of the stability
spectrum below 2|T | in first-order) to try to say something more on these cardinals.

19.1.4. Notes. The background required to read this chapter is a solid knowl-
edge of tame AECs (as presented for example in [Bal09]). Familiarity with Chapter
4 would be very helpful. Results from the recent literature which we rely on can
be used as black boxes.

Note that at the beginning of several sections, we make global hypotheses
assumed throughout the section. In the statement of the main results, these global
hypotheses will be repeated.
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19.2. Preliminaries

19.2.1. Basic notation.

19.2.2. Monster model, Galois types, and tameness. We say that an
AEC K has a monster model if it has amalgamation, joint embedding, and arbi-
trarily large models. Equivalently, it has a (proper class sized) model-homogeneous
universal model C. When K has a monster model, we fix such a C and work inside
it. Note that for our purpose amalgamation is the only essential property. Once we
have it, we can partition K into disjoint pieces, each of which has joint embedding
(see for example [Bal09, 16.14]). Further, for studying the eventual behavior of K
assuming the existence of arbitrarily large models is natural.

We use the notation of Chapter 2 for Galois types. In particular, gtp(b̄/A;N)
denotes the Galois type of the sequence b̄ over the set A, as computed in N ∈ K.
In case K has a monster model C, we write gtp(b̄/A) instead of gtp(b̄/A;C). In this
case, gtp(b̄/A) = gtp(c̄/A) if and only if there exists an automorphism f of C fixing
A such that f(b̄) = c̄.

Observe that the definition of Galois types is completely semantic. Tameness is
a locality property for types isolated by Grossberg and VanDieren [GV06b] that,
when it holds, allows us to recover some of the syntactic properties of first-order
types. For a cardinal µ ≥ LS(K), we say that an AEC K with a monster model
is µ-tame if whenever gtp(b/M) 6= gtp(c/M), there exists M0 ∈ K≤µ such that
M0 ≤K M and gtp(b/M0) 6= gtp(c/M0). When assuming tameness in this chapter,
we will usually assume that K is LS(K)-tame. Indeed if K is µ-tame we can just
replace K by K≥µ. Then LS(K≥µ) = µ, so K≥µ will be LS(K≥µ)-tame.

Concepts such as stability and saturation are defined as in the first-order case
but using Galois type (see Chapter 2). For example, an AEC K with a monster
model is stable in µ if | gS(M)| ≤ µ for every M ∈ Kµ. For µ > LS(K), a model
M ∈ K is µ-saturated if every Galois type over a ≤K-substructure of M of size less
than µ is realized in M . In the literature, these are often called “Galois stable”
and “Galois saturated”, but we omit the “Galois” prefix since there is no risk
of confusion in this chapter. We will also make use of the order property from
Definition 2.4.3.

19.2.3. Independence relations. Recall [Gro] that an abstract class (AC)
is a partial order K = (K,≤K) where K is a class of structures in a fixed vocabulary
τ(K), K is closed under isomorphisms, and M ≤K N implies M ⊆ N . In this
chapter, an independence relation will be a pair (K,^), where:

(1) K is a coherent2 abstract class with amalgamation.
(2) ^ is a 4-ary relation so that:

(a) ^(M,A,B,N) implies M ≤K N , A,B ⊆ |N |, |A| ≤ 1. We write

A
N

^
M
B.

(b) ^ satisfies invariance, normality, and monotonicity (see 6.3.6 for the
definitions).

2that is, whenever M0 ⊆M1 ≤K M2 and M0 ≤K M2, we have that M0 ≤K M1.



19.2. PRELIMINARIES 469

(c) We also ask that ^ satisfies base monotonicity: if A
N

^
M0

B, M0 ≤K

M ≤K N , and |M | ⊆ B, then A
N

^
M
B.

Note that this definition differs slightly from that in Definition 6.3.6: there
additional parameters are added controlling the size of the left and right hand side,
and base monotonicity is assumed. Here, the size of the left hand side is at most 1
and the size of the right hand side is not bounded. So in the terminology of Chapter
6, we are defining a (≤ 1, [0,∞))-independence relation with base monotonicity.

When i = (K,^) is an independence relation and p ∈ gS(B;N) (we make use
of Galois types over sets, see Definition 2.2.17), we say that p does not i-fork over

M if a
N

^
M
B for some (any) a realizing p in N . When i is clear from context, we

omit it and just say that p does not fork over M .
The following independence notion is central. It was introduced by Shelah in

[She99, 3.2].

Definition 19.2.1. Let K be a coherent abstract class with amalgamation, let
M ≤K N , p ∈ gS(N), and let µ ≥ ‖M‖. We say that p µ-splits over M if there
exists N1, N2 ∈ K≤µ and f such that M ≤K N` ≤K N for ` = 1, 2, f : N1

∼=M N2,
and f(p � N1) 6= p � N2.

For λ an infinite cardinal, we write iµ-spl(Kλ) for the independence relation
with underlying class Kλ and underlying independence notion non µ-splitting.

19.2.4. Universal orderings and limit models. Work inside an abstract
class K. For M <K N , we say that N is universal over M (and write M <univ

K N)
if for any M ′ ∈ K with M ≤K M ′ and ‖M ′‖ = ‖M‖, there exists f : M ′ −→

M
N .

For a cardinal µ and a limit ordinal δ < µ+, we say that N is (µ, δ)-limit over
M if there exists an increasing continuous chain 〈Ni : i ≤ δ〉 such that N0 = M ,
Nδ = N , and for any i < δ, Ni is in Kµ and Ni+1 is universal over Ni. For A ⊆ µ+

a set of limit ordinals, we say that N is (µ,A)-limit over M if there exists γ ∈ A
such that N is (µ, γ)-limit over M . (µ,≥ δ)-limit means (µ, [δ, µ+) ∩ REG)-limit.
We will use without mention the basic facts about limit models in AECs: existence
(assuming stability and a monster model) and uniqueness when they have the same
cofinality. See [GVV16] for an introduction to the theory of limit models.

19.2.5. Locality cardinals for independence. One of the main object of
study of this chapter is χ(K) (see Definition 19.4.6), which roughly is the class
of regular cardinals χ such that for any increasing continuous chain 〈Mi : i ≤ χ〉
where each model is universal over the previous one and for any p ∈ gS(Mχ) there
exists i < χ such that p does not ‖Mi‖-split over Mi. Interestingly, we cannot rule
out the possibility that there are gaps in χ(K), i.e. although we do not have any
examples, it is conceivable that there are regular χ0 < χ1 < χ2 such that chains of
length χ0 and χ2 have the good property above but chains of length χ1 do not).
This is why we follow Shelah’s approach from [She99] (see in particular the remark
on top of p. 275 there) and define classes of locality cardinals, rather than directly
taking a minimum (as in for example [GV06b, 4.3]). We give a sufficient locality
condition implying that there are no gaps in χ(K) (see Theorem 19.3.7).
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The cardinals κwk are already in [She99, 4.8], while κcont is used in the proof
of the Shelah-Villaveces theorem [SV99, 2.2.1], see also Chapter 20.

Definition 19.2.2 (Locality cardinals). Let i be an independence relation. Let
R be a partial order on K extending ≤K.

(1) κ(i, R) is the set of regular cardinals χ such that whenever 〈Mi : i < χ〉 is
an R-increasing chain3, N ∈ K is such that Mi ≤K N for all i < χ, and
p ∈ gS(

⋃
i<χ |Mi|;N), there exists i < χ such that p does not fork over

Mi.
(2) κwk(i, R) is the set of regular cardinals χ such that whenever 〈Mi : i < χ〉

is an R-increasing chain, N ∈ K is such that Mi ≤K N for all i < χ, and
p ∈ gS(

⋃
i<χ |Mi|;N), there exists i < χ such that p �Mi+1 does not fork

over Mi.
(3) κcont(i, R) is the set of regular cardinals χ such that whenever 〈Mi : i < χ〉

is an R-increasing chain, N ∈ K is such that Mi ≤K N for all i < χ, and
p ∈ gS(

⋃
i<χ |Mi|;N), if p � Mi does not fork over M0 for all i < χ, then

p does not fork over M0.

When R is ≤K, we omit it. In this chapter, R will mostly be <univ
K (see Section

19.2.4).

Remark 19.2.3. The behavior at singular cardinals has some interests (see for
example Lemma 20.2.6(4)), but we focus on regular cardinals in this chapter.

Note that κwk(i, R) is an end segment of regular cardinals (so it has no gaps):
if χ0 < χ1 are regular cardinals and χ0 ∈ κwk(i, R), then χ1 ∈ κwk(i, R). In
section 19.3 we will give conditions under which κ(i, R) and κcont(i, R) are also end
segments. In this case, the following cardinals are especially interesting (note the
absence of line under κ):

Definition 19.2.4. κ(i, R) is the least regular cardinal χ ∈ κ(i, R) such that for
any regular cardinals χ′ > χ, we have that χ′ ∈ κ(i, R). Similarly define κwk(i, R)
and κcont(i, R).

The following is given by the proof of Lemma 20.2.6(1):

Fact 19.2.5. Let i = (K,^) be an independence relation. Let R be a partial
order on K extending ≤K.

We have that κwk(i, R) ∩ κcont(i, R) ⊆ κ(i, R).

Corollary 19.2.6. Let i = (K,^) be an independence relation. Let R be
a partial order on K extending ≤K. If κcont(i, R) = ℵ0 (i.e. κcont(i, R) contains
all the regular cardinals), then κ(i, R) = κwk(i, R) and both are end segments of
regular cardinals.

Proof. Directly from Fact 19.2.5 (using that by definition κwk(i, R) is always
and end segment of regular cardinals). �

Remark 19.2.7. The conclusion of Fact 19.2.5 can be made into an equality
assuming that i satisfies a weak transitivity property (see the statement for splitting
and R =<univ

K in Proposition 4.3.7). This is not needed in this chapter.

3that is, MiRMj for all i < j < χ.
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19.3. Continuity of forking

In this section, we aim to study the locality cardinals and give conditions under
which κcont contains all regular cardinals. We work in an AEC with amalgamation
and stability in a single cardinal µ:

Hypothesis 19.3.1.

(1) K is an AEC, µ ≥ LS(K).
(2) Kµ has amalgamation, joint embedding, and no maximal models in µ.

Moreover K is stable in µ.
(3) i = (Kµ,^) is an independence relation.

Remark 19.3.2. The results of this section generalize to AECs that may not
have full amalgamation in µ, but only satisfy the properties from [SV99]: density
of amalgamation bases, existence of universal extensions, and limit models being
amalgamation bases.

We will usually assume that i has the weak uniqueness property:

Definition 19.3.3. i has weak uniqueness if whenever M0 ≤K M ≤K N are
all in Kµ with M universal over M0, p, q ∈ gS(N) do not fork over M0, and
p �M = q �M , then p = q.

The reader can think of i as non-µ-splitting (Definition 19.2.1), where such a
property holds [Van06, I.4.12]. We state a more general version:

Fact 19.3.4 (6.2 in [GV06b]). iµ-spl(Kµ) has weak uniqueness. More generally,
let M0 ≤K M ≤K N all be in K≥µ with M0 ∈ Kµ. Assume that M is universal
over M0 and K is (µ, ‖N‖)-tame (i.e. types over models of size ‖N‖ are determined
by their restrictions of size µ).

Let p, q ∈ gS(N). If p, q both do not µ-split over M0 and p �M = q �M , then
p = q.

Interestingly, weak uniqueness implies a weak version of extension:

Lemma 19.3.5 (Weak extension). Let M0 ≤K M ≤K N all be in Kµ. Assume
that M is universal over M0. Let p ∈ gS(M) and assume that p does not fork over
M0.

If i has weak uniqueness, then there exists q ∈ gS(N) extending p such that q
does not fork over M0.

Proof. We first prove the result when M is (µ, ω)-limit over M0. In this case
we can write M = Mω, where 〈Mi : i ≤ ω〉 is increasing continuous with Mi+1

universal over Mi for each i < ω.
Let f : N −−→

M1

M . Let q := f−1(p). Then q ∈ gS(N) and by invariance q does

not fork over M0. It remains to show that q extends p. Let qM := q � M . We
want to see that qM = p. By monotonicity, qM does not fork over M0. Moreover,
qM �M1 = p �M1. By weak uniqueness, this implies that qM = p, as desired.

In the general case (when M is only universal over M0), let M ′ ∈ Kµ be (µ, ω)-
limit over M0. By universality, we can assume that M0 ≤K M ′ ≤K M . By the
special case we have just proven, there exists q ∈ gS(N) extending p �M ′ such that
q does not fork over M0. By weak uniqueness, we must have that also q � M = p,
i.e. q extends p. �
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We will derive continuity from weak uniqueness and the following locality prop-
erty4, a weakening of locality from [Bal09, 11.4]:

Definition 19.3.6. Let χ be a regular cardinal. We say that an AEC K with a
monster model is weakly χ-local if for any increasing continuous chain 〈Mi : i ≤ χ〉
with Mi+1 universal over Mi for all i < χ, if p, q ∈ gS(Mχ) are such that p �Mi =
q �Mi for all i < χ, then p = q. We say that K is weakly (≥ χ)-local if K is weakly
χ′-local for all regular χ′ ≥ χ.

Note that any (< ℵ0)-tame AEC (such as an elementary class, an AEC derived
from homogeneous model theory, or even a universal class [Bonc] (see also Theorem
8.3.6) is weakly (≥ ℵ0)-local.

Theorem 19.3.7. Let χ < µ+ be a regular cardinal. If K is weakly χ-local
and i has weak uniqueness, then χ ∈ κcont(i, <univ

K ).

Proof. Let 〈Mi : i ≤ χ〉 be increasing continuous in Kµ with Mi+1 universal
over Mi for all i < χ. Let p ∈ gS(Mχ) and assume that p � Mi does not for over
M0 for all i < χ. Let q ∈ gS(Mχ) be an extension of p � M1 such that q does not
fork over M0. This exists by weak extension (Lemma 19.3.5). By weak uniqueness,
p �Mi = q �Mi for all i < χ. By weak χ-locality, p = q, hence p does not fork over
M0, as desired. �

In the rest of this chapter, we will often look at µ-splitting. The following
notation will be convenient:

Definition 19.3.8. Define κ(Kµ, <
univ
K ) := κ(iµ-spl(Kµ), <univ

K ). Similarly de-
fine the other variations in terms of κwk and κcont. Also define κ(Kµ, <

univ
K ) and

its variations.

Note that any independence relation with weak uniqueness is extended by non-
splitting. This is essentially observed in Lemma 3.4.2 but we give a full proof here
for the convenience of the reader.

Lemma 19.3.9. Assume that i has weak uniqueness.

(1) Let M0 ≤K M1 ≤K M all be in Kµ such that M1 is universal over M0

and M is universal over M1. Let p ∈ gS(M). If p does not fork over M0,
then p does not µ-split over M1.

(2) κ(i, <univ
K ) ⊆ κ(Kµ, <

univ
K ), and similarly for κwk and κcont.

Proof.

(1) Let N1, N2 ∈ Kµ and f : N1
∼=M1

N2 be such that M1 ≤K N` ≤K M for
` = 1, 2. We want to see that f(p � N1) = p � N2. By monotonicity, p � N`
does not fork over M0 for ` = 1, 2. Consequently, f(p � N1) does not fork
over M0. Furthermore, f(p � N1) � M1 = p � M1 = (p � N2) � M1.
Applying weak uniqueness, we get that f(p � N1) = p � N2.

(2) Follows from the first part.

�

4In an earlier version, we derived continuity without any locality property but our argument
contained a mistake.
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19.4. The stability spectrum of tame AECs

For an AEC K with a monster model, we define the stability spectrum of K,
Stab(K) to be the class of cardinals µ ≥ LS(K) such that K is stable in µ. We
would like to study it assuming tameness. From earlier work, the following is known
about Stab(K) in tame AECs:

Fact 19.4.1. Let K be an LS(K)-tame AEC with a monster model.

(1) (Theorem 2.4.15) If Stab(K) 6= ∅, then min(Stab(K)) < H1 (recall Defi-
nition 2.2.2).

(2) [GV06b, 6.4]5 If µ ∈ Stab(K) and λ = λµ, then λ ∈ Stab(K).
(3) [BKV06, 1] If µ ∈ Stab(K), then µ+ ∈ Stab(K).
(4) (Lemma 4.5.5) If 〈µi : i < δ〉 is strictly increasing in Stab(K) and cf δ ∈

κ(Kµ0
, <univ

K ), then supi<δ µi ∈ Stab(K).

Let us say that K is stable if Stab(K) 6= ∅. In this case, it is natural to give a
name to the first stability cardinal:

Definition 19.4.2. For K an AEC with a monster model, let λ(K) := min(Stab(K))
(if Stab(K) = ∅, let λ(K) :=∞).

From Fact 19.4.1, if K is an LS(K)-tame AEC with a monster model, then
λ(K) <∞ implies that λ(K) < H1.

We will also rely on the following basic facts:

Fact 19.4.3 (Proposition 3.3.12). Let K be an LS(K)-tame AEC with a mon-
ster model. For M ≤K N , p ∈ gS(N), µ ∈ [‖M‖, ‖N‖], p µ-splits over M if and
only if p ‖M‖-splits over M .

Fact 19.4.4 (3.3 in [She99]). Let K be an AEC with a monster model. Assume
that K is stable in µ ≥ LS(K). For any M ∈ K≥µ and any p ∈ gS(M), there exists
M0 ≤K M with M0 ∈ Kµ such that p does not µ-split over M0.

It is natural to look at the sequence 〈κ(Kµ, <
univ
K ) : µ ∈ Stab(K)〉. From

Section 4.4, we have that:

Fact 19.4.5. Let K be an LS(K)-tame AEC with a monster model. If µ < λ
are both in Stab(K), then κ(Kµ, <

univ
K ) ⊆ κ(Kλ, <

univ
K ).

Thus we define:

Definition 19.4.6. For K an LS(K)-tame AEC with a monster model, let
χ(K) :=

⋃
µ∈Stab(K) κ(Kµ(K), <

univ
K ). Let χ(K) be the least regular cardinal χ

such that χ′ ∈ χ(K) for any regular χ′ ≥ χ. Set χ(K) := ∅ and χ(K) := ∞ if
λ(K) =∞.

Remark 19.4.7. By Fact 19.4.4, χ(K) ≤ λ(K)+. Assuming continuity of
splitting, we can prove that χ(K) ≤ λ(K) (see Theorem 19.11.3).

Remark 19.4.8. If K comes from a first-order theory, then χ(K) is the set of
regular cardinals greater than or equal to κr(T ), see Corollary 19.4.18.

5Grossberg and VanDieren’s proof shows that the assumption there that µ > H1 can be
removed, see [Bal09, Theorem 12.10].
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Fact 19.4.4 implies more generally that [λ(K),∞) ∩ REG ⊆ κ(Kµ, <
univ
K ) for

any stability cardinal µ. Thus we can let λ′(K) be the first place where the sequence
of κ(Kµ, <

univ
K ) stabilizes. One can think of it as the first “well-behaved” stability

cardinal.

Definition 19.4.9. For K an LS(K)-tame AEC with a monster model, let
λ′(K) be the least stability cardinal λ such that κ(Kµ, <

univ
K ) ⊆ κ(Kλ, <

univ
K ) for

all µ ∈ Stab(K). When λ(K) =∞, we set λ′(K) =∞.

We do not know whether λ′(K) = λ(K). In fact, while we know that λ′(K) <∞
if λ(K) < ∞, we are unable to give any general bound at all on λ′(K). Assuming
continuity of splitting, we can show that λ′(K) < h(λ(K)) (see Theorem 19.11.3).

In this section, we prove what we can on χ(K) without assuming continuity of
splitting. Section 19.11 will prove more assuming continuity of splitting.

We will use the following fact, whose proof relies on the machinery of averages
for tame AECs:

Fact 19.4.10 (Theorem 7.5.16). Let K be an LS(K)-tame AEC with a monster
model.

There exists a stability cardinal χ0 < H1 such that for any µ > µ0 ≥ χ0, if:

(1) K is stable in unboundedly many cardinals below µ.
(2) K is stable in µ0 and cf δ ∈ κ(Kµ0

, <univ
K )

then whenever 〈Mi : i < δ〉 is an increasing chain of µ-saturated models, we
have that

⋃
i<δMi is µ-saturated.

The following is the key result.

Theorem 19.4.11. Let K be an LS(K)-tame AEC with a monster model. Let
χ0 < H1 be as given by Fact 19.4.10. For any µ > χ0, if K is stable in µ and in
unboundedly many cardinals below µ, then cf µ ∈ κ(Kµ, <

univ
K ).

The proof of Theorem 19.4.11 will use the lemma below, which improves on
Lemma 9.3.17.

Lemma 19.4.12. Let K be an LS(K)-tame AEC with a monster model. Let δ
be a limit ordinal and let 〈Mi : i ≤ δ〉 be an increasing continuous sequence. If Mδ

is (LS(K) + δ)+-saturated, then for any p ∈ gS(Mδ), there exists i < δ such that p
does not ‖Mi‖-split over Mi.

Proof. Assume for a contradiction that p ∈ gS(Mδ) is such that p ‖Mi‖-
splits over Mi for every i < δ. Then for every i < δ there exists N i

1, N
i
2, fi such that

Mi ≤K N i
` ≤K M , ` = 1, 2, fi : N i

1
∼=Mi

N i
2, and fi(p � N i

1) 6= p � N i
2. By tameness,

there exists M i
1 ≤K N i

1,M
i
2 ≤K N i

2 both in K≤LS(K) such that fi[M
i
1] = M i

2 and

fi(p �M i
1) 6= p �M i

2.
Let N ≤K M have size µ := LS(K) + δ and be such that M i

` ≤K N for ` = 1, 2
and i < δ.

Since Mδ is µ+-saturated, there exists b ∈ |Mδ| realizing p � N . Let i < δ be
such that b ∈ |Mi|. By construction, we have that fi(p �M i

1) 6= p �M i
2 but on the

other hand p �M i
` = gtp(b/M i

` ;M) and fi(p �M i
1) = gtp(b/M i

2;M), since fi(b) = b
(it fixes Mi). This is a contradiction. �

Before proving Theorem 19.4.11, we show that Fact 19.4.10 implies saturation
of long-enough limit models:



19.4. THE STABILITY SPECTRUM OF TAME AECS 475

Theorem 19.4.13. Let K be an LS(K)-tame AEC with a monster model. Let
χ0 < H1 be as given by Fact 19.4.10. Let µ > µ0 ≥ χ0 be such that K is stable in
µ0, µ, and in unboundedly many cardinals below µ.

Then any (µ, κ(Kµ0
, <univ

K )∩µ+)-limit model (see Section 19.2.4) is saturated.
In particular, there is a saturated model of cardinality µ.

Proof. Assume for simplicity that µ is limit (if µ is a successor cardinal, the
proof is completely similar). Let γ := cf µ and let 〈µi : i < γ〉 be increasing cofinal
in µ such that K is stable in µi for all i < γ. By Fact 19.4.1(3), K is stable in
µ+
i for all i < γ. Let δ ∈ κ(Kµ0

, <univ
K ) ∩ µ+. By Fact 19.4.10, for all i < γ, the

union of a chain of µi-saturated models of length δ is µi-saturated. It follows that
the (µ, δ)-limit model is saturated. Indeed, for each fixed i < γ, we can build an
increasing continuous chain 〈Mj : j ≤ δ〉 such that for all j < δ, Mj ∈ Kµ, Mj+1 is
universal over Mj , and Mj+1 is µi-saturated. By what has just been observed, Mδ

is µi-saturated, and is a (µ, δ)-limit model. Now apply uniqueness of limit models
of the same length.

To see the “in particular” part, assume again that µ is limit (if µ is a successor,
the (µ, µ)-limit model is saturated). Then without loss of generality, µ0 > λ(K),
so by Fact 19.4.4, λ(K)+ ∈ κ(Kµ0

, <univ
K ). Thus the (µ, λ(K)+)-limit model is

saturated. �

Proof of Theorem 19.4.11. Let µ > χ0 be such that K is stable in µ and
in unboundedly many cardinals below µ. Let δ := cf µ.

By Theorem 19.4.13, there is a saturated model M of cardinality µ. Using that
K is stable in unboundedly many cardinals below µ, one can build an increasing
continuous resolution 〈Mi : i ≤ δ〉 such that Mδ = M and for i < δ, Mi ∈ K<µ,
Mi+1 is universal over Mi. By a back and forth argument, this shows that M is
(µ, δ)-limit. By Lemma 19.4.12, δ ∈ κ(Kµ, <

univ
K ), as desired. �

Corollary 19.4.14. Let K be an LS(K)-tame AEC with a monster model.
Let χ0 be as given by Fact 19.4.10. For any µ ≥ λ′(K) + χ+

0 such that K is stable
in unboundedly many cardinals below µ, the following are equivalent:

(1) K is stable in µ.
(2) cf µ ∈ χ(K).

Proof. (1) implies (2) is by Theorem 19.4.11 and (2) implies (1) is by Facts
19.4.1(3),(4). �

It is natural to ask whether Corollary 19.4.14 holds for arbitrary high-enough
µ’s (i.e. without assuming stability in unboundedly many cardinals below µ). At
present, the answer we can give is sensitive to cardinal arithmetic: Fact 19.4.1
does not give us enough tools to answer in ZFC. There is however a large class
of cardinals on which there is no cardinal arithmetic problems. This is already
implicit in Section 4.5.

Definition 19.4.15. A cardinal µ is θ-closed if λθ < µ for all λ < µ. We say
that µ is almost θ-closed if λθ ≤ µ for all λ < µ.

Lemma 19.4.16. Let K be an LS(K)-tame AEC with a monster model. If µ is
almost λ(K)-closed, then either µ = µλ(K) and K is stable in µ, or K is stable in
unboundedly many cardinals below µ.
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Proof. If µλ(K) = µ, then K is stable in µ by Fact 19.4.1(2). Otherwise,

µ is λ(K)-closed. Thus for any µ0 < µ, µ1 := µ
λ(K)
0 is such that µ1 < µ and

µ
λ(K)
1 = µ1, hence K is stable in µ1. Therefore K is stable in unboundedly many

cardinals below µ. �

We have arrived to the following application of Corollary 19.4.14:

Corollary 19.4.17 (Eventual stability spectrum for closed cardinals). Let K
be an LS(K)-tame AEC with a monster model. Let χ0 < H1 be as given by Fact
19.4.10. Let µ be almost λ(K)-closed with µ ≥ λ′(K) + χ+

0 . Then K is stable in µ
if and only if cf µ ∈ χ(K).

Proof. If K is stable in unboundedly many cardinals below µ, this is Corollary
19.4.14. Otherwise by Lemma 19.4.16, K is stable in µ and µλ(K) = µ. In particular,
cf µ > λ(K), so by Fact 19.4.4, cf µ ∈ χ(K). �

Corollary 19.4.18. Let K be the class of models of a first-order stable theory
T ordered by �. Then χ(K) is an end-segment and χ(K) = κr(T ) (the least regular
cardinal greater than or equal to κ(T )).

Proof. Let χ be a regular cardinal and let µ := iχ(λ′(K)). If χ ≥ κ(T ),

µ = µ<κ(T ) so by the first-order theory K is stable in µ. By Corollary 19.4.17,
χ ∈ χ(K). Conversely, if χ ∈ χ(K) then by Corollary 19.4.17, K is stable in µ,

hence µ = µ<κ(T ), so χ ≥ κ(T ). �

Note that the class of almost λ(K)-closed cardinals forms a club, and on this
class Corollary 19.4.17 gives a complete (eventual) characterization of stability. We
do not know how to analyze the cardinals that are not almost λ(K)-closed in ZFC.
Using hypotheses beyond ZFC, we can see that all big-enough cardinals are almost
λ(K)-closed. For ease of notation, we define the following function:

Definition 19.4.19. For µ an infinite cardinal, θ(µ) is the least cardinal θ
such that any λ ≥ θ is almost µ-closed. When such a θ does not exist, we write
θ(µ) =∞.

If λ is a strong limit cardinal, then 2λ = λcf λ and so if 2λ > λ+ we have that
λ+ is not almost cf λ-closed. Foreman and Woodin [FW91] have shown that it
is consistent with ZFC and a large cardinal axiom that 2λ > λ+ for all infinite
cardinals λ. Therefore it is possible that θ(ℵ0) =∞ (and hence θ(µ) =∞ for any
infinite cardinal µ). However, we have:

Fact 19.4.20. Let µ be an infinite cardinal.

(1) If SCH holds, then θ(µ) = 2µ.
(2) If κ > µ is strongly compact, then θ(µ) ≤ κ.

Proof. The first fact follows from basic cardinal arithmetic (see [Jec03, 5.22]),
and the third follows from a result of Solovay (see [Sol74] or [Jec03, 20.8]). �

The following easy lemma will be used in the proof of Theorem 19.5.8:

Lemma 19.4.21. Let K be an LS(K)-tame AEC with a monster model. If
µ > θ(λ(K)) and µ is limit, then K is stable in unboundedly many cardinals below
µ.
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Proof. Let µ0 ∈ [θ(λ(K)), µ). As µ is limit, µ+
0 < µ and µ+

0 is almost λ(K)-

closed. In particular, µ
λ(K)
0 ≤ µ+

0 . By Fact 19.4.1(2), K is stable in either µ0 or
µ+

0 , as needed. �

Corollary 19.4.22. Let K be an LS(K)-tame AEC with a monster model
and let χ0 < H1 be as given by Fact 19.4.10. For any µ ≥ λ′(K) + χ+

0 + θ(λ(K)),
K is stable in µ if and only if cf µ ∈ χ(K).

Proof. By Corollary 19.4.17 and the definition of θ(λ(K)). �

A particular case of Theorem 19.4.11 derives superstability from stability in a
tail of cardinals. The following concept is studied already in [She99, 6.3].

Definition 19.4.23. An AEC K is µ-superstable if:

(1) µ ≥ LS(K).
(2) Kµ is non-empty, has amalgamation, joint embedding, and no maximal

models.
(3) K is stable in µ.
(4) κ(Kµ, <

univ
K ) = ℵ0 (i.e. κ(Kµ, <

univ
K ) consists of all the regular cardinals).

This definition has been well-studied and has numerous consequences in tame
AECs, such as the existence of a well-behaved independence notion (a good frame),
the union of a chain of λ-saturated being λ-saturated, or the uniqueness of limit
models (see for example Chapter 9 for a survey and history). Even though in
tame AECs Definition 19.4.23 is (eventually) equivalent to all these consequences
(see Chapter 9), it was not known whether it followed from stability on a tail of
cardinals. We show here that it does (note that this is a ZFC result).

Corollary 19.4.24. Let K be an LS(K)-tame AEC with a monster model.
The following are equivalent.

(1) χ(K) = ℵ0 (i.e. χ(K) consists of all regular cardinals).
(2) K is λ′(K)-superstable.
(3) K is stable on a tail of cardinals.

The proof uses that µ-superstability implies stability in every µ′ ≥ µ (this is a
straightforward induction using Fact 19.4.1, see Theorem 4.5.6). We state a slightly
stronger version:

Fact 19.4.25 (Proposition 6.10.10). Let K be a µ-tame AEC with amalgama-
tion. If K is µ-superstable, then K is µ′-superstable for every µ′ ≥ µ.

Proof of Corollary 19.4.24. If (1) holds, then (2) holds by definition of
χ(K). By Fact 19.4.25, this implies stability in every µ ≥ λ′(K), so (3). Now if (3)
holds then by Corollary 19.4.14 we must have that χ(K) = ℵ0, so (1) holds. �

Corollary 19.4.24 and the author’s earlier work with Grossberg (Chapter 9)
justify the following definition for tame AECs:

Definition 19.4.26. Let K be an LS(K)-tame AEC with a monster model.
We say that K is superstable if χ(K) = ℵ0.
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19.5. The saturation spectrum

Theorem 19.4.13 shows that there is a saturated model in many stability car-
dinals. It is natural to ask whether this generalizes to all stability cardinals, and
whether the converse is true, as in the first-order case. We show here that this holds
assuming SCH, but prove several ZFC results along the way. Some of the proofs
are inspired from the ones in homogeneous model theory (due to Shelah [She75c],
see also the exposition in [GL02]).

The following is standard and will be used without comments.

Fact 19.5.1. Let K be an AEC with a monster model. If LS(K) < µ ≤ λ =
λ<µ, then K has a µ-saturated model of cardinality λ.

In particular, K has a saturated model in λ if λ = λ<λ.
We turn to studying what we can say about λ when K has a saturated model

in λ.

Theorem 19.5.2. Let K be an LS(K)-tame AEC with a monster model. Let
LS(K) < λ. If K has a saturated model of cardinality λ and K is stable in un-
boundedly many cardinals below λ, then K is stable in λ.

Proof. By Fact 19.4.1(3), we can assume without loss of generality that λ is
a limit cardinal. Let δ := cf λ. Pick 〈λi : i ≤ δ〉 strictly increasing continuous such
that λδ = λ, λ0 ≥ LS(K), and i < δ implies that K is stable in λi+1. Let M ∈ Kλ

be saturated and let 〈Mi : i ≤ δ〉 be an increasing continuous resolution of M such
that for each i < δ, Mi ∈ Kλi and Mi+2 is universal over Mi+1.

Claim: For any p ∈ gS(M), there exists i < δ such that p does not λ-split over
Mi.

Proof of Claim: If δ > λ1, then the result follows from Facts 19.4.3 and 19.4.4.
If δ ≤ λ1, then this is given by Lemma 19.4.12. †Claim

Now assume for a contradiction that K is not stable in λ and let 〈pi : i < λ+〉 be
distinct members of gS(M) (the saturated model must witness instability because
it is universal). By the claim, for each i < λ+ there exists ji < δ such that p
does not λ-split over Mji . By the pigeonhole principle, without loss of generality
ji = j0 for each i < λ+. Now | gS(Mj0)| ≤ | gS(Mj0+2)| = ‖Mj0+2‖ < λ, so by the
pigeonhole principle again, without loss of generality pi � Mj0+2 = pj � Mj0+2 for
all i < j < λ+. By weak uniqueness of non-λ-splitting and tameness, this implies
that pi = pj , a contradiction. �

We have not used the full strength of the assumption that K is stable in un-
boundedly many cardinals below λ. For example, the same argument as in Theorem
19.5.2 proves:

Theorem 19.5.3. Let K be an LS(K)-tame AEC with a monster model. Let
LS(K) < λ, with λ a singular cardinal, and let M ∈ Kλ be a saturated model. If
for all M0 ≤K M with ‖M0‖ < ‖M‖, | gS(M0)| < λ (this happens if e.g. λ is strong
limit), then K is stable in λ.

