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We prove the following main theorem: Let K be an abstract elementary class satisfying the joint embedding
and the amalgamation properties with no maximal models of cardinality μ. Let μ be a cardinal above the the
Löwenheim-Skolem number of the class. If K is μ-Galois-stable, has no μ-Vaughtian Pairs, does not have
long splitting chains, and satisfies locality of splitting, then any two (μ, σ�)-limits over M , for � ∈ {1, 2}, are
isomorphic over M .
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1 Introduction

We work in the general context of abstract elementary classes (AECs) with the amalgamation property (AP) and
Galois-stability at one fixed cardinality μ above the Löwenheim-Skolem number. We assume there is a model
of cardinality μ+. We prove the uniqueness of limit models under a unidimensionality-like assumption of no
μ-Vaughtian pairs and superstability-like assumptions of the μ-splitting dependence relation.

The basic model theory of abstract elementary classes (definitions, the role of the AP and the joint embedding
property, JEP, the existence of a “monster model” C, Galois types and the foundational development of stability
theory in that context) can be checked in the monograph [5] and the books [1, 16]. For the sake of completeness,
we include some of the notation and fundamentals of this context here. We fix an abstract elementary class K with
ordering ≺K. For a cardinal μ, we use the notation Kμ for the class of models of K of cardinality μ.

In practice, abstract elementary classes were not as approachable as one would hope and much work in non-
elementary model theory takes place in contexts which additionally satisfy the amalgamation property so that a
monster model can be utilized. The following fact can be traced back to Jónsson’s 1960 paper [11]; the present
formulation is from [4]:

Theorem 1.1 Let 〈K,≺K〉 be an AEC with no maximal models and suppose that there is λ ≥ κ > LS(K) such
that K<λ has the AP and the JEP. Suppose M ∈ K. If λ<κ = λ ≥ ‖M‖ then there exists N 
 M of cardinality λ

which is κ-model-homogeneous.

Thus if an AEC K has the AP and the JEP, then like in first-order stability theory we may assume that there is
a large model-homogeneous C ∈ K that acts like a monster model. We will refer to the model C as the monster
model. All models considered will be of size less than ‖C‖, and we will find realizations of types we construct
inside this monster model. From now on, we assume that the monster model C has been fixed. We use the notation
AutM(C) to denote the set of automorphisms of C fixing M pointwise.

The notion of type as a set of formulas, even when the class is described in some infinitary logic, does not
behave as nicely as in first-order logic. A replacement was introduced by Shelah in [19]. In order to avoid confusion
between this and the classical, syntactic notion, we will use the terminology in [5] and call this alternative notion
the Galois type.
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Since in this paper we deal only with AECs with the AP, the notion of Galois type has a simpler definition than
in the general case.

Definition 1.2 (Galois types) Suppose that K has the AP.

(1) Given M ∈ K consider the action of AutM(C) on C, for an element a ∈ |C| let ga-tp(a/M) denote the
Galois type of a over M which is defined as the orbit of a under AutM(C).

(2) For M ∈ K, we let ga-S(M) = { ga-tp(a/M) ; a ∈ |C|}.
(3) K is λ-Galois-stable if and only if N ∈ Kλ implies | ga-S(N)| ≤ λ.
(4) Given p ∈ ga-S(M) and N ∈ K such that N 
K M , we say that p is realized by a ∈ N if and only if

ga-tp(a/M) = p. Just as in the first-order case we will write a |= p when a is a realization of p.
(5) For h ∈ Aut(C) and p = ga-tp(a/M), then the notation h(p) refers to ga-tp(h(a)/h(M)).

For a more detailed discussion of Galois types, their extensions, restrictions, equivalent forms and generaliza-
tions, the reader may consult [5].

The next notion to consider is that of a saturated model. In homogeneous abstract elementary classes (cf.,
e.g., [6]) where one may study classes of models omitting given sets of types, the existence of a saturated model
presents some problems. One solution is to consider models which realize as many types as possible. Such models
are called Galois-saturated. More formally, a model M of size κ > LS(K) is Galois-saturated if it realizes all
Galois types over submodels N ≺K M of cardinality < κ . When stability theory has been ported to contexts more
general than first order logic, many situations have appeared when Galois-saturated models do not fulfill the main
roles that saturated models play in elementary classes.

The main concept of this paper is Shelah’s limit model which (among other things) serves as a substitute for
the role of saturation in stability theory (cf. [5, 16, 24], etc.) or at least serves as a stepping stone to prove the
properties of Galois-saturated models. For example, under the assumption of categoricity with reasonable stability
conditions, the existence of Galois-saturated models in singular cardinals is not straightforward and is proved by
first considering limit models [20]. In some contexts limit models have been successfully used as “tools” towards
finding Galois-saturated models [12, 21]. Furthermore, the notion of limit model refines the notion of saturation;
more detailed information is given on the particular way one model is embedded inside another.

Limit models appear in [12, 22] under the name (μ, α)-saturated models. In [23], Shelah calls this notion
brimmed. Later papers, beginning with Shelah-Villaveces [24], adopt the name limit models. We use the more
recent terminology. Before defining limit models, we must introduce their building blocks, universal extensions.

Definition 1.3 (1) Let κ be a cardinal ≥ LS(K). We say M∗ 
K N is κ-universal over N if and only if for
every N ′ ∈ Kκ with N ≺K N ′ there exists a K-embedding g : N ′ →

N
M∗ such that the following diagram

commutes:

(2) We say M∗ is universal over N or M∗ is a universal extension of N if and only if M∗ is ‖N‖-universal
over N .