We can also prove in ZFC that existence of a saturated model at a cardinal
λ < λ<λ implies that the class is stable. We first recall the definition of another
locality cardinal:

Definition 19.5.4 (4.4 in [GV06b]). For K a LS(K)-tame AEC with a mon-
ster model, define κ̄(K) to be the least cardinal µ > LS(K) such that for any
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M ∈ K and any p ∈ gS(M), there exists M0 ∈ K<µ with M0 ≤K M such that p
does not ‖M0‖-split over M0. Set κ̄(K) =∞ if there is no such cardinal.

We have that stability is equivalent to boundedness of κ̄(K):

Theorem 19.5.5. Let K be an LS(K)-tame AEC with a monster model. The
following are equivalent:

(1) K is stable.
(2) κ̄(K) < H1.
(3) κ̄(K) <∞.

Proof. (1) implies (2) is because by Fact 19.4.4, κ̄(K) ≤ λ(K)+ and by Fact

19.4.1(1), λ(K)+ < H1. (2) implies (3) is trivial. To see that (3) implies (1), let
µ := κ̄(K). Pick any λ0 ≥ LS(K) such that λ0 = λ<µ0 (e.g. λ0 = 2µ), and pick

any λ > λ0 such that λλ0 = λ (e.g. λ = 2λ0). We claim that K is stable in λ. Let
M ∈ Kλ, and extend it to M ′ ∈ Kλ that is µ-saturated. It is enough to see that
| gS(M ′)| = λ, so without loss of generality M = M ′. Suppose that | gS(M)| > λ
and let 〈pi : i < λ+〉 be distinct members. By definition of µ, for each i < λ+

there exists Mi ∈ K<µ such that Mi ≤K M and p does not ‖Mi‖-split over Mi.
Since λ = λ<µ, we can assume without loss of generality that Mi = M0 for all
i < λ+. Further, | gS(M0)| ≤ 2<µ ≤ λ<µ0 = λ0, so we can pick M ′0 ≤K M with
M ′0 ∈ Kλ0 such that M ′0 is universal over M0. As λ = λλ0 , we can assume without
loss of generality that pi � M ′0 = pj � M ′0. By tameness and weak uniqueness of
non-splitting, we conclude that pi = pj , a contradiction. �

We will use that failure of local character of splitting allows us to build a tree
of types, see the proof of [GV06b, 4.6].

Fact 19.5.6. Let K be an LS(K)-tame AEC with a monster model. Let
LS(K) < µ, with µ a regular cardinal. If κ̄(K) > µ, then there exists an in-

creasing continuous tree 〈Mη : η ∈ ≤µ2〉, and tree of types 〈pη : η ∈ ≤µ2〉, and sets
〈Aη : η ∈ ≤µ2〉 such that for all η ∈ <µ2:

(1) Mη ∈ K<µ.
(2) pη ∈ gS(Mη).
(3) Aη ⊆ |Mηa0| ∩ |Mηa1|.
(4) |Aη| ≤ LS(K).
(5) pηa0 � Aη 6= pηa1 � Aη.

Theorem 19.5.7. Let K be an LS(K)-tame AEC with a monster model. Let
LS(K) < λ < λ<λ. If K has a saturated model of cardinality λ, then κ̄(K) ≤ λ+.
In particular, K is stable.

Proof. The last sentence is Theorem 19.5.5. Now suppose for a contradiction
that κ̄(K) > λ+.

Claim: 2<λ = λ.
Proof of Claim: Suppose not and let µ < λ be minimal such that 2µ > λ. Then

µ is regular so let 〈Mη : η ∈ ≤µ2〉, 〈pη : η ∈ ≤µ2〉, and 〈Aη : η ∈ ≤µ2〉 be as given by
Fact 19.5.6. Since 2<µ ≤ λ, we can use universality of M to assume without loss of
generality that Mη ≤K M for each η ∈ <µ2. By continuity of the tree, Mη ≤K M
for each η ∈ µ2. Since M is saturated, it realizes all types over Mη, for each η ∈ µ2.
By construction of the tree, each of these types has a different realization so in
particular, 2µ ≤ λ, a contradiction. †Claim
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Now if there exists µ < λ such that 2µ = λ, then 2µ
′

= λ for all µ′ ∈ [µ, λ),
hence λ = λ<λ, which we assumed was not true. Therefore λ is strong limit. Since
λ < λ<λ, this implies that λ is singular. By Theorem 19.5.3, K is stable in λ. By
Fact 19.4.4, κ̄(K) ≤ λ+, as desired. �

We have arrived to the following. Note that we need some set-theoretic hy-
potheses (e.g. assuming SCH, θ(H1) = 2H1 , see Fact 19.4.20) to get that θ(H1) <∞
otherwise the result holds vacuously.

Corollary 19.5.8. Let K be an LS(K)-tame AEC with a monster model.
Let χ0 < H1 be as given by Fact 19.4.10. Let λ > χ0 + θ(λ(K)) (recall Definition
19.4.19). The following are equivalent:

(1) K has a saturated model of cardinality λ.
(2) λ = λ<λ or K is stable in λ.

Proof. First assume (2). If λ = λ<λ, we get a saturated model of cardinality
λ using Fact 19.5.1, so assume that K is stable in λ. If λ is a successor, the (λ, λ)-
limit model is saturated, so assume that λ is limit. By Lemma 19.4.21, K is stable
in unboundedly many cardinals below λ. By Theorem 19.4.13, K has a saturated
model of cardinality λ.

Now assume (1) and λ < λ<λ. By Theorem 19.5.7, K is stable. By Lemma
19.4.16, either K is stable in λ, or there are unboundedly many stability cardinals
below λ. In the former case we are done and in the latter case, we can use Theorem
19.5.2. �

When K is superstable (i.e. χ(K) = ℵ0, see Definition 19.4.26), we obtain a
characterization in ZFC.

Corollary 19.5.9. Let K be an LS(K)-tame AEC with a monster model.
The following are equivalent:

(1) K is superstable.
(2) K has a saturated model of size λ for every λ ≥ λ′(K) + LS(K)+.
(3) There exists µ such that K has a saturated model of size λ for every λ ≥ µ.

Proof. (1) implies (2) is known (use Corollary 19.4.24 to see that K is λ′(K)-
superstable, then apply Corollary 10.6.9 together with [Van16a]), and (2) implies
(3) is trivial. Now assume (3). By Theorem 19.5.7, K is stable. We prove by
induction on λ ≥ µλ(K) that K is stable in λ. This implies superstability by
Corollary 19.4.24.

If λ = µλ(K), then λλ(K) = λ so K is stable in λ (see Fact 19.4.1(2)). Now
if λ > µλ(K), then by the induction hypothesis K is stable in unboundedly many
cardinals below λ, hence the result follows from Theorem 19.5.2. �

19.6. Characterizations of stability

In Chapter 9, Grossberg and the author characterize superstability in terms
of the behavior of saturated, limit, and superlimit models. We show that stability
can be characterized analogously. In fact, we are able to give a list of statements
equivalent to “χ ∈ χ(K)”.

Remark 19.6.1. Another important characterization of superstability in Chap-
ter 9 was solvability: roughly, the existence of an EM blueprint generating super-
limit models. We do not know if there is a generalization of solvability to stability.
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Indeed it follows from the proof of [SV99, 2.2.1] that even an EM blueprint gen-
erating just universal (not superlimit) models would imply superstability (see also
Chapter 20).

We see the next definition as the “stable” version of a superlimit model. Very
similar notions appear already in [She87a].

Definition 19.6.2. Let K be an AEC. For χ a regular cardinal, M ∈ K≥χ is
χ-superlimit if:

(1) M has a proper extension.
(2) M is universal in K‖M‖.
(3) For any increasing chain 〈Mi : i < χ〉, if i < χ implies M ∼= Mi, then

M ∼=
⋃
i<χMi.

In Chapter 9, it was shown that one of the statements below holds for all χ if and
only if all of them hold for all χ. The following characterization is a generalization
to strictly stable AECs, where χ is fixed at the beginning.

Theorem 19.6.3. Let K be a (not necessarily stable) LS(K)-tame AEC with
a monster model. Let χ be a regular cardinal. The following are equivalent:

(0) χ ∈ χ(K).
(1) For unboundedly many H1-closed stability cardinals µ, cf µ = χ.
(2) For unboundedly many cardinals µ, there exists a saturated (µ, χ)-limit

model.
(3) For unboundedly many µ, the union of any increasing chain of µ-saturated

models of length χ is µ-saturated.
(4) For unboundedly many stability cardinals µ, there is a χ-superlimit model

of cardinality µ.
(5) For unboundedly many H1-closed cardinals µ with cf µ = χ, there is a

saturated model of cardinality µ.

Proof. We first show that each of the condition implies that K is stable. If
(0) holds, then by definition of χ(K) we must have that K is stable. If (2) holds,
then there exists in particular limit models and this implies stability. Also (1) and
(4) imply stability by definition. If (5) holds, then we have stability by Theorem
19.5.7. Finally, assume that (3) holds. Build an increasing continuous chain of
cardinals 〈µi : i ≤ χ〉 such that χ + LS(K) < µ0, for each i ≤ χ any increasing
chain of µi-saturated models of length χ is µi-saturated, and 2µi < µi+1 for all
i < χ. Let µ := µχ. Build an increasing chain 〈Mi : i < χ〉 such that Mi+1 ∈ K2µi

and Mi+1 is µi-saturated. Now by construction M :=
⋃
i<χMi is in Kµ and is

saturated. Since cf µ = χ, we have that µ < µχ ≤ µ<µ. By Theorem 19.5.7, K
is stable. We have shown that we can assume without loss of generality that K is
stable.

We now show that (3) is equivalent to (4). Indeed, if we have a χ-superlimit
at a stability cardinal µ, then it must be saturated and witnesses that the union of
an increasing chain of µ-saturated models of length χ is µ-saturated. Conversely,
We have shown in the first paragraph of this proof how to build a saturated model
in a cardinal µ such that the union of an increasing chain of µ-saturated models of
length χ is µ-saturated. Such a saturated model must be a χ-superlimit.

We also have that (4) implies (2), as it is easy to see that a χ-superlimit model
in a stability cardinal µ must be unique and also a (µ, χ)-limit model. Also, (0)
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implies (3) (Fact 19.4.10) and (2) implies (0) (Lemma 19.4.12). Therefore (0), (2),
(3), (4) are all equivalent.

Now, (0) implies (5) (Theorem 19.4.13). Also, (5) implies (1): Let µ be H1-
closed such that cf µ = χ and there is a saturated model of cardinality µ. By
Lemma 19.4.16, either K is stable in µ or stable in unboundedly many cardinals
below µ. In the latter case, Theorem 19.5.2 implies that K is stable in µ. Thus K
is stable in µ, hence (1) holds.

It remains to show that (1) implies (0). Let µ be an H1-closed stability cardinal
of cofinality χ. By the proof of Lemma 19.4.16, K is stable in unboundedly many
cardinals below µ. By Theorem 19.4.11, χ ∈ χ(K), so (0) holds. �

19.7. Indiscernibles and bounded equivalence relations

We review here the main tools for the study of strong splitting in the next sec-
tion: indiscernibles and bounded equivalence relations. All throughout, we assume:

Hypothesis 19.7.1. K is an AEC with a monster model.

Remark 19.7.2. By working more locally, the results and definitions of this
section could be adapted to the amalgamation-less setup (see for example Definition
17.2.3).

Definition 19.7.3 (Indiscernibles, 4.1 in [She99]). Let α be a non-zero cardi-
nal, θ be an infinite cardinal, and let 〈āi : i < θ〉 be a sequence of distinct elements
each of length α. Let A be a set.

(1) We say that 〈āi : i < θ〉 is indiscernible over A in N if for every n < ω,
every i0 < . . . < in−1 < θ, j0 < . . . < jn−1 < θ, gtp(āi0 . . . āin/A) =
gtp(āj0 . . . ājn/A). When A = ∅, we omit it and just say that 〈āi : i < θ〉
is indiscernible.

(2) We say that 〈āi : i < θ〉 is strictly indiscernible if there exists an EM
blueprint Φ (whose vocabulary is allowed to have arbitrary size) an auto-
morphism f of C so that, letting N ′ := EMτ(K)(θ,Φ):

(a) For all i < θ, b̄i := f(āi) ∈ α|N ′|.
(b) If for i < θ, b̄i = 〈bi,j : j < α〉, then for all j < α there exists a unary

τ(Φ)-function symbol ρj such that for all i < θ, bi,j = ρN
′

j (i).
(3) Let A be a set. We say that 〈āi : i < θ〉 is strictly indiscernible over A

if there exists an enumeration ā of A such that 〈āiā : i < θ〉 is strictly
indiscernible.

Any strict indiscernible sequence extends to arbitrary lengths: this follows from
a use of first-order compactness in the EM language. The converse is also true. This
follows from the more general extraction theorem, essentially due to Morley:

Fact 19.7.4. Let I := 〈āi : i < θ〉 be distinct such that `(āi) = α for all i < θ.
Let A be a set. If θ ≥ h(LS(K) + |α|+ |A|), then there exists J := 〈b̄i : i < ω〉 such
that J is strictly indiscernible over A and for any n < ω there exists i0 < . . . <
in−1 < θ such that gtp(b̄0 . . . b̄n−1/A) = gtp(āi0 . . . āin−1/A).

Fact 19.7.5. Let〈āi : i < θ〉 be indiscernible over A, with `(āi) = α for all
i < θ. The following are equivalent:

(1) For any infinite cardinal λ, there exists 〈b̄i : i < λ〉 that is indiscernible
over A and such that b̄i = āi for all i < θ.
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(2) For all infinite λ < h(θ+ |A|+ |α|+ LS(K)) (recall Definition 2.2.2), there
exists 〈b̄i : i < λ〉 as in (1).

(3) 〈āi : i < θ〉 is strictly indiscernible over A.

We want to study bounded equivalence relations: they are the analog of She-
lah’s finite equivalence relations from the first-order setup but here the failure of
compactness compels us to only ask for the number of classes to be bounded (i.e.
a cardinal). The definition for homogeneous model theory appears in [HS00, 1.4].

Definition 19.7.6. Let α be a non-zero cardinal and let A be a set. An α-ary
Galois equivalence relation on A is an equivalence relation E on αC such that for
any automorphism f of C fixing A, b̄Ec̄ if and only if f(b̄)Ef(c̄).

Definition 19.7.7. Let α be a non-zero cardinal, A be a set, and E be an
α-ary Galois equivalence relation on A.

(1) Let c(E) be the number of equivalence classes of E.
(2) We say that E is bounded if c(E) <∞ (i.e. it is a cardinal).
(3) Let SEα(A) be the set of α-ary bounded Galois equivalence relations over

A (S stands for strong).

Remark 19.7.8.

|SEα(A)| ≤ |2gSα+α(A)| ≤ 22|A|+LS(K)+α

The next two results appear for homogeneous model theory in [HS00, §1].
The main difference here is that strictly indiscernible and indiscernibles need not
coincide.

Lemma 19.7.9. Let E ∈ SEα(A). Let I be strictly indiscernible over A. For
any ā, b̄ ∈ I, we have that āEb̄.

Proof. Suppose not, say ¬(āEb̄). Fix any infinite cardinal λ ≥ |J|. By
Theorem 19.7.5, I extends to a strictly indiscernible sequence J over A of cardinality
λ. Thus c(E) ≥ λ. Since λ was arbitrary, this contradicts the fact that E was
bounded. �

Lemma 19.7.10. Let A be a set and α be a non-zero cardinal. Let E be an
α-ary Galois equivalence relation over A. The following are equivalent:

(1) E is bounded.
(2) c(E) < h(|A|+ α+ LS(K)).

Proof. Let θ := h(|A|+ α + LS(K)). If c(E) < θ, E is bounded. Conversely
if c(E) ≥ θ then we can list θ non-equivalent elements as I := 〈āi : i < θ〉. By Fact
19.7.4, there exists a strictly indiscernible sequence over A 〈b̄i : i < ω〉 reflecting
some of the structure of I. In particular, for i < j < ω, ¬(b̄iEb̄j). By Lemma
19.7.9, E cannot be bounded. �

The following equivalence relation will play an important role (see [HS00, 4.7])

Definition 19.7.11. For all A and α, let Emin,A,α :=
⋂

SEα(A).

By Remark 19.7.8 and a straightforward counting argument, we have that
Emin,A,α ∈ SEα(A).
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19.8. Strong splitting

We study the AEC analog of first-order strong splitting. It was introduced
by Shelah in [She99, 4.11]. In the next section, the analog of first-order dividing
will be studied. Shelah also introduced it [She99, 4.8] and showed how to connect
it with strong splitting. After developing enough machinery, we will be able to
connect Shelah’s results on the locality cardinals for dividing [She99, 5.5] to the
locality cardinals for splitting.

All throughout this section, we assume:

Hypothesis 19.8.1. K is an AEC with a monster model.

Definition 19.8.2. Let µ be an infinite cardinal, A ⊆ B, p ∈ gS(B). We say
that p (< µ)-strongly splits over A if there exists a strictly indiscernible sequence
〈āi : i < ω〉 over A with `(āi) < µ for all i < ω such that for any b realizing p,
gtp(bā0/A) 6= gtp(bā1/A). We say that p explicitly (< µ)-strongly splits over A if
the above holds with ā0ā1 ∈ <µB.

µ-strongly splits means (≤ µ)-strongly splits, which has the expected meaning.

Remark 19.8.3. For µ < µ′, if p [explicitly] (< µ)-strongly splits over A, then
p [explicitly] (< µ′)-strongly splits over A.

Lemma 19.8.4 (Base monotonicity of strong splitting). Let A ⊆ B ⊆ C and
let p ∈ gS(C). Let µ > |B\A| be infinite. If p (< µ)-strongly splits over B, then p
(< µ)-strongly splits over A.

Proof. Let 〈āi : i < ω〉 witness the strong splitting over B. Let c̄ be an
enumeration of B\A. The sequence 〈āic̄ : i < ω〉 is strictly indiscernible over
A. Moreover, for any b realizing p, gtp(bc̄ā0/A) 6= gtp(bc̄ā1/A) if and only if
gtp(bā0/Ac̄) 6= gtp(bā1/Ac̄) if and only if gtp(bā0/B) 6= gtp(bā1/B), which holds
by the strong splitting assumption. �

Lemma 19.8.4 motivates the following definition:

Definition 19.8.5. For λ ≥ LS(K)), we let iλ-strong-spl(Kλ) be the indepen-
dence relation whose underlying class is K′ and whose independence relation is non
λ-strong-splitting.

Next, we state a key characterization lemma for strong splitting in terms of
bounded equivalence relations. This is used in the proof of the next result, a
kind of uniqueness of the non-strong-splitting extension. It appears already for
homogeneous model theory in [HS00, 1.12]

Definition 19.8.6. Let N ∈ K, A ⊆ |N |, and µ be an infinite cardinal. We
say that N is µ-saturated over A if any type in gS<µ(A) is realized in N .

Lemma 19.8.7. Let N ∈ K and let A ⊆ |N |. Assume that N is (ℵ1 + µ)-
saturated over A. Let p := gtp(b/N). The following are equivalent.

(1) p does not explicitly (< µ)-strongly split over A.
(2) p does not (< µ)-strongly split over A.
(3) For all α < µ, all c̄, d̄ in α|N |, c̄Emin,A,αd̄ implies gtp(bc̄/A) = gtp(bd̄/A).

Proof. If p explicitly (< µ)-strongly splits over A, then p (< µ)-strongly splits
over A. Thus (2) implies (1).
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If p (< µ)-splits strongly over A, let I = 〈āi : i < ω〉 witness it, with āi ∈ α|C|
for all i < ω. By Lemma 19.7.9, ā0Emin,A,αā1. However by the strong splitting
assumption gtp(bā0/A) 6= gtp(bā1/A). This proves (3) implies (2).

It remains to show that (1) implies (3). Assume (1). Assume c̄, d̄ are in α|N |
such that c̄Emin,A,αd̄. Define an equivalence relation E on α|C| as follows. b̄0Eb̄1
if and only if b̄0 = b̄1 or there exists n < ω and 〈Ii : i < n〉 strictly indiscernible
over A such that b̄0 ∈ I0, b̄1 ∈ In−1 and for all i < n − 1, Ii ∩ Ii+1 6= ∅. E
is a Galois equivalence relation over A. Moreover if 〈āi : i < θ〉 are in different
equivalence classes and θ is sufficiently big, we can extract a strictly indiscernible
sequence from it which will witness that all elements are actually in the same class.
Therefore E ∈ SEα(A).

Since c̄Emin,A,αd̄, we have that c̄Ed̄ and without loss of generality c̄ 6= d̄. Let
〈Ii : i < n〉 witness equivalence. By saturation, we can assume without loss of
generality that Ii is in |M | for all i < n. Now use the failure of explicit strong
splitting to argue that gtp(bc̄/A) = gtp(bd̄/A). �

Lemma 19.8.8 (Toward uniqueness of non strong splitting). Let M ≤K N and
let A ⊆ |M |. Assume that N is (ℵ1 + µ)-saturated over A and for every α < µ,
c̄ ∈ α|N |, there is d̄ ∈ α|M | such that d̄Emin,A,αc̄.

Let p, q ∈ gS(N) not (< µ)-strongly split over A. If p � M = q � M , then
p � B = q � B for every B ⊆ |N | with |B| < µ.

Proof. Say p = gtp(a/N), q = gtp(b/N). Let c̄ ∈ <µ|N |. We want to see that
gtp(a/c̄) = gtp(b/c̄). We will show that gtp(ac̄/A) = gtp(bc̄/A). Pick d̄ in M such
that c̄Emin,A,αd̄. Then by Lemma 19.8.7, gtp(ac̄/A) = gtp(ad̄/A). Since p � M =
q � M , gtp(ad̄/A) = gtp(bd̄/A). By Lemma 19.8.7 again, gtp(bd̄/A) = gtp(bc̄/A).
Combining these equalities, we get that gtp(ac̄/A) = gtp(bc̄/A), as desired. �

19.9. Dividing

Hypothesis 19.9.1. K is an AEC with a monster model.

The following notion generalizes first-order dividing and was introduced by
Shelah [She99, 4.8].

Definition 19.9.2. Let A ⊆ B, p ∈ gS(B). We say that p divides over A if
there exists an infinite cardinal θ and a strictly indiscernible sequence 〈b̄i : i < θ〉
over A as well as 〈fi : i < θ〉 automorphisms of C fixing A such that b̄0 is an
enumeration of B, fi(b̄0) = āi for all i < θ, and 〈fi(p) : i < θ〉 is inconsistent.

It is clear from the definition that dividing induces an independence relation:

Definition 19.9.3. For λ ≥ LS(K), we let idiv(Kλ) be the independence rela-
tion whose underlying class is K′ and whose independence relation is non-dividing.

The following fact about dividing was proven by Shelah in [She99, 5.5(2)]:

Fact 19.9.4. Let µ1 ≥ µ0 ≥ LS(K). Let α < µ+
1 be a regular cardinal. If K is

stable in µ1 and µα1 > µ1, then α ∈ κwk(idiv(Kµ0)) (recall Definition 19.2.2).

To see when strong splitting implies dividing, Shelah considered the following
property:
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Definition 19.9.5. K satisfies (∗)µ,θ,σ if whenever 〈āi : i < δ〉 is a strictly
indiscernible sequence with `(āi) < µ for all i < δ, then for any b̄ with `(b̄) < σ,
there exists u ⊆ δ with |u| < θ such that for any i, j ∈ δ\u, gtp(āib̄/∅) = gtp(āj b̄/∅).

Fact 19.9.6 (4.12 in [She99]). Let µ∗ := LS(K) + µ+ σ. If K does not have
the µ∗-order property (recall Definition 2.4.3), then (∗)µ+,h(µ∗),σ+ holds.

Lemma 19.9.7. Let A ⊆ B. Let p ∈ gS(B). Assume that (∗)|B|+,θ,σ holds for
some infinite cardinals θ and σ.

If p explicitly |B|-strongly splits over A, then p divides over A.

Proof. Let µ := |B|. Let 〈āi : i < ω〉 witness the explicit strong splitting (so
`(āi) = µ for all i < ω and ā0 ∈ µB). Increase the indiscernible to assume without
loss of generality that ā0 enumerates B and increase further to get 〈āi : i < θ+〉.
Pick 〈fi : i < θ+〉 automorphisms of C fixing A such that f0 is the identity and
fi(ā0ā1) = āiāi+1 for each i < θ+. We claim that 〈āi : i < θ+〉, 〈fi : i < θ+〉
witness the dividing over A.

Indeed, suppose for a contradiction that b realizes fi(p) for each i < θ+. In par-
ticular, b realizes f0(p) = p. By (∗)µ+,θ,σ, there exists i < θ+ such that gtp(bāi/A) =

gtp(bāi+1/A). Applying f−1
i to this equation, we get that gtp(cā0/A) = gtp(cā1/A),

where c := f−1
i (b). But since b realizes fi(p), c realizes p. This contradicts the

strong splitting assumption. �

We have arrived to the following result:

Lemma 19.9.8. Let µ1 ≥ µ0 ≥ LS(K) be such that K is stable in both µ0 and
µ1. Assume further that K does not have the µ0-order property.

Let α < µ+
0 be a regular cardinal. If µα1 > µ1, then:

α ∈ κwk(iµ0-strong-spl(Kµ0
), <univ

K )

Proof. By Fact 19.9.6, (∗)µ+
0 ,h(µ0),µ+

0
holds.

Now let 〈Mi : i < α〉 be <univ
K -increasing in Kλ. Let p ∈ gS(

⋃
i<αMi). By

Fact 19.9.4, there exists i < α such that p � Mi+1 does not divide over Mi. By
Lemma 19.9.7, p � Mi+1 does not explicitly λ-strongly split over Mi. By Lemma
19.8.7 (recall that Mi+1 is universal over Mi), p � Mi+1 does not λ-strongly split
over Mi. �

Our aim in the next section will be to show that non-strong splitting has weak
uniqueness. This will allow us to apply the results of Section 19.3 and (assuming
enough locality) replace κwk by κ.

19.10. Strong splitting in stable tame AECs

Hypothesis 19.10.1. K is an LS(K)-tame AEC with a monster model.

Why do we assume tameness? Because we would like to exploit the uniqueness
of strong splitting (Lemma 19.8.8), but we want to be able to conclude p = q, and
not just p � B = q � B for every small B. This will allow us to use the tools of
Section 19.3.

Definition 19.10.2. For µ ≥ LS(K), let χ∗(µ) ∈ [µ+, h(µ) be the least cardinal
χ∗ such that whenever A has size at most µ and α < µ+ then c(Emin,A,α) < χ∗ (it
exists by Lemma 19.7.10).
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The following is technically different from the µ-forking defined in Definition
4.4.2 (which uses µ-splitting), but it is patterned similarly.

Definition 19.10.3. For p ∈ gS(B), we say that p does not µ-fork over (M0,M)
if:

(1) M0 ≤K M , |M | ⊆ B.
(2) M0 ∈ Kµ.
(3) M is χ∗(µ)-saturated over M0.
(4) p does not µ-strongly split over M0.

We say that p does not µ-fork over M if there exists M0 such that p does not
µ-fork over (M0,M).

The basic properties are satisfied:

Lemma 19.10.4.

(1) (Invariance) For any automorphism f of C, p ∈ gS(B) does not µ-fork
over (M0,M) if and only if f(p) does not µ-fork over (f [M0], f [M ]).

(2) (Monotonicity) Let M0 ≤K M ′0 ≤K M ≤K M ′, |M ′| ⊆ B. Assume that
M0,M

′
0 ∈ Kµ and M is χ∗(µ)-saturated over M ′0

Let p ∈ gS(B) be such that p does not µ-fork over (M0,M). Then:
(a) p does not µ-fork over (M ′0,M).
(b) p does not µ-fork over (M0,M

′).

Proof. Invariance is straightforward. We prove monotonicity. Assume that
M0,M

′
0,M,M ′, B, p are as in the statement. First we have to show that p does

not µ-fork over (M ′0,M). We know that p does not µ-strongly split over M0. Since
M ′0 ∈ Kµ, Lemma 19.8.4 implies that p does not µ-strongly split over M ′0, as
desired.

Similarly, it follows directly from the definitions that p does not µ-fork over
(M0,M

′). �

This justifies the following definition:

Definition 19.10.5. For λ ≥ LS(K), we write iµ-forking(Kλ) for the indepen-
dence relation with class Kλ and independence relation induced by non-µ-forking.

We now want to show that under certain conditions iµ-forking(Kλ) has weak
uniqueness (see Definition 19.3.3). First, we show that when two types do not fork
over the same sufficiently saturated model, then the “witness” M0 to the µ-forking
can be taken to be the same.

Lemma 19.10.6. Let M be χ∗(µ)-saturated. Let |M | ⊆ B. Let p, q ∈ gS(B)
and assume that both p and q do not µ-fork over M . Then there exists M0 such
that both p and q do not µ-fork over (M0,M).

Proof. Say p does not fork over (Mp,M) and q does not fork over (Mq,M).
Pick M0 ≤K M of size µ containing both Mp and Mq. This works since M is
χ∗(µ)-saturated and χ∗(µ) > µ. �

Lemma 19.10.7. Let µ ≥ LS(K). Let M ∈ K≥µ and let B be a set with
|M | ⊆ B. Let p, q ∈ gS(B) and assume that p �M = q �M .

(1) (Uniqueness over χ∗-saturated models) If M is χ∗(µ)-saturated and p, q
do not µ-fork over M , then p = q.
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(2) (Weak uniqueness) Let λ > χ∗(µ) be a stability cardinal. Let M0 ≤K M
be such that M0,M ∈ Kλ and M is universal over M0. If p, q do not µ-fork
over M0, then p = q. In other words, iµ-forking(Kλ) has weak uniqueness.

Proof.

(1) By Lemma 19.10.6, we can pick M0 such that both p and q do not µ-fork
over (M0,M). By Lemma 19.8.8, p = q.

(2) Using stability, we can build M ′ ∈ Kλ that is χ∗(µ)-saturated with
M0 ≤K M ′. Without loss of generality (using universality of M over
M0), M ′ ≤K M . By base monotonicity, both p and q do not µ-fork over
M ′. Since p � M = q � M , we also have that p � M ′ = q � M ′. Now use
the first part.

�

The following theorem is the main result of this section, so we repeat its global
hypotheses here for convenience.

Theorem 19.10.8. Let K be an LS(K)-tame AEC with a monster model.
Let µ0 ≥ LS(K) be a stability cardinal. Let λ > χ∗(µ0) be another stability

cardinal. For any µ1 ≥ µ0, if K is stable in µ1 then µ
<κwk(Kλ,<

univ
K )

1 = µ1 (recall
Definition 19.3.8).

The proof will use the following fact (recall from Hypothesis 19.10.1 that we
are working inside the monster model of a tame AEC):

Fact 19.10.9 (Theorem 2.4.15). The following are equivalent:

(1) K is stable.
(2) K does not have the LS(K)-order property.

Proof of Theorem 19.10.8. We prove that for any regular cardinal α < λ+,
if µα1 > µ1 then α ∈ κwk(Kλ, <

univ
K ). This suffices because the least cardinal α such

that µα1 > µ1 is regular.
Note that by definition κwk(Kλ, <

univ
K ) is an end segment of regular cardinals.

Note also that by Lemma 19.10.7, i := iµ0-forking(Kλ) has weak uniqueness and thus
we can use the results from Section 19.3 also on i.

By Fact 19.4.3 and 19.4.4, µ+
0 ∈ κ(Kλ, <

univ
K ). Therefore we may assume that

α < µ+
0 .

By Fact 19.10.9, K does not have the LS(K)-order property. By Lemma
19.9.8, α ∈ κwk(iµ0-strong-spl(Kµ0

), <univ
K ). As in Section 4.4, this implies that α ∈

κwk(iµ0-forking(Kλ), <univ
K ). But by Lemma 19.3.9, this means that α ∈ κwk(Kλ, <

univ
K

). �

19.11. Stability theory assuming continuity of splitting

In this section, we will assume that splitting has the weak continuity property
studied in Section 19.3:

Definition 19.11.1. For K an AEC with a monster model, we say that splitting
has weak continuity if for any µ ∈ Stab(K), κcont(Kµ, <

univ
K ) = ℵ0.

Recall that Theorem 19.3.7 shows that splitting has weak continuity under
certain locality hypotheses. In particular, this holds in any class from homogeneous
model theory and any universal class.
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Assuming continuity and tameness, we have that χ(K) is an end-segment of
regular cardinals (see Corollary 19.2.6). Therefore χ(K) is simply the minimal
cardinal in χ(K). We have the following characterization of χ(K):

Theorem 19.11.2. Let K be a stable LS(K)-tame AEC with a monster model.
If splitting has weak continuity, then χ(K) is the maximal cardinal χ such that

for any µ ≥ LS(K), if K is stable in µ then µ = µ<χ.

Proof. First, let µ ≥ LS(K) be a stability cardinal. By Theorem 19.10.8
(recalling Corollary 19.2.6), µ<χ(K) = µ.

Conversely, consider the cardinal µ := iχ(K)(λ
′(K)). By Fact 19.4.1, K is

stable in µ. However cf µ = χ(K) so µχ(K) > µ. In other words, there does not
exist a cardinal χ > χ(K) such that µ<χ = µ. �

Still assuming continuity, we deduce an improved bound on χ(K) (compared
to Remark 19.4.7) and an explicit bound on λ′(K):

Theorem 19.11.3. Let K be a stable LS(K)-tame AEC with a monster model
and assume that splitting has weak continuity.

(1) χ(K) ≤ λ(K) < H1.
(2) λ(K) ≤ λ′(K) < h(λ(K)) < iH1

.

Proof.

(1) That λ(K) < H1 is Fact 19.4.1. Now by Theorem 19.11.2, λ(K)<χ(K) =
λ(K) and hence χ(K) ≤ λ(K).