Definition 1.4 (Limit models) Consider μ ≥ LS(K) and α < μ+ a limit ordinal and N ∈ Kμ. We say that M is
(μ, α)-limit model over N if and only if there exists an increasing and continuous chain 〈Mi ∈ Kμ ; i < α〉 such
that M0 = N ; M = ⋃

i<α Mi ; Mi is a proper K-submodel of Mi+1; and Mi+1 is universal over Mi for all i < α.

From Theorem 1.5 we get that for α ≤ μ+ there always exists a (μ, α)-limit model provided K has the AP,
has no maximal models and is μ-Galois-stable. This theorem was stated without proof as [23, Claim 1.16]; for a
proof, cf. [7] or [4].

Theorem 1.5 (Existence) Let K be an AEC without maximal models and suppose it is Galois-stable in μ. If K
has the amalgamation property then for every N ∈ Kμ there exists M∗ �K N, universal over N of cardinality μ.
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The following theorem partially clarifies the analogy with saturated models:

Theorem 1.6 Let T be a stable, complete, first-order theory and let K be the elementary class of models of T
with the usual notion of elementary submodel. If M is a (μ, δ)-limit model for δ a limit ordinal with cf(δ) ≥ κ(T ),
then M is saturated.

P r o o f . Use an argument similar to the proof of [15, Theorem III 3.11]. �

Thus in elementary classes superstability implies that limit models are saturated, in particular are unique. This
raises the following natural question for AECs about the uniqueness of limit models:

Let K be an AEC, μ ≥ LS(K), M ∈ Kμ and σ1, σ2 limit ordinals < μ+, and suppose that for � = 1, 2,
N� is a (μ, σ�)-limit model over M . What “reasonable” assumptions on K will imply that there exists
f : N1

∼=M N2?

This question is non-trivial only for the case where cf(σ1) �= cf(σ2). Using a back and forth argument one can
show that when cf(σ1) = cf(σ2), we get uniqueness without any assumptions on K. More precisely:

Theorem 1.7 Let μ ≥ LS(K) and σ < μ+. If M1 and M2 are (μ, σ )-limits over M, then there exists an
isomorphism g : M1 → M2 such that g�M = idM . Moreover if M1 is a (μ, σ )-limit over M0, if N1 is a (μ, σ )-
limit over N0 and if g : M0

∼= N0, then there exists a K-embedding, ĝ, extending g such that ĝ : M1
∼= N1.

Theorem 1.8 Let μ be a cardinal and σ a limit ordinal with σ < μ+. If M is a (μ, σ )-limit model, then M is
a (μ, cf(σ ))-limit model.

The main result of this paper provides an answer to the question of uniqueness of limit models:

Theorem 1.9 (Main Theorem) Let K be an AEC and μ > LS(K). Suppose K has both the AP and the JEP
and has no maximal models of cardinality μ. If K is μ-Galois-stable, does not have long splitting chains, has
no μ-Vaughtian pairs and satisfies locality of splitting1, then any two (μ, σ�)-limits over M, for � ∈ {1, 2}, are
isomorphic over M.

This theorem extends results of Shelah from [20,22,23], Kolman and Shelah in [12] and Shelah and Villaveces
from [24]. A preliminary version of our uniqueness theorem, which was circulated in 2006, was used by Grossberg
and VanDieren to prove a case of Shelah’s categoricity conjecture for tame abstract elementary classes in [8].
Preprints of this paper have also influenced the Ph.D. theses of Drueck [3] and Zambrano [31].

In a preprint of this paper, the assumption of disjoint amalgamation was made in Theorem 1.9. After reading a
preprint of this paper, Fred Drueck in his Ph.D. thesis [3] pointed out that the disjoint amalgamation property is
not necessary to carry out the arguments here. In particular, it is not needed in Theorem 4.4.

This paper also serves the expository role of presenting together the arguments in [25, 26] in a more natural
context in which the amalgamation property holds and this work provides an approach to the uniqueness of limit
models that does not rely on Ehrenfeucht-Mostowski constructions.

The last section of this paper describes different approaches to the question of the uniqueness of limit models.

2 The setting

In what follows, K is assumed to be an AEC, and μ is a cardinal ≥ LS(K). In this section we summarize all of
the assumptions that will be made on the class K, and in the subsequent sections we introduce two of the main
components of the proof of the uniqueness of limit models: strong types and towers.

We will prove the uniqueness of limit models in μ-Galois stable AECs that are essentially unidimensional and
are equipped with a moderately well-behaved dependence relation. We will use μ-splitting as the dependence
relation, but any dependence relation which is local and has existence, uniqueness and extension properties
suffices.

1 Cf. Assumption 2.8 for the precise description of long splitting chains and locality.
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Definition 2.1 A type p ∈ ga-S(M) μ-splits over N ∈ K≤μ if and only if N is a ≺K-submodel of M and there
exist N1, N2 ∈ Kμ and a K-mapping h such that N ≺K Nl ≺K M for l = 1, 2 and h : N1 → N2 with h�N = idN

and p�N2 �= h(p�N1).

The existence property for non-μ-splitting types follows from Galois stability in μ:

Theorem 2.2 (Existence; [20, Claim 3.3]) Assume K has the AP and is Galois-stable in μ. For every M ∈ K≥μ

and p ∈ ga-S(M), there exists N ∈ Kμ such that p does not μ-split over N.

The uniqueness and extension properties of non-μ-splitting types hold for types over limit models:

Theorem 2.3 (Uniqueness; [25, Theorem I.4.15]) Let N ≺K M ≺K M ′ be models in Kμ such that M ′ is
universal over M and M is universal over N. If p ∈ ga-S(M) does not μ-split over N, then there is a unique
p′ ∈ ga-S(M ′) such that p′ extends p and p′ does not μ-split over N.