(2) Let λ′ be the least stability cardinal above χ∗(λ(K)) (see Definition 19.10.2).
We have that λ′ < h(λ(K)). We claim that λ′(K) ≤ λ′. Indeed by Theo-

rem 19.10.8, for any stability cardinal µ, we have that µ<κ(Kλ′ ,<
univ
K ) = µ.

We know that χ(K) is the maximal cardinal with that property, but on
the other hand we have that χ(K) ≤ κ(Kλ′ , <

univ
K ) by definition. We

conclude that χ(K) = κ(Kλ′ , <
univ
K ), as desired.

�

Theorem 19.11.3 together with Corollary 19.4.24 partially answers Question
9.1.8, which asked whether the least µ such that K is µ-superstable must satisfy
µ < H1. We know now that (assuming continuity of splitting) µ ≤ λ′(K) < iH1 ,
so there is a Hanf number for superstability but whether it is H1 (rather than iH1

)
remains open.

We also obtain an analog of Corollary 19.4.22:

Corollary 19.11.4. Let K be an LS(K)-tame AEC with a monster model
and assume that splitting has weak continuity. For any µ ≥ λ′(K) + θ(λ(K)), K is
stable in µ if and only if µ = µ<χ(K).

Proof. The left to right direction follows from Theorem 19.11.2 and the right
to left direction is by Fact 19.4.1 and the definition of θ(λ(K)) (recalling that
µ = µ<χ(K) implies that cf µ ≥ χ(K)). �

We emphasize that for the right to left directions of Corollary 19.4.22 to be
nontrivial, we need θ(λ(K)) <∞, which holds under various set-theoretic hypothe-
ses by Fact 19.4.20. This is implicit in Section 4.5. The left to right direction is
new and does not need the boundedness of θ(λ(K)) (Theorem 19.11.2).
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19.11.1. On the uniqueness of limit models. It was shown in [BVa] that
continuity of splitting implies a nice local behavior of limit models in stable AECs:

Fact 19.11.5 (Theorem 1 in [BVa]). Let K be an AEC and let µ ≥ LS(K).
Assume that Kµ has amalgamation, joint embedding, no maximal models, and is
stable in µ. If:

(1) δ ∈ κ(Kµ, <
univ
K ) ∩ µ+.

(2) κcont(Kµ, <
univ
K ) = ℵ0.

(3) K has (µ, δ)-symmetry.

Then whenever M0,M1,M2 ∈ Kµ are such that both M1 and M2 are (µ,≥ δ)-
limit over M0 (recall Section 19.2.4), we have that M1

∼=M0
M2.

We will not need to use the definition of (µ, δ)-symmetry, only the following
fact, which combines [BVa, 18] and the proof of [Van16a, 2].

Fact 19.11.6. Let K be an AEC and let µ ≥ LS(K). Assume that Kµ has
amalgamation, joint embedding, no maximal models, and is stable in µ. Let δ < µ+

be a regular cardinal. If whenever 〈Mi : i < δ〉 is an increasing chain of saturated
models in Kµ+ we have that

⋃
i<δMi is saturated, then K has (µ, δ)-symmetry.

We can conclude that in tame stable AECs with weak continuity of splitting,
any two big-enough (≥ χ(K))-limits are isomorphic.

Theorem 19.11.7. Let K be an LS(K)-tame AEC with a monster model.
Assume that splitting has weak continuity.

Let χ0 < H1 be as given by Fact 19.4.10. Then for any stability cardinal
µ ≥ λ′(K) + χ0 and any M0,M1,M2 ∈ Kµ, if both M1 and M2 are (µ,≥ χ(K))-
limit over M0, then M1

∼=M0
M2.

Proof. By Fact 19.4.10, we have that the union of an increasing chain of
saturated models in Kµ+ of length χ(K) is saturated. Therefore by Fact 19.11.6,
K has (µ, χ(K))-symmetry. Now apply Fact 19.11.5. �

We deduce the following improvement on Theorem 19.4.13 in case splitting has
weak continuity:

Corollary 19.11.8. Let K be an LS(K)-tame AEC with a monster model.
Assume that splitting has weak continuity.

Let χ0 < H1 be as given by Fact 19.4.10. For any stability cardinal µ ≥
λ′(K) + χ0, there is a saturated model of cardinality µ.

Proof. There is a (µ, χ(K))-limit model of cardinality µ, and it is saturated
by Theorem 19.11.7. �

In Fact 19.4.10, it is open whether Hypothesis (1) can be removed. We aim
to show that it can, assuming continuity of splitting and SCH. We first revisit
an argument of VanDieren [Van16b] to show that one can assume stability in λ
instead of stability in unboundedly many cardinals below λ.

Lemma 19.11.9. Let K be an LS(K)-tame AEC with a monster model. Let
µ > LS(K). Assume that K is stable in both LS(K) and µ. Let 〈Mi : i < δ〉
be an increasing chain of µ-saturated models. If cf δ ∈ κ(KLS(K), <

univ
K ) and the

(µ, δ)-limit model is saturated, then
⋃
i<δMi is µ-saturated.
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Let us say a little bit about the argument. VanDieren [Van16b] shows that
superstability in λ and µ := λ+ combined with the uniqueness of limit models in λ+

implies that unions of chains of λ+-saturated models are λ+-saturated. One can use
VanDieren’s argument to prove that superstability in unboundedly many cardinals
below µ implies that unions of chains of µ-saturated models are µ-saturated, and
this generalizes to the stable case too. However the case that interests us here is
when K is stable in µ and not necessarily in unboundedly many cardinals below
(the reader can think of µ as being the successor of a singular cardinal of low
cofinality). This is where tameness enters the picture: by assuming stability e.g. in
LS(K) as well as LS(K)-tameness, we can transfer the locality of splitting upward
and the main idea of VanDieren’s argument carries through (note that continuity
of splitting is not needed). Still several details have to be provided, so a full proof
is given here.

Proof of Lemma 19.11.9. For M0 ≤K M ≤K N , let us say that p ∈ gS(N)
does not fork over (M0,M) if M is ‖M0‖+-saturated over M0 (recall Definition
19.8.6) and M0 ∈ KLS(K). Say that p does not fork over M if there exists M0 so
that it does not fork over (M0,M).

Without loss of generality, δ = cf δ < µ. Let Mδ :=
⋃
i<δMi. Let N ≤K Mδ

with N ∈ K<µ. Let p ∈ gS(N). We want to see that p is realized in Mδ. We may
assume without loss of generality that Mi ∈ Kµ for all i ≤ δ. Let q ∈ gS(Mδ) be
an extension of p.

Since δ ∈ κ(KLS(K), <
univ
K ), using Section 4.4 there exists i < δ such that q does

not fork over Mi. This means there exists M0
i ≤K Mi such that M0

i ∈ KLS(K) and q

does not fork over (M0
i ,Mi). Without loss of generality, i = 0. Let µ0 := LS(K)+δ.

Build 〈Ni : i ≤ δ〉 increasing continuous in Kµ0 such that M0
0 ≤K N0, N ≤K Nδ,

and for all i ≤ δ, Ni ≤K Mi. Without loss of generality, N = Nδ.
We build an increasing continuous directed system 〈M∗i , fi,j : i ≤ j < δ〉 such

that for all i < δ:

(1) M∗i ∈ Kµ.
(2) Ni ≤K M∗i ≤K Mi.
(3) fi,i+1 fixes Ni.
(4) M∗i+1 is universal over M∗i .

This is possible. Take M∗0 := M0. At i limit, take M∗∗i to be the a direct limit of
the system fixing Ni and let g : M∗∗i −−→

Ni
Mi (remember that Mi is saturated). Let

M∗i := g[M∗∗i ], and define the fj,i’s accordingly. At successors, proceed similarly
and define the fi,j ’s in the natural way.

This is enough. Let (M∗δ , fi,δ)i<δ be a direct limit of the system extending Nδ
(note: we do not know that M∗δ ≤K Mδ). We have that M∗δ is a (µ, δ)-limit model,
hence is saturated. Now find a saturated C ∈ Kµ containing Mδ ∪M∗δ and such
that for each i < δ, there exists f∗i,δ an automorphism of C extending fi,δ such that

f∗i,δ[Nδ] ≤K M∗δ . This is possible since M∗δ is universal over M∗i for each i < δ. Let

N∗ ≤K M∗δ be such that N∗ ∈ Kµ0
and |Nδ| ∪

⋃
i<δ |f∗i,δ[Nδ]| ⊆ |N∗|.

Claim: For any saturated M̂ ∈ Kµ with Mδ ≤K M̂ , there exists q̂ ∈ gS(M̂)
extending q and not forking over (M0

0 , N0).
Proof of Claim: We know that M0 is saturated. Thus there exists f : M0

∼=N0

M̂ . Let q̂ := f(q � M0). We have that q̂ ∈ gS(M̂) and q̂ does not fork over
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(M0
0 , N0). Further, q̂ � N0 = q � N0. By uniqueness of nonforking (see Theorem

4.5.3), q̂ �M = q. †Claim

By the claim, there exists q̂ ∈ gS(C) extending q and not forking over (M0
0 , N0).

Because M∗δ is (µ+
0 , µ)-limit, there exists M∗∗ ∈ Kµ saturated such that N∗ ≤K

M∗∗ ≤K M∗δ and M∗δ is universal over M∗∗.
Since M∗δ is universal over M∗∗, there is b∗ ∈M∗δ realizing q̂ �M∗∗. Fix i < δ

and b ∈M∗i such that fi,δ(b) = b∗. We claim that b realizes p (this is enough since
by construction M∗i ≤K Mi ≤K Mδ). We show a stronger statement: b realizes
q̂ � M ′, where M ′ := (f∗i,δ)

−1[M∗∗]. This is stronger because N∗ ≤K M∗∗ so by

definition of N∗, N ≤K (f∗i,δ)
−1[N∗] ≤K M ′. Work inside C. Since q̂ does not fork

over (M0
0 , N0), also q̂ �M∗∗ = gtp(b∗/M∗∗) does not fork over (M0

0 , N0). Therefore
gtp(b/M ′) does not fork over (M0

0 , N0). Moreover, gtp(b/N0) = gtp(b∗/N0) = q̂ �
N0, since fi,δ fixes N0. By uniqueness, gtp(b/M ′) = q̂ � M ′. In other words, b
realizes q̂ �M ′, as desired. �

Remark 19.11.10. It is enough to assume that amalgamation and the other
structural properties hold only in K[LS(K),µ].

We have arrived to the second main result of this section. Note that the second
case below is already known (Fact 19.4.10), but the others are new.

Theorem 19.11.11. Let K be an LS(K)-tame AEC with a monster model.
Assume that splitting has weak continuity.

Let χ0 < H1 be as given by Fact 19.4.10. Let λ > λ′(K)+χ0 and let 〈Mi : i < δ〉
be an increasing chain of λ-saturated models. If cf δ ≥ χ(K), then

⋃
i<δMi is λ-

saturated provided that at least one of the following conditions hold:

(1) K is stable in λ.
(2) K is stable in unboundedly many cardinals below λ.
(3) λ ≥ θ(λ(K)) (recall Definition 19.4.19).
(4) SCH holds and λ ≥ 2λ(K).

Proof.

(1) We check that the hypotheses of Lemma 19.11.9 hold, with K, µ there
standing for K≥λ′(K), λ here. By definition and assumption, K is stable

in both λ′(K) and λ. Furthermore, cf δ ∈ κ(Kλ′(K), <
univ
K ) by definition of

λ′(K) and χ(K). Finally, any two (λ,≥ cf δ)-limit models are isomorphic
by Theorem 19.11.7.

(2) If λ is a successor, then K is also stable in λ by Fact 19.4.1(3) so we can
use the first part. If λ is limit, then we can use the first part with each
stability cardinal µ ∈ (λ′(K) + χ0, λ) to see that the union of the chain
is µ-saturated. As λ is limit, this implies that the union of the chain is
λ-saturated.

(3) By definition of θ(λ(K)), λ is almost λ(K)-closed. By Lemma 19.4.16,
either K is stable in λ or K is stable in unboundedly many cardinals
below λ, so the result follows from the previous parts.

(4) This is a special case of the previous part, see Fact 19.4.20.

�

19.12. Applications to existence and homogeneous model theory

We present here the following application of Lemma 19.4.12:
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Theorem 19.12.1. Let K be an AEC and let λ ≥ LS(K). Assume that K has
amalgamation in λ, no maximal models in λ, is stable in λ, and is categorical in λ.
Let µ ≤ λ be a regular cardinal.

If K is (< µ)-tame, then K is λ-superstable (recall Definition 19.4.23). In
particular, it has a model of cardinality λ++.

Remark 19.12.2. Here, (< µ)-tameness is defined using Galois types over sets,
see Definition 2.2.23.

Theorem 19.12.1 can be seen as a partial answer to the question “what stability-
theoretic properties in λ imply the existence of a model in λ++?” (this question is
in turn motivated by the problem [She09a, I.3.21] of whether categoricity in λ and
λ+ should imply existence of a model in λ++). It is known that λ-superstability
is enough (Theorem 6.8.9). Theorem 19.12.1 shows that in fact λ-superstability is
implied by categoricity, amalgamation, no maximal models, stability, and tameness.
In case λ = ℵ0, Chapter 23 shows more: amalgamation in ℵ0, no maximal models
in ℵ0, and stability in ℵ0 together imply (< ℵ0)-tameness and ℵ0-superstability.

Before proving Theorem 19.12.1, we state a corollary to homogeneous model
theory (see [She70] or the exposition in [GL02]). The result is known in the
first-order case [She90, VIII.0.3] but to the best of our knowledge, it is new in
homogeneous model theory.

Corollary 19.12.3. Let D be a homogeneous diagram in a first-order theory
T . If D is both stable and categorical in |T |, then D is stable in all λ ≥ |T |.

Proof. Let KD be the class of D-models of T . It is easy to check that it
is an (< ℵ0)-tame AEC with a monster model. By Theorem 19.12.1, KD is |T |-
superstable. Now apply Fact 19.4.25. �

Proof of Theorem 19.12.1. The “in particular” part is by the proof of The-
orem 6, which shows that λ-superstability implies no maximal models in λ+. We
now prove that K is λ-superstable. For this it is enough to show that κ(Kλ, <

univ
K

) = ℵ0. So let δ < λ+ be a regular cardinal. We want to see that δ ∈ κ(Kλ, <
univ
K ).

We consider two cases:

• Case 1: δ < λ. Let 〈Mi : i ≤ δ〉 be <univ
K -increasing continuous in Kλ and

let p ∈ gS(Mδ). Then by categoricity Mδ is (λ, δ+ +µ)-limit, so the proof
of Lemma 19.4.12 directly gives that there exists i < δ such that p does
not λ-split over Mi.

• Case 2: δ = λ. Note first that this means λ is regular. By [She99,
I.3.3(2)], λ ∈ κwk(Kλ, <

univ
K ). By assumption, K is (< λ)-tame, thus

it is weakly λ-local (recall Definition 19.3.6). By Theorem 19.3.7, λ ∈
κcont(Kλ, <

univ
K ). By Fact 19.2.5, δ = λ ∈ κ(Kλ, <

univ
K ), as desired.

�





CHAPTER 20

Superstability from categoricity in abstract
elementary classes

This chapter is based [BGVV17] and is joint work with Will Boney, Rami
Grossberg, and Monica VanDieren. We thank the referee for comments that helped
improve the presentation of this work.

Abstract

Starting from an abstract elementary class with no maximal models, Shelah and
Villaveces have shown (assuming instances of diamond) that categoricity implies a
superstability-like property for nonsplitting, a particular notion of independence.
We generalize their result as follows: given any abstract notion of independence
for Galois (orbital) types over models, we derive that the notion satisfies a super-
stability property provided that the class is categorical and satisfies a weakening
of amalgamation. This extends the Shelah-Villaveces result (the independence no-
tion there was splitting) as well as a result of Boney and Grossberg where the
independence notion was coheir. The argument is in ZFC and fills a gap in the
Shelah-Villaveces proof.

20.1. Introduction

20.1.1. General motivation and history. Forking is one of the central
notions of model theory, discovered and developed by Shelah in the seventies for
stable and NIP theories [She78]. One way to extend Shelah’s first-order stability
theory is to move beyond first-order. In the mid seventies, Shelah did this by
starting the program of classification theory for non-elementary classes focusing
first on classes axiomatizable in Lω1,ω(Q) [She75a] and later on the more general
abstract elementary classes (AECs) [She87a]. Roughly, an AEC is a pair K =
(K,≤K) satisfying some of the basic category-theoretic properties of (Mod(T ),≺)
(but not the compactness theorem). Among the central problems, there are the
decades-old categoricity and eventual categoricity conjectures of Shelah. In this
chapter, we assume that the reader has a basic knowledge of AECs, see for example
[Gro02] or [Bal09].

One key shift in this program is the move away from syntactic types (studied in
the Lλ+,ω context by [She72, GS86b, GS86a] and others) and towards a seman-
tic notion of type, introduced in [She87b] and named Galois type by Grossberg
[Gro02].1 This has an easy definition when the class K has amalgamation, joint
embedding and no maximal models, as these properties allow us to assume that all
the elements of K we would like to discuss are substructures of a “monster” model

1Shelah uses the name orbital types in some later papers.
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C ∈ K. In that case, gtp(b̄/A) is defined as the orbit of b̄ under the action of the
group AutA(C) on C. One can also develop the notion of Galois type without the
above assumption, however then the definition is more technical.

20.1.2. Independence, superstability, and no long splitting chains in
AECs. In [She99] a first candidate for an independence relation was introduced:
the notion of µ-splitting (for M0 ≤K M both in Kµ, p ∈ gS(M) µ-splits over M0

provided there are M0 ≤K M` ≤K M , ` = 1, 2 and f : M1
∼=M0

M2 such that
f(p �M1) 6= p �M2).

This notion was used by Shelah to establish a downward version of his cate-
goricity conjecture from a successor for classes having the amalgamation property.
Later similar arguments [GV06c, GV06a] were used to derive a strong upward
version of Shelah’s conjecture for classes satisfying the additional locality property
of (Galois) types called tameness.

In Chapter II of [She09a], Shelah introduced good λ-frames: an axiomatic
definition of forking on Galois types over models of size λ. The notion is, by
definition, required to satisfy basic properties of forking in superstable first-order
theories (e.g. symmetry, extension, uniqueness, and local character). The theory of
good λ-frames is well-developed and has had several applications to the categoricity
conjecture (see Chapters III and IV of [She09a] and this thesis).

Constructions of good frames rely on weaker independence notions like nonsplit-
ting, see e.g. Chapters 4 and 10. A key property of splitting in these constructions
is that there is “no long splitting chains in Kµ”: if 〈Mi : i ≤ α〉 is an increasing
continuous chain in Kµ (so α < µ+ is a limit ordinal) and Mi+1 is universal over Mi

for each i < α, then for any p ∈ gS(Mα) there exists i < α so that p does not µ-split
over Mi (this is called strong universal local character at α in the present chapter,
see Definition 20.2.1). This can be seen as a replacement for the statement “every
type does not fork over a finite set”. The property is already studied in [She99],
and has several nontrivial consequences: for example (assuming amalgamation,
joint embedding, no maximal models, stability in µ, and tameness), no long split-
ting chains in Kµ implies that K is stable everywhere above µ (Theorem 4.5.6) and
has a good µ+-frame on the subclass of saturated models of cardinality µ+ (Corol-
lary 10.6.14). No long splitting chains has consequences for the uniqueness of limit
models, another superstability-like property saying in essence that saturated models
can be built in few steps (see for example [SV99, Van06, Van13, Van16a]).

Boney and Grossberg have explored another approach to independence by
adapting the notion of coheir to AECs. They have shown that for classes satisfying
amalgamation which are also tame and short (a strengthening of tameness, using
the variables of a type instead of its parameters), failure of a certain order property
implies that coheir has some basic properties of forking from a stable first-order
theory. There the “no long coheir chain” property also has strong consequences
(for example on the uniqueness of limit models [BG, Corollary 6.18]).

20.1.3. No long splitting chains from categoricity. It is natural to ask
whether no long splitting chains (or no long coheir chains) in Kµ follows from
categoricity above µ. Shelah has shown that this holds for splitting (assuming
amalgamation and no maximal models) if the categoricity cardinal has cofinality
greater than µ [She99, Lemma 6.3]. Without any cofinality restriction, a break-
through was made in a paper of Shelah and Villaveces when they proved no long
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splitting chains assuming no maximal models and instances of diamond [SV99,
Theorem 2.2.1]. Later, Boney and Grossberg used the Shelah-Villaveces argument
to derive the result in their context also for coheir [BG, Theorem 6.8]. It was also
observed in earlier versions of Chapter 9 that the Shelah-Villaveces argument does
not need diamond if one assumes full amalgamation. In conclusion we have:

Fact 20.1.1. Let K be an AEC with no maximal models. Let LS(K) ≤ µ < λ
and assume that K is categorical in λ.

(1) [SV99, Theorem 2.2.1] If ♦
Sµ

+

cf µ

holds then K has no long splitting chains

in Kµ.
(2) [BG, Theorem 6.8] If K has amalgamation, κ ∈ (LS(K), µ), K does not

have the weak κ-order property and is fully (< κ)-tame and short, then
K has no long coheir chains in Kµ.

(3) If K has amalgamation, then K has no long splitting chains in Kµ.

Remark 20.1.2. Fact 20.1.1 has applications to more “concrete” frameworks
than AECs. One can deduce from it (and the aforementioned fact that no long
splitting chains implies stability on a tail in the presence of tameness) an alternate
proof that a first-order theory T categorical above |T | is superstable. More gener-
ally, one obtains the same statement for the class K of models of a homogeneous
diagram in T [She70]. The later was open for |T | uncountable and K categorical
in ℵω(|T |) (see Section 11.4).

20.1.4. Gaps in the Shelah-Villaveces proof. In a preliminary version of
[BG], the proof of Theorem 6.8 referred to the argument used in [SV99, Theorem
2.2.1]. The referee of [BG] insisted that the full argument necessary for Theorem
6.8 be included. After looking closely at the argument in [SV99], we concluded
that there was a small gap in the division of cases and a need to specify the exact
use of the club guessing principle that they imply.

More specifically, Shelah and Villaveces [SV99, Theorem 2.2.1] assume for a
contradiction that no long splitting chains fails and can divide the situation into
three cases, (a), (b), and (c). In the division into cases [SV99, Claim 2.2.3], just
after the statement of property ⊗i, Shelah and Villaveces claim that they can
“repeat the procedure above” on a certain chain of models of length µ. However
the “procedure above” was used on a chain of length σ, where σ is a regular cardinal
and regularity was used in the proof. As µ is a potentially singular cardinal, there
is a problem.

Once the division of cases is done, Shelah and Villaveces prove that cases (a),
(b), (c) contradict categoricity. When proving this for (b), they use a club-guessing
principle for µ+ on the stationary set of points of cofinality σ (see Fact 20.2.9). The
principle only holds when σ < µ, so the case σ = µ is missing.

20.1.5. Statement and discussion of the main theorem. In this chapter,
we give a generalized, detailed, and corrected proof of Fact 20.1.1 that does not
rely on any of the material in [SV99]. The key definitions are given at the start of
the next section and the first seven hypotheses are collected in Hypothesis 20.2.3.

Theorem 20.1.3 (Main Theorem). If :

(1) K is an AEC.
(2) µ ≥ LS(K).
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(3) For every M ∈ Kµ, there exists an amalgamation base M ′ ∈ Kµ such
that M ≤K M ′.

(4) For every amalgamation base M ∈ Kµ, there exists an amalgamation base
M ′ ∈ Kµ such that M ′ is universal over M .

(5) Every limit model in Kµ is an amalgamation base.

(6)
∗

^ is as in Definition 20.2.1 with K∗ the class of amalgamation bases in
Kµ (ordered with the strong substructure relation inherited from K).

(7)
∗

^ satisfies invariance (I) and monotonicity (M).

(8)
∗

^ has weak universal local character at some cardinal σ < µ+.
(9) K has an Ehrenfeucht-Mostowski (EM) blueprint Φ with |τ(Φ)| ≤ µ such

that every M ∈ K[µ,µ+] embeds inside EMτ (µ+,Φ) (where we write τ :=
τ(K)).

Then
∗

^ has strong universal local character at all limit ordinals α < µ+.

Remark 20.1.4. As in [SV99], when we say that M is an amalgamation base
we mean that it is an amalgamation base in the class K‖M‖, i.e. we do not require
that larger models can be amalgamated over M .

Some of the hypotheses of Theorem 20.1.3 may appear technical. Let us give
a little more motivation.

• Hypotheses (3-5) are the statements that Shelah and Villaveces derive (as-
suming instances of diamond) from categoricity and no maximal models.
It is well known that they hold in AECs with amalgamation.

• Hypothesis (4) implies stability in µ.
• Hypothesis (8) can be seen as a consequence of stability (akin to “every

type does not fork over a set of size at most µ”).
• Hypothesis (9) follows from categoricity (see the proof of Corollary 20.1.5).

In fact, it is strictly weaker: for a first-order theory T , (9) holds if and
only if T is superstable by Section 9.5.

How are the gaps mentioned in Section 20.1.4 addressed in our proof of Theorem
20.1.3? The first gap (in the division into cases) is fixed in Lemma 20.2.6.(4). The
second gap (in the use of the club guessing principle) is addressed here by a division
into cases in the proof of Theorem 20.1.3 at the end of this chapter: there we use
Lemma 20.2.8 only when α < σ.

Before starting to prove Theorem 20.1.3, we give several contexts in which its
hypotheses hold. This shows in particular that Fact 20.1.1 follows from Theorem
20.1.3.

Corollary 20.1.5. Let K be an AEC with arbitrarily large models. Let
LS(K) ≤ µ < λ and assume that K is categorical in λ and K<λ has no maximal
models. Then:

(1) If ♦
Sµ

+

cf µ

holds, then the hypotheses of Theorem 20.1.3 hold with
∗

^ being

non-µ-splitting.
(2) If Kµ has amalgamation, then:

(a) The hypotheses of Theorem 20.1.3 hold with
∗

^ being non-µ-splitting.



20.2. PROOF OF THE MAIN THEOREM 499

(b) If κ ∈ (LS(K), µ) is such that K does not have the weak κ-order

property, then the hypotheses of Theorem 20.1.3 hold with
∗

^ being
(< κ)-coheir (see [BG]).

Proof. Fix an EM blueprint Ψ for K (with |τ(Ψ)| ≤ µ). We first show
that there exists an EM blueprint Φ with |τ(Φ)| ≤ µ such that any M ∈ K[µ,µ+]

embeds inside EMτ (µ+,Φ). Let M ∈ K[µ,µ+]. Using no maximal models and
categoricity, M embeds inside EMτ (λ,Ψ), and hence inside EMτ (S,Ψ) for some
S ⊆ λ with |S| ≤ µ+. Therefore M also embeds inside EMτ (α,Ψ), where α :=
gtp(S) < µ++. Now it is well known (see e.g. [Bal09, Claim 15.5]) that α embeds
inside EMτ (<ωµ+,Φ). The class {<ωI | I is a linear order} is an AEC, therefore by
composing EM blueprints there exists an EM blueprint Φ for K such that |τ(Φ)| ≤ µ
and EMτ (I,Φ) = EMτ (<ωI,Ψ) for any linear order I. In particular, M embeds
inside EMτ (µ+,Φ), as desired.

As for the hypotheses on density of amalgamation bases, existence of universal
extension, and limit models being amalgamation bases, in the first context this is
proven in [SV99] (note that ♦

Sµ
+

cf µ

implies 2µ = µ+). When Kµ has full amalgama-

tion, existence of universal extension is due to Shelah. It is stated (but not proven)
in [She99, Lemma 2.2]; see [Bal09, Lemma 10.5] for a proof.

In all the contexts given, it is trivial that
∗

^ satisfies (I) and (M). In the first
context, it can be shown that non µ-splitting has weak universal local character at
any σ < µ+ such that 2σ > µ (see the proof of case (c) in [SV99, Theorem 2.2.1] or
[Bal09, Lemma 12.2]). Of course, this also holds when Kµ has full amalgamation.
As for (< κ)-coheir, it has weak universal local character at any σ < µ+ such that
2σ > κ. This is given by the proof of [BG, Theorem 6.8] (note that using a back
and forth argument, one can assume without loss of generality that any Mi+1 in
the chain is κ-saturated). �

20.1.6. Other advantages of the main theorem. As should be clear from
Corollary 20.1.5, another advantage of the main theorem is that it separates the
combinatorial set theory from the model theory (it holds in ZFC) and also shows
that there is nothing special about splitting in [SV99].

Some results here are of independent interest. For example, any independence
relation satisfying invariance and monotonicity has (assuming categoricity) a certain
continuity property (see Lemma 20.2.8).

20.2. Proof of the main theorem

We now define the weak framework for independence that we use.

Definition 20.2.1. Let K∗ be an abstract class2 and
∗

^ be a 4-ary relation

such that if a
∗

^
M0

NM holds, then M0 ≤K∗ M ≤K∗ N are all in K∗ and a ∈ |N |.

(1) The following are several properties we will assume about
∗

^ (but we will
always mention when we assume them).

2That is, a partial order (K∗,≤K∗ ) such that K∗ is a class of structures in a fixed vocabulary
closed under isomorphisms, ≤K∗ is invariant under isomorphisms, and M ≤K∗ N implies that M
is a substructure of N .
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(a)
∗

^ has invariance (I) if it is preserved under isomorphisms: if a
∗

^
M0

NM

and f : N ∼= N ′, then f(a)
∗

^
f [M0]

N ′f [M ].

(b)
∗

^ has monotonicity (M) if:

(i) If a
∗

^
M0

NM , M0 ≤K∗ M
′
0 ≤K∗ M

′ ≤K∗ M , and N ≤K∗ N
′,

then a ^
M ′0

N ′M ′; and:

(ii) If a
∗

^
M0

NM , N ′ ≤K∗ N is such that M ≤K∗ N
′ and a ∈ |N ′|,

then a
∗

^
M0

N ′M .

(2) (I) and (M) mean that this relation is really about Galois types, so we

write gtp(a/M ;N) does not ∗-fork over M0 for a
∗

^
M0

NM .

(3) For a limit ordinal α,
∗

^ has weak universal local character at α if for
any increasing continuous sequence 〈Mi ∈ K∗ | i ≤ α〉 and any type
p ∈ gS(Mα), if Mi+1 is universal over Mi for each i < α, then there is
some i0 < α such that p �Mi0+1 does not ∗-fork over Mi0 .

(4) For a limit ordinal α,
∗

^ has strong universal local character at α if for
any increasing continuous sequence 〈Mi ∈ K∗ | i ≤ α〉 and any type
p ∈ gS(Mα), if Mi+1 is universal over Mi for each i < α, then there is
some i0 < α such that p does not ∗-fork over Mi0 .

Remark 20.2.2.

(1) In the setup of Fact 20.1.1.(1), non-µ-splitting on the class K∗ of amalga-
mation bases of cardinality µ will have (I) and (M), see Fact 20.1.5.

(2) If α < β are limit ordinals and
∗

^ has weak universal local character at

α, then
∗

^ has weak universal local character at β, but this need not hold
for strong universal local character (if say cf β < cf α).

(3) If
∗

^ has (M) and
∗

^ has strong universal local character at cf α, then
∗

^
has strong universal local character at α.

(4) If
∗

^ has (M), strong universal local character at α implies weak universal
local character at α.

(5) If (as will be the case in this note) K∗ is a class of structures of a fixed
size µ, then we only care about the properties when α < µ+.

We collect the first seven hypotheses of Theorem 20.1.3 into a hypothesis that
will be assumed for the rest of the chapter.

Hypothesis 20.2.3.

(1) K is an AEC.
(2) µ ≥ LS(K).
(3) For every M ∈ Kµ, there exists an amalgamation base M ′ ∈ Kµ such

that M ≤K M ′.
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(4) For every amalgamation base M ∈ Kµ, there exists an amalgamation base
M ′ ∈ Kµ such that M ′ is universal over M .

(5) Every limit model in Kµ is an amalgamation base.

(6)
∗

^ is as in Definition 20.2.1 with K∗ the class of amalgamation bases in
Kµ (ordered with the strong substructure relation inherited from K).

(7)
∗

^ satisfies invariance (I) and monotonicity (M).

The proof of Theorem 20.1.3 can be decomposed into two steps. First, we study
two more variations on local character: continuity and absence of alternations. We
show that if strong local character fails but enough weak local character holds, then
there must be some failure of continuity, or some alternations. Second, we show
that categoricity (or more precisely the existence of a universal EM model in µ+)
implies continuity and absence of alternations. The first step uses the weak local
character (but not categoricity, it is essentially forking calculus) but the second
does not (but does use categoricity).

The precise definitions of continuity and alternations are as follows.

Definition 20.2.4. Let K∗ and
∗

^ be as in Definition 20.2.1 and let α be a
limit ordinal.

(1)
∗

^ has universal continuity at α if for any increasing continuous sequence
〈Mi ∈ K∗ | i ≤ α〉 and any type p ∈ gS(Mα), if for each i < α Mi+1 is
universal over Mi and p � Mi does not ∗-fork over M0, then p does not
∗-fork over M0.

(2) For δ < µ+ a limit,
∗

^ has no δ-limit alternations at α if for any increasing
continuous sequence 〈Mi ∈ K∗ | i ≤ α〉 with Mi+1 (µ, δ)-limit over Mi

for all i < α and any type p ∈ gS(Mα), there exists i < α such that the
following fails: p � M2i+1 ∗-forks over M2i and p � M2i+2 does not ∗-fork

over M2i+1. If this fails, we say that
∗

^ has δ-limit alternations at α.

Note that the failure of universal continuity and no δ-limit alternation corre-
spond respectively to cases (a) and (b) in the proof of [SV99, Theorem 2.2.1].
Case (c) there corresponds to failure of weak universal local character at µ (which
is assumed to hold here, see (8) of Theorem 20.1.3).

The following technical lemmas and proposition implement the first step de-
scribed after the statement of Hypothesis 20.2.3. In particular, Proposition 20.2.7
below says that if we can prove weak local character at some σ, continuity and no
alternations at all α, then strong local character at all α follows. Lemma 20.2.6 is
a collection of preliminary steps toward proving Proposition 20.2.7. Lemma 20.2.5
is used separately in the proof of the main theorem (it says that weak universal
local character implies the absence of alternations). Throughout, recall that we are
assuming Hypothesis 20.2.3.

Lemma 20.2.5. Let σ < µ+ be a (not necessarily regular) cardinal and δ < µ+

be a limit ordinal. If
∗

^ has weak universal local character at σ, then
∗

^ has no
δ-limit alternations at σ.

Proof. Fix 〈Mi : i ≤ α〉, δ, p as in the definition of having no δ-limit alterna-
tions. Apply weak universal local character to the chain 〈M2i : i ≤ α〉. �
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We now outline the proof of Proposition 20.2.7. Again, it may be helpful to
remember that we will later prove that (in the context of Theorem 20.1.3) continuity
holds at all lengths and that there are no alternations.

Two important basic results are

• continuity together with weak local character imply strong local character
at regular length (Lemma 20.2.6.(1)); and

• it does not matter whether in the definition of weak and strong univer-
sal local character we require “Mi+1 limit over Mi” or “Mi+1 universal
over Mi,” and the length of the limit models does not matter (Lemma
20.2.6.(2)).

The first of these is proven by contradiction, and the second is a straightforward
argument using universality.

Assume for a moment we have strong universal local character at some limit
length γ. Let us try to prove weak universal local character at (say) ω (then we can
use the first basic result to get the strong version, assuming continuity). By the
second basic result, we can assume we are given an increasing continuous sequence
〈Mn : n ≤ ω〉 with Mn+1 (µ, γ)-limit over Mn for all n < ω and p ∈ gS(Mω). By
the strong universal local character assumption we know that p � Mn+1 does not
∗-fork over some intermediate model between Mn and Mn+1, so if we assume that
p � Mn+1 ∗-forks over Mn for all n < ω, we will end up getting alternations. This
is the essence of Lemma 20.2.6.(5).

Thus to prove strong universal local character at all cardinals, it is enough to
obtain it at some cardinal. Fortunately in the hypothesis of Proposition 20.2.7, we
are already assuming weak universal local character at some σ. If σ is regular we
are done by the first basic result, but unfortunately σ could be singular. In this
case Lemma 20.2.6.(4) (using Lemma 20.2.6.(3) as an auxiliary claim) shows that
failure of strong universal local character at σ implies alternations, even when σ is
singular.

Lemma 20.2.6. Let α < µ+ be a regular cardinal, σ < µ+ be a (not necessarily
regular) cardinal, and δ < µ+ be a limit ordinal.

(1) If
∗

^ has universal continuity at α and weak universal local character at

α, then
∗

^ has strong universal local character at α.
(2) We obtain an equivalent definition of weak [strong] universal local char-

acter at σ, if in Definition 20.2.1.(3) [20.2.1.(4)] we ask in addition that
“Mi+1 is (µ, δ)-limit over Mi” for all i < σ.

(3) Assume that
∗

^ has weak universal local character at σ. Let 〈Mi : i ≤ σ〉
be increasing continuous in K∗ with Mi+1 universal over Mi for all i < σ.
For any p ∈ gS(Mσ) there exists a successor i < σ such that p � Mi+1

does not ∗-fork over Mi.

(4) If
∗

^ has universal continuity at σ, weak universal local character at σ, and

no δ-limit alternations at ω, then
∗

^ has strong universal local character
at σ.
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(5) Assume that
∗

^ has strong universal local character at σ. If
∗

^ does not

have weak universal local character at α, then
∗

^ has σ-limit alternations
at α.

Proof.

(1) Suppose that 〈Mi : i ≤ α〉, p is a counterexample.

Claim: For each i < α, there exists ji ∈ (i, α) such that p � Mji

∗-forks over Mi.

Proof of Claim: If i < α is such that for all j ∈ (i, α), p � Mj does
not ∗-fork over Mi, then applying universal continuity at α on the chain
〈Mk : k ∈ [i, α]〉 we would get that p does not ∗-fork over Mi, contradict-
ing the choice of 〈Mi : i ≤ α〉, p. †Claim

Now define inductively for i ≤ α, k0 := 0, ki+1 := jki , and when
i is limit ki := supj<i kj . Note that 〈ki : i ≤ α〉 is strictly increasing
continuous and i < α implies ki < α (this uses regularity of α; when α is
singular, see (4)).

Apply weak universal local character to the chain 〈Mki : i ≤ α〉 and
the type p. We get that there exists i < α such that p � Mki+1

does not
∗-fork over Mki . This is a contradiction since ki+1 = jki and we chose jki
so that p �Mjki

∗-forks over Mki .

(2) We prove the result for weak universal local character, and the proof for
the strong version is similar. Fix 〈M0

i : i ≤ σ〉, p witnessing failure of weak
universal local character at σ. We build a witness of failure 〈Mi : i ≤ σ〉,
p such that Mσ = M0

σ , and Mi+1 is (µ, δ)-limit over Mi for each i < α.
Using existence of universal extensions, we can extend each M0

i to M∗i
that is (µ, δ)-limit over M0

i . Since M0
i+1 is universal over M0

i , we can

find fi : M∗i+1 →M0
i
M0
i+1. Since limit models are amalgamation bases,

fi(M
∗
i+1) is an amalgamation base. Now set M1

i := M0
i for i ≤ σ limit

or 0 and M1
i+1 := fi(M

∗
i+1). This is an increasing continuous chain of

amalgamation bases with M1
i+1 (µ, δ)-limit over M1

i . Let Mi := M1
2i.

This works: if there was an i < σ such that p � Mi+1 does not ∗-
fork over Mi, this would mean that p � M1

2i+2 does not ∗-fork over M1
2i,

but since M1
2i ≤K∗ M

0
2i+1 ≤K∗ M

0
2i+2 ≤K∗ M

1
2i+2, we have by (M) that

p �M0
2i+2 does not ∗-fork over M0

2i+1, a contradiction.
(3) Apply weak universal local character to the chain 〈M2i : i < σ〉 to get

j < σ such that p � M2j+2 does not ∗-fork over M2j . By monotonicity,
this implies that p �M2j+2 does not ∗-fork over M2j+1. Let i := 2j + 1.

(4) Suppose not, and let 〈Mi : i ≤ σ〉, p be a counterexample. By (2), without
loss of generality Mi+1 is (µ, δ)-limit over Mi for all i < δ. As in the
proof of (1), for each i < σ, there exists ji ∈ [i, σ) such that p � Mji

∗-forks over Mi. On the other hand, applying (3) to the chain 〈Mj :
j ∈ [ji, σ]〉, for each i < σ, there exists a successor ordinal ki ≥ ji such
that p � Mki+1 does not ∗-fork over Mki . Define by induction on n ≤ ω,
m0 := 0, m2n+1 := km2n

, m2n+2 := km2n
+ 1, and mω := supn<ωmn. By



504 20. SUPERSTABILITY FROM CATEGORICITY

construction, the sequence 〈Mmn : n ≤ ω〉 witnesses that
∗

^ has δ-limit
alternations at ω, a contradiction.

(5) Let γ := σ · σ. By (2), there exists 〈Mi : i ≤ α〉, p witnessing failure
of weak universal local character at α such that for all i < α, Mi+1 is
(µ, γ)-limit over Mi. Let 〈Mi,j : j ≤ γ〉 witness that Mi+1 is (µ, γ)-limit
over Mi (i.e. it is increasing continuous with Mi,j+1 universal over Mi,j

for all j < γ, Mi,0 = Mi, and Mi,δ = Mi+1). By strong universal local
character at σ, for all i < α, there exists ji < γ such that p � Mi+1 does
not ∗-fork over Mi,ji . By replacing ji by ji+σ if necessary we can assume
without loss of generality that cf ji = cf σ.

Observe also that for any i < α, p � Mi+1,ji ∗-forks over Mi (us-
ing (M) and the assumption that p � Mi+1 ∗-forks over Mi). Therefore

〈M0,M1,j1 ,M2,M3,j3 , . . .〉, p witness that
∗

^ has σ-limit alternations at
α.

�

Proposition 20.2.7. Let α < µ+ be a regular cardinal and σ < µ+ be a (not

necessarily regular) cardinal. Assume that
∗

^ has weak universal local character at

σ. If
∗

^ has universal continuity at α and σ,
∗

^ has no σ-limit alternations at ω,

and
∗

^ has no σ-limit alternations at α, then
∗

^ has strong universal local character
at α.

Proof. By Lemma 20.2.6.(4),
∗

^ has strong universal local character at σ. By

the contrapositive of Lemma 20.2.6.(5),
∗

^ has weak universal local character at α.

By Lemma 20.2.6.(1),
∗

^ has strong universal local character at α. �

The next lemma corresponds to the second step outlined at the beginning of
this section. Note that the added assumption is (9) from the hypotheses of Theorem
20.1.3 and recall we are assuming Hypothesis 20.2.3 throughout.

Lemma 20.2.8. Assume K has an EM blueprint Φ with |τ(Φ)| ≤ µ such that
every M ∈ K[µ,µ+] embeds inside EMτ (µ+,Φ) . Let α < µ+ be a regular cardinal.
Then:

(1)
∗

^ has universal continuity at α.

(2) If in addition α < µ, then for any limit γ < µ+,
∗

^ has no γ-limit alter-
nations at α.

Proof. Let 〈Mi | i ≤ α〉 and p be as in the definition of universal continuity

or γ-limit alternations. Let Sµ
+

α := {δ < µ+ | cf δ = α}. We say that C̄ = 〈Cδ | δ ∈
Sµ

+

α 〉 is an Sµ
+

α -club sequence if each Cδ ⊆ δ is club. Clearly, club sequences exist:
just take Cδ := δ (this will be enough for proving universal continuity). Shelah
[She94] proves the existence of club-guessing club sequences in ZFC under various
hypotheses (the specific result that we use will be stated later, see Fact 20.2.9). We
will describe a construction of a sequence of models N̄(C̄) based on a club sequence
and then plug in the necessary club sequence in each case.
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Given an Sµ
+

α -club sequence C̄, enumerate Cδ ∪ {δ} in increasing order as
〈βδ,j | j ≤ α〉.

Claim: Let γ < µ+ be a limit ordinal. We can build increasing, continuous
N̄(C̄) = 〈Ni ∈ K∗ | i < µ+〉 such that for all i < µ+:

(1) Ni+1 is (µ, γ)-limit over Ni;

(2) when i ∈ Sµ
+

α , there is gi : Mα
∼= Ni such that gi(Mj) = Nβi,j for all

j ≤ α; and:

(3) when i ∈ Sµ+

α , there is ai ∈ Ni+1 that realizes gi(p).

Proof of Claim: Build the increasing continuous chain of models as follows:
start with an amalgamation base N0, which exists by Hypothesis 20.2.3.(3). Given
an amalgamation base Ni, build Ni+1 to be (µ, γ)-limit over it. This exists by
Hypothesis 20.2.3.(4) of Theorem 20.1.3), and Ni+1 is an amalgamation base by
Hypothesis 20.2.3.(5). At limits, it also guarantees we have an amalgamation base.

At limits i of cofinality α, use the uniqueness of (µ, γ)-limits models to find the
desired isomorphisms: the weak version gives M0

∼= Mβi,0 , and the strong (over
the base) version allows this isomorphism to be extended to get an isomorphism gi
between 〈Mj | j ≤ α〉 and 〈Nβi,j | j ≤ α〉 as described. Since Ni+1 is universal over
Ni, we there is some ai ∈ Ni+1 that realizes gi(p). †Claim

By assumption, we may assume that N :=
⋃
i<µ+ Ni ≤K∗ EMτ (µ+,Φ). Thus,

we can write ai = ρi(γ
i
1, . . . , γ

i
n(i)) with:

γi1 < · · · < γim(i) < i ≤ γim(i)+1 < · · · < γin(i) < µ+

Now we begin to prove each part of the lemma. In each, we will find i1 < i2 ∈
Sµ

+

α such that gtp(ai1/Ni1 ;N) and gtp(ai2/Ni1 ;N) are both the same (because of
the EM structure) and different (because they exhibit different ∗-forking behavior),
which is our contradiction.

(1) Assume that p �Mj does not fork over M0, for all j < α.

Let C̄ be an Sµ
+

α -club sequence, and set 〈Ni ∈ K∗ | i < µ+〉 = N̄(C̄)
as in the Claim (the value of γ doesn’t matter here, e.g. take γ := ω).

By Fodor’s Lemma, there is a stationary subset S∗ ⊆ Sµ
+

α , a term ρ∗,
m∗, n∗ < ω and ordinals γ∗0 , . . . γn∗ , β∗,0 such that:

For every i ∈ S∗, we have ρi = ρ∗; n(i) = n∗; m(i) = m∗; γ
i
j = γ∗j

for j ≤ m∗; and βi,0 = β∗,0.

Set E := {δ < µ+ | δ is limit and EMτ (δ,Φ) ∩ N = Nδ}. This is a
club. Let i1 < i2 both be in S∗ ∩ E. Then we have:

gtp (ai1/Ni1) = gtp
(
ρ∗(γ

∗
1 , . . . , γ

∗
m∗ , γ

i1
m∗+1, . . . , γ

i1
n∗)/N ∩ EMτ (i1,Φ)

)
= gtp

(
ρ∗(γ

∗
1 , . . . , γ

∗
m∗ , γ

i2
m∗+1, . . . , γ

i2
n∗)/N ∩ EMτ (i1,Φ)

)
= gtp (ai2/Ni1)

where all the types are computed inside N . This is because the only
differences between ai1 and ai2 lie entirely above i1.

We have that gi1 : (Ni1 , Nβ∗,0) ∼= (Mα,M0) and that p ∗-forks over
M0. Thus, gtp(ai1/Ni1) = gi1(p) ∗-forks over Nβ∗,0 . On the other hand,
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Ci2 is cofinal in i2, so there is j < α such that βi2,j > i1 and, thus,
Ni1 ≤K∗ Nβi2,j . Again, gi2 : (Nβi2,j , Nβ∗,0) ∼= (Mj ,M0) and p � Mj does

not ∗-fork over M0 by assumption. Thus, gtp(ai2/Nβi2,j ) = gi2(p � Mj)

does not ∗-fork over Nβ∗,0 . By monotonicity (M), gtp(ai2/Ni1) does not
∗-fork over Nβ∗,0 . Thus, gtp(ai1/Ni1) 6= gtp(ai2/Ni2), a contradiction.

(2) Let χ be a big-enough cardinal and create an increasing, continuous el-
ementary chain of models of set theory 〈Bi | i < µ+〉 such that for all
i < µ+:
(a) Bi ≺ (H(χ),∈);
(b) ‖Bi‖ = µ;

(c) B0 contains, as elements3, Φ, EM(µ+,Φ), h, µ+, 〈Ni | i < µ+〉, Sµ+

α ,

〈ai | i ∈ Sµ
+

α 〉, and each f ∈ τ(Φ); and
(d) Bi ∩ µ+ is an ordinal.

We will use the following fact which was originally proven in [She94,
III.2] (or see [AM10, Theorem 2.17] for a short proof).

Fact 20.2.9. Let λ be a cardinal such that cf λ ≥ θ++ for some
regular θ and let S ⊆ Sλθ be stationary. Then there is a S-club sequence
〈Cδ | δ ∈ S〉 such that, if E ⊆ λ is club, then there are stationarily many
δ ∈ S such that Cδ ⊆ E.

We have that α < µ, so we can apply Fact 20.2.9 with λ, θ, S there

standing for µ+, α, Sµ
+

α here. Let C̄ be the Sµ
+

α -club sequence that the
fact gives. Let 〈Ni ∈ Kµ | i < µ+〉 = N̄(C̄) be as in the Claim. Note
that E := {i < µ+ | Bi ∩ µ+ = i} is a club. By the conclusion of

Fact 20.2.9, there is some i2 ∈ Sµ
+

α such that Ci2 ⊆ E. We have ai2 =

ρi2(γi21 , . . . , γ
i2
n(i2)), with:

γi21 < · · · < γi2m(i2) < i2 ≤ γi2m(i2)+1 < · · · < γi2n(i2)

Since the βi2,j ’s enumerate a cofinal sequence in i2, we can find j < α

such that γi2m(i2) < βi2,2j+1 < i. Recall that we have p � M2j+2 does not

∗-fork over M2j+1 by assumption. Then (H(χ),∈) satisfies the following
formulas with parameters exactly the objects listed in item (2c) above and
ordinals below βi2,2j+2:

∃x, ym(i2)+1, . . . , yn(i).(“x ∈ Sµ
+

α ”

∧ “x > βi2,2j+1” ∧ “yk ∈ (x, µ+) are increasing ordinals”

∧ “ax = ρi2(γi21 , . . . , γ
i2
m(i2), ym(i2)+1, . . . , yn(i2))”

∧ “Nx ⊂ EM(x,Φ)”)

This is witnessed by x = i2 and yk = γi2k . By elementarity, Bβ
2,2j+2

satisfies this formula as it contains all the parameters. Let i1 ∈ (βi2,2j+1, µ
+)∩

3When we say that B0 contains a sequence as an element, we mean that it contains the
function that maps an index to its sequence element.
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Bβi2,2j+2
= (βi2,2j+1, βi2,2j+2)4 witness this, along with γ′m(i2)+1 < · · · <

γ′n(i2) < µ+. Then we have:

ai1 = ρi2(γi21 , . . . , γ
i2
m(i2), γ

′
m(i2)+1, . . . , γ

′
n(i2))

with βi2,2j+1 < γm(i2)+1. We want to compare gtp(ai2/Ni1) and
gtp(ai′/Ni1).
• From the elementarity, we get that Ni1 ⊆ EMτ (i1,Φ). We also know

that i1 < βi2,2j+2 < γi2m(i2)+1, γ
′
m(i2)+1. Thus, as before, the types

are equal.
• We know that p �M2j+2 does not ∗-fork overM2j+1. Thus, gtp(ai2/Nβi2,2j+2

)
does not ∗-fork over Nβi2,2j+1

. Since we have Nβi2,2j+1
≤K∗ Ni1 <K∗

Nβi2,2j+2
, this gives gtp(ai2/Ni1) does not ∗-fork over Nβi2,2j+1

.
• We have βi2,2j+1 < i1, so there is some k < α such that βi2,2j+1 <
βi1,k < i′. By assumption, p ∗-forks overMk. Thus gi1(p) ∗-forks over
Nβi1,k . Therefore gtp(ai1/Ni1) ∗-forks over Nβi2,2j+1

≤K∗ Nβi1,k .
As before, these three statements contradict each other.

�

We now prove the main theorem, Theorem 20.1.3. Recall that the assumptions

of this theorem include the main context of this section (Hypothesis 20.2.3);
∗

^ has
weak universal local character somewhere; and K has an EM blueprint that every
model embeds into.

Proof of Theorem 20.1.3. Pick a cardinal σ < µ+ such that
∗

^ has weak
universal local character at σ (exists by assumption (8)).

As announced at the beginning of this section, our proof of Theorem 20.1.3
really has two steps: a forking calculus step (implemented in Lemmas 20.2.5 and
20.2.6 and Proposition 20.2.7) and a set-theoretic step (implemented in Lemma
20.2.8). The claim below is key. The work done in the first step will show that the
claim suffices, and the second step will prove the claim.

Claim: For any limit ordinal γ < µ+ and any regular cardinal α < µ+,
∗

^ has
universal continuity at α and no γ-limit alternations at α.

By Proposition 20.2.7, the claim implies that
∗

^ has strong universal local
character at any regular α < µ+. This suffices by Remark 20.2.2. It remains to
prove the claim.

Proof of Claim: Universal continuity holds by Lemma 20.2.8. When α < σ,

Lemma 20.2.8 also gives that
∗

^ has no γ-limit alternations at α. Assume now

that α ≥ σ. By Remark 20.2.2,
∗

^ has weak universal local character at any limit

σ′ ∈ [σ, µ+), so in particular in α. By Lemma 20.2.5,
∗

^ has no γ-limit alternations
at α, as desired. †Claim �

4The equality here is the key use of club guessing.





CHAPTER 21

Quasiminimal abstract elementary classes

This chapter is based on [Vasd]. I thank John Baldwin, Will Boney, Levon
Haykazyan, Jonathan Kirby, and Boris Zilber for helpful feedback on an early draft
of this chapter. Finally, I thank an anonymous referee for comments that helped
improve the chapter.

Abstract

We propose the notion of a quasiminimal abstract elementary class (AEC). This
is an AEC satisfying four semantic conditions: countable Löwenheim-Skolem-Tarski
number, existence of a prime model, closure under intersections, and uniqueness of
the generic orbital type over every countable model. We exhibit a correspondence
between Zilber’s quasimimimal pregeometry classes and quasiminimal AECs: any
quasimimimal pregeometry class induces a quasiminimal AEC (this was known),
and for any quasiminimal AEC there is a natural functorial expansion that induces
a quasiminimal pregeometry class.

We show in particular that the exchange axiom is redundant in Zilber’s defi-
nition of a quasiminimal pregeometry class. We also study a (non-quasiminimal)
example of Shelah where exchange fails, and show that it has a good frame that
cannot be extended to be type-full.

21.1. Introduction

Quasiminimal pregeometry classes were introduced by Zilber [Zil05a] in order
to prove a categoricity theorem for the so-called pseudo-exponential fields. Quasi-
minimal pregeometry classes are a class of structures carrying a pregeometry sat-
isfying several axioms. Roughly (see Definition 21.4.5) the axioms specify that the
countable structures are quite homogeneous and that the generic type over them is
unique (where types here are syntactic quantifier-free types). The original axioms
included an “excellence” condition, but it has since been shown [BHH+14] that
this follows from the rest. Zilber showed that a quasiminimal pregeometry class
has at most one model in every uncountable cardinal, and in fact the structures
are determined by their dimension. Note that quasiminimal pregeometry classes
are typically non-elementary (see [Kir10, §5]): they are axiomatizable in Lω1,ω(Q)
(where Q is the quantifier “there exists uncountably many”) but not even in Lω1,ω.

The framework of abstract elementary classes (AECs) was introduced by Sa-
haron Shelah [She87a] and encompasses for example classes of models of an Lω1,ω(Q)
theory. Therefore quasiminimal pregeometry classes can be naturally seen as AECs
(see Fact 21.4.8). In this chapter, we show that a converse holds: there is a natural
class of AECs, which we call the quasiminimal AECs, that corresponds to quasimin-
imal pregeometry classes. Quasiminimal AECs are required to satisfy four purely

509
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semantic properties (see Definition 21.4.1), the most important of which are that
the AEC must, in a technical sense, be closed under intersections (this is called
“admitting intersections”, see Definition 21.3.1) and over each countable model M
there must be a unique orbital (Galois) type that is not realized inside M .

It is straightforward (and implicit e.g. in [Kir10, §4], see also [HK16, Lemma
2.87]) to see that any quasiminimal pregeometry class is a quasiminimal AEC, but
here we prove a converse (Theorem 21.4.21). We have to solve two difficulties:

(1) The axioms of quasiminimal pregeometry classes are very syntactic be-
cause they are phrased in terms of quantifier-free types. For example, one
of the axioms (II.(2) in Definition 21.4.5) specifies that the models must
have some syntactic homogeneity.

(2) Nothing in the definition of quasiminimal AECs says that the models must

carry a pregeometry. It is not clear that the natural closure clM (A) given
by the intersections of all the K-substructures of M containing A satisfies
exchange.

To get around the first difficulty, we use a recent joint work with Shelah (Chap-
ter 23) together with the technique of adding relation symbols for small Galois types
to the vocabulary (called the Galois Morleyization in Chapter 2). To get around the
second difficulty, we develop new tools to prove the exchange axiom of pregeome-
tries in any setup where we know that the other axioms of pregeometries hold. We
show (Corollary 21.2.12) that any homogeneous closure space satisfying the finite
character axiom of pregeometries also satisfies the exchange axiom (to the best of
our knowledge, this is new1). As a consequence, the exchange axiom is redundant
in the definition of a quasiminimal pregeometry class (Corollary 21.4.12)2.

An immediate corollary of the correspondence between quasiminimal AECs
and quasiminimal pregeometry classes is that a quasiminimal AEC has at most
one model in every uncountable cardinal (Corollary 21.4.22). This can be seen as
a generalization of the fact that algebraically closed fields of a fixed characteristic
are uncountably categorical (indeed, algebraically closed fields are closed under
intersections and if F is a field, a, b are transcendental over F , then a and b satisfy
the same type over F ).

In the last section of this chapter, we study a (non-quasiminimal) example of
Shelah that is quite well-behaved but where exchange fails. We point out that in
this setup there is a good frame that cannot be extended to be type-full (Theorem
21.5.8). This answers a question of Boney and the author, see Question 18.1.4.

Throughout this chapter, we assume basic familiarity with AECs (see [Bal09]).
We use the notation from Chapter 2. In particular, gtp(b̄/A;N) denotes the Galois
type of b̄ over A as computed in N .

1Although related to the study of quasiminimal structures in Itai-Tsuboi-Wakai [ITW04]
and later Pillay-Tanović [PT11], Corollary 21.2.12 is different. It gives a stronger conclusion

using stronger hypotheses, see Remarks 21.2.3, 21.2.14.
2Interestingly, exchange was initially not part of Zilber’s definition of quasiminimal prege-

ometry classes (see [Zil05b, §5]) but was added later. Some sources claim that the axiom is

necessary, see [Bal09, Remark 2.24] or [Kir10, p. 554], but this seems to be due to a related
counterexample that does not fit in the framework of quasiminimal pregeometry classes (see the
discussion in Remark 21.2.14).
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21.2. Exchange in homogeneous closure spaces

In this section, we study closure spaces, which are objects satisfying the mono-
tonicity and transitivity axioms of pregeometries. We want to know whether they
satisfy the exchange axiom when they are homogeneous. We give criterias for when
this is the case (Corollary 21.2.12). To the best of our knowledge, this is new (but
see Remarks 21.2.3, 21.2.14).

The following definition is standard, see e.g. [CR70].

Definition 21.2.1. A closure space is a pair W = (X, cl), where:

(1) X is a set.
(2) cl : P(X)→ P(X) satisfies:

(a) Monotonicity: For any A ⊆ X, A ⊆ cl(A).
(b) Transitivity: For any A,B ⊆ X, A ⊆ cl(B) implies cl(A) ⊆ cl(B).

We write |W | for X and clW for cl (but when W is clear from context we might
forget it). For a ∈ A, we will often write cl(a) instead of cl({a}). Similarly, for sets
A,B ⊆ |W | and a ∈ |W |, we will write cl(Aa) instead of cl(A ∪ {a}) and cl(AB)
instead of cl(A ∪B).

Definition 21.2.2. Let W be a closure space.

(1) For closure spaces W1,W2, we say that a function f : |W1| → |W2| is

an isomorphism if it is a bijection and for any A ⊆ |W1|, f [clW1(A)] =

clW2(f [A]). When W1 = W2 = W , we say that f is an automorphism of
W .

(2) We say that A ⊆ |W | is closed if clW (A) = A.
(3) For µ an infinite cardinal, we say thatW is µ-homogeneous if for any closed

set A with |A| < µ and any a, b ∈ |W |\A, there exists an automorphism
of W that fixes A pointwise and sends a to b.

(4) Let LS(W ) be the least infinite cardinal µ such that for any A ⊆ |W |,
| clW (A)| ≤ |A|+ µ.

(5) Let κ(W ) be the least infinite cardinal κ such that for any A ⊆ |W |, a ∈
clW (A) implies that there exists A0 ⊆ A with |A0| < κ and a ∈ clW (A0).
We say that W has finite character if κ(W ) = ℵ0.

(6) We say that W has exchange over A if A ⊆ |W | and for any a, b, if

a ∈ clW (Ab)\ clW (A), then b ∈ clW (Aa). We say that W has exchange if
it has exchange over every A ⊆ |W |.

(7) We say that W is a pregeometry if it has finite character and exchange.

Remark 21.2.3. The notion of homogeneity considered here is not the same
as that considered in [PT11, §4]. There the notion is defined syntactically using
first-order types and here we use automorphisms. The notion used here is stronger:
two elements could satisfy the same first-order type but not the same type e.g. in
an infinitary logic. This is used in the proof of Theorem 21.2.11.(3): if (I,<) is
a dense linear order and b < c, then b and c will satisfy the same first-order type
over (−∞, b), but there cannot be an automorphism sending b to c fixing (−∞, b).
Thus I = Q×ω1 cannot be a counterexample to Theorem 21.2.11.(3). In the proof
of Theorem 21.4.11, we will build a (Galois) saturated model M and work with
the pregeometry generated by a certain closure operator inside it. The (orbital)
homogeneity of M will give homogeneity of the pregeometry in the strong sense
given here.
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Remark 21.2.4.

(1) LS(W ) ≤ ‖W‖+ ℵ0 and κ(W ) ≤ ‖W‖+ + ℵ0.

(2) LS(W ) ≤ κ(W ) · supA⊆|W |,|A|<κ(W ) | clW (A)|.

Definition 21.2.5. For A ⊆ |W |, let WA be the following closure space:

|WA| := |W |\A, and clWA(B) := clW (AB) ∩ |WA|.

Remark 21.2.6. Let W be a closure space.

(1) For µ an infinite cardinal, if W is µ-homogeneous, A ⊆ |W | and |A| < µ,
then WA is µ-homogeneous.

(2) W has exchange over A if and only if WA has exchange over ∅.
(3) W has exchange if and only if W has exchange over every A with |A| <

κ(W ).

Closure spaces where exchange always fails are studied in the literature under
the names “antimatroid” or “convex geometry” [EJ85]. One of the first observation
one can make is that there is a natural ordering in this context:

Definition 21.2.7. Let W be a closure space. For a, b ∈ |W |, say a ≤ b if
a ∈ cl(b). We say a < b if a ≤ b but b 6≤ a.

Remark 21.2.8. By the transitivity axiom, (|W |,≤) is a pre-order. We will
often think of it as a partial order, i.e. identify a, b such that a ≤ b and b ≤ a.

Remark 21.2.9. Let W be a closure space where ∅ is closed. Then W fails
exchange over ∅ if and only if there exists a, b ∈ |W | such that a < b.

To give conditions under which exchange follows from homogeneity, we will
study the ordering (|W |,≤). If exchange fails, it must be linear:

Lemma 21.2.10. If W is LS(W )+-homogeneous, ∅ is closed, and W fails ex-
change over ∅, then (|W |,≤) is (if we identify a, b with a ≤ b and b ≤ a) a dense
linear order without endpoints.

Proof. Using failure of exchange, fix a, b such that a ∈ cl(b) but b /∈ cl(a). Let
c, d be given such that d 6≤ c. Then d /∈ cl(c). We show that c ≤ d, i.e. c ∈ cl(d). By
homogeneity, there exists an automorphism f of W taking c to a. Let d′ := f(d).
Then d′ /∈ cl(a). Note that | cl(a)| ≤ LS(W ) so by LS(W )+-homogeneity, there
exists an automorphism g of W fixing cl(a) and sending d′ to b. Applying f−1 ◦g−1

to the formula a ∈ cl(b), we obtain c ∈ cl(d), as desired.
We have shown that (|W |,≤) is a linear order. That it is dense and without

endpoints similarly follow from homogeneity. �

Theorem 21.2.11. Let W be a LS(W )+-homogeneous closure space where ∅
is closed. Then W has exchange over ∅ if at least one of the following conditions
hold:

(1) ‖W‖ < ℵ0.
(2) ‖W‖ ≥ LS(W )++.
(3) κ(W ) = ℵ0.

Proof. Suppose for a contradiction that exchange over ∅ fails.
For b ∈ |W |, write (−∞, b) := {a ∈ |W | : a < b}, and similarly for (−∞, b].

Note that if A ⊆ |W | is closed and a ∈ A, then by definition of ≤ and the transitivity
axiom, (−∞, a] ⊆ A. Similarly, if b /∈ A then by Lemma 21.2.10 A ⊆ (−∞, b).
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(1) If ‖W‖ < ℵ0, then Lemma 21.2.10 directly gives a contradiction.
(2) Let A ⊆ |W | be closed such that |A| ≤ LS(W ) and let B ⊆ |W | be

closed with A ⊆ B and |B| = LS(W )+. Let a ∈ A and let b /∈ B.
Then (−∞, a) ⊆ A and B ⊆ (−∞, b). Therefore |(−∞, a)| ≤ LS(W ) and
|(−∞, b)| ≥ LS(W )+. However by homogeneity there exists an automor-
phism of W sending a to b, a contradiction.

(3) We first prove two claims.
Claim 1: If b ∈ |W |, then cl((−∞, b)) = (−∞, b].
Proof of Claim 1: Let B := cl(−∞, b). First note that B ⊆ cl(b),

hence |B| ≤ LS(W ) (so we can apply homogeneity to it) and B ⊆ (−∞, b].
By monotonicity, (−∞, b) ⊆ B. Also, if B 6= (−∞, b), then b ∈ B (say
c ∈ B\(−∞, b). Then c 6< b, so by Lemma 21.2.10, b ≤ c, so since B is
closed b ∈ B). Thus if b /∈ B, then B = (−∞, b). This is impossible: take
c ∈ |W | such that b < c (exists by Lemma 21.2.10). Then there is an
automorphism of W taking b to c fixing B, which is impossible as b is a
least upper bound of B but c is not. Therefore (−∞, b] ⊆ B. †Claim 1

Claim 2: If 〈Ai : i ∈ I〉 is a non-empty collection of subsets of |W |,
then cl(

⋃
i∈I Ai) =

⋃
i∈I cl(Ai).

Proof of Claim 2: Clearly, the right hand side is contained in the left
hand side. We show the other inclusion. Let A :=

⋃
i∈I Ai. Let a ∈ cl(A).

By finite character, there exists a finite A′ ⊆ A such that a ∈ cl(A′).
Since ∅ is closed, A′ cannot be empty. Say A′ = {a0, . . . , an−1}, with
a0 ≤ a1 ≤ . . . ≤ an−1 (we are implicitly using Lemma 21.2.10). Then
a ∈ cl(an−1). Pick i ∈ I such that an−1 ∈ Ai. Then a ∈ cl(Ai), as
desired. †Claim 2

Now pick any b ∈ |W |. Note that (using Lemma 21.2.10) (−∞, b) =⋃
a<b(−∞, a) =

⋃
a<b(−∞, a]. However on the one hand, by Claim

1, cl(
⋃
a<b(−∞, a)) = cl((−∞, b)) = (−∞, b] but on the other hand,

by Claim 2, cl(
⋃
a<b(−∞, a)) =

⋃
a<b cl((−∞, a)) =

⋃
a<b(−∞, a] =

(−∞, b), a contradiction.