A variation of this fact is later used in an induction construction in the proof of Theorem 5.7. We state it
explicitly here:

Theorem 2.4 (VanDieren; [25, Theorem I.4.10]) Let M, N , M∗ be models in Kμ. Suppose that M is universal
over N and that M∗ is an extension of M. If a type p = ga-tp(a/M) does not μ-split over N then there exists an
automorphism g of C fixing M such that ga-tp(g(a)/M∗) does not μ-split over N and ga-tp(g(a)/M) = p.

The other concepts that show up in the assumptions of the main theorem of this paper are minimal types [20]
and μ-Vaughtian Pairs [8].

Definition 2.5 (1) For M a model of cardinality μ, p ∈ ga-S(M) is minimal if it is non-algebraic and for each N
extending M of cardinality μ if there are non-algebraic extensions p1 and p2 of p to N , then p1 = p2.

(2) For M a limit model of cardinality μ a μ-Vaughtian Pair is a pair of limit models M ′ and N ′ of cardinality
μ so that there exist M �K M ′ ≺K N ′ and p ∈ ga-S(M) a minimal type for which N ′ contains no new
realizations of p, in other words, p(M ′) = p(N ′).

Theorem 2.6 (Existence of minimal types; [20, Fact (∗)5 in Theorem 9.8]) Let μ > LS(K). IfK is Galois-stable
in μ, then for every M ∈ Kμ and every q ∈ ga-S(M), there are N ∈ Kμ and p ∈ ga-S(N) such that M �K N,
q ≤ p and p is minimal.

Theorem 2.7 (Shelah; [20, Claim (∗)8 of Theorem 9.8]) If K is categorical in some successor cardinal
λ+ > LS(K)+, then for every μ satisfying LS(K) ≤ μ ≤ λ, there are no μ-Vaughtian Pairs.

It is worth mentioning that our “no μ-Vaughtian pairs” assumption is weaker, in general, than assuming
categoricity (as in [26]). Consider the first order case. There are first order theories such as the theory of real
closed fields which are quite far from being categorical but also have no Vaughtian pairs. Of course, under ω-
stability, no Vaughtian pairs and categoricity are equivalent (in first order). But our stability assumptions are of a
“superstable” nature and not ω-stable, and in abstract elementary classes, the connections between superstability,
no Vaughtian pairs, and categoricity are far from being completely understood.

Here are the assumptions of the paper:

Assumption 2.8 The class K is an AEC with the AP and the JEP with no maximal models of cardinality μ,
and K satisfies the following properties:

(1) All models are submodels of a fixed monster model C.
(2) The class K is stable in μ.
(3) There are no μ-Vaughtian Pairs.
(4) The relation of μ-splitting in K satisfies the following locality (sometimes called continuity) and no long

splitting chains properties. For all infinite α, for every sequence 〈Mi ; i < α〉 of limit models of cardinality
μ with Mi+1 universal over Mi and for every p ∈ ga-S(Mα), where Mα = ⋃

i<α Mi , we have that
(a) If for every i < α, the type p�Mi does not μ-split over M0, then p does not μ-split over M0.
(b) There exists i < α such that p does not μ-split over Mi .
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In the context of an AEC with the full amalgamation property and the JEP, categoricity in a cardinal λ > μ

implies all parts of Assumption 2.8. For a proof of Assumption 2.8.2 from categoricity, cf. [20, Claim 1.7] or
[1]. [20, Claim (∗)8 of Theorem 9.8] is Assumption 2.8.3 when λ is a successor cardinal. The observation that
Assumption 2.8(4a) follows from categoricity is a consequence of [20, Observation 6.2 and Main Lemma 9.4].
[20, Lemma 6.3] is the statement that assumption 2.8(4b) follows from categoricity when the cofinality of the
categoricity cardinal is larger than μ.

The amalgamation and joint embedding properties hold in homogeneous classes (cf. [17] or [14]), in excellent
classes (cf. [18]) and are axioms in the definition of finitary classes (cf. [10]). They also hold for cats consisting
of existentially closed models of positive Robinson theories [31]. In each of these contexts dependence relations
satisfying Assumption 2.8 have been developed. Finally, the locality and existence of non-μ-splitting extensions
are akin to consequences of superstability in first order logic.

Theorem 2.9 (“No long splitting chains” follows from stability in FO) Suppose that T is first order complete.
If T is stable then Assumption 2.8(4b) holds for α such that cf(α) ≥ |T |+.

P r o o f . Let 〈Mi |i < α〉 be an increasing sequence of saturated models. Let Mα := ⋃
i<α Mi . Suppose

p ∈ S(Mα) is such that ∀i < α, p μ-splits over Mi . Because for every i < α, we know there exists i < j(i) < α

such that p�M j(i) splits over Mi , we may assume that for all i < α, p�Mi+1 splits over Mi . Let ϕi (x̄, ȳ) be
a formula witnessing the splitting of p�Mi+1 over Mi . As cf(α) ≥ |T |+, there exists S ⊂ α infinite such that
i, j ∈ S implies ϕi = ϕ j .

Without loss of generality, suppose that 〈Mn|n ≤ ω〉 is an increasing sequence of saturated models, and p ∈
Sϕ(Mω) is such that āi , b̄i ∈ Mi+1 witness that p�Mi+1 splits over Mi . Then p(x1, ȳ1, z̄1, x2, ȳ2, z̄2) and {d̄i |i < ω}
witness that p has the order property, where d̄i = āiˆb̄iˆci , ci ∈ Mi+2 and ci |= p�{āk, b̄k |k ≤ i} ∪ {dk |k < i}. Now
use [4, Lemma VII, 2.12]. �

Note that Assumption 2.8.3 is used only to show that reduced towers are continuous (cf. Theorem 5.7). It is
conjectured that this assumption may be eliminated or replaced with a weaker assumption related to superstability
in first order logic.

3 Strong types

Under the assumption of μ-stability, we can define strong types as in [24]. These strong types will allow us to
achieve a better control of extensions of towers of models than what we obtain using just Galois types. Specifically,
consider the situation in which M �K M ′ and p, q ∈ ga-S(M ′) with p�M = q�M . If p does not μ-split over
some N1 ≺K M and q does not μ-split over N2 ≺K M , then we cannot conclude that p = q, even if we assume
M is universal over N1 and N2.

Definition 3.1 (Shelah & Villaveces; [24, Definition 3.2.1]) For a (μ, ϑ)-limit model M , let

St(M) := {(p, N) ; N ≺K M is a (μ, ϑ)-limit model such that M is universal over N

and p ∈ ga-S(M) is non-algebraic and does not μ-split over N }
Elements of St(M) are called strong types. Two strong types (p1, N1) ∈ St(M1) and (p2, N2) ∈ St(M2) are
parallel if and only if for every M ′ of cardinality μ extending M1 and M2 there exists q ∈ ga-S(M ′) such that q
extends both p1 and p2 and q does not μ-split over N1 nor over N2.

Under the assumption of the existence of universal extensions, it is equivalent to say two strong types (p1, N1) ∈
St(M1) and (p2, N2) ∈ St(M2) are parallel if and only if for some M ′ of cardinality μ universal over some
common extension of M1 and M2 there exists q ∈ ga-S(M ′) such that q extends both p1 and p2 and q does not
μ-split over N1 and N2.

Lemma 3.2 (Monotonicity of parallel types) Suppose M0, M1 ∈ Kμ and M0 ≺K M1 and (p, N) ∈ St(M1). If
M0 is universal over N, then we have (p�M0, N) is parallel to (p, N).

P r o o f . Straightforward using the uniqueness of non-μ-splitting extensions. �
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Let M, M ′ ∈ Kμ and suppose that M ≺K M ′. For (p, N) ∈ St(M ′), if M is universal over N , we define the
restriction (p, N)�M ∈ St(M) to be (p�M, N). If we write (p, N)�M , we mean that p does not μ-split over N
and M is universal over N . We denote by ∼ the parallelism relation between strong types in St(M), for fixed M .

Notice that ∼ is an equivalence relation on St(M) (cf. [25]). Stability in μ implies that there are few strong
types over any model of cardinality μ:

Theorem 3.3 (Shelah & Villaveces; [24, Claim 3.2.2 (3)]) If K is Galois-stable in μ, then for any M ∈ Kμ,
| St(M)/ ∼ | ≤ μ.

The referee has pointed out that several of our uses of parallel types fit into the more simplified situation
described in the remark below. In particular, parallel types can be replaced by equal restrictions in Theorem 4.4.

Remark 3.4 Let (p1, N1) and (p2, N2) be parallel strong types with pl ∈ ga-S(Ml). If M1 ≺K M2, then by
uniqueness of non-splitting extensions p1 = p2�M1.

However, we cannot replace parallelism with equality of types everywhere. In particular parallelism shows its
necessity in the proof that the union of a <-chain of relatively full towers in K∗

μ,α is relatively full. The strength
of parallel types can be seen in the following situation which arises in the proof of Claim 5.10. Suppose that
M ≺K M ′ and that there are types p and p′ over M and M ′, respectively. Suppose p does not μ-split over N ,
p′ = ga-tp(a′/M ′) does not μ-split over both N and N ′, and p′�M = p. Without having any understanding of the
relationship between N and N ′ (and this is the case in the definition of towers: the Ni ’s of Definition 4.1 are bases
for non-splitting but are not in principle related to one another) or the stronger condition that the strong types are
parallel, it is not possible to predict which M∗ extending M will have the property that ga-tp(a′/M∗) does not
μ-split over N . Under the assumption that (p, N) and (p, N ′) are parallel, we only need to be able to extend M∗

to a model M∗∗ for which ga-tp(a′/M∗∗) does not μ-split over N ′ to be able to conclude that ga-tp(a′/M∗) also
does not μ-split over N .

The way we use parallel types in the proof of Claim 5.10 is summarized in the following lemma:

Lemma 3.5 Suppose M1, M ′
1, M2, M ′

2 ∈ Kμ with M1 ≺K M ′
1, M2 ≺K M ′

2, M1 ≺K M2, and M ′
1 ≺K M ′

2.
Suppose (p1, N1) and (p2, N2) are parallel types in St(M1) and St(M2), respectively. If p′

l ∈ ga-S(M ′
l ) extends

pl and does not μ-split over Nl for l ∈ {1, 2}, then (p′
1, N1) and (p′

2, N2) are parallel.