�

Corollary 21.2.12. Let W be a (κ(W ) + LS(W )+)-homogeneous closure
space. If either κ(W ) = ℵ0 or ‖W‖ /∈ [ℵ0,LS(W )+], then W has exchange.

Proof. Let µ := κ(W ) + LS(W )+. By Remark 21.2.6, it is enough to see
that W has exchange over every set A with |A| < κ(W ). Fix such an A. By
Remark 21.2.6, it is enough to see that W ′ := WA has exchange over ∅. Note

that W ′ is µ-homogeneous and LS(W ′) ≤ LS(W ). Let B := clW
′
(∅). We have

that |B| ≤ LS(W ). Let W ′′ := W ′B . We show that W ′′ has exchange over ∅.
Note that W ′′ is still µ-homogeneous. Moreover ∅ is closed in W ′′. Observe that
κ(W ) = ℵ0 implies that κ(W ′′) = ℵ0, ‖W ′′‖ ≤ ‖W‖, but ‖W‖ ≥ LS(W )++ implies
that ‖W ′′‖ ≥ LS(W )++. Therefore by Theorem 21.2.11, W ′′ has exchange over ∅,
as desired. �

We give a few examples showing that the hypotheses of Corollary 21.2.12 are
near optimal:

Example 21.2.13.
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(1) On any partial order P, one can define a closure operator cl1 by cl1(A) :=
{b ∈ P | ∃a ∈ A : b ≤ a}. The resulting closure space W1 has exchange
over ∅ if and only if there are no a, b ∈ P with a < b. Note that if P is e.g.
a dense linear order, then W1 is not ℵ1-homogeneous.

(2) On the other hand, one can define cl2(A) := cl1(A) ∪ {b ∈ P | ∀c(c < b→
c ∈ cl1(A))}. This gives a closure space W2. If P = Q, then W2 is ℵ1-
homogeneous and does not have exchange over ∅ but note that κ(W ) = ℵ1,
as witnessed by the fact that the statement “0 ∈ cl((−∞, 0))” is not
witnessed by a finite subset of (−∞, 0).

(3) The closure space W3 induced by P = Q × ω1 and the closure operator
cl2 is also ℵ1-homogeneous, satisfies LS(W3) = ℵ0, κ(W3) = ℵ1, and does
not have exchange over ∅.

Remark 21.2.14. In [PT11, §5], Pillay and Tanović (generalizing an earlier re-
sult of Itai, Tsuboi, and Wakai [ITW04, Proposition 2.8]) prove (roughly) that any
quasiminimal structure (i.e. every definable set is either countable or co-countable)
of size at least ℵ2 induces a pregeometry. This is a (more general) version of Corol-
lary 21.2.12 for the case κ(W ) = ℵ0, ‖W‖ ≥ ℵ2, and LS(W ) = ℵ0 (note that one
can see any such W as a structure by adding an n-ary function for the closure of
each set of size n).

Note that in the Pillay-Tanović context the hypothesis that the size should be
at least ℵ2 is needed: consider [ITW04, Example 2.2.(3a)] the structure M :=
(Q × ω1, <). The closure space induced by M is as in W1 from Example 21.2.13,
so it does not have exchange. Note that M is homogeneous in the model-theoretic
sense that every countable partial elementary mapping from M into M can be
extended (and also in the syntactic sense of [PT11, §4], see Remark 21.2.3), but
this does not make the corresponding closure space homogeneous in the sense of
Definition 21.2.2.(3).

21.3. On AECs admitting intersections

We recall the definition of an AEC admitting intersections, first appearing in
Baldwin and Shelah [BS08, Definition 1.2]. We give a few known facts and show
(Theorem 21.3.5) that admitting intersections transfers up in AECs: if Kλ admits
intersections, then K≥λ admits intersections.

As in [Gro], we call an abstract class a pair K = (K,≤K) where K is a class of
structures in a fixed vocabulary τ = τ(K), ≤K is a partial order on K, both K and
≤K are closed under isomorphisms, and for M,N ∈ K, M ≤K N implies M ⊆ N .
We say that an abstract class is coherent if for M0,M1,M2 ∈ K, M0 ⊆M1 ≤K M2

and M0 ≤K M2 imply M0 ≤K M1.
Note that any AEC is a coherent abstract class, and if K is an AEC and λ is

a cardinal, then Kλ is also a coherent abstract class.

Definition 21.3.1. Let K be a coherent abstract class. Let N ∈ K and let
A ⊆ |N |.

(1) Let clN (A) be the set
⋂
{|M | : M ≤K N ∧ A ⊆ |M |}. Note that clN (A)

induces a τ(K)-substructure of N , so we will abuse notation and also write

clN (A) for this substructure.

(2) We say that N admits intersections over A if clN (A) ≤K N (more for-

mally, there exists M ≤K N such that |M | = clN (A)).
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(3) We say that N admits intersections if it admits intersections over all
A ⊆ |N |.

(4) We say that K admits intersections if every N ∈ K admits intersections.

Remark 21.3.2. Let K be a coherent abstract class and let N ∈ K. Then
(|N |, clN ) is a closure space and any M ≤K N is closed.

The following characterization of admitting intersections in terms of the exis-
tence of a certain closure operator will be used often in this chapter. Part of it
appears already (for AECs) in Theorem 8.2.10.

Fact 21.3.3. Let K be a coherent abstract class and let N ∈ K. The following
are equivalent:

(1) N admits intersections.
(2) For every non-empty collection S of K-substructures of N , we have that⋂

S ≤K N .
(3) There is a closure space W such that:

(a) |W | = |N |.
(b) The closed sets in W are exactly the sets of the form |M | for M ≤K

N .

Proof. That (1) is equivalent to (2) is an exercise in the definition, left to
the reader (and not used in this chapter). Also, (1) implies (3) is clear: take

W := (|N |, clN ). We prove that (3) implies (1). Let (W, clW ) be a closure space on
|N | such that the closed sets are exactly the K-substructures of N . Let A ⊆ |N | and

let M := clW (A). By assumption, M ≤K N so it suffices to see that M = clN (A).
Let M ′ ≤K N be such that A ⊆ |M ′|. By assumption, M ′ is closed in W , so

M = clW (A) ⊆ |M ′|. By coherence, M ≤K M ′. Since M ′ was arbitrary, it follows

from the definition of clN that clN (A) = M , as desired. �

The next result is observed (for AECs) in Proposition 8.2.13. The proof gen-
eralizes to coherent abstract classes.

Fact 21.3.4. Let K be a coherent abstract class and let M ≤K N both be in
K. Let A ⊆ |M | If N admits intersections over A, then M admits intersections

over A and clM (A) = clN (A).

We now show that admitting intersections transfer up. This is quite routine
using the characterization of Fact 21.3.3 but we give a full proof.

Theorem 21.3.5. Let K be an AEC and let λ ≥ LS(K). Let N ∈ K≥λ. If M
admits intersections for all M ∈ Kλ with M ≤K N , then N admits intersections.
In particular if Kλ admits intersections, then K≥λ admits intersections.

Proof. First note that if M ∈ K<λ and M ≤K N , then M also admits
intersections by Fact 21.3.4. Now on to the proof. By Fact 21.3.3, it is enough to
find a closure space W with universe |N | such that the closed sets of W are exactly

the K-substructures of N . Define clW : P(|N |)→ P(|N |) as follows:

clW (A) :=
⋃
{clM (A ∩ |M |) : M ≤K N ∧M ∈ Kλ}

We claim that W := (|N |, clW ) is the required closure space. We prove this via
a chain of claims:
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Claim 1: For any M ∈ K≤λ with M ≤K N , clM = clW � P(|M |).
Proof of Claim 1: Let A ⊆ |M |. By definition, clM (A) ⊆ clW (A). Conversely,

let a ∈ clW (A). Pick M ′ ∈ Kλ such that M ′ ≤K N and a ∈ clM
′
(A ∩ |M ′|). Pick

M ′′ ∈ Kλ with M ′ ≤K M ′′ and M ≤K M ′′. By monotonicity and Fact 21.3.4,

a ∈ clM
′′
(A) = clM (A), as desired. †Claim 1

Claim 2: If A′ ⊆ clW (A) is such that |A′| ≤ λ, then there exists A0 ⊆ A such

that |A0| ≤ λ and A′ ⊆ clW (A0).

Proof of Claim 2: Pick M ∈ Kλ witnessing that a ∈ clW (A) and let A0 :=
A ∩ |M |. †Claim 2

Claim 3: W is a closure space.
Proof of Claim 3:

• Monotonicity: Let A ⊆ |N |. We want to see that A ⊆ clW (A). Let a ∈ A.
Using the Löwenheim-Skolem-Tarski axiom, fix M ∈ Kλ with M ≤K N
and a ∈ |M |. Now since (|M |, clM ) is a closure space (Remark 21.3.2),

a ∈ clM (a) ⊆ clW (A), as needed.

• Transitivity: Let A,B ⊆ |N |. First note that A ⊆ B implies clW (A) ⊆
clW (B). Now assume that A ⊆ clW (B). We show that clW (A) ⊆ clW (B).

Let a ∈ clW (A). By Claim 2, there exists A0 ⊆ A with |A0| ≤ λ such that

a ∈ clW (A0). Since by assumption A0 ⊆ clW (B), there exists by Claim 2

again B0 ⊆ B such that |B0| ≤ λ and A0 ⊆ clW (B0). Pick M ∈ Kλ such

that A0 ∪B0 ⊆ |M | and M ≤K N . By Claim 1, clW (A0) = clM (A0). By

transitivity in the closure space (|M |, clM ), clM (A0) ⊆ clM (B0). By Claim

1 again, clM (B0) = clW (B0). By what has been said earlier, clW (B0) ⊆
clW (B). It follows that clW (A0) ⊆ clW (B), hence a ∈ clW (B) as desired.

†Claim 3

Claim 4: If M ≤K N , then clW (M) = M .

Proof of Claim 4: Let a ∈ clW (M). By Claim 2 and monotonicity we can pick

M0 ∈ K≤λ with M0 ≤K M such that a ∈ clW (M0). By Claim 1, a ∈ clM0(M0) =
M0 ≤K M . Therefore a ∈ |M |, as desired. †Claim 4

Claim 5: For any A ⊆ |N |, clW (A) ≤K N .

Proof of Claim 5: From Claim 2, it is easy to see that clW (A) =
⋃
{clW (A0) :

A0 ⊆ A ∧ |A0| ≤ λ}. Therefore by the chain and coherence axioms of AECs, it
is enough to show the claim when |A| ≤ λ. Pick M ∈ Kλ with M ≤K N and

A ⊆ |M |. By Claim 1, clW (A) = clM (A). By Fact 21.3.4, clM (A) ≤K M . Since
M ≤K N , the result follows. †Claim 5

Putting together Claim 3, 4, and 5, we have the desired result. �

We will use two facts about AECs admitting intersections in the next section.
First, the closure operator has finite character (Proposition 8.2.13).

Fact 21.3.6. Let K be an AEC and let N ∈ K. If N admits intersections,
then κ((|N |, clN )) = ℵ0.

Second, Galois types can be characterized nicely (see [BS08, Lemma 1.3.(1)]
or Proposition 8.2.16).

Fact 21.3.7. Let K be an AEC admitting intersections. Then gtp(b̄1/A;N1) =

gtp(b̄2/A;N2) if and only if there exists f : clN1(Ab̄1) ∼=A clN2(Ab̄2) such that
f(b̄1) = b̄2.
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21.4. Quasiminimal AECs

In this section, we define quasiminimal AECs and show that they are essentially
the same as quasiminimal pregeometry classes.

Following Shelah [She09a, II.1.9.(1A)], we will write gSna(M) for the set of
nonalgebraic types overM : that is, the set of p ∈ gS(M) such that p = gtp(a/M ;N)
with a /∈ |M | (in the context of this chapter, there will be a unique nonalgebraic
type which we will call the generic type). We say that M ∈ K is prime if for any
N ∈ K, there exists f : M → N .

Definition 21.4.1. An AEC K is quasiminimal if:

(1) LS(K) = ℵ0.
(2) There is a prime model in K.
(3) K≤ℵ0

admits intersections.
(4) (Uniqueness of the generic type) For any M ∈ K≤ℵ0

, | gSna(M)| ≤ 1.

We say that K is unbounded if it satisfies in addition:

(5) There exists 〈Mi : i < ω〉 strictly increasing in K.

Remark 21.4.2. It is possible for a quasiminimal AEC to have maximal count-
able models. However if it is unbounded it turns out it will not have any maximal
models (this is a consequence of the equivalence with quasiminimal pregeometry
classes, see Corollary 21.4.22).

Remark 21.4.3. We obtain an equivalent definition if we replace axiom (2) by:

(2)’ K 6= ∅ and K≤ℵ0
has joint embedding.

Why? That (2) implies (2)’ (modulo the other axioms) is given by Lemma

21.4.9. For the other direction, one can use joint embedding to see that clM (∅) is
a prime model for any M ∈ K≤ℵ0

.

Remark 21.4.4. What happens if in Definition 21.4.1 one replaces ℵ0 with
an uncountable cardinal λ? Then the natural generalizations of Lemmas 21.4.9,
21.4.10, and Theorem 21.4.11 hold but we do not know whether Lemma 21.4.14
generalizes.

For the convenience of the reader, we repeat here the definition of a quasi-
minimal pregeometry class. We use the numbering and presentation from Kirby
[Kir10], see there for more details on the terminology. We omit axiom III (excel-
lence), since it has been shown [BHH+14] that it follows from the rest. We have
added axiom 0.(3) that also appears in Haykazyan [Hay16, Definition 2.2] and
corresponds to (2) in the definition of a quasiminimal AEC, as well as axiom 0.(1)
which requires that the class be non-empty and that the vocabulary be countable
(this can be assumed without loss of generality, see [Kir10, Proposition 5.2]).

As in Definition 21.4.1, we call the class unbounded if it has an infinite dimen-
sional model (this is the nontrivial case that interests us here).

Definition 21.4.5. A quasiminimal pregeometry class is a class C of pairs
(H, clH), where H is a τ -structure (for a fixed vocabulary τ = τ(C)) and clH :
P(|H|)→ P(|H|) is a function satisfying the following axioms.

0: (1) |τ(C)| ≤ ℵ0 and C 6= ∅.
(2) If (H, clH), (H ′, clH′) are both τ -structures with functions on their

powersets and f : H ∼= H ′ is also an isomorphism from (|H|, clH)
onto (|H ′|, clH′), then (H ′, clH′) ∈ C.
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(3) If (H, clH), (H ′, clH′) ∈ C, then H and H ′ satisfy the same quantifier-
free sentences.

I: (1) For each (H, clH) ∈ C, (|H|, clH) is a pregeometry such that the
closure of any finite set is countable.

(2) If (H, clH) ∈ C and X ⊆ |H|, then the τ(C)-structure induced by
clH(X) together with the appropriate restriction of clH is in C.

(3) If (H, clH), (H ′, clH′) ∈ C, X ⊆ |H|, y ∈ clH(X), and f : H ⇀ H ′ is a
partial embedding with X ∪{y} ⊆ preim(f), then f(y) ∈ clH′(f [X]).

II: Let (H, clH), (H ′, clH′) ∈ C. Let G ⊆ H and G′ ⊆ H ′ be countable closed
subsets or empty and let g : G→ G′ be an isomorphism.
(1) If x ∈ |H| and x′ ∈ |H ′| are independent from G and G′ respectively,

then g ∪ {(x, x′)} is a partial embedding.
(2) If g ∪ f : H ⇀ H ′ is a partial embedding, f has finite preimage X,

and y ∈ clH(X ∪G), then there is y′ ∈ H ′ such that g ∪ f ∪ {(y, y′)}
is a partial embedding.

We say that C is unbounded if it satisfies in addition:

IV: (1) C is closed under unions of increasing chains: If δ is a limit ordinal
and 〈(Hi, clHi) : i < δ〉 is increasing with respect to being a closed
substructure (i.e. for each i < δ, Hi ⊆ Hi+1 and clHi+1 � P(|Hi|) =
clHi), then (Hδ, clHδ) ∈ C, where Hδ =

⋃
i<δHi and clHδ(X) =⋃

i<δ clHi(X ∩ |Hi|).
(2) C contains an infinite dimensional model (i.e. there exists (H, clH) ∈ C

with 〈ai : i < ω〉 in H such that ai /∈ clH({aj : j < i}) for all i < ω).

Remark 21.4.6. If C is a quasimiminal pregeometry class, (H, cl1), (H, cl2) ∈
C, then by axiom I.(3) used with the identity embedding, cl1 = cl2. In other
words, once C is fixed the pregeometry is determined by the structure (see also the
discussion after [Kir10, Example 1.2]).

It is straightforward to show that quasiminimal pregeometry classes are (after
forgetting the pregeometry and ordering them with “being a closed substructure”)
quasiminimal AECs. That they are AECs is noted in [Kir10, §4]. In fact, the
exchange axiom is not necessary for this. We sketch a proof here for completeness.

Definition 21.4.7. Let C be a quasiminimal pregeometry class.

(1) For (H, clH), (H ′, clH′) ∈ C, we write (H, clH) ≤C (H ′, clH′) if H ⊆ H ′

and clH′ � P(|H|) = clH .
(2) Let K = K(C) := (K(C),≤K) be defined as follows:

(a) K(C) := {M | ∃ cl : (M, cl) ∈ C}.
(b) M ≤K N if for some clM , clN , (M, clM ), (N, clN ) ∈ C and (M, clM ) ≤C

(N, clN ).

Fact 21.4.8. If C satisfies all the axioms of a quasiminimal pregeometry class
except that in I.(1) clH may not have exchange, then K(C) is a quasiminimal AEC.
Moreover C is unbounded if and only if K(C) is unbounded.

Proof. We will use Remark 21.4.6 without explicit mention. Let K := K(C).
By axioms 0, I, the finite character axiom of pregeometries, and (if C is unbounded;
note that if C is bounded there are no infinite increasing chains) IV, K is an AEC.
Since the closure of any finite set is countable (axiom I.(1)) and |τ(C)| ≤ ℵ0 (axiom
0.(1)), LS(K) = ℵ0. This proves that (1) in Definition 21.4.1 holds.
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As for axiom (2), by axiom 0.(1), C 6= ∅. Let (M, clM ) ∈ C and letM0 := clM (∅).
By axiom I.(2), (M0, clM � P(|M0|)) ∈ C. We show that M0 is the desired prime
model. Let N ∈ K. This means that (N, clN ) ∈ C. By axiom 0.(3), the empty map
is a partial embedding from M into N . Using axiom II.(2) ω-many times (see the
proof of [Kir10, Theorem 2.1]), we can extend it to a map f0 : M0 = clM (∅) ∼=
clN (∅). Since clN (∅) ≤K N (for the same reason that M0 ≤K M), f0 witnesses
that M0 embeds into N , as desired.

Why does K≤ℵ0 admit intersections (axiom (3) in Definition 21.4.1)? This is
by the characterization in Fact 21.3.3 (use the definition of ≤K and axiom I.(2).

Let us check axiom (4) in Definition 21.4.1. Let M ∈ K≤ℵ0
. We want to show

that | gSna(M)| ≤ 1. Let p1, p2 ∈ gSna(M). Say p` = gtp(a`/M ;N`), ` = 1, 2. We
want to see that p1 = p2. Without loss of generality (since we have just seen that

K≤ℵ0
admits intersections), N` = clN`(Ma`). We show that there exists f : N1

∼=M

N2 with f(a1) = a2. We use axiom II.(1), where G,G′, H,H ′, g, x, x′ there stand for
M,M,N1, N2, idM , a1, a2 here. We get that idM ∪{a1, a2} is a partial embedding
from N1 to N2. Now use axiom II.(2) ω-many times (as in the second paragraph
of this proof) to extend this partial embedding to an isomorphism f : N1

∼=M N2.
By construction, we will have that f(a1) = a2, as desired.

Finally, it is straightforward to see that (5) holds if and only if C is unbounded,
as desired. �

We now start going toward the other direction. For this we first prove a couple
of lemmas about quasiminimal AECs. In particular, we want to show that they have
amalgamation, joint embedding, are stable, tame, and that the closure operator
induces a pregeometry on them.

Lemma 21.4.9. If K is a quasiminimal AEC, then K≤ℵ0 has amalgamation
and joint embedding.

Proof. We prove amalgamation, and joint embedding can then be obtained
from the existence of the prime model and some renaming. By the “in particular”
part of Theorem 8.4.14, it is enough to prove the so-called type extension property
in K≤ℵ0 . This is given by the following claim:

Claim: If M ≤K N are both in K≤ℵ0 and p ∈ gS(M), then there exists
q ∈ gS(N) extending p.

Proof of Claim: Say p = gtp(a/M ;N ′). If a ∈ |M | (i.e. p is algebraic), let
q := gtp(a/N ;N). Assume now that a /∈ |M |. If M = N , take q = p, so assume
also that M <K N . Let b ∈ |N |\|M | and let p′ := gtp(b/M ;N). By uniqueness of
the generic type, p′ = p. Therefore q := gtp(b/N ;N) is as desired. †Claim �

Lemma 21.4.10. If K is a quasiminimal AEC, then K is (Galois) stable in ℵ0.

Proof. By uniqueness of the generic type. �

Theorem 21.4.11. If K is a quasiminimal AEC, then K admits intersections
and for any N ∈ K, (|N |, clN ) is a pregeometry whose closed sets are exactly the
K-substructures of N .

Proof. That K admits intersection is Theorem 21.3.5. Now let N ∈ K and
let W := (|N |, clN ). By Remark 21.3.2, W is a closure space and by Fact 21.3.3, its
closed sets are exactly the K-substructures of N . By Fact 21.3.6, κ(W ) = ℵ0, i.e.
W has finite character. It remains to see that W has exchange. Let a, b ∈ |N | and
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let A ⊆ |N |. Assume that a ∈ clN (Ab)\ clN (A). We want to see that b ∈ clN (Aa).
By finite character we can assume without loss of generality that |A| ≤ ℵ0. Using
the Löwenheim-Skolem-Tarski axiom, we may also assume that N ∈ K≤ℵ0 .

Using stability, let N ′ ∈ K≤ℵ1
be such that N ≤K N ′ and N ′ is ℵ1-saturated

(this can be done even if there is a countable maximal model above N . In this case

this will be the desired N ′). Then W ′ := (|N ′|, clN
′
) is a closure space with κ(W ′) =

ℵ0 which (using uniqueness of the generic type) is ℵ1-homogeneous. Therefore by
Corollary 21.2.12, W ′ satisfies exchange. It follows immediately (see Fact 21.3.4)
that W also satisfies exchange. �

Corollary 21.4.12. If C satisfies all the axioms of a quasiminimal pregeometry
class except that in I.(1) clH may not have exchange, then C is a quasiminimal
pregeometry class.

Proof. By Fact 21.4.8, K(C) is a quasiminimal AEC. By Theorem 21.4.11,

(|M |, clM ) is a pregeometry for every M ∈ K. The result now follows from Remark
21.4.6. �

To prove tameness, we will use:

Fact 21.4.13 (Corollary 23.4.13). If an AEC K is stable in ℵ0, has amalga-
mation in ℵ0, and has joint embedding in ℵ0, then K is (< ℵ0,ℵ0)-tame for types
of finite length. That is, if M ∈ Kℵ0

and p 6= q are both in gS<ω(M), then there
exists a finite A ⊆ |M | such that p � A 6= q � A.

Lemma 21.4.14. If K is a quasiminimal AEC, then K is (< ℵ0,ℵ0)-tame for
types of finite length.

Proof. This is a consequence of Fact 21.4.13 together with Lemmas 21.4.9
and 21.4.10. �

We are now ready to state a correspondence between quasiminimal AECs and
quasiminimal pregeometry classes. We will use the concept of a functorial expan-
sion, which basically is an expansion of the vocabulary of the class that does not
change anything about how the class behaves. Functorial expansions are defined in
Definition 2.3.1.

Definition 21.4.15. Let K = (K,≤K) be an abstract class. A functorial

expansion of K is a class K̂ satisfying the following properties:

(1) K̂ is a class of τ̂ -structures, where τ̂ is a fixed vocabulary extending τ(K).

(2) The map M̂ 7→ M̂ � τ(K) is a bijection from K̂ onto K. For M ∈ K, we

will write M̂ for the unique element of K̂ whose reduct is M . When we

write “M̂ ∈ K̂”, it is understood that M = M̂ � τ(K).

(3) Invariance: For M,N ∈ K, if f : M ∼= N , then f : M̂ ∼= N̂ .

(4) Monotonicity: If M ≤K N are in K, then M̂ ⊆ N̂ .

Remark 21.4.16 (Proposition 2.3.7). If K̂ is a functorial expansion of K, then

we can order K̂ by M̂ ≤K̂ N̂ if and only if M ≤K N . This gives an abstract class

K̂ := (K̂,≤K̂).

The specific functorial expansion we will use is what we call the (< ℵ0)-Galois-
Morleyization (Definition 2.3.3. It consists in adding a relation for each Galois
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type over a “small” set (here small means finite, but in general for the (< κ)-Galois
Morleyization small means “of size less than κ”).

Definition 21.4.17. Let K = (K,≤K) be an AEC. Define an expansion τ̂ of
τ(K) by adding a relation symbol Rp of arity `(p) for each p ∈ gS<ω(∅). Expand

each N ∈ K to a τ̂ -structure N̂ by specifying that for each ā ∈ <ω|N̂ |, RN̂p (ā) (where

RN̂p is the interpretation of Rp inside N̂) holds exactly when gtp(ā/∅;N) = p. Let

K̂ be the class of all such N̂ , ordered as in Remark 21.4.16. We call K̂ the (< ℵ0)-
Galois Morleyization of K.

Remark 21.4.18. Let K be an AEC and let K̂ be the (< ℵ0)-Galois Morley-

ization of K. Then |τ(K̂)| = | gS<ω(∅)|+ |τ(K)|.

The basic facts about the Galois Morleyization that we will use are below.
The most important says that if Galois types are determined by their finite re-
strictions, then they will become equivalent to quantifier-free types in the Galois
Morleyization.

Fact 21.4.19. Let K be an AEC and let K̂ = (K̂,≤K̂) be its (< ℵ0)-Galois
Morleyization.

(1) (Proposition 2.3.5) K̂ is a functorial expansion of K.

(2) (Remark 2.3.4) K̂ is an AEC with LS(K̂) = LS(K) + |τ(K̂)|.
(3) (Theorem 2.3.15) If K is (< ℵ0,ℵ0)-tame for types of finite length, then

for any M ∈ K̂≤ℵ0
, any two N,N ′ with M ≤K̂ N , M ≤K̂ N ′ and any

ā ∈ <ω|N |, b̄ ∈ <ω|N ′|, if the τ(K̂)-quantifier-free type of ā over M inside

N is the same as the τ(K̂)-quantifier-free type of b̄ over M inside N ′, then
gtp(ā/M ;N) = gtp(b̄/M ;N ′). This also holds if M is empty.

We have arrived to the definition of the correspondence between quasiminimal
AECs and quasiminimal pregeometry classes, and the proof that it works:

Definition 21.4.20. For K, a quasimiminal AEC let C(K) be the class {(M, clM ) |
M ∈ K̂}, where K̂ is the (< ℵ0)-Galois Morleyization of K.

Theorem 21.4.21. If K is a quasiminimal AEC, then C(K) is a quasiminimal
pregeometry class, which is unbounded if and only if K is. Moreover K(C(K)) is
the (< ℵ0)-Galois Morleyization of K.

Proof. Let C := C(K). It is clear that the elements of C are of the right
form. The moreover part is clear from the definition of K(C(K)). We check all the
conditions of Definition 21.4.5. We will use without comments that K≤ℵ0 is has
amalgamation and joint embedding (Lemma 21.4.9) and is stable in ℵ0 (Lemma
21.4.10).

0: (1) Since K has a prime model (axiom (2) in Definition 21.4.1), C 6= ∅.
By Remark 21.4.18, |τ(C)| = |τ(K̂)| ≤ | gS<ω(∅)| + |τ(K)|. Since
LS(K) = ℵ0, we have that |τ(K)| ≤ ℵ0. Using that K 6= ∅, pick
M ∈ K≤ℵ0 . Since K≤ℵ0 has amalgamation and joint embedding,
there is an injection from gS<ω(∅) into gS<ω(M). By amalgamation
and stability, there exists M ′ ∈ Kℵ0 universal over M . Therefore

| gS<ω(M)| ≤ ℵ0. Thus |τ(K̂)| ≤ ℵ0, as desired.
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(2) This is clear. In fact, if f : M ∼= N , then by definition of clM and clN ,

f is automatically an isomorphism from (|M |, clM ) onto (|N |, clN ).

(3) Let (M, clM ), (N, clN ) ∈ C. If M0 ≤K̂ M , then M0 ⊆ M so M0

and M satisfy the same quantifier-free sentences, so without loss of
generality M and N are already countable. Now use that K≤ℵ0 has
joint embedding (by Lemma 21.4.9).

I: (1) Let (M, clM ) ∈ C. By Theorem 21.4.11, (M, clM ) is a pregeometry.

Moreover if A ⊆ |M | is finite then | clM (A)| ≤ LS(K) = ℵ0, as
desired.

(2) Let (M, clM ) ∈ C and X ⊆ |M |. By definition of admitting intersec-

tions, clM (X) ≤K M and so the result follows.
(3) At that point it will be useful to prove a claim:

Claim: Let (H, clH), (H ′, clH′) ∈ C. Let G ⊆ H and G′ ⊆ H ′ be
countable closed subsets or empty and let g : G → G′ be an iso-
morphism. If g ∪ f : H ⇀ H ′ is a partial embedding where f has
finite preimage X, then for any enumeration ā of X and Ḡ of G,
gtp(āḠ/∅;H) = gtp(f(ā)f(Ḡ)/∅;H ′).
Proof of Claim: By renaming, we may assume that G = G′ so what
we really have to prove is that gtp(ā/G;H) = gtp(f(ā)/G;H ′). Note

that by assumption ā and f(ā) satisfy the same τ(K̂)-quantifier-
free types over G. Therefore the result follows from Fact 21.4.19.(3)
(recalling Lemma 21.4.14). †Claim 1

Now let (M, clM ), (M ′, clM
′
) ∈ C, X ⊆ |M |, y ∈ clM (X), and

f : M ⇀ M ′ be a partial embedding with X ∪ {y} ⊆ preim(f).

We want to see that f(y) ∈ clM
′
(f [X]). By finite character, we

may assume without loss of generality that X is finite and therefore
preim(f) is also finite. Let ā be an enumeration of X. By the Claim,
gtp(āy/∅;M) = gtp(f(ā)f(y)/∅;M ′). The result now follows from
the definition of the closure operator.

II: Let (H, clH), (H ′, clH′) ∈ C. Let G ⊆ H and G′ ⊆ H ′ be countable closed
subsets or empty and let g : G→ G′ be an isomorphism.
(1) Let x ∈ |H| and x′ ∈ |H ′| be independent from G and G′ respectively.

We show that g ∪ {(x, x′)} is a partial embedding. By renaming
without loss of generality G = G′. By uniqueness of the generic
type, gtp(x/G;H) = gtp(x′/G;H ′). The result follows.

(2) Let g ∪ f : H ⇀ H ′ be a partial embedding, where f has finite
preimage X, and y ∈ clH(X ∪G). We want to find y′ ∈ H ′ such that
g ∪ f ∪ {(y, y′)} is a partial embedding. Without loss of generality
again, g is the identity. Let ā be an enumeration of X. By the
Claim, gtp(ā/G;H) = gtp(f(ā)/G;H ′). By Fact 21.3.7, there exists

h : clH(Gā) ∼=G clH
′
(Gā′) such that h(ā) = f(ā). Let y′ := h(y).

IV: Assume that K is unbounded.
(1) Because K is an AEC and the closure operator has finite character.
(2) Since K is unbounded.

�

As a corollary, all the work on structural properties of quasiminimal pregeom-
etry classes automatically applies also to quasiminimal AECs:
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Corollary 21.4.22. Let K be a quasiminimal AEC.

(1) Let M,N ∈ K and let BM , BN be bases for (|M |, clM ) and (|N |, clN )
respectively. If f is a bijection from BM onto BN , then there exists an
isomorphism g : M ∼= N with f ⊆ g.

(2) If K is unbounded, then:
(a) K has no maximal models.
(b) K has exactly ℵ0 non-isomorphic countable models and K is cate-

gorical in every uncountable cardinal.

Proof. Let C := C(K). By Theorem 21.4.21, C is a quasiminimal pregeometry
class. By [BHH+14], it also satisfies the excellence axiom. By Zilber’s main result
on these classes [Zil05a] (or see [Kir10, Theorem 3.3] for an exposition), (1) holds
for C. Therefore it also holds for K(C), which is a just a functorial expansion of K.
Hence it also holds for K. Similarly, (2) holds in unbounded quasimininal AECs
(see [Kir10, §4]). �

21.5. On a counterexample of Shelah

We give a (non-quasiminimal) example, due to Shelah, where the exchange
property fails. We show that, in this example, there is a good frame which cannot be
extended to be type-full, answering a question of Boney and the author (Question
18.1.4). We assume familiarity with good frames in this section, see [She09a,
Chapter II]; we use the definition from [JS13, Definition 2.1.1].

The following definitions come from [She09b, Exercise VII.5.7]:

Definition 21.5.1.

(1) Let τ∗ be the vocabulary consisting of only a single a unary function
symbol F .

(2) Let ψ0 be the following first-order τ∗-sentence:

∀x : F (F (x)) = F (x)

(3) Let ψ be the following first-order τ∗-sentence:

ψ0 ∧ ∀x∀y : F (x) 6= x ∧ F (y) 6= y → F (x) = F (y)

(4) Let φ(x) be the sentence ∃y : F (y) = x ∧ y 6= x.
(5) Let K∗ be the class of τ∗-structures that satisfy ψ.
(6) Say M ≤K∗ N if M,N ∈ K∗ and M ⊆ N .
(7) Let K∗ := (K∗,≤K∗).

Remark 21.5.2. If M ∈ K∗, then |φ(M)| ≤ 1.