P r o o f . By uniqueness of non-splitting extensions, first notice that p′
1�M1 = p1 and p′

2�M2 = p2.
To see that (p′

1, N1) is parallel to (p′
2, N2), let M ′ be an extension of M ′

2 of cardinality μ. Since (p′
2, N2)�M2 =

(p2, N2) is parallel to (p1, N1) there is q ∈ ga-S(M ′) so that q extends both p2 and p1, and q does not μ-split
over N1 and N2. By the uniqueness of non-splitting extensions, we have the q�M ′

2 must agree with p′
2. But, we

also can conclude by the uniqueness of non-splitting extensions that q�M ′
1 must agree with p′

1 since they are both
non-splitting extensions of p1. Therefore q witnesses that (p′

1, N1) and (p′
2, N2) are parallel. �

4 Towers

We use the technology of towers in our proof. Towers have been used before by Shelah and Villaveces [24] and
VanDieren [25,26,28]. Towers enable us to control in multidimensional arrays notions of “relative saturation” apt
to our aim: obtaining limits that can be approached through chains of two different cofinalities requires controlling
the way in which we gradually “saturate” the models with realizations of Galois types. Properties of towers are
“filtered” analogues of properties of Galois types (extension and other properties of independence).

To each (μ, ϑ)-limit model M we can naturally associate a ≺K-increasing chain M̄ = 〈Mi ∈ Kμ ; i < ϑ〉
witnessing that M is a (μ, ϑ)-limit model (that is,

⋃
i<ϑ Mi = M and Mi+1 is universal over Mi ). Furthermore,

by Theorems 1.7 and 1.8 we can require that this chain satisfies additional requirements such as Mi+1 is a limit
model over Mi . In this section we will be considering a related chain of models which we will refer to as a tower
(cf. Definition 4.1). But first, we will describe how towers will be used to prove the main theorem of this paper.

To prove the uniqueness of limit models we will construct a model which is simultaneously a (μ, ϑ1)-limit
model over some fixed model M and a (μ, ϑ2)-limit model over M . Notice that, by Theorem 1.7, it is enough to
construct a model M∗ that is simultaneously a (μ,ω)-limit model and a (μ, ϑ)-limit model for arbitrary ordinal
ϑ < μ+. By Theorem 1.8 we may assume that ϑ is a limit ordinal < μ+ such that ϑ = μ · ϑ .

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 62, No. 4–5 (2016) / www.mlq-journal.org 373

Fig. 1

So, we actually construct an array of models with ω + 1 rows and the number of columns of this array will
have the same cofinality as ϑ + 1. Cf. Figure 1 for the big picture of the construction. We intend to carry out
the construction down and to the right in that picture. In the array, the bottom right hand corner (M∗) will be a
(μ,ω)-limit model witnessed by the right-most column of the array. We will see that M∗ is a (μ, ϑ)-limit model
by examining the last (the ωth) row of the array. This last row will be an ≺K-increasing sequence of models,
M̄∗ whose length will have the same cofinality as ϑ . However we will not be able to guarantee that M∗

i+1 is
universal over M∗

i in this last row. Thus we need another method to conclude that M∗ is a (μ, ϑ)-limit model.
This involves attaching more information to our sequence M̄∗. We call this accessorized sequence of models a
tower (cf. Definition 4.1 below). Each row in our construction of the array of models will be such a tower.

Under the assumption of Galois-superstability, given any sequence 〈ai ; i < ϑ〉 of elements with ai ∈ Mi+1\Mi ,
we can identify some Ni ≺K Mi such that ga-tp(ai/Mi ) does not μ-split over Ni . Furthermore, by Assumption
2.8, we may choose this Ni such that Mi is a limit model over Ni . We abbreviate this situation by the triple
(M̄, ā, N̄ ).

Definition 4.1 (Towers) Let (I,<) be a well ordering of cardinality < μ+. For cleaner notation, we will identify
I with ϑ , its order-type, and we will denote the successor of i in the ordering I by i + 1 when it is clear. Then,
we define a tower to be a triple (M̄, ā, N̄ ) where M̄ = 〈Mi ; i < ϑ〉 is a ≺K-increasing sequence of limit models

www.mlq-journal.org C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



374 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of limit models under amalgamation

of cardinality μ; ā = 〈ai ; i + 1 < ϑ〉 and N̄ = 〈Ni ; i + 1 < ϑ〉2 satisfy ai ∈ Mi+1\Mi ; ga-tp(ai/Mi ) does not
μ-split over Ni ; and Mi is a (μ, σ )-limit model over Ni .

We denote by K∗
μ,I the set of towers of the form (M̄, ā, N̄ ) where the sequences M̄ , ā and N̄ are indexed by I .

Occasionally, I will be an ordinal ϑ with the usual ordering, and we write K∗
μ,ϑ for this set of towers. At times,

we will be considering towers based on different well orderings I and I ′ simultaneously. In these contexts if
i ∈ I

⋂
I ′, the notation i + 1 is not necessarily well-defined so we will use the notation succI (i) for the successor

of i in the ordering I . Finally when I is a sub-order of I ′ for any (M̄, ā, N̄ ) ∈ K∗
μ,I ′ we write (M̄, ā, N̄ )�I for the

tower in K∗
μ,I given by the subsequences 〈Mi ; i ∈ I 〉, 〈Ni ; i + 1 ∈ I 〉 and 〈ai ; i + 1 ∈ I 〉.

In addition to having control over the last row of the array, we also need to be able to guarantee that the last
column of the tower witnesses that M∗ is a (μ,ω)-limit model. This will be done by prescribing the following
ordering on rows of the array and working with towers indexed by I having cofinality ϑ + 1 for some ϑ < μ+.

Definition 4.2 For towers (M̄, ā, N̄ ) ∈ K∗
μ,I and (M̄ ′, ā′, N̄ ′) ∈ K∗

μ,I ′ with I ⊆ I ′, we write (M̄, ā, N̄ ) <

(M̄ ′, ā′, N̄ ′) if and only if for every i ∈ I , ai = a′
i , Ni = N ′

i and M ′
i is a universal extension of Mi .

The ordering < on towers is identical to the ordering <c
μ defined in [24]. The superscript was used by Shelah

and Villaveces to distinguish this ordering from others. We only use one ordering on towers, so we omit the
superscripts and subscripts here.

Once we have established an ordering on towers, we can define a specific tower which will be called a union
of an increasing sequence of towers. Suppose that 〈(M̄, ā, N̄ )γ ∈ K∗

μ,Iγ ; γ < β〉 is an increasing sequence of

towers such that the index set Iγ of (M̄, ā, N̄ )γ is a sub-ordering of the index set Iγ ′ for (M̄, ā, N̄ )γ ′
whenever

γ < γ ′. Let Iβ := ⋃
γ<β Iγ . Then denote by (M̄, ā, N̄ )β ∈ K∗

μ,Iβ the “union” of the sequence of towers where

aβ

i = a
min{γ ; i∈Iγ }
i ,

Nβ

i = N
min{γ ; i∈Iγ }
i , and

M̄β = 〈Mβ

i ; i ∈ Iβ〉 with Mβ

i =
⋃

γ<β

⋃

i∈Iγ

Mγ

i .

By Assumption 2.8.4a, (M̄, ā, N̄ )β is indeed a tower. In particular, this assumption guarantees that for i ∈ Iβ ,
ga-tp(ai/Mβ

i ) does not μ-split over Ni .
Notice that we do not assume an individual tower to be continuous. Nor do we assume that inside of a tower

Mi+1 is universal over Mi . If one considers the approach of defining an array of models row by row, then generally
(even in the first order case) even if all rows are continuous and satisfy the universality property mentioned in this
paragraph, it is not necessarily true that the union of these rows will be a tower in which every model is universal
over its predecessors.

For a tower (M̄, ā, N̄ ), it was shown in [24], that even if Mi+1 is not universal over Mi , one can conclude that⋃
i<ϑ Mi is a (μ, ϑ)-limit model provided that all types over each of the Mi are realized by a sufficient number of

a j s in the tower. Unfortunately constructing such a tower meeting these along with all of our other requirements
is beyond reach. However, in [25], VanDieren showed that slightly less was needed (cf. Definition 4.3). In [25],
the amalgamation property is not assumed resulting in noise that can be avoided in our context. Thus because we
have at our disposal the AP, we provide a complete, undistracted proof here.

Definition 4.3 (Relatively Full Towers) Suppose that I is a well-ordered set. Let (M̄, ā, N̄ ) be a tower indexed
by I such that each Mi is a (μ, σ )-limit model. For each i , let 〈Mγ

i ; γ < σ 〉 witness that Mi is a (μ, σ )-limit
model.

The tower (M̄, ā, N̄ ) is full relative to (Mγ

i )γ<σ,i∈I iff

(1) there exists a cofinal sequence 〈iα ; α < ϑ〉 of I of order type ϑ such that there are μ · ω many elements
between iα and iα+1 and

2 Since ai /∈ Mi , if the sequence M̄ has order type α + 1 (with Mα the final model in the sequence), it does not make sense to define aα

which would lie outside of the top model in the tower. Therefore in the situation that the sequence M̄ has order type α + 1, the sequences ā
and N̄ will have order type α.
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(2) for every γ < σ and every (p, Mγ

i ) ∈ St(Mi ) with iα ≤ i < iα+1, there exists j ∈ I with i ≤ j < iα+1

such that (ga-tp(a j/M j ), N j ) and (p, Mγ

i ) are parallel.

The following theorem is an improvement of a result in a previous version of this paper in which we made
the additional assumption of disjoint amalgamation over limit models. This improvement is [3, Proposition 4.1.5]
and uses special models. We provide the proof here for completeness.

Theorem 4.4 (Relatively full towers provide limit models) Let ϑ be a limit ordinal < μ+ satisfying ϑ = μ · ϑ .
Suppose that I is a well-ordered set as in Definition 4.3.

Let (M̄, ā, N̄) ∈ K∗
μ,I be a continuous tower made up of (μ, σ )-limit models, for some fixed σ < μ+. If

(M̄, ā, N̄ ) ∈ K∗
μ,I is full relative to (Mγ

i )i∈I,γ<σ , then M := ⋃
i∈I Mi is a (μ, ϑ)-limit model over Mi0 .

P r o o f . Because the sequence 〈iα ; α < ϑ〉 is cofinal in I and ϑ = μϑ , we can rewrite M := ⋃
i∈I Mi =⋃

β<ϑ Miβ = ⋃
α<ϑ

⋃
δ<μ Miμα+δ

.
For α < ϑ and δ < μ, notice

Miμα+δ+1 realizes every type over Miμα+δ
. (1)

To see this take p ∈ ga-S(Miμα+δ
). By our superstability assumptions, p does not μ-split over Mγ

iμα+δ
for some

γ < σ . Therefore (p, Mγ

iμα+δ
) ∈ St(Miμα+δ

). By definition of relatively full towers, there is an ak with iμα+δ ≤
k < iμα+δ+1 so that (ga-tp(ak/Mk), Nk) and (p, Mγ

iμα+δ
) are parallel. Because Miμα+δ

≺K Mk and by the definition
of parallel strong types, it must be the case that ak |= p.

By a back and forth argument we can conclude from (1) that Miμα+μ
is universal over Miμα

. Thus M is a
(μ, ϑ)-limit model.

To see the details of the back-and-forth argument mentioned in the previous paragraph, first translate (1) to the
terminology of [1]: (1) witnesses that Miμα+μ

is 1-special over Miμα
. Then, refer to the proof of [1, Lemma 10.5].