Recall (see [She87b]) that a class K of structures in a fixed vocabulary is a
universal class if it is closed under isomorphisms, substructures, and unions of ⊆-
increasing chains. It is straightforward to check that K∗ is a universal class, and it
induces the AEC K∗ with Löwenheim-Skolem-Tarski number ℵ0. Thus it admits
intersections. Moreover:

Fact 21.5.3 ((∗)2 in VII.5.7 of [She09b]). K∗ has amalgamation.

Lemma 21.5.4. For any M ∈ K∗, 2 ≤ | gSna(M)| ≤ 3.

Proof. For M ≤K∗ N , there are three kinds of types realized in N (not
necessarily all non-algebraic):
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(1) The type of a ∈ φ(N).
(2) The type of a /∈ φ(N) with FN (a) 6= a.
(3) The type of a /∈ φ(N) with FN (a) = a.

Taking a suitable N , an instance of the last two can be found that is nonalge-
braic. �

Fact 21.5.5 ((∗)8 in VII.5.7 of [She09b]). K∗ fails disjoint amalgamation (in
any infinite cardinal).

Proof. Take M0 ≤K∗ M1 = M2 with φ(M0) = ∅, φ(M`) = {b}, ` = 1, 2.
Then it is clear that M1 and M2 cannot be disjointly amalgamated over M0 (as
any disjoint amalgam N would have to satisfy |φ(N)| ≥ 2). �

Lemma 21.5.6. For any N ∈ K∗ with |φ(N)| = 1, (|N |, clN ) does not have
exchange over ∅.

Proof. First note that clN (∅) = ∅. Now pick b ∈ φ(N) and let a 6= b be such

that FN (a) = b. Then b ∈ clN (a). However FN (b) = FN (FN (a)) = FN (a) = b, so

a /∈ clN (b). �

For the rest of this section, we fix an infinite cardinal λ ≥ ℵ0. We define a good
λ-frame s (whose definition appears already in [She09b, VII.5.7]) and an object
s′ satisfying all the axioms of good frames except existence. It turns out that s′

would be the only type-full extension of s, so s cannot be extended to be type-full.

Definition 21.5.7. Define pre-λ-frames (see [She09a, Definition III.0.2]) s, s′

as follows:

(1) The underlying class of s and s′ is (K∗)λ.
(2) The basic types of s′ are all the nonalgebraic types. The basic types of s

are all the nonalgebraic types of the form gtp(a/M ;N) with a /∈ φ(N).
(3) In both frames, gtp(a/M ;N) does not fork over M0 if and only if FN (a) /∈
|N |\|M |.

Theorem 21.5.8.

(1) s′ is type-full but s is not.
(2) The frames satisfy all the properties of good frames except perhaps exis-

tence.
(3) s has existence. Therefore it is a good λ-frame.
(4) s′ fails existence.
(5) s cannot be extended to be type-full.

Proof.

(1) Clear from the definitions.
(2) Straightforward. For example:

• Density of basic types in s: let M <K∗ N . We may assume that
|φ(M)| = 0, |φ(N)| = 1, so let b ∈ φ(N). Fix a 6= b such that
FN (a) = b. Now since b /∈ |M |, a /∈ |M |, so gtp(a/M ;N) is basic.
• Uniqueness in s′: Use the description of the nonalgebraic types in

the proof of Lemma 21.5.4.

• Symmetry: Suppose that (in one of the two frames) we have a
N

^
M0

M .

Let b ∈ |M | be such that gtp(b/M0;M) is basic. LetMa := clN (M0a).
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Note that |Ma| = |M0| ∪ {a, FN (a)}. We claim that b
N

^
M0

Ma. Note

that since gtp(b/M0;N) is basic, then also gtp(b/Ma;N) is basic
(check it for each frame). It remains to see that FN (b) /∈ |Ma|\|M0|.
First note that as a /∈ |M |, FN (b) = FM (b) 6= a. Further, if
FN (a) /∈ |M0|, then FN (a) /∈ |M |, so FN (a) 6= FN (b) = FM (b),
as desired.

(3) Straightforward.
(4) As in the proof of Fact 21.5.5.
(5) Any type-full extension of s would have to be s′ and we have shown that

s′ fails existence.

�

The following question seems much harder:

Question 21.5.9. Is there an example of a good-λ-frame which is categorical
in λ and cannot be extended to be type-full?

Note that by Theorem 23.4.19, if K≤ℵ0 is categorical, has amalgamation, joint
embedding, no maximal models, and is stable in ℵ0, then it has a type-full good
ℵ0-frame. Therefore by canonicity of categorical good frames (Theorem 6.9.7, the
answer is negative when λ = ℵ0.





CHAPTER 22

On the uniqueness property of forking in abstract
elementary classes

This chapter is based on [Vasc].

Abstract

In the setup of abstract elementary classes satisfying a local version of supersta-
bility, we prove the uniqueness property for a certain independence notion arising
from splitting. This had been a longstanding technical difficulty when constructing
forking-like notions in this setup. As an application, we show that the two versions
of forking symmetry appearing in the literature (the one defined by Shelah for good
frames and the one defined by VanDieren for splitting) are equivalent.

22.1. Introduction

In the study of classification theory for abstract elementary classes (AECs), the
question of when a forking-like notion exists is central. The present chapter deals
with this question.

To state our result more precisely, we first recall that there is a semantic notion
of type in AECs: for the rest of this introduction we fix an AEC K with amalga-
mation, joint embedding, and arbitrarily large models. This allows us to fix a big
universal model-homogeneous1 monster model C and work inside it. For M ≤K C
and a ∈ C, let gtp(a/M) (the Galois, or orbital, type of a over M) be the orbit of a
under the automorphisms of C fixing M (Galois types can be defined without any
assumptions on K, but then the definition becomes more technical). Write gS(M)
for the set of all Galois types over M . The definitions of stability and saturation
are as expected. Two important results of Shelah are:

(1) [She09a, II.1.14] If M is saturated, then M is model-homogeneous.
(2) [She09a, II.1.16] If K is stable in µ and M ∈ Kµ, then there exists

N ∈ Kµ universal over M .

To motivate the main result of this chapter, let us first consider the following
consequence:

Corollary 22.1.1. Let K be an AEC with amalgamation, joint embedding,
and arbitrarily large models. Let LS(K) < µ < λ be given. If K is categorical in
λ, then there is a relation “p does not µ-fork over M” defined for M ≤K N both
saturated models in Kµ and p ∈ gS(N) satisfying:

(1) The usual invariance and monotonicity properties.

1M is model-homogeneous if wheneverM0 ≤K N0 are such thatM0 ≤K M and ‖N0‖ < ‖M‖,
then N0 embeds inside M over M0.

527
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(2) Existence-extension: for M ≤K N both saturated in Kµ, any p ∈ gS(M)
has a µ-nonforking extension to gS(N).

(3) Uniqueness2: for M ≤K N both saturated in Kµ, if p, q ∈ gS(N) do not
µ-fork over M and p �M = q �M , then p = q.

(4) Symmetry: for M saturated in Kµ and a, b ∈ C, the following are equiva-
lent:
(a) There exists Ma saturated in Kµ containing a such that M ≤K Ma

and tp(b/Ma) does not µ-fork over M .
(b) There exists Mb saturated in Kµ containing b such that M ≤K Mb

and tp(a/Mb) does not µ-fork over M .
(5) Local character for universal chains: if δ < µ+ is a limit ordinal, 〈Mi : i ≤

δ〉 is an increasing continuous sequence of saturated models in Kµ with
Mi+1 universal over Mi for all i < δ, then for any p ∈ gS(Mδ) there exists
i < δ such that p does not µ-fork over Mi.

We give a proof at the end of this introduction. Several remarks are in order.
First remark: we work only over models of a fixed cardinality, so we deal with

a (potentially) different nonforking relation for each cardinal µ. Note in particular
that the uniqueness property is for types over models of the same size, so there
are no obvious relationships between µ0-forking and µ1-forking (for LS(K) < µ0 <
µ1 < λ).

Second remark: we work only over saturated models. We do not know how to
generalize our result to all models of cardinality µ. It is worth mentioning that
in the setup of Corollary 22.1.1 the µ-saturated models are closed under unions
(Corollary 17.5.7.(3). In fact they form an AEC with Löwenheim-Skolem-Tarski
number µ.

Third remark: it is known (using an argument of Morley, see [She99, I.1.7.(a)])
that in the setup of Corollary 22.1.1, K is stable in µ. Moreover (5) can be seen as
a version of superstability: it is a replacement for “every type does not fork over a
finite set”. In fact (5) is equivalent to superstability if K is first-order axiomatizable
(see Chapter 9).

Fourth remark: if we strengthen condition (5) to:

(5+) Local character: if δ < µ+ is a limit ordinal, 〈Mi : i ≤ δ〉 is an increasing
continuous sequence of saturated models in Kµ, then for any p ∈ gS(Mδ)
there exists i < δ such that p does not µ-fork over Mi.

(note the difference with (5): we do not require that Mi+1 be universal over
Mi) then we have arrived to Shelah’s definition of a (type-full) good µ-frame
[She09a, Definition II.2.1]. Good frames are the main concept in Shelah’s books
[She09a, She09b] on classification theory for AECs. They have several appli-
cations, including the author’s proof of the eventual categoricity conjecture for
universal classes (Chapters 8 and 16). Thus the existence question for them is
important.

Fifth remark: if we add to the assumptions of Corollary 22.1.1 that Galois
types over saturated models of size µ are determined by their restrictions to model
of size χ, for some χ < µ (this is called weak tameness in the literature), then
the conclusion is known (see Theorem 10.6.4 and Corollary 17.5.7.(1)) and one
can strengthen (5) to (5+), i.e. one gets a good µ-frame. It is known how to

2This can also be described as “types over saturated models are stationary”.
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derive eventual weak tameness from categoricity in a high-enough cardinal, thus the
conclusion also holds if µ is “high-enough” (µ ≥ i(2LS(K))

+ suffices), see Corollary

17.5.7.(5). However we are interested in arbitrary, potentially small, µ. In this case
the conclusion of Corollary 22.1.1 is new.

Sixth remark: we actually prove a more local statement than Corollary 22.1.1:
let us take a step back and explain how Corollary 22.1.1 is proven. As is customary,
we first study an independence notion called µ-splitting [She99, 3.2]: For M ≤K N
both in Kµ, p ∈ gS(N) µ-splits over M if there exists N1, N2 ∈ Kµ with M ≤K

N` ≤K N for ` = 1, 2 and f : N1
∼=M N2 such that f(p � N1) 6= p � N2. In

the context of Corollary 22.1.1, Shelah and Villaveces (see Fact 22.2.2) have shown
that µ-splitting satisfies (5). µ-splitting also satisfies weak analogs of uniqueness
and extension (see Fact 22.2.5).

The weak uniqueness statement is the following: if M0 ≤K M ≤K N are all
in Kµ, M is universal over M0, p, q ∈ gS(N) both do not µ-split over M0 and
p � M = q � M , then p = q. Thus it is natural to define forking by “shifting”
splitting by a universal model (this is already implicit in [She99] but is defined
explicitly for the first time in Definition 4.3.8). Let us say that p ∈ gS(N) does
not µ-fork over M if there exists M0 ≤K M such that M is universal over M0

and p does not µ-split over M0 (see Definition 22.2.4; it can be shown that any
reasonable forking-like notion must be µ-forking over saturated models (Theorem
6.9.7). In the setup of Corollary 22.1.1, it was known that µ-forking satisfies all the
conditions there except (3) (for symmetry, this is a recent result of the author, see
Corollary 17.5.7.(1), relying on joint work with VanDieren (Chapter 10).

Let us describe the problem in proving uniqueness: let M ≤K N both be
saturated in Kµ and p, q ∈ gS(N) be not µ-forking over M with p � M = q � M .
Thus we have witnesses Mp,Mq such that M is universal over both Mp and Mq,
p does not µ-split over Mp and q does not µ-split over Mq. If we knew that Mp

and Mq were the same (or at least had a common extension over which M is
still universal), then we could use the weak uniqueness described in the previous
paragraph. However we do not know how the witnesses fit together, so we are
stuck. This causes several technical difficulties, forcing for example the witnesses
to be carried over in the study of towers in [SV99, Van06, GVV16, Van16a]
and Chapter 10. In this chapter, we prove the uniqueness property (this implies
for example that the equivalence relation ≈ defined in [SV99, Definition 3.2.1] is
just equality).

More precisely, let us say that an AEC K is µ-superstable if Kµ is nonempty,
has amalgamation, joint embedding, no maximal models, is stable in µ, and µ-
splitting satisfies (5) (see Definition 22.2.1). The main result of this chapter is:

Theorem 22.2.16. If K is µ-superstable, then µ-forking has the uniqueness
property over limit models in Kµ.

Recall that M is limit if it is the union of an increasing continuous chain in
Kµ of the form 〈Mi : i ≤ δ〉, δ < µ+ limit and Mi+1 universal over Mi for all i < δ.
Limit models are a replacement for saturated models in a local context where we
only know information about models of a single cardinality (see [GVV16] for an
introduction to the theory of limit models). The proof of Theorem 22.2.16 proceeds
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by contradiction: if uniqueness fails, then we can build a tree of failures and this
contradicts stability.

With Theorem 22.2.16 stated, we can now give a full proof of Corollary 22.1.1:

Proof of Corollary 22.1.1. By Fact 22.2.2, K is µ-superstable. By Corol-
lary 17.5.7, saturated models in Kµ are the same as limit models. Therefore The-
orem 22.2.16 applies. We have that µ-forking (from Definition 22.2.4) satisfies (5).
By Fact 22.2.5, it also satisfies (2) and it is clear that it satisfies (1). By Theorem
22.2.16, it satisfies (2). Finally, by Corollary 17.5.7.(1) it satisfies (4). �

As an application of Theorem 22.2.16, we can show that the symmetry property
for splitting introduced by VanDieren in [Van16a] (which in essence is a symmetry
property for µ-forking with certain uniformity requirements on the witnesses) is
the same as the symmetry property given in the statement of Corollary 22.1.1:
see Corollary 22.2.18. Thus the “hierarchy of symmetry properties” described in
Section 10.4 collapses: all the properties there are equivalent. We do not know
whether symmetry follows from µ-superstability. We also do not know whether in
Theorem 22.2.16 we can assume only stability in µ (and amalgamation, etc.) rather
than superstability.

Another open problem would be to study the properties of the weak kind of
good frames derived in Corollary 22.1.1. They are called H-almost good frames by
Shelah (see [She09b, VII.5.9] and [Shee]). There has been some work on almost
(not H-almost) good frames (see [She09b, VII.5], [JS]), where in addition to (5) a
continuity property is required for all chains (i.e. given an increasing union of types
where all the elements do not fork over a common model, the union of the chain
does not fork over this model). In particular, conditions are given under which
almost good frames are good frames. It would be interesting to know whether
similar statements hold for H-almost good frames.

22.2. The main theorem

For the rest of this chapter, we assume that the reader has some basic familiarity
with AECs ([Bal09, Chapters 4-12] should be more than enough). We work inside
a fixed AEC K.

The following definition is implicit already in [She99] and is studied in several
papers including [SV99, Van06, GVV16, Van16a], and Chapter 10. It is given
the name superstability for the first time in [Gro02, 7.12].

Definition 22.2.1. K is µ-superstable if:

(1) µ ≥ LS(K) and Kµ 6= ∅.
(2) Kµ has amalgamation, joint embedding, and no maximal models.
(3) K is stable in µ.
(4) K has no long µ-splitting chains: for any limit ordinal δ < µ+, any

increasing continuous chain 〈Mi : i ≤ δ〉 with Mi+1 universal over Mi ∈
Kµ for all i < δ, and any p ∈ gS(Mδ), there exists i < δ such that p does
not µ-split over Mi.

A justification for this rather technical definition is the fact that it follows from
categoricity. This is proven (with slightly different hypotheses) in [SV99, 2.2.1].
For an exposition and complete proof, see Chapter 20.
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Fact 22.2.2. Assume that K has amalgamation and no maximal models. Let
LS(K) ≤ µ < λ. If K is categorical in λ, then K is µ-superstable.

From now on, we assume that K is µ-superstable (we will repeat this hypothesis
at the beginning of important statements). We fix a “monster model” C ∈ Kµ+

that is universal and model-homogeneous and work inside it.

Remark 22.2.3. We could work in the more general setup of [SV99] (with
only density of amalgamation bases, existence of universal extensions, limit models
being amalgamation bases, and no long splitting chains), but we prefer to avoid
technicalities.

The following is the main object of study of this chapter:

Definition 22.2.4 (Definition 4.3.8). For M ≤K N both in Kµ, p ∈ gS(N)
does not µ-fork over (M0,M) if M is universal over M0 and p does not µ-split over
M0. We say that p does not µ-fork over M if it does not µ-fork over (M0,M) for
some M0.

Since µ is always clear from context, we will omit it: we will say “p does not
fork” and “p does not split” instead of “p does not µ-fork” and “p does not µ-split”.

It is clear that forking has the basic invariance and monotonicity properties
(see Lemma 4.3.9). The following are implicit in [She99] and stated explicitly in
[Van06, I.4.10, I.4.12]. We will use them without much comments.

Fact 22.2.5. Let M0 ≤K M ≤K N ≤K N ′ all be in Kµ.

(1) Extension: If p ∈ gS(N) does not fork over (M0,M), then there exists an
extension q ∈ gS(N ′) of p that does not fork over (M0,M).

(2) Weak uniqueness: If p, q ∈ gS(N) do not fork over (M0,M) and p �M =
q �M , then p = q.

We now state a weak version of the conjugation property that types enjoy in
good frames [She09a, III.1.21]. This will be key in the proof of the main theorem.

Definition 22.2.6. Let M,M ′ ∈ Kµ, p ∈ gS(M), p′ ∈ gS(M ′). Let A ⊆
|M | ∩ |M ′|. We say that p and p′ are conjugate over A if there exists f : M ∼=A M

′

such that p′ = f(p). When A = ∅, we omit it.

Fact 22.2.7 (Conjugation property). Let δ < µ+ be a limit ordinal. Let
M0,M,N ∈ Kµ, with M0 ≤K M ≤K N . Assume that M is (µ, δ)-limit over M0

and N is (µ, δ)-limit over M . If p ∈ gS(N) does not fork over (M0,M), then p and
p �M are conjugate over M0.

Proof. Since M is limit over M0, there exists M1 ∈ Kµ such that M0 ≤K

M1 ≤K M , M1 is universal over M0, and M is (µ, δ)-limit over M1. Note that
then also N is (µ, δ)-limit over M1. Using uniqueness of limit models of the same
length, pick f : N ∼=M1

M . Let q := f(p). We claim that q = p �M . Note that by
invariance q does not fork over (M0, f [M ]), hence (by monotonicity) over (M0,M1).
By assumption and monotonicity, also p �M does not fork over (M0,M1). Since f
fixes M1, p �M1 = q �M1, so using weak uniqueness q = p �M , as desired. �

Remark 22.2.8. We do not know here that limit models of different lengths
are isomorphic.
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The following result says that certain chains of types have least upper bounds.
It is an easy use of extension, uniqueness, and local character.

Fact 22.2.9. Assume that K is µ-superstable. Let δ < µ+ be a limit ordinal
and let 〈Mi : i ≤ δ〉 be increasing continuous in Kµ with Mi+1 universal over Mi

for all i < δ. Suppose we are given an increasing chain of types 〈pi : i < δ〉 such
that pi ∈ gS(Mi) for all i < δ. Then there exists a unique pδ ∈ gS(Mδ) such that
pδ �Mi = pi for all i < δ.

Proof. Without loss of generality, δ is regular. If δ = ω, the conclusion is
given by a straightforward direct limit argument [Bal09, 11.1], so assume that
δ > ω. Using no long splitting chains, for each limit i < δ there exists ji < i
such that pi does not split over Mji . By Fodor’s lemma, there exists a stationary
S ⊆ δ and a j < δ such that pi does not split over Mj for all i ∈ S. Since S is
unbounded and the pi’s are increasing, pi does not split over Mj for all i ∈ [j, δ).
Let q ∈ gS(Mδ) be an extension of pj+1 that does not split over Mj . By weak
uniqueness, q �Mi = pi for all i ∈ [j + 1, δ). This proves existence and uniqueness
is similar: any q′ ∈ gS(Mδ) extending all the pi’s must be nonsplitting over Mj , so
use weak uniqueness. �

Recall that our goal is to prove uniqueness of nonforking extension. To this
end, we define a type to be bad if it witnesses a failure of uniqueness. We then close
this definition under nonforking extensions.

Definition 22.2.10. Let M ∈ Kµ be limit. We define by induction on n < ω
what it means for a type p ∈ gS(M) to be n-bad :

(1) p is 0-bad if there exists a limit model N ∈ Kµ with M ≤K N and
q1, q2 ∈ gS(N) such that:
(a) Both q1 and q2 extend p.
(b) q1 6= q2.
(c) Both q1 and q2 do not fork over M .

(2) For n < ω, p is (n + 1)-bad if there exists a limit model M0 ∈ Kµ with
M0 ≤K M such that p �M0 is n-bad and p does not fork over M0.

(3) p is bad if p is n-bad for some n < ω.

The following is an easy consequence of the definition (in fact the definition is
tailored exactly to make this work):

Remark 22.2.11. Let M ≤K N both be limit in Kµ. If p ∈ gS(N) does not
fork over M and p �M is bad, then p is bad.

We now proceed to develop some the theory of bad types. In the end, we will
conclude that this contradicts stability in µ, hence there cannot be any bad types.
The next two lemmas are crucial: bad types are closed under unions of universal
chains, and any bad type has two distinct bad extensions.

Lemma 22.2.12. Assume that K is µ-superstable. Let δ < µ+ be a limit
ordinal. Let 〈Mi : i ≤ δ〉 be an increasing continuous chain of limit models in Kµ

with Mi+1 limit over Mi for all i < δ. Let 〈pi : i ≤ δ〉 be an increasing chain of
types, with pi ∈ gS(Mi) for all i < δ. If pi is bad for all i < δ, then pδ is bad.

Proof. Since there are no long splitting chains, there exists i < δ such that
pδ does not fork over Mi. By assumption, p � Mi is bad, so by Remark 22.2.11 pδ
is also bad, as desired. �
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Lemma 22.2.13. Assume that K is µ-superstable. Let M ∈ Kµ be a limit
model. If p ∈ gS(M) is bad, then there exists a limit model N in Kµ with M ≤K N
and q1, q2 ∈ gS(N) such that:

(1) Both q1 and q2 extend p.
(2) q1 6= q2.
(3) Both q1 and q2 are bad.

Proof. By definition, p is n-bad for some n < ω. We proceed by induction on
n.

• If n = 0, this is the definition of being 0-bad (note that q1 and q2 from
Definition 22.2.10 are bad because they are nonforking extensions of the
bad type p, see Remark 22.2.11)

• If n = m+ 1, let M0 ∈ Kµ be a limit model such that M0 ≤K M , p does
not fork over M0, and p � M0 is m-bad. Pick M ′0 such that p does not
fork over (M ′0,M0). Let M ′1 be (µ, ω)-limit over M ′0 with M ′1 ≤K M0. By
monotonicity, p does not fork over (M ′0,M

′
1). Let M∗ be (µ, ω)-limit over

M (hence over M ′1). Let q ∈ gS(M∗) be an extension of p that does not
fork over (M ′0,M), hence over (M ′0,M

′
1). By Fact 22.2.7, q and p �M ′1 are

conjugate. Now by the induction hypothesis, there exists a limit model
N∗ extending M0 and two distinct bad extensions of p �M0 to N∗. These
are also extensions of p � M ′1, so the result follows from the fact that q
and p �M ′1 are conjugate.

�

The following nominally stronger version of Lemma 22.2.13 (where N is fixed
first) is the one that we will use to show that there are no bad types:

Lemma 22.2.14. Assume that K is µ-superstable. Let M be a limit model in
Kµ and let N be limit over M . If p ∈ gS(M) is bad, then there exists q1, q2 ∈ gS(N)
such that:

(1) Both q1 and q2 extend p.
(2) q1 6= q2.
(3) Both q1 and q2 are bad.

Proof. By Lemma 22.2.13, there exists N ′ ∈ Kµ limit with M ≤K N ′ and
q′1, q

′
2 ∈ gS(N ′) distinct bad extensions of p. Use universality of N to pick f : N ′ −→

M

N . For ` = 1, 2, let q′′` := f(q′`). Clearly, q′′1 , q′′2 are still distinct bad extensions of
p. Now for ` = 1, 2, let q` ∈ gS(N) be an extension of q′′` that does not fork over
f [N ′] (use no long splitting chains and extension). Then q1 and q2 are as desired
(they are bad because they are nonforking extensions of the bad types q′′1 , q

′′
2 , see

Remark 22.2.11). �

Lemma 22.2.15. If K is µ-superstable, then there are no bad types.

Proof. Suppose for a contradiction that there is a limit model M in Kµ and a
bad type p ∈ gS(M). Fix an increasing continuous chain 〈Mi : i ≤ µ〉 with M0 = M
and Mi+1 limit over Mi for all i < µ. We build a tree of types 〈pη : η ∈ ≤µ2〉
satisfying:

(1) p<> = p.
(2) For all η ∈ ≤µ2, pη ∈ gS(M`(η)).



534 22. UNIQUENESS OF FORKING IN AECS

(3) For all ν ≤ η ∈ ≤µ2, pη is an extension of pν .
(4) For all η ∈ ≤µ2, pη is bad.
(5) For all η ∈ <µ2, pηa0 6= pηa1.

This is enough: Then for all η, ν ∈ µ2, η 6= ν implies pη 6= pν . Therefore
| gS(Mµ)| = 2µ > µ, contradicting stability.

This is possible: We proceed by induction on `(η). The base case has already
been specified. At limits, we use Fact 22.2.9 and Lemma 22.2.12. At successors, we
use Lemma 22.2.14. �

Theorem 22.2.16 (Uniqueness of forking). Assume that K is µ-superstable.
Let M ≤K N both be limits in Kµ. Let p, q ∈ gS(N). If p � M = q � M and both
p and q do not fork over M , then p = q.

Proof. Otherwise, this would mean that p �M is 0-bad, contradicting Lemma
22.2.15. �

22.2.1. The hierarchy of symmetry properties collapses. In Section
10.4, VanDieren and the author defined several variations of the symmetry property
(we have highlighted the differences between each, see the previously-cited paper
for more motivation):

Definition 22.2.17.

(1) K has uniform µ-symmetry if for any limit models N,M0,M in Kµ where
M is limit overM0 andM0 is limit overN , if gtp(b/M) does not µ-split over M0,

a ∈ |M |, and gtp(a/M0) does not µ-fork over (N,M0), there exists Mb ∈
Kµ containing b and limit over M0 so that gtp(a/Mb) does not µ-fork
over (N,M0).

(2) K has weak uniform µ-symmetry if for any limit models N,M0,M in Kµ

whereM is limit overM0 andM0 is limit overN , if gtp(b/M) does not µ-fork over M0,

a ∈ |M |, and gtp(a/M0) does not µ-fork over (N,M0), there exists Mb ∈
Kµ containing b and limit over M0 so that gtp(a/Mb) does not µ-fork
over (N,M0).

(3) K has non-uniform µ-symmetry if for any limit models M0,M in Kµ

where M is limit over M0, if gtp(b/M) does not µ-split over M0, a ∈ |M |,
and gtp(a/M0) does not µ-fork over M0, there exists Mb ∈ Kµ containing
b and limit over M0 so that gtp(a/Mb) does not µ-fork over M0.

(4) K has weak non-uniform µ-symmetry if for any limit models M0,M in Kµ

where M is limit over M0, if gtp(b/M) does not µ-fork over M0, a ∈ |M |,
and gtp(a/M0) does not µ-fork over M0, there exists Mb ∈ Kµ containing
b and limit over M0 so that gtp(a/Mb) does not µ-fork over M0.

In Section 10.4, it was shown that the uniform variation corresponds to the
symmetry property for splitting introduced by VanDieren in [Van16a] and the
weak non-uniform variation corresponds to the symmetry property of good frames
(over limit models). It was also proven that (1)⇔ (2)⇒ (3)⇒ (4). Using Theorem
22.2.16, it is now easy to show that all these properties are equivalent.

Corollary 22.2.18. If K is µ-superstable, then uniform µ-symmetry is equiv-
alent to weak non-uniform µ-symmetry.

Proof. We show that weak non-uniform µ-symmetry implies weak uniform µ-
symmetry, which is known to be equivalent to uniform µ-symmetry (Lemma 10.4.6).
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So assume that we are given N,M0,M, a, b as in the definition of weak uniform µ-
symmetry. Let Mb be as given by the definition of weak non-uniform µ-symmetry.
We know that gtp(a/Mb) does not µ-fork over M0, but we really want to conclude
that it does not µ-fork over (N,M0).

By assumption, gtp(a/M0) does not µ-fork over (N,M0). Therefore by ex-
tension there is a′ such that gtp(a′/Mb) does not µ-fork over (N,M0). We have
that gtp(a/M0) = gtp(a′/M0), and gtp(a/Mb), gtp(a′/Mb) both do not µ-fork over
M0. Therefore by uniqueness (Theorem 22.2.16), gtp(a/Mb) = gtp(a′/Mb). In
particular, gtp(a/Mb) does not µ-fork over (N,M0), as desired. �





CHAPTER 23

Abstract elementary classes stable in ℵ0

This chapter is based on [SV] and is joint work with Saharon Shelah.

Abstract

We study abstract elementary classes (AECs) that, in ℵ0, have amalgamation,
joint embedding, no maximal models and are stable (in terms of the number of
orbital types). We prove that such classes exhibit superstable-like behavior at ℵ0.
More precisely, there is a superlimit model of cardinality ℵ0 and the class generated
by this superlimit has a type-full good ℵ0-frame (a local notion of nonforking inde-
pendence) and a superlimit model of cardinality ℵ1. This extends Shelah’s earlier
study of PCℵ0

-representable AECs and also improves results of Hyttinen-Kesälä
and Baldwin-Kueker-VanDieren.

23.1. Introduction

23.1.1. Motivation. In [She87a] (a revised version of which appears as [She09a,
Chapter I], from which we cite), Shelah introduced abstract elementary classes
(AECs): a semantic framework generalizing first-order model theory and also en-
compassing logics such as Lω1,ω(Q). Shelah studied PCℵ0 -representable AECs
(roughly, AECs which are reducts of a class of models of a first-order theory omit-
ting a countable set of types) and generalized and improved some of his earlier
results on Lω1,ω [She83a, She83b] and Lω1,ω(Q) [She75a].

For example, fix a PCℵ0
-representable AEC K and assume for simplicity that

it is categorical in ℵ0. Assuming 2ℵ0 < 2ℵ1 and 1 ≤ I(K,ℵ1) < 2ℵ1 , Shelah shows
[She09a, I.3.8] that K has amalgamation in ℵ0. Further, [She09a, I.4, I.5], it has
a lot of structure in ℵ0 and assuming more set-theoretic assumptions as well as few
models in ℵ2, K has a superlimit model in ℵ1 [She09a, I.5.34, I.5.40]. This means
roughly (see [She09a, I.3.3]) that there is a saturated model in ℵ1 and that the
union of an increasing chain of type ω consisting of saturated models of cardinality
ℵ1 is saturated.

23.1.2. Main result. The present chapter improves this result by removing
the need for the extra set-theoretic and structure hypotheses on ℵ2:

Theorem 23.1.1. Assume 2ℵ0 < 2ℵ1 . Let K be a PCℵ0
-representable AEC

(with LS(K) = ℵ0 and countable vocabulary). If K is categorical in ℵ0 and 1 ≤
I(K,ℵ1) < 2ℵ1 , then K has a superlimit model of cardinality ℵ1.

We give the proof of Theorem 23.1.1 at the end of this introduction. For
now, notice that it implies the nontrivial fact that K has a model of size ℵ2.
However this consequence was known because under the hypotheses of Theorem
23.1.1, one can change the ordering on K to obtain a new class K′ that has a good

537
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ℵ0-frame [She09a, II.3.4] (a local axiomatic notion of nonforking independence. Its
existence implies that there is a model of size ℵ2). Note also that the assumption
of categoricity in ℵ0 is not really needed (see [She09a, I.3.10]) but then one has to
change the class to obtain one that is categorical in ℵ0 and get a superlimit in the
new class.

An additional difficulty in [She09a, I.5] is the lack of stability: one can only
get that there are ℵ1-many orbital types over countable models. A workaround
is to redefine the ordering (but not the class of models) to get a stable class, see
[She09a, I.5.29].

23.1.3. Outline of the chapter. In this chapter, we start with some of the
consequences of [She09a, Chapter I]: amalgamation (plus joint embedding and no
maximal models) in ℵ0 and stability in ℵ0. We show that once we have them we can
derive all the rest (e.g. existence of a superlimit in ℵ0 and existence of a good ℵ0-
frame) without assuming anything else (no need for 2ℵ0 < 2ℵ1 or I(K,ℵ1) < 2ℵ1).
In fact, we do not need to assume that K is PCℵ0

(rather, we can prove that a
certain subclass of K is PCℵ0

, see Theorem 23.4.2 and Corollary 23.4.14). Moreover,
we do not need to start with full amalgamation but can work in the slightly more
general setup of [SV99].

One of the main tool is model-theoretic forcing in the style of Robinson, as
used in [She09a, Chapter I]. When assuming amalgamation, the notion is well-
behaved. In particular, every formula is decided. We prove (Theorem 23.4.10) that
one can characterize brimmed models (also called limit models in the literature) as
those that are homogeneous for orbital types, or equivalently homogeneous for the
syntactic types induced by the forcing notion (we call them generic types). This has
as immediate consequence that the brimmed model of cardinality ℵ0 is superlimit
(Corollary 23.4.11). This sheds light on an argument of Lessmann [Les05] and
answers a question of Fred Drueck (see footnote 3 on [Dru13, p. 25].

We also deduce (Corollary 23.4.13) that orbital types over countable models
are determined by their restrictions to finite sets (this is often called (< ℵ0,ℵ0)-
tameness in the literature, we call it locality). This generalizes a result of Hyttinen
and Kesälä, who proved it in the context of finitary AECs [HK06, 3.12].