�

Remark 4.5 The referee has pointed out that our proof of Theorem 4.4 gives a slightly stronger result. In
particular, the hypothesis of Theorem 4.4 can be weakened by replacing the relatively full tower with a tower that
has the property that

for every i < ϑ and every p ∈ ga-S(Mi ) with iα ≤ i < iα+1,

there exists j ∈ I with i ≤ j < iα+1 such that a j |= p.
(2)

Constructing a <-increasing chain of towers satisfying this weaker condition becomes problematic at limit
stages, so we will ultimately need to work with relatively full towers. The problem arises when we take the union
of a <-increasing chain of towers 〈(M̄i , ā, N̄ ) ; i < ω〉. If we only had the weaker condition (2) holding for each
(M̄i , ā, N̄ ), we would not be able to conclude that (2) also held for the tower, (M̄ω, ā, N̄), made up of the union
of the towers. To see this, just consider towers of length 2 with models Mi and M ′

i satisfying the weaker condition
(2), and suppose there are ω many of these towers. In other words, we have models 〈Mi ≺ M ′

i ; i < ω〉 with every
type over Mi realized in M ′

i . We would want to see if the weaker condition (2) would hold at the tower formed by
Mω := ⋃

i<ω Mi and M ′ := ⋃
i<ω M ′

i . Take p ∈ ga-S(Mω). If p�Mi is realized in M ′
i for all i < ω, it is not clear

that p would be realized in M ′
ω. Without compactness or structure beyond what we have assumed, it would be

difficult to conclude that condition (2) held for the tower composed of Mω and M ′
ω. On the other hand, Lemma

3.5 allows use to pass the second bulleted condition from Definition 4.3 through the unions of towers, as we will
see later in Claim 5.10.

5 Uniqueness of limit models

We now begin the construction of our array of models and M∗. Let ϑ be an ordinal as in the previous section. The
goal is to build an array of models with ω + 1 rows so that the bottom row of the array is a relatively full tower
indexed by a set of cofinality ϑ . To do this, we will be adding elements to the index set of towers row by row so
that at stage n of our construction the tower that we build is indexed by In described here:
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The index sets In will be defined inductively so that 〈In ; n < ω + 1〉 is an increasing and continuous chain of
well-ordered sets. We fix I0 to be an index set of order type ϑ + 1 and will denote it by 〈iα ; α ≤ ϑ〉. We will refer
to the members of I0 by name in many stages of the construction. These indices serve as anchors for the members
of the remaining index sets in the array. Next we demand that for each n < ω, { j ∈ In ; iα < j < iα+1} has order
type μ · n such that each In has supremum iϑ . An example of such 〈In ; n ≤ ω〉 is In = ϑ × (μ · n)

⋃{iϑ } ordered
lexicographically, where iϑ is an element ≥ each i ∈ ⋃

n<ω In . Also, let I = ⋃
n<ω In .

To prove the main theorem of the paper, we need to prove that for a fixed M ∈ K of cardinality μ any (μ, ϑ)-
limit and (μ,ω)-limit model over M are isomorphic over M . Let us begin by fixing a limit model M ∈ Kμ and
ϑ such that μ · ϑ = ϑ . We define by induction on n ≤ ω a <-increasing and continuous sequence of towers
(M̄, ā, N̄ )n such that

(1) (M̄, ā, N̄ )0 is a tower with M0
0 = M .

(2) (M̄, ā, N̄ )n ∈ K∗
μ,In

.
(3) For every (p, N) ∈ St(Mn

i ) with iα ≤ i < iα+1 there is j ∈ In+1 with i < j < iα+1 so that
(ga-tp(a j/Mn+1

j ), N n+1
j ) and (p, N) are parallel.

Given M , we can find a tower (M̄, ā, N̄)0 ∈ K∗
μ,I0

with M0
0 = M because of the existence of universal

extensions and because of Assumption 2.8.4b. The last pages of this section provide a picture of this construction
of an array of models, explanations for carrying out the final stage of the construction and a proof that this is
sufficient to prove the main theorem. We spend most of the remainder of this section verifying that it is possible
to carry out the induction step of the construction. This is a particular case of [25, Theorem II.7.1]. But since our
context is somewhat easier, we do not encounter so many obstacles as in [25] and we provide a different, more
direct proof here:

Theorem 5.1 (Dense <-extension property) Given (M̄, ā, N̄ ) ∈ K∗
μ,In

there exists (M̄ ′, ā, N̄ ) ∈ K∗
μ,In+1

such
that (M̄, ā, N̄ ) < (M̄ ′, ā, N̄ ) and for each (p, N) ∈ St(Mi ) with iα ≤ i < iα+1, there exists j ∈ In+1 with i <

j < iα+1 such that (ga-tp(a j/M ′
j ), N j ) and (p, N) are parallel. Here, the Mi ’s are defined for i ∈ In and the M ′

j
are defined for j ∈ In+1.

Before we prove Theorem 5.1, we prove a slightly weaker extension property, one in which we can find an
extension of the tower (M̄, ā, N̄) of the same index set. Variations of this lemma appear in various places for
instance [25, Theorem II.8.2].

Lemma 5.2 (<-extension property) Given (M̄, ā, N̄ ) ∈ K∗
μ,I , there exists a (discontinuous) <-extension

(M̄ ′, ā, N̄ ) ∈ K∗
μ,I of (M̄, ā, N̄ ) such that for each i , M ′

i is a (μ,μ)-limit model over
⋃

j<i M ′
j .

P r o o f . Given (M̄, ā, N̄ ) ∈ K∗
μ,I we will define a <-extension (M̄ ′, ā, N̄ ) by induction on i ∈ I . Notice that

a straightforward induction proof is not sufficient here for if we have defined 〈M j ; j ≤ i〉 as a tower extending
(M̄, ā, N̄ ) restricted to 〈 j ; j ≤ i〉 and are at the stage of defining M ′

i+1, we may be faced with an impossible
task: during our construction we may have inadvertently placed inside M ′

i witnesses for the splitting of the type
of ai+1 over Ni+1; this would prevent us from extending M ′

i to M ′
i+1 so that ga-tp(ai+1/M ′

i+1) does not μ-split
over Ni+1. Therefore, we will instead define approximations, M+

i , for M ′
i by induction on i ∈ I and at each stage

i of the induction we will make adjustments of the previously defined approximation M+
j for j < i . This leads us

into defining M+
i and a directed system of ≺K-embeddings 〈 f j,i ; j < i ∈ I 〉 such that for i ∈ I , Mi ≺K M+

i for
j ≤ i , f j,i : M+

j → M+
i and f j,i�M j = idM j . We further require that M+

i+1 is a limit model over fi,i+1(M+
i ) and

ga-tp(ai/ fi,i+1(M+
i )) does not μ-split over Ni . When i is a limit, we choose M+

i to be a (μ,μ)-limit model over⋃
j<i f j,i (M+

j ).
This construction is done by induction on i ∈ I using the existence of non-μ-splitting extensions. Suppose that

〈M+
k ; k ≤ i〉 and 〈 fk,l ; k ≤ l ≤ i〉 have been defined. We explain how to define M+

i+1 and fi,i+1. The rest of the
definitions required for the i + 1st stage are dictated by the requirement that we are forming a directed system. Let
M∗

i+1 be a limit model over both M+
i and Mi+1. Since ga-tp(ai+1/Mi+1) does not μ-split over Ni+1, by Theorem

2.4 there exists f ∈ AutMi+1(C) so that ga-tp(ai+1/ f (M∗
i+1)) does not μ-split over Ni+1. Take M+

i+1 := f (M∗
i+1)

and fi,i+1 := f �M+
i .
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At limit stages we take direct limits so that f j,i�M j = idM j . This is possible by [25, Subclaims II.7.10 and
II.7.11] or [8, Claim 2.17]. Notice that the direct limit may not be universal over Mi . Take an extension of the
direct limit that is both universal over Mi and is a (μ,μ)-limit over

⋃
j<i f j,i (M j ) and call this M+

i . Notice that
at this point we do not obtain a continuous tower; continuity will be recovered later using reduced towers.

Let f j,sup{I } and M ′
sup{I } be the direct limit of this system such that f j,sup{I }�M j = idM j . We can now define

M ′
j := f j,sup{I }(M+

j ) for each j ∈ I . By construction, we have that ga-tp(ai/ fi,i+1(M+
i )) does not μ-split over

Ni . Mapping into Msup( I ) by fi+1,sup( I ) , and noting that both ai and Ni are fixed by fi+1,sup( I ) , we conclude that
ga-tp(ai/M ′

i ) does not μ-split over Ni as required. �

We can now use the extension property for towers of the same index set from Lemma 5.2 to prove the dense
extension property which allows us to grow the index set as we add elements to the models in the extension.

P r o o f o f T h e o r e m 5.1. Given (M̄, ā, N̄ ) ∈ K∗
μ,In

, let (M̄ ′, ā, N̄ ) ∈ K∗
μ,In

be an extension of (M̄, ā, N̄ )
as in Lemma 5.2 so that each M ′

iα+1
is a (μ,μ)-limit model over

⋃
j<iα+1

M ′
j .

For each iα , let 〈M ′
l ; l ∈ In+1, iα + μ · n < l < iα+1〉 witness that M ′

iα+1
is a (μ,μ)-limit model over⋃

j<iα+1
M ′

j . Without loss of generality we may assume that each of these M ′
l is a limit model over its pre-

decessor.
Fix {(p, N)k

iα
; 0 < k < μ} an enumeration of

⋃{St(Mi ) : i ∈ In, iα ≤ i < iα+1}. By our choice of In+1,
stability in μ, and Theorem 3.3, such an enumeration is possible. For each k < μ, we will consider the model
indexed by l = iα + μn + k. These are the models in the sequence M̄ ′ which do not appear indexed in M̄ .
Therefore pk

iα
will be a type over some submodel of M ′

l . Since M ′
succIn+1 (l) is universal over M ′

l , there exists a

realization in M ′
succIn+1 (l) of the non-μ-splitting extension of pk

iα
to M ′

l . Let al be such a realization and take

Nl := Nl
iα

.
Notice that (〈M ′

j ; j ∈ In+1〉, 〈a j ; j ∈ In+1〉, 〈N j ; j ∈ In+1〉) provide the desired extension of (M̄, ā, N̄ ) in
K∗

μ,In+1
. �

We are almost ready to carry out the complete construction. However, notice that Lemma 5.2 and Theorem 5.1
do not provide us with a continuous extension. In particular in Lemma 5.2, at the limit stage of the construction
we need to take an extension of a direct limit to find a universal extension and this precludes continuity.

Therefore the bottom (i.e., the ω + 1st) row of our array may not be continuous which would prevent us from
applying Theorem 4.4 to conclude that M∗ is a (μ, ϑ)-limit model. So we will further require that the towers
that occur in the rows of our array are all continuous. This can be guaranteed by restricting ourselves to reduced
towers