One can then build a good frame (Theorem 23.4.19) as in the proof of [She09a,
II.3.4] but a key new point given by the locality is that this frame will be good+ (a
technical condition characterized in Theorem 23.3.15). Using it, we can obtain the
superlimit model in ℵ1.

Another application of the construction of a good frame is that if the class has
global amalgamation and all its orbital types are determined by their countable
restrictions (this is called ℵ0-tameness in other places in the literature), then ℵ0-
stability implies stability in all cardinals. This follows from e.g. the stability transfer
in Theorem 4.5.6 and improves a result of Baldwin-Kueker-VanDieren [BKV06,
3.6] (by removing the hypothesis of ω-locality there; in fact it follows from the rest
by the existence of the good frame).

Proof of Theorem 23.1.1. The global hypotheses of [She09a, I.5] are sat-
isfied, and in particular we have amalgamation in ℵ0. By [She09a, I.5.36], we can
assume without loss of generality that K is stable in ℵ0. Therefore the hypotheses
of Theorem 23.4.19 hold, hence its conclusion. �
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23.1.4. Notes. Note that at the beginning of several sections, we make global
hypotheses assumed throughout the section.

23.2. Preliminaries

We assume familiarity with the basics of AECs, as presented for example in
[Gro02, Bal09], or the first three sections of Chapter I together with the first
section of Chapter II in [She09a]. We also assume familiarity with good frames
(see [She09a, Chapter II]). This section mostly fixes the notation that we will use.

Given a τ -structure M , we write |M | for its universe and ‖M‖ for its cardinality.
We may abuse notation and write e.g a ∈ M instead of a ∈ |M |. We may even
write ā ∈M instead of ā ∈ <ω|M |.

We write K = (K,≤K) for an AEC. We may abuse notation and write M ∈ K
instead of M ∈ K. For a cardinal λ, we write Kλ for the AEC restricted to its
models of size λ. As shown in [She09a, II.1], any AEC is uniquely determined by
its restriction K≤LS(K).

When we say that M ∈ K is an amalgamation base, we mean (as in [SV99])
that it is an amalgamation base in K‖M‖, i.e. we do not require that larger models
can be amalgamated.

Given an AEC K, we may extend the relation ≤K to allow the empty set on
the left hand side by requiring that ∅ ≤K M for all M ∈ K. This is useful when
looking at universal models.

For M0 ∈ K ∪ {∅} we say that M is universal over M0 if M ≤K N and for
any N ∈ K with M0 ≤K N , if ‖N‖ ≤ ‖M0‖ + LS(K), there exists f : N −−→

M0

M .

We say that M is (λ, δ)-brimmed over M0 (often also called (λ, δ)-limit e.g. in
[SV99, GVV16]) if δ < λ+ is a limit ordinal, M0 = ∅ or M0 ∈ Kλ, and there
exists an increasing continuous chain 〈Ni : i ≤ δ〉 of members of Kλ such that N0

is universal over M0, Nδ = M , and Ni+1 is universal over Ni for all i < δ. We
say that M is brimmed over M0 if it is (‖M‖, δ)-brimmed over M0 for some limit
δ < ‖M‖+. We say that M is brimmed if it is brimmed over ∅.

The following notion of types already appears in [She87b]. It is called Galois
types by many, but we prefer the term orbital types here. They are the same
types that are defined in [She09a, II.1.9], except we also define them over sets. As
pointed out in the preliminaries of Chapter 2, this causes no additional difficulties.

Definition 23.2.1. Fix an AEC K.

(1) We say (A,N1, b̄1)Eat(A,N2, b̄2) if:
(a) For ` = 1, 2, N` ∈ K, A ⊆ |N`|, and b̄` ∈ <∞|N`|.
(b) There exists N ∈ K and f` : N` −→

A
N , ` = 1, 2, such that f1(b̄1) = b̄2.

(2) Eat is a reflexive and symmetric relation. Let E be its transitive closure.
(3) Let gtp(b̄, A,N) be the E-equivalence class of (b̄, A,N).
(4) Define gS(A,N), gS(M), gS<ω(M), etc. as expected. See for example the

preliminaries of Chapter 2.

Let us say that an AEC K is stable in λ if for any M ∈ Kλ, | gS(M)| ≤ λ. This
makes sense in any AEC, and is quite well-behaved assuming amalgamation and no
maximal models (since then it is known that one can build universal extensions).
We will often work in the following axiomatic setup, a slight weakening where full
amalgamation is not assumed. This comes from the context derived in [SV99]:
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Definition 23.2.2. Let K be an AEC and let λ be a cardinal. We say that K
is nicely stable in λ (or nicely λ-stable) if:

(1) LS(K) ≤ λ.
(2) Kλ 6= ∅.
(3) K has joint embedding in λ.
(4) Density of amalgamation bases: For any M ∈ Kλ, there exists N ∈ Kλ

such that M ≤K N and N is an amalgamation base (in Kλ).
(5) Existence of universal extensions: For any amalgamation base M ∈ Kλ,

there exists an amalgamation base N ∈ Kλ such that M <K N and N is
universal over M .

(6) Any brimmed model in Kλ is an amalgamation base.

We say that K is very nicely stable in λ if in addition it has amalgamation in
λ.

Remark 23.2.3. An AEC K is very nicely stable in λ if and only if LS(K) ≤ λ,
Kλ 6= ∅, K is stable in λ, and Kλ has amalgamation, joint embedding, and no
maximal models.

We will make use of good frames for types of finite length (not just length one).
Their definition is just like for types of length one, see Definition 5.3.8. We call
them good (< ω, λ)-frames. Note that any good λ-frame (i.e. for types of length
one) extends to a good (< ω, λ)-frame (using independent sequences, see [She09a,
III.9.4]) or Corollary 5.5.8.

Given a good (< ω, λ)-frame s, we write gSbs
s (M) for the basic types over M

and Ks for the underlying class of the frames (so for some essentially unique AEC
K, Ks = Kλ). We write M ≤K∗ N to mean that M,N ∈ Ks (so in particular both
M and N have cardinality λ) and M ≤K N .

23.3. Weak nonforking amalgamation

In this section, we work in a good λ-frame and study a natural weak version
of nonforking amalgamation, LWNFs. The main results are the existence property
(Theorem 23.3.11) and how the symmetry property of LWNFs is connected to s
being good+ (Theorem 23.3.15). All throughout, we assume:

Hypothesis 23.3.1.

(1) s is a good (< ω, λ)-frame, except that it may not satisfy the symmetry
axiom.

(2) Ks is categorical in λ. Write K for the AEC generated by Ks.

Remark 23.3.2. In this section, λ is allowed to be uncountable.

The reason for not assuming symmetry is that we will use some of the results
of this section to prove that the symmetry axiom holds of a certain nonforking
relation in Section 23.4.

We will use:

Fact 23.3.3 (II.4.3 in [She09a]). Let δ < λ+ be a limit ordinal divisible by
λ. Let 〈Mi : i ≤ δ〉 be increasing continuous in Ks. If for any i < δ and any

p ∈ gSbs
s (Mi), there exists λ-many j ∈ [i, δ) such that the nonforking extension of

p to Mj is realized in Mj+1, then Mδ is brimmed over M0.
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Definition 23.3.4. Define the following 4-ary relations on Ks:

(1) LWNFs(M0,M1,M2,M3) if and only if M0 ≤K∗ M` ≤K∗ M3 for ` = 1, 2
and for any b̄ ∈ <ω|M1|, if gtp(b̄,M2,M3) and gtp(b̄,M0,M3) are basic
then gtp(b̄,M2,M3) does not fork over M0.

(2) RWNFs(M0,M1,M2,M3) if and only if LWNFs(M0,M2,M1,M3).
(3) WNFs(M0,M1,M2,M3) if and only if both LWNFs(M0,M1,M2,M3) and

RWNFs(M0,M1,M2,M3).

When s is clear from context, we write LWNF, RWNF, and WNF.

Remark 23.3.5. WNF stands for weak nonforking amalgamation, and LWNF,
RWNF stand for left (respectively right) weak nonforking amalgamation.

The following result often comes in handy.

Lemma 23.3.6. Let δ < λ+ be a limit ordinal. Let 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉
be increasing continuous in Ks. Assume that for each i ≤ j < δ, we have that
LWNF(Mi, Ni,Mj , Nj). If for each i < δ, Ni realizes all the basic types over Mi,
then Nδ realizes all the basic types over Mδ.

Proof. Let p ∈ gSbs
s (Mδ). By local character, there exists i < δ such that

p does not fork over Mi. By assumption, there exists a ∈ |Ni| such that p �
Mi = gtp(a,Mi, Ni). Because for all j ∈ [i, δ), LWNF(Mi, Ni,Mj , Nj), we have by
continuity that gtp(a,Mδ, Nδ) does not fork over Mi, hence by uniqueness it must
be equal to p. Therefore a realizes p, as needed. �

We will see that there seems to be a clear difference between LWNF and RWNF.
The following ordering is defined similarly to ≤∗λ+ from [She09a, II.7.2]:

Definition 23.3.7. For R ∈ {LWNF,RWNF,WNF}, define a relation ≤R
on Kλ+ as follows. For M0,M1 ∈ Kλ+ , M0 ≤R M1 if and only if there exists
increasing continuous resolutions 〈M `

i ∈ Kλ : i < λ+〉 of M ` for ` = 0, 1 such that
for all i < j < λ+, R(M0

i ,M
1
i ,M

0
j ,M

1
j ).

The following is a straightforward “catching your tail argument”, see the proof
of Lemma 14.4.6.

Fact 23.3.8. Let M,N ∈ Kλ+ . If M ≤K N , then M ≤LWNF N .

Whether M ≤RWNF N can be concluded as well seems to be a much more
complicated question, and in fact is equivalent to s being good+ (Theorem 23.3.15).
Observe that an increasing union of a ≤RWNF-increasing chain of saturated models
is saturated:

Lemma 23.3.9. Let δ < λ++ be a limit ordinal. If 〈Mi : i < δ〉 is a ≤RWNF-
increasing sequence of saturated models in Kλ+ , then

⋃
i<δMi is saturated.

Proof. Without loss of generality, δ = cf δ < λ+. Let Mδ :=
⋃
i<δMi. We

build 〈Mi,j : i ≤ δ, j ≤ λ+〉 such that:

(1) For any i ≤ δ, Mi,λ+ = Mi.
(2) For any i < δ, j < λ+, Mi,j ∈ Ks.
(3) For any i ≤ δ, 〈Mi,j : j < λ+〉 is increasing and continuous.
(4) For any j ≤ λ+, 〈Mi,j : i < δ〉 is increasing and Mδ,j =

⋃
i<δMi,j .

(5) For any i1 < i2 ≤ δ, j1 < j2 ≤ λ+, Mi2,j2 realizes all the types in

gSbs
s (Mi1,j1).
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This is easy to do. Now for each i1 < i2 < δ, we have by assumption that
Mi1 ≤RWNF Mi2 . Thus the set Ci1,i2 of j < λ+ such that for all j′ ∈ [j, λ+),
RWNF(Mi1,j ,Mi2,j ,Mi1,j′ ,Mi2,j′) is a club. Therefore C :=

⋂
i1<i2<δ

Ci1,i2 is also
a club. Hence by renaming without loss of generality for all i1 < i2 < δ and all
j ≤ j′ < λ+, RWNF(Mi1,j ,Mi2,j ,Mi1,j′ ,Mi2,j′).

Now let N ≤K Mδ be such that N ∈ Kλ. We want to see that any type over
N is realized in Mδ. By Fact 23.3.3, it is enough to show that any basic type over
N is realized in Mδ.

Let j < λ+ be big-enough such that N ≤K Mδ,j . It is enough to see that
any basic type over Mδ,j is realized in Mδ,j+1. To see this, use Lemma 23.3.6
with 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 there standing for 〈Mi,j : i ≤ δ〉, 〈Mi,j+1 : i ≤
δ〉 here. We know that for each i ≤ i′ < δ, RWNF(Mi,j ,Mi′,j ,Mi,j+1,Mi′,j+1)
and therefore LWNF(Mi,j ,Mi,j+1,Mi′,j ,Mi′,j+1). Thus the hypotheses of Lemma
23.3.6 are satisfied. �

The proof of the following fact is a direct limit argument similar to e.g. [GVV16,
5.3]. Note that the symmetry axiom is not needed.

Fact 23.3.10. Let α < λ+. Let 〈Mi : i ≤ α〉 be ≤K∗ -increasing continuous and
let 〈āi : i < α〉 be given such that āi ∈ Mi+1 for all i < α and gtp(āi,Mi,Mi+1) ∈
gSbs

s (Mi).
There exists 〈Ni : i ≤ α〉 ≤K∗ -increasing continuous such that:

(1) Mi <K∗ Ni for all i ≤ α.
(2) gtp(āi, Ni, Ni+1) does not fork over Mi.

We are now ready to list some basic properties of weak nonforking amalgama-
tion.

Theorem 23.3.11. Let R ∈ {LWNF,RWNF,WNF}.
(1) Invariance: IfR(M0,M1,M2,M3) and f : M3

∼= M ′3, thenR(f [M0], f [M1], f [M2],M ′3).
(2) Monotonicity: If R(M0,M1,M2,M3) and M0 ≤K∗ M

′
` ≤K∗ M` for ` =

1, 2, then R(M0,M
′
1,M

′
2,M3).

(3) Ambiant monotonicity: If R(M0,M1,M2,M3) and M3 ≤K∗ M ′3, then
R(M0,M1,M2,M

′
3). IfM ′′3 ≤K∗ M3 contains |M1|∪|M2|, thenR(M0,M1,M2,M

′′
3 ).

(4) Continuity: If δ < λ+ is a limit ordinal and 〈M `
i : i ≤ δ〉 are increas-

ing continuous for ` < 4 with R(M0
i ,M

1
i ,M

2
i ,M

3
i ) for each i < δ, then

R(M0
δ ,M

1
δ ,M

2
δ ,M

3
δ ).

(5) Long transitivity: If α < λ+ is an ordinal, 〈Mi : i ≤ α〉, 〈Ni : i ≤ α〉 are
increasing continuous and LWNF(Mi, Ni,Mi+1, Ni+1) for all i < α, then
LWNF(M0, N0,Mα, Nα).

(6) Existence: If R 6= WNF, M0 ≤K∗ M`, ` = 1, 2, then there exists M3 ∈ Kλ

and f` : M` −−→
M0

M3 such that R(M0, f1[M1], f2[M2],M3).

Proof. Invariance and the monotonicity properties are straightforward to
prove. Continuity and long transitivity follow directly from the local character,
continuity, and transitivity properties of good frames. We prove existence via the
following claim:

Claim: There exists N0, N1, N2, N3 ∈ Ks such that LWNF(N0, N1, N2, N3) and
N` is brimmed over N0 for ` = 1, 2.

Existence easily follows from the claim: given M0 ≤K∗ M`, ` = 1, 2, there is
(by categoricity in λ) an isomorphism f : M0

∼= N0 and (by universality of brimmed
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models) embeddings f` : M` → N` extending f for ` = 1, 2. After some renaming,
we obtain the desired LWNF-amalgam. To obtain an RWNF-amalgam, reverse the
role of M1 and M2.

Proof of Claim: Let δ := λ ·λ. We choose (M̄α, āα) by induction on α ≤ δ such
that:

(1) M̄α = 〈Mα
i : i ≤ α〉 is ≤K∗ -increasing continuous.

(2) āα = 〈āi : i < α〉, and āi ∈Mα
i+1 for all i < α.

(3) For all i < α, gtp(āαi ,M
α
i ,M

α
i+1) ∈ gSbs

s (Mα
i ).

(4) For each i ≤ δ, 〈Mα
i : α ∈ [i, δ]〉 is <K∗ -increasing continuous.

(5) For each i < δ and each α ∈ (i, δ], gtp(āi,M
α
i ,M

α
i+1) does not fork over

M i
i .

(6) If p ∈ gSbs
s (Mα

i ) for i ≤ α < δ, then for λ-many β ∈ [α, δ), gtp(āβ ,M
β+1
β ,Mβ+1

β+1 )
is a nonforking extension of p.

(7) If i < α < δ and gtp(ā,Mα
0 ,M

α
i+1) ∈ gSbs

s (Mα
0 ), then for some β ∈ (α, δ)

exactly one of the following occurs:

(a) gtp(ā,Mβ+1
0 ,Mβ+1

i+1 ) forks over Mα
0 .

(b) There is no 〈M∗j : j ≤ i+ 1〉 ≤K∗ -increasing continuous such that:

(i) Mβ
j ≤K∗ M

∗
j for all j ≤ i+ 1.

(ii) gtp(āj ,M
∗
j ,M

∗
j+1) does not fork over Mβ

j for all j < i+ 1.

(iii) gtp(ā,M∗0 ,M
∗
i+1) forks over Mβ

0 .

This is possible: Along the construction, we also build an enumeration

〈(b̄γj , k
γ
j , i

γ
j , α

γ
j ) : j < λ, γ < λ〉 such that for any γ ∈ (0, λ), any α < λ · γ,

any i < α, any k ≤ i, and any ā ∈ <ωMα
i+1, if gtp(ā,Mα

k ,M
α
i+1) ∈

gSbs
s (Mα

k ), then there exists j < λ so that b̄γj = ā, iγj = i, kγj = k, and

αγj = α. We require that always kγj ≤ iγj < αγj < λ · γ and the triple

(b̄γj ,M
αγj
kγj
,M

αγj
iγj+1

) represents a basic type. We make sure that at stage

λ · (γ + 1) of the construction below, b̄γ
′

j , k
γ′

j , i
γ′

j , α
γ′

j are defined for all

j < λ, γ′ ≤ γ.

For α = 0, take any M0
0 ∈ Ks. For α limit, let Mα

i :=
⋃
β∈[i,α)M

β
i

for i < α and Mα
α :=

⋃
i<αM

α
i . Now assume that M̄α, āα have been

defined for α < δ. We define M̄α+1 and āα. Fix ρ and j < λ such that
α = λ · ρ+ j. We consider two cases.

– Case 1: ρ is zero or a limit: Use Fact 23.3.10 to get 〈Mα+1
i : i ≤ α〉

<K∗ -increasing continuous such that Mα
i <K∗ M

α+1
i for all i ≤ α,

and for all i < α, gtp(āi,M
α+1
i ,Mα+1

i+1 ) does not fork over Mα
i . Pick

any Mα+1
α+1 with Mα+1

α <K∗ M
α+1
α+1 and any āα ∈ <ωMα+1

α+1 such that

gtp(āα,M
α+1
α ,Mα+1

α+1 ) ∈ gSbs
s (Mα+1

α ).

– Case 2: ρ is a successor: Say ρ = γ + 1. Let ā := b̄γj , α0 := αγj ,

k0 := kγj , i0 := iγj . There are two subcases. It is possible that k0 6= 0

or k0 = 0 and (7b) holds with i, α, β there standing for i0, α0, α here.
In this case, we proceed as in Case 1 to define 〈Mα+1

i : i ≤ α〉. Then

we pick āα, Mα+1
α+1 such that gtp(āα,M

α
α ,M

α+1
α+1 ) is the nonforking

extension of gtp(ā,Mα0
i0
,Mα0

i0+1).
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On the other hand, it is possible that k0 = 0 and (7b) fails. In this
case let 〈M∗j : j ≤ i0 + 1〉 witness the failure and set Mα+1

j := M∗j
for j ≤ i0 + 1. Then continue as in Case 1 and define āα, Mα+1

α+1 as
before.

This is enough: We choose M̄∗ = 〈M∗i : i ≤ δ〉 increasing continuous

such that M∗0 is brimmed over M δ
0 , Mδ

i ≤K∗ M∗i for all i ≤ δ, and
gtp(āi,M

∗
i ,M

∗
i+1) does not fork over Mδ

i . This is possible, see case 1
above. Now:

– M∗0 is brimmed over M δ
0 .

[Why? By construction].

– If p ∈ gSbs
s (Mδ

i ) for i < δ, then for λ-many β ∈ [i, δ), gtp(āβ ,M
δ
β ,M

δ
β+1)

is a nonforking extension of p.
[Why? Pick i′ ∈ (i, δ) such that p does not fork over M i′

i . By (6),
we know that for λ-many β ∈ [i′, δ), the nonforking extension of

p � M i′

i to Mβ+1
β is realized in Mβ+1

β+1 by āβ . But by (5) we also

have that gtp(āβ ,M
δ
β ,M

δ
β+1) does not fork over Mβ

β . In particular

by uniqueness āβ also realizes p.]
– Mδ

δ is brimmed over M δ
0 .

[Why? We apply Fact 23.3.3 to the chain 〈M δ
i : i ≤ δ〉, using the

previous step.].
– LWNF(Mδ

0 ,M
δ
δ ,M

∗
0 ,M

∗
δ ).

[Why? Pick ā ∈ <ωM δ
δ such that gtp(ā,Mδ

0 ,M
δ
δ ) is basic. By local

character, there exists α < δ such that gtp(ā,Mδ
0 ,M

δ
δ ) does not fork

over Mα
0 . Further, we can increase α if necessary and pick i < α such

that ā ∈ <ωMα
i+1. We now apply Clause (7). We know that (7a) fails

for all β ∈ (α, δ) by the choice of α, therefore (7b) must hold for all
β ∈ (α, δ). Now if gtp(ā,M∗0 ,M

∗
δ ) forks over Mδ

0 , then it must fork

over Mβ
0 for all high-enough β, but then 〈M∗j : j ≤ i + 1〉 would

contradict Clause (7b). Therefore gtp(ā,M∗0 ,M
∗
δ ) does not fork over

Mδ
0 , as desired.]

Therefore we can take (M0,M1,M2,M3) := (Mδ
0 ,M

δ
δ ,M

∗
0 ,M

∗
δ ). †Claim

�

Definition 23.3.12. Let R ∈ {LWNF,RWNF,WNF}.
(1) We say that R has the symmetry property if R(M0,M1,M2,M3) implies

R(M0,M2,M1,M3).
(2) We say thatR has the uniqueness property if wheneverR(M0,M1,M2,M3)

and R(M0,M1,M2,M
′
3), there exists M ′′3 with M ′3 ≤K∗ M ′′3 and f :

M3 −−−−−−−→
|M1|∪|M2|

M ′′3 .

The following are trivial observations about the definitions:

Remark 23.3.13.

(1) WNF has the symmetry property, and LWNF has the symmetry property
if and only if RWNF has the symmetry property if and only if LWNF =
RWNF = WNF.

(2) LWNF has the uniqueness property if and only RWNF has it.

Recall from [She09a, III.1.3]:
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Definition 23.3.14. s is good+ when the following is impossible:
There exists an increasing continuous 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, a basic

type p ∈ gSbs
s (M0), and 〈āi : i < λ+〉 such that for any i < λ+:

(1) Mi ≤K∗ Ni.
(2) āi+1 ∈ |Mi+2| and gtp(āi+1,Mi+1,Mi+2) is a nonforking extension of p,

but gtp(āi+1, N0, Ni+2) forks over M0.
(3)

⋃
j<λ+ Mj is saturated.

Theorem 23.3.15. (1)⇒ (2)⇔ (3)⇒ (4), where:

(1) LWNF has the symmetry property.
(2) s is good+.
(3) For M,N ∈ Kλ+ both saturated, M ≤K N implies M ≤WNF N .
(4) There is a superlimit model in Kλ+ .

Proof.

• (3) implies (4): This follows from Lemma 23.3.9.

• ¬(2) implies ¬(3): Fix a witness 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, 〈āi : i <

λ+〉, p to the failure of being good+. Write Mλ+ :=
⋃
i<λ+ Mi, Nλ+ :=⋃

i<λ+ Ni. By assumption, Mλ+ is saturated. Clearly, increasing the Ni’s
will not change that we have a witness so without loss of generality Nλ+ is
also saturated. We claim that Mλ+ 6≤RWNF Nλ+ . We show this by proving
that for any i < λ+ and any j ≤ i + 1, ¬RWNF(Mj , Nj ,Mi+2, Ni+2).
Indeed, gtp(āi+1, Nj , Ni+2) forks over Mj : if not, then by transitivity
gtp(āi+1, Nj , Ni+2) does not fork over M0, and hence gtp(āi+1, N0, Ni+2)
does not fork over M0, and we know that this is not the case of the witness
we selected.

• ¬(3) implies ¬(2): Fix M,N saturated in Kλ+ such that M ≤K N but
M 6≤RWNF N .

Claim: For any A ⊆ |M | of size λ, there exists M0 ≤K∗ M1 ≤K M
and N0 ≤K∗ N1 ≤K N such that M0 ≤K∗ N0, M1 ≤K∗ N1, A ⊆ |M0|,
but ¬RWNF(M0, N0,M1, N1).

Proof of Claim: If not, we can use failure of the claim and continuity
of RWNF to build increasing continuous resolution 〈Mi : i ≤ λ+〉, 〈Ni :
i ≤ λ+〉 of M and N respectively such that RWNF(Mi, Ni,Mj , Nj) for all
i < j < λ+. Thus M ≤RWNF N , contradicting the assumption. †Claim

Build 〈M∗i : i ≤ λ+〉, 〈N∗i : i ≤ λ+〉 increasing continuous resolu-
tions of M , N respectively such that for all i < λ+, M∗i ≤K∗ N

∗
i and

¬RWNF(M∗i+1, N
∗
i+1,M

∗
i+2, N

∗
i+2). This is possible by the claim. Let

ā∗i+1 ∈ |M∗i+2| witness the RWNF-forking, i.e. gtp(ā∗i+1, N
∗
i+1, N

∗
i+2) forks

over M∗i+1. By Fodor’s lemma, local character, and stability, there exists

a stationary set S, i0 < λ+ and p ∈ gSbs
s (M∗i0) such that for all i ∈ S,

gtp(ā∗i+1,M
∗
i ,M

∗
i+2) is the nonforking extension of p. Without loss of

generality, i0 is limit and all elements of S are also limit ordinals.
Now build an increasing continuous sequence of ordinals 〈ji : i < λ+〉

as follows. Let j0 := i0. For i limit, let ji := supk<i jk. For i successor,
pick any ji ∈ S with ji > ji−1.
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Now for i not the successor of a limit, let Mi := M∗ji , Ni := N∗ji ,
āi := ā∗ji . For i = k + 1 with k a limit, set Mi := M∗jk , Ni := N∗jk ,

āi := ā∗ji . This gives a witness to the failure of being good+.
• (1) implies (3): If LWNF has the symmetry property, then by Remark

23.3.13, LWNF = RWNF = WNF. By Fact 23.3.8, it follows that M ≤K

N implies M ≤WNF N for any M,N ∈ Kλ+ , so (3) holds.

�

Question 23.3.16. Are the conditions in Theorem 23.3.15 all equivalent?

Question 23.3.17. Is there a good λ-frame s such that LWNFs does not have
the symmetry property?

The next result shows that the uniqueness property has strong consequences.
Shelah has given conditions under which when λ = ℵ0, failure of uniqueness implies
nonstructure [She09b, VII.4.16].

Theorem 23.3.18. Assume that s is a good (< ω, λ)-frame (so it satisfies
symmetry). If LWNF has the uniqueness property, then LWNF has the symmetry
property and s is successful good+ (see [She09a, III.1.1]).

Proof. By Corollary 14.3.11 (used with the pre-(≤ λ, λ)-frame induced by
LWNF, recalling Fact 23.3.8) s is weakly successful. This implies that there is a
relation NF = NFs that is a nonforking relation respecting s (see [She09a, II.6.1],
in particular it has all the properties listed in Theorem 23.3.11, as well as uniqueness
and symmetry). Now as NF respects s, we must have that NF(M0,M1,M2,M3)
implies LWNF(M0,M1,M2,M3). Since LWNF has the uniqueness property and
NF has the existence property, it follows from Lemma 3.4.1 that LWNF = NF. In
particular, LWNF has the symmetry property.

To see that s is successful good+, it is enough to show that for M,N ∈ Kλ+ ,
M ≤K N implies M ≤NF N (where ≤NF is defined as in Definition 23.3.7). This is
immediate from Fact 23.3.8 and LWNF = NF. �

To prepare for the proof of symmetry in the λ = ℵ0 case, we introduce yet an-
other notion of nonforking amalgamation (VWNF stands for “very weak nonforking
amalgamation”).

Definition 23.3.19.

(1) For M ≤K∗ N , B ⊆ |N |, ā ∈ <ωN , we say that gtp(ā, B,N) does not fork
over M if there exists M ′, N ′ with N ≤K∗ N

′, M ≤K∗ M
′ ≤K∗ N

′, and
B ⊆ |M ′| such that gtp(ā,M ′, N ′) does not fork over M0.

(2) We define a 4-ary relation VWNFs = VWNF on Ks by VWNF(M0,M1,M2,M3)
if and only if M0 ≤K∗ M` ≤K∗ M3, ` = 1, 2 and for any ā ∈ <ωM1 and
any finite B ⊆ |M2|, if gtp(ā,M0,M3) and gtp(ā,M2,M3) are both basic,
then gtp(ā, B,M3) does not fork over M0.

Theorem 23.3.20. Assume that s is a type-full good (< ω, λ)-frame.

(1) VWNF has the symmetry property: VWNF(M0,M1,M2,M3) if and only
if VWNF(M0,M2,M1,M3).

(2) If for any M ∈ Ks and any p 6= q ∈ gSbs
s (M) there exists B ⊆ |M | finite

such that p � B 6= q � B, then VWNF = WNF. In particular, LWNF has
the symmetry property.
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Proof.

(1) By the symmetry axiom of good frames.
(2) This is observed in Lemma 6.4.5. In details, it suffices to show that for

M ≤K∗ N , p ∈ gSbs
s (N) does not fork over M if and only if p � B does

not fork over M for all finite B ⊆ |N |. Let q ∈ gSbs
s (N) be the nonforking

extension of p �M . For any finite B ⊆ |N |, we have that q � B = p � B, by
the uniqueness property for (the extended notion of) forking, see Lemma
3.5.4. Therefore by the assumption we must have p = q, as desired.

�

23.4. Building a good ℵ0-frame

In this section, we work in ℵ0 and aim to build a good ℵ0-frame from stability
and amalgamation.

Hypothesis 23.4.1. K = (K,≤K) is an AEC with LS(K) = ℵ0 (and countable
vocabulary).

First note that if K is stable and has few models, we can say something about
its definability:

Theorem 23.4.2. Assume that I(K,ℵ0) ≤ ℵ0.

(1) The set {M ∈ Kℵ0 : |M | ⊆ ω} is Borel.
(2) If K has amalgamation in ℵ0 and is stable in ℵ0, then the set {(M,N) :

M ≤K N and |N | ⊆ ω} is Σ1
1.

In particular if K has amalgamation in ℵ0 and is stable in ℵ0, then K is a
PCℵ0

-representable AEC.

Proof.

(1) Fix M ∈ Kℵ0
. By Scott’s isomorphism theorem, there exists a formula

φM of Lℵ1,ℵ0
(τK) such that N |= φM if and only if M ∼= N . Now observe

that the set

{N : N is a τK-structure with |N | ⊆ ω and N |= φM}
is Borel and use that I(K,ℵ0) ≤ ℵ0.

(2) For M,N ∈ Kℵ0 with M ≤K N , let us say that N is almost brimmed
over M if either N is brimmed over M , or N is ≤K-maximal. Using
amalgamation, it is easy to check that if N,N ′ are both almost brimmed
over M , then N ∼=M N ′. Moreover there always exists an almost brimmed
model over any M ∈ Kℵ0

.
Fix 〈M∗n : n < ω〉 such that for any M ∈ Kℵ0 there exists n < ω such

that M ∼= M∗n (possible as I(K,ℵ0) ≤ ℵ0). For each n < ω, fix N∗n ∈ Kℵ0

almost brimmed over M∗n. We have:
~1 For M,N ∈ Kℵ0

:
(a) There is n < ω and an isomorphism f : M∗n

∼= M .
(b) If N is almost brimmed over M , then any such f extends to

g : N∗n
∼= N .

~2 For M1,M2 ∈ Kℵ0
, M1 ≤K M2 if and only if M1 ⊆M2 and for some

n < ω, for some (N, f1, f2) we have: M1 ⊆ M2 ⊆ N and f` is an
isomorphism from (M∗n, N

∗
n) onto (M`, N).
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[Why? The implication “if” holds by the coherence axiom of AECs.
The implication “only if” holds as there is N ∈ Kℵ0 which is almost
brimmed over M2 (and so M2 ≤K N) hence N is almost brimmed over
M1 and use ~1 above.]

The result now follows from ~2.

By [BL16, 3.3], it follows that K is PCℵ0
. �

The following appears already in [She09a, I.4.3]:

Definition 23.4.3. Let φ(x̄) be a formula in L∞,ℵ0(τK) and let M ∈ Kℵ0 ,
ā ∈ <ωM . We define M K φ[ā] (we will just write M  φ[ā] as K is fixed) by
induction on φ as follows:

• If φ is atomic, M  φ[ā] if and only if M |= φ[ā].
• If φ(x̄) = ∧i<αφi[x̄], then M  φ[ā] if and only if M  φi[ā] for all i < α.
• If φ(x̄) = ∃ȳψ(ȳ, x̄), then M  φ[ā] if and only if for every N ∈ Kℵ0

with
M ≤K N , there exists N ′ ∈ Kℵ0

with N ≤K N ′ and b̄ ∈ <ωN ′ such that
N ′  ψ[b̄, ā].
• If φ(x̄) = ¬ψ(x̄), then M  φ[ā] if and only if for every N ∈ Kℵ0 with
M ≤K N , N 6 ψ[ā].
• If φ(x̄) = ∀ȳψ(ȳ, x̄), then M  φ[ā] if and only if M  ¬∃ȳ¬ψ(ȳ, ā).
• If φ(x̄) = ∨i<αφi(x̄), then M  φ[ā] if and only if M  ¬ ∧i<α ¬φi[ā].

We now state some basic facts about forcing. In particular, forcing is very
well-behaved on amalgamation bases.

Lemma 23.4.4. Let M,N ∈ Kℵ0
with M ≤K N , ā ∈ <ωM , and φ(x̄) be an

L∞,ℵ0
(τK)-formula.

Then:

(1) If M  φ[ā], then N  φ[ā].
(2) If M  φ[ā], then M 6 ¬φ[ā]. If M 6 ¬φ[ā], then there exists N ∈ Kℵ0

with M ≤K N such that N  φ[ā].
(3) M  φ[ā] if and only if for every N ∈ Kℵ0

with M ≤K N there exists
N ′ ∈ Kℵ0

such that N ≤K N ′ and N ′  φ[ā].
(4) If M 6 φ[ā], then there exists N ∈ Kℵ0

such that M ≤K N and N 
¬φ[ā].

(5) If M is an amalgamation base, then either M  φ[ā] or M  ¬φ[ā].
(6) If M is an amalgamation base, then M  φ[ā] if and only if N  φ[ā].
(7) If M0 ∈ Kℵ0

∪{∅}, M is brimmed over M0, and N  ψ[ā, b̄] (with b̄ ∈ N),
then there exists b̄′ ∈M such that M  ψ[ā, b̄′].

(8) If M is a brimmed amalgamation base, then M  φ[ā] if and only if
M |= φ[ā].

Proof.

(1) Straightforward induction on φ.
(2) By definition of M  ¬φ[ā].
(3) Straightforward induction on φ.
(4) By the previous part and definition of forcing a negation.
(5) If M 6 φ[ā] and M 6 ¬φ[ā], then by the previous parts there exists

extensions M1,M2 ∈ Kℵ0
of M which force φ and ¬φ respectively. Use

amalgamation to get a contradiction.
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(6) We have already shown the left to right direction. For the right to left
direction, suppose that M 6 φ[ā]. Then by the previous part M  ¬φ[ā]
so N  ¬φ[ā] so N 6 φ[ā], as desired.

(7) Since M is brimmed over M0, there exists M1 ∈ Kℵ0
such that ā ∈ M1,

M0 ≤K M1 ≤K M , and M is universal over M1. Let f : N −−→
M1

M . Then

f [N ]  ψ[f(b̄), ā], so M  ψ[f(b̄), ba], so b̄′ := f(b̄) is as desired.
(8) Straightforward induction on φ, using the previous part for the existential

case.

�

Definition 23.4.5. For M ∈ Kℵ0 , B ⊆ |M |, and ā ∈ <ωM , let gentp(ā, B,M)
(the generic type of ā over B in M) be the following set:

{φ(x̄, b̄) | φ(x̄, ȳ) ∈ Lℵ1,ℵ0
(τK), b̄ ∈ <ωB,M  φ[ā, b̄]}

Note that generic types are always rougher than orbital types. See Corollary
23.4.12 for a converse.

Lemma 23.4.6. Let M1,M2 ∈ Kℵ0
be amalgamation bases, B ⊆ |M1| ∩ |M2|

and ā` ∈ <ωM`. If gtp(ā1, B,M1) = gtp(ā2, B,M2), then gentp(ā1, B,M1) =
gentp(ā2, B,M2).

Proof. By the definition of orbital types and Lemma 23.4.4(6). �

Assuming there is a universal extension over M0, the set of generic types over
M0 will be the set of generic types realized in the universal extension. In particular,
it will be countable:

Lemma 23.4.7. For any M0 ∈ Kℵ0
∪{∅} and any M ∈ Kℵ0

universal over M0,
we have:

{gentp(ā,M0,M) | ā ∈ <ωM} = {gentp(ā,M0, N) | N ∈ Kℵ0 ,M0 ≤K N, ā ∈ <ωN}
(where by convention we set ∅ ≤K N for every N ∈ K)

Proof. Use universality of M and Lemma 23.4.4(6). �

The following technical lemma shows how to code a generic type inside a single
formula.

Lemma 23.4.8. Assume that K is nicely stable in ℵ0 (recall Definition 23.2.2).
Fix an amalgamation base M0 ∈ Kℵ0

∪{∅}. There exists a sequence 〈φM0
m : m < ω〉

such that:

(1) For each m < ω, φM0
m is an Lℵ1,ℵ0(τK)-formula with parameters from M0.

(2) For any M ∈ Kℵ0
extending M0 and any ā ∈ <ωM , there is a unique

m = m(ā,M0,M) < ω such that M  φM0
m [ā] and M  ¬φM0

m′ [ā] for all
m′ 6= m.

(3) For any M ∈ Kℵ0 extending M0 and any ā, b̄ ∈ <ωM , gentp(ā,M0,M) =
gentp(b̄,M0,M) if and only if m(ā,M0,M) = m(b̄,M0,M).

Proof. Say {pi : i < ω} = {gentp(ā,M0, N) : N ∈ Kℵ0
,M0 ≤K N, ā ∈ <ωN}

(this set is countable by Lemma 23.4.7). For each i 6= j in ω, there exists ψi,j
such that ψi,j ∈ pi and ¬ψi,j ∈ pj . For m < ω, set φM0

m := ∧m 6=jψm,j . It is
straightforward to see that this works. �
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We have all the tools available to study homogeneous models and show that
they coincide with brimmed models.

Definition 23.4.9. Let D be a set of orbital types and let M ∈ K. We say that
M is (D,ℵ0)-homogeneous if whenever p ∈ D is the type of an (n + m)-elements
sequence and ā ∈ nM realizes pn (the restriction of p to its first n “variables”),
there exists a sequence b̄ ∈ mM such that āb̄ realizes p. When D = gS<ω(∅,M),
we omit it.

Theorem 23.4.10. Assume that K is nicely stable in ℵ0. Let M0 ∈ Kℵ0
∪ {∅}

be an amalgamation base, and let M ∈ Kℵ0
be such that M0 ≤K M . The following

are equivalent:

(1) M is brimmed over M0

(2) M is (gS<ω(M0),ℵ0)-homogeneous.

Proof. First we show:
Claim 1: If M is brimmed over M0, then M is ℵ0-homogeneous over M0 in

the sense of generic types. That is, if ā1, b̄1, ā2 ∈ <ωM and gentp(ā1,M0,M) =
gentp(ā2,M0,M), then there exists b̄2 ∈ <ωM such that gentp(ā1b̄1,M0,M) =
gentp(ā2b̄2,M0,M).

Proof of Claim 1: Let m := m(ā1,M0,M) and n := m(ā1b̄1,M0,M) (see
Lemma 23.4.8). Since the generic types are equal, we must have thatm = m(ā2,M0,M).
Consider the formula

ψ(x̄) := φm(x̄) ∧ ∃ȳφn(x̄, ȳ)

where `(x̄) = `(ā1) and `(ȳ) = `(b̄1). We have that M  ψ[ā1] (the existential
part is witnessed by b̄1) so also M  ψ[ā2] by equality of the generic types. By
definition of forcing this means that there exists N ∈ Kℵ0 and b̄∗2 ∈ <ωN such that
M ≤K N and N  φn[ā2, b̄

∗
2]. Now by Lemma 23.4.4(7 (using that M is brimmed

over M0), there exists b̄2 ∈M such that M  φn[ā2, b̄2], as desired. †Claim 1

Claim 2: If M is brimmed over M0 and ā, b̄ ∈ <ωM , then gentp(ā,M0,M) =
gentp(b̄,M0,M) if and only if there is an automorphism of M sending ā to b̄ and
fixing M0 pointwise.

Proof of Claim 2: The right to left direction is clear and the left to right direc-
tion is a direct back and forth argument using Claim 1. †Claim 2

From Claim 2, it follows directly that if M is brimmed over M0 then it is
(gS<ω(M0),ℵ0)-homogeneous. Conversely, the countable (gS<ω(M0),ℵ0)-homogeneous
model is unique and so it must also be brimmed over M0. �

Corollary 23.4.11. If K is nicely stable in ℵ0, then there is a superlimit
model of cardinality ℵ0.

Proof. The ℵ0-homogeneous model works (Theorem 23.4.10 with M0 := ∅
implies its existence). �

We deduce the following characterization of types:

Corollary 23.4.12. Assume that K is nicely stable in ℵ0. Let M0 ∈ Kℵ0
∪{∅}

be an amalgamation base. Let M ∈ Kℵ0
be a brimmed model extending M0 (but

not necessarily brimmed over M0). Let ā1, ā2 ∈ <ωM . The following are equivalent:

(1) gtp(ā1,M0,M) = gtp(ā2,M0,M).
(2) gentp(ā1,M0,M) = gentp(ā2,M0,M).
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(3) tpL∞,ℵ0
(τK)(ā1,M0,M) = tpL∞,ℵ0

(ā2,M0,M).

(4) tpLℵ1,ℵ0
(τK)(ā1,M0,M) = tpLℵ1,ℵ0

(ā2,M0,M).

Proof. Let N be brimmed over M (hence over M0). First we prove:
Claim: For any ā ∈M , gentp(ā,M0,M) = gentp(ā,M0, N) and tpL∞,ℵ0

(τK)(ā,M0,M) =

tpL∞,ℵ0
(τK)(ā,M0, N)

Proof of Claim: This follows from Lemmas 23.4.4(6),(8). †Claim

Now consider the following statement:

(1)’ There is an automorphism of N fixing M0 sending ā1 to ā2.

Using it, we complete the proof of the theorem as follows:

• (1) is equivalent to (1)’ (by a back and forth argument).
• (1)’ implies (3) (straightforward using the Claim).
• (3) implies (4) (trivial).
• (4) is equivalent to (2) by Lemmas 23.4.4(6),(8), recalling that generic

types are defined using Lℵ1,ℵ0
(τ)-formulas.

• (4) implies (1)’ by the Claim, the equivalence of (2) with (4), and Claim
2 in the proof of Theorem 23.4.10.

�

Corollary 23.4.13 (Locality). Assume that K is nicely stable in ℵ0. Let
M ∈ Kℵ0 be an amalgamation base. Let p, q ∈ gS<ω(M). If p 6= q, then there
exists A ⊆ |M | finite such that p � A 6= q � A.

Proof. Suppose that p 6= q. Say p = gtp(ā,M,N), q = gtp(b̄,M,N), with N
brimmed over M . By Corollary 23.4.12, gentp(b̄,M,N) 6= gentp(b̄,M,N), so there
exists A ⊆ |M | finite such that gentp(ā, A,N) 6= gentp(b̄, A,N). By Lemma 23.4.6,
this implies that gtp(ā, A,N) 6= gtp(b̄, A,N), as desired. �

We have also justified assuming amalgamation in the following sense:

Corollary 23.4.14. If K is nicely stable in ℵ0, then there exists an AEC
K′ = (K ′,≤K′) such that:

(1) LS(K′) = ℵ0.
(2) K′<ℵ0

= ∅.
(3) τK′ = τK.
(4) K ′ ⊆ K and for M,N ∈ K ′, M ≤K′ N if and only if M ≤K N .
(5) For any M ∈ K there exists M ′ ∈ K′ with M ≤K M ′.
(6) K′ is categorical in ℵ0.
(7) K′ is very nicely stable in ℵ0. In particular it has amalgamation in ℵ0.
(8) For M,N ∈ K′ℵ0

, M ≤K′ N implies M �L∞,ℵ0
(τK′ )

N .

(9) K′ is PCℵ0 .

Proof. Let M ∈ Kℵ0
be superlimit (exists by Corollary 23.4.11). Let K ′ℵ0

:=
{N ∈ K : N ∼= M}. Now let K′ be the AEC generated by (K ′ℵ0

,≤K). One
can easily check that K′ is nicely stable in ℵ0 and from categoricity in ℵ0 we get
amalgamation in ℵ0, hence (7) holds. To see (8), use Corollary 23.4.12. As for (9),
it follows from Theorem 23.4.2. �

We can now construct the promised good ℵ0-frame. Its nonforking relation will
be define terms of splitting. We will work in the class generated by the superlimit
so the reader may assume that all the models are brimmed.
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Definition 23.4.15. For M ∈ Kℵ0
brimmed and A ⊆ |M |, p ∈ gS<ω(M) splits

over A if there exists an automorphism f of M such that f(p) 6= p.

Remark 23.4.16. Using Corollary 23.4.12, one can check that (assuming that
K is nicely stable in ℵ0) this is equivalent to the syntactic definition using Lℵ1,ℵ0

(τK)-
formulas.

The following is proven in [She09a, I.5.6].

Fact 23.4.17. Assume that K is nicely stable in ℵ0 and categorical in ℵ0. If
M ∈ Kℵ0 and p ∈ gS<ω(M), then there exists A ⊆ |M | finite such that p does not
split over A.

Definition 23.4.18. Assume that K is nicely stable in ℵ0. We define a pre-
(< ω,ℵ0)-frame s = (Ks, gSbs

s ,^
s

) by:

(1) Ks = K′ℵ0
, where K′ is as given by Corollary 23.4.14.

(2) gSbs
s (M) is the set of all nonalgebraic types of finite sequences over M .

(3) For M ≤K∗ N , p ∈ gSbs
s (N) does not fork over M if and only if there

exists a finite A ⊆ |M | so that p does not split over A.

Theorem 23.4.19. If K is nicely stable in ℵ0, then s is a categorical type-
full good (< ω,ℵ0)-frame. Moreover LWNFs has the symmetry property (recall
Definitions 23.3.4 and 23.3.12). In particular, s is good+ and K has a superlimit
of cardinality ℵ1.

Proof. Without loss of generality assume to simplify the notation that the
class has already been changed, i.e. K = K′ where K′ is from Corollary 23.4.14.
Equivalently, K is categorical in ℵ0. Once we have shown that s is a type-full good
frame, the moreover part follows from Corollary 23.4.13 and Theorem 23.3.20. The
last sentence is by Theorem 23.3.15 (it is easy to check that if K′ has a superlimit
in ℵ1 then K also has one).

Except for symmetry, the axioms of good frames are easy to check (see the
proof of [She09a, II.3.4]). For example:

• Local character: Let 〈Mi : i ≤ δ〉 be increasing continuous in Ks. Let

p ∈ gSbs
s (Mδ). By Fact 23.4.17, there exists a finite A ⊆ |Mδ| such that

p does not split over A. Pick i < δ such that A ⊆ |Mi|. Then p does not
fork over Mi.

• Uniqueness: standard, see for example Lemma 7.4.8 (and Remark 23.4.16).
• Extension: follows on general grounds, see Lemma 19.3.5.

Symmetry is the hardest to prove, and is done as in [She09a, I.5.30]. We give
a full proof for the convenience of the reader.

Suppose that gtp(b̄, N2, N3) does not fork over N0 and let c̄ ∈ <ωN2\N1. We
want to find N1, N

′
3 such that N0 ≤K∗ N1 ≤K∗ N

′
3, N3 ≤K∗ N

′
3, b̄ ∈ <ωN1 and

gtp(c̄, N1, N
′
3) does not fork over N0. Assume for a contradiction that there is no

such N1. Using existence for LWNFs = LWNF (see Theorem 23.3.11), as well
as the extension property for nonforking, we can increase N2 and N3 if necessary
and find N1 such that LWNF(N0, N1, N2, N3), N` is brimmed over N0, and N3 is
brimmed over N` for ` = 1, 2. By assumption, p := gtp(c̄, N1, N3) forks over N0.

Claim 1: Let I be the linear order [0,∞)∩Q. There exists an increasing chain
〈Ms : s ∈ I〉 such that for any s < t in I, Ms,Mt are in Kℵ0 and Mt is brimmed
over Ms.
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Proof of Claim 1: Fix 〈M∗i : i < ω1〉 increasing continuous in Kℵ0
such that

M∗i+1 is brimmed over M∗i for all i < ω1. Using undefinability of well-ordering, pick
a countable ill-founded model of set theory B = (A,E, 〈Ms : s ∈ I∗〉) elementarily
equivalent to (H(ℵ2),∈, 〈M∗i : i < ω1〉). Now I∗ contains a copy of the rationals
by a general argument on ill-founded models of set theory, see [Fri73, Section 3]).
Recalling that K is PCℵ0

(see Corollary 23.4.14) and the syntactic characterization
of brimmed models (Theorem 23.4.10), the result follows. †Claim 1

Fix I, 〈Ms : s ∈ I〉 as in Claim 1. Fix N ′0 such that N0 is brimmed over N ′0
and p � N0 does not fork over N ′0.

For any fixed infinite J ⊆ I, write MJ :=
⋃
s∈JMs. Assume now that MI is

brimmed over MJ . Let NJ
0 := MJ , NJ

1 := MI . Let NJ
3 be brimmed over NJ

1 .
By categoricity and uniqueness of brimmed models, there exists f0 : N ′0

∼= M0,
fJ0 : N0

∼= NJ
0 , fJ1 : N1

∼= NJ
1 , and fJ3 : N3

∼= NJ
3 such that f0 ⊆ fJ0 ⊆ fJ1 ⊆ fJ3 .

Let fJ2 := fJ3 � N2 and let NJ
2 := fJ2 [N2]. Note that LWNF(NJ

0 , N
J
1 , N

J
2 , N

J
3 )

holds.
Let pJ := gtp(fJ3 (c̄), fJ3 [N1], fJ3 [N3]) = gtp(fJ3 (c̄),MI , N

J
3 ). Since we are as-

suming that gtp(c̄, N1, N3) forks over N0, we have that pJ forks over NJ
0 . Moreover

pJ � NJ
0 does not fork over M0.

Claim 2: If J has no last elements, I\J has no first elements, and t ∈ I\J , then
pJ �Mt forks over NJ

0 .
Proof of Claim 2: Suppose that pJ �Mt does not fork over NJ

0 . Note that Mt is
brimmed over MJ . Find N ′1 such that N0 ≤K∗ N

′
1 ≤K∗ N1, N ′1 is brimmed over N1,

and fJ1 : N ′1
∼= Mt. Let b̄′ ∈ <ωN ′1 be such that gtp(b̄′, N0, N

′
1) = gtp(b̄, N0, N1).

Since LWNF(N0, N1, N2, N3), we know that gtp(b̄′, N2, N3) does not fork over N0,
hence by uniqueness gtp(b̄, N2, N3) = gtp(b̄′, N2, N3). But we have assumed shown
that gtp(c̄, N ′1, N3) does not fork over N0 and b̄′ ∈ <ω1N ′1, hence by a simple
renaming we obtain a contradiction to our hypothesis that symmetry failed. †Claim 2

Claim 3: If J1 ( J2 are both proper initial segments of I with no last elements
and J2\J1 has no first elements, then pJ1 6= pJ2 .

Proof of Claim 3: Fix t ∈ J2\J1. By Claim 2, pJ1
� Mt forks over NJ1

0 . We

claim that pJ2
� Mt does not fork over NJ1

0 . Indeed recall that NJ2
0 = MJ2

and

by assumption pJ2
� NJ2

0 does not fork over M0. Therefore by monotonicity also

pJ2
�Mt does not fork over MJ1

= NJ1
0 . †Claim 3

To finish, observe that there are 2ℵ0 cuts of I as in Claim 3. Therefore stability
fails, a contradiction. �





CHAPTER 24

Indiscernible extraction and Morley sequences

This chapter is based on [Vas17b]. I thank John Baldwin, José Iovino, Itay
Kaplan, Alexei Kolesnikov, Anand Pillay, and Akito Tsuboi for valuable comments
on earlier versions of this chapter.

Abstract

We present a new proof of the existence of Morley sequences in simple theories.
We avoid using the Erdős-Rado theorem and instead use only Ramsey’s theorem
and compactness. The proof shows that the basic theory of forking in simple theo-
ries can be developed using only principles from “ordinary mathematics”, answering
a question of Grossberg, Iovino and Lessmann, as well as a question of Baldwin.

24.1. Introduction

Shelah [She80, Lemma 9.3] has shown that, in a simple first-order theory
T , Morley sequences exist for every type. The proof proceeds by first building an
independent sequence of length i(2|T |)

+ for the given type and then using the Erdős-

Rado theorem together with Morley’s method to extract the desired indiscernibles.
After slightly improving on the length of the original independent sequence

[GIL02, Appendix A], Grossberg, Iovino and Lessmann observed that, in contrast,
most of the theory of forking in a stable first-order theory T does not need the
existence of such “big” cardinals. The authors then asked whether the same could
be said about simple theories, and so in particular whether there was another way
to build Morley sequences there.

Baldwin (see [Bal10] and [Bal13, Question 3.1.9]) similarly asked1 whether
the equivalence between forking and dividing in simple theories had an alternative
proof.

We answer those questions in the affirmative by showing how to extract a
Morley sequence from any infinite independent sequence. Our construction relies
on a property of forking we call dual finite character. We show it holds in simple
theories, and that the converse is also true (the latter was noticed by Itay Kaplan).

24.2. Preliminaries

For the rest of this chapter, fix a complete first-order theory T in a language
L(T ) and work inside its monster model C. We write |T | for |L(T )|+ℵ0. We denote
by Fml(L(T )) the set of first-order formulas in the language L(T ). If A is a set,
we say a formula is over A if it has parameters from A. For a tuple ā in C and φ a
formula, we write |= φ[ā] instead of C |= φ[ā].

1Akito Tsuboi [Tsu14] has independently answered this question.
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When I is a linearly ordered set, (āi)i∈I are tuples, and i ∈ I, we write ā<i
for (āj)j<i. It is often assumed without comments that all the āis have the same
(finite) arity.

We assume the reader is familiar with forking. We will use the combinatorial
definition stated e.g. in [She80, Definition 1.2]. It turns out that our construction
of Morley sequences does not rely on this exact definition, but only on abstract
properties of forking such as invariance, extension, and symmetry.

Recall also the definition of a Morley sequence:

Definition 24.2.1. Let I be a linearly ordered set. Let I := 〈āi | i ∈ I〉 be a
sequence of finite tuples of the same arity. Let A ⊆ B be sets, and let p ∈ S(B) be
a type that does not fork over A.

I is said to be an independent sequence for p over A if:

(1) For all i ∈ I, āi |= p.
(2) For all i ∈ I, tp(āi/Bā<i) does not fork over A.

I is said to be a Morley sequence for p over A if:

(1) I is an independent sequence for p over A.
(2) I is indiscernible over B.

24.3. Morley sequences in simple theories

It is well known that independent sequences can be built by repeated use of
the extension property of forking. If the theory is stable, the existence of Morley
sequences follows, because in such theories any sufficiently long sequence contains
indiscernibles. The latter fact is no longer true in general, and in fact there are
counterexamples among both simple [She85b, p. 209] and dependent [KS14] the-
ories. Thus a different approach is needed in the unstable case. Recall from the
introduction that we do not want to use big cardinals, so Morley’s method cannot
be used. We can however make use of the following variation of the Ehrenfeucht-
Mostowski theorem:

Fact 24.3.1 ([TZ12], Lemma 5.1.3). Let A be a set, and let I be a linearly
ordered set. Let J := 〈āj | j < ω〉 be a sequence of finite tuples of the same arity.
Then there exists a sequence I :=

〈
b̄i | i ∈ I

〉
, indiscernible over A such that:

For any i0 < . . . < in−1 in I, for all finite q ⊆ tp(b̄i0 . . . b̄in−1
/A), there exists

j0 < . . . < jn−1 < ω so that āj0 . . . ājn−1 |= q.

Do we get a Morley sequence if we apply Fact 24.3.1 to an independent se-
quence? In general, we see no reason why it should be true. However, we will see
that it is true if we assume the following local definability property of forking:

Definition 24.3.2 (Dual finite character). Forking is said to have dual finite
character (DFC) if whenever tp(c̄/Ab̄) forks over A, there is a formula φ(x̄, ȳ) over
A such that:

• |= φ[c̄, b̄], and:
• |= φ[c̄, b̄′] implies tp(c̄/Ab̄′) forks over A.

A variation of DFC appears as property A.7’ in [Mak84], but we haven’t
found any other explicit occurrence in the literature. Notice that DFC immediately
implies something stronger:
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Proposition 24.3.3. Assume forking has DFC. Assume p := tp(c̄/Ab̄) forks
over A, and φ(x̄, ȳ) is as given by Definition 24.3.2. Then tp(c̄′/A) = tp(c̄/A) and
|= φ[c̄′, b̄′] imply tp(c̄′/Ab̄′) forks over A.

Proof. Assume tp(c̄′/A) = tp(c̄/A). Let f be an automorphism of C fixing
A such that f(c̄′) = c̄. Assume |= φ[c̄′, b̄′]. Applying f , |= φ[c̄, f(b̄′)]. Since φ
witnesses DFC, tp(c̄/Af(b̄′)) forks over A. Applying f−1 and using invariance of
forking, tp(c̄′/Ab̄′) forks over A. �

Theorem 24.3.4. Assume forking has DFC. Let A ⊆ B be sets. Let p ∈ S(B)
be a type that does not fork over A. Let I be a linearly ordered set. Then there is
a Morley sequence I :=

〈
b̄i | i ∈ I

〉
for p over A.

Proof. By repeated use of the extension property of forking, build an inde-
pendent sequence J := 〈āj | j < ω〉 for p over A.

Let I :=
〈
b̄i | i ∈ I

〉
be indiscernible over B as described by Fact 24.3.1. We

claim I is as required.
It is indiscernible over B, and for every i ∈ I, every b̄i realizes p: If b̄i 6|= p, fix

a formula φ(x̄, b̄) ∈ p so that |= ¬φ[b̄i, b̄]. By the defining property of I, there exists
j < ω so that |= ¬φ[āj , b̄], so āj 6|= p, a contradiction.

It remains to see that for every i ∈ I, pi := tp(b̄i/Bb̄<i) does not fork over A.
Assume not, and fix i ∈ I so that pi forks over A. Fix b̄ ∈ B and i0 < . . . < in−1 < i
such that p′i := tp(b̄i/Ab̄i0 . . . b̄in−1

b̄) forks over A. Fix φ(x̄, b̄i0 . . . b̄in−1
b̄) ∈ p′i a

formula over A witnessing DFC.
Find j0 < . . . < jn < ω such that |= φ[ājn , āj0 . . . ājn−1 b̄]. Since it has already

been observed that tp(ājn/A) = tp(b̄i/A) = p � A, Proposition 24.3.3 implies that
tp(ājn/Aāj0 . . . ājn−1 b̄) forks over A, contradicting the independence of J. �

We now show that a simple theory has DFC (this was essentially already ob-
served by Makkai). Recall [Kim01, Theorem 2.4] that T is simple exactly when
forking has the symmetry property. Moreover, the methods of [Adl09b] show
that the equivalence can be proven without using Morley sequences. The key is
[Adl09b, Theorem 3.6], which shows (without using Morley sequences) that if the
D-rank is bounded, then symmetry holds.

Lemma 24.3.5. Assume T is simple. Then forking has DFC.

Proof. Assume p := tp(c̄/Ab̄) fork over A. By symmetry, q := tp(b̄/Ac̄) forks
over A. Fix ψ(ȳ, x̄) over A such that ψ(ȳ, c̄) ∈ q witnesses forking, i.e. if |= ψ[b̄′, c̄]
then tp(b̄′/Ac̄) forks over A.

Let φ(x̄, ȳ) := ψ(ȳ, x̄). Then φ(x̄, b̄) ∈ p, and if |= φ[c̄, b̄′], then |= ψ[b̄′, c̄], so
tp(b̄′/Ac̄) forks over A, so by symmetry, tp(c̄/Ab̄′) forks over A. This shows φ(x̄, ȳ)
witnesses DFC. �

Corollary 24.3.6 (Existence of Morley sequences in simple theories). Assume
T is simple. Let A ⊆ B be sets. Let p ∈ S(B) be a type that does not fork over A.
Let I be a linearly ordered set. Then there is a Morley sequence I :=

〈
b̄i | i ∈ I

〉
for p over A.

Proof. Combine Lemma 24.3.5 and Theorem 24.3.4. �

We end by closing the loop on our study of DFC: Lemma 24.3.5 shows that
simplicity implies DFC, but it turns out that they are equivalent! This was pointed
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out by Itay Kaplan in a personal communication. Definition 24.3.8 and (2) implies
(3) implies (1) in Theorem 24.3.9 below are due to Kaplan, and I am grateful to
him for allowing me to include them here.

The key is to observe that symmetry fails very badly when the theory is not
simple:

Fact 24.3.7 ([Che14], Lemma 6.16). Assume T is not simple. Then there
is a model M and tuples b̄, c̄ such that tp(b̄/Mc̄) is finitely satisfiable in M , but
tp(c̄/Mb̄) divides over M .

We are now ready to prove that forking has DFC exactly when the theory is
simple. In fact, we only need the following version of DFC:

Definition 24.3.8. Forking is said to have weak dual finite character (weak
DFC) if whenever M is a model and tp(c̄/Mb̄) divides over M , there is a formula
φ(x̄, ȳ) over M such that:

• |= φ[c̄, b̄], and:
• |= φ[c̄, b̄′] implies tp(c̄/Mb̄′) is not finitely satisfiable in M .

Theorem 24.3.9. The following are equivalent:

(1) T is simple.
(2) Forking has DFC.
(3) Forking has weak DFC.

Proof. (1) implies (2) is Lemma 24.3.5, and (2) implies (3) is because finite
satisfiability implies nonforking. We show (3) implies (1). Assume T is not simple.
Fix M and b̄, c̄ as given by Fact 24.3.7. In particular, p := tp(c̄/Mb̄) divides
over M . Let φ(x̄, ȳ) be a formula over M such that |= φ[c̄, b̄]. By assumption,
tp(b̄/Mc̄) is finitely satisfiable in M , so in particular there is b̄′ ∈ M such that
|= φ[c̄, b̄′]. Thus tp(c̄/Mb̄′) = tp(c̄/M) must be finitely satisfiable over M , hence
φ(x̄, ȳ) cannot witness weak DFC for p. Since φ was arbitrary, this shows weak
DFC fails. �

We end by pointing out that all the results of this chapter could be formalized
in a weak fragment of ZFC, such as ZFC - Replacement - Power set + “For any set
X of size ≤ |T |, P(P(X)) exists”2. Going further, it would be interesting to extend
Harnik’s work on the reverse mathematics of stability theory [Har85, Har87] by
finding the exact proof-theoretic strength of the existence of Morley sequences.

2Formally, we have to work in work in a language containing a constant symbol standing for
|T |.
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strong transitivity, 50, see also transitivity,

197

strong type extension property, 229

strong universal local character, 502

strong witness property, 142

strongly superstable, see also strong
superstability

sub-abstract class, see sub-AC148

sub-AC, 148

successful, 174, 241

successor of a frame, 175

superlimit, 256

superstability, 164

superstable, see also superstability, 479

symmetry, 139, 280

syntactic order property, 42

syntactically characterizable, 228

tame, 36, 80

tameness, 36, 80
Tarski-Vaught axioms, 33, see also abstract

elementary class
Towers, 278

transitivity, 139

type extension property, 229
type-full, 83, 135, 136, 159

type-local, see also type-locality

type-locality, 184

uni-dimensional, 234

unidimensional, 359
uniform symmetry, 287

uniformly solvable, 259

uniqueness, 139
uniqueness triple, 171

universal class, 221

universal continuity, 503
universal over, 80, 133

very nicely stable, 542

weak AEC, 398

weak amalgamation, 230
weak atomic equivalence, 229

weak chain local character, 140, 151

weak continuity of splitting, 490
weak domination triple, 357

weak extension, 473

weak generalized continuum hypothesis,
376

weak non-forking amalgamation, 543

weak non-uniform symmetry, 287
weak orthogonality, 244

weak tameness, 294, 369

weak uniform symmetry, 287
weak uniqueness, 473

weak universal local character, 502
weakly good (independence relation or

frame), 153

weakly has primes, 233
weakly local, 474

weakly orthogonal, 358

weakly successful, 171, 241
weakly uni-dimensional, 234

witness property, 139
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[AR94] Jǐŕı Adamek and Jǐŕı Rosický, Locally presentable and accessible categories, London

Math. Society Lecture Notes, Cambridge University Press, 1994.
[AR95] , On preaccessible categories, Journal of Pure and Applied Algebra 105

(1995), no. 3, 225–232.

[Bal] John T. Baldwin, Categoricity: Errata, Available online. Last accessed on June 28,
2014. URL: http://www.math.uic.edu/~jbaldwin/pub/bookerrata.pdf.

[Bal88] , Fundamentals of stability theory, Perspectives in mathematical logic,

Springer-Verlag, 1988.
[Bal09] , Categoricity, University Lecture Series, vol. 50, American Mathematical

Society, 2009.

[Bal10] , The use of replacement in model theory, Posted on the FOM mailing
list on Jan. 28, 2010. URL: http://www.cs.nyu.edu/pipermail/fom/2010-January/

014347.html, 2010.
[Bal13] , How big should the monster model be?, Version from July 2, 2013. Available

online. URL: http://www.math.uic.edu/~jbaldwin/pub/monster4.pdf, 2013.

[BET07] John T. Baldwin, Paul C. Eklof, and Jan Trlifaj, ⊥N as an abstract elementary
class, Annals of Pure and Applied Logic 149 (2007), 25–39.

[BFB85] Jon Barwise, Solomon Feferman, and Andreas Baudisch (eds.), Model-theoretic log-

ics, Perspectives in mathematical logic, Springer-Verlag, 1985.
[BG] Will Boney and Rami Grossberg, Forking in short and tame AECs, Annals of Pure

and Applied Logic, To appear. DOI: 10.1016/j.apal.2017.02.002. URL: http://

arxiv.org/abs/1306.6562v11.
[BGKV16] Will Boney, Rami Grossberg, Alexei Kolesnikov, and Sebastien Vasey, Canonical

forking in AECs, Annals of Pure and Applied Logic 167 (2016), no. 7, 590–613.
[BGL+16] Will Boney, Rami Grossberg, Michael Lieberman, Jǐŕı Rosický, and Sebastien Vasey,
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[GIL02] Rami Grossberg, José Iovino, and Olivier Lessmann, A primer of simple theories,
Archive for Mathematical Logic 41 (2002), no. 6, 541–580.

[GK] Rami Grossberg and Alexei Kolesnikov, Superior abstract elementary classes are

tame, Preprint. URL: http://www.math.cmu.edu/~rami/AtameP.pdf.
[GL00] Rami Grossberg and Olivier Lessmann, Dependence relation in pregeometries, Alge-

bra Universalis 44 (2000), 199–216.
[GL02] , Shelah’s stability spectrum and homogeneity spectrum in finite diagrams,

Archive for Mathematical Logic 41 (2002), no. 1, 1–31.

[GL05] , Abstract decomposition theorem and applications, Logic and its applications
(Andreas Blass and Yi Zhang, eds.), Contemporary Mathematics, American Mathe-

matical Society, 2005, pp. 73–108.

[Gro] Rami Grossberg, A course in model theory I, A book in preparation.
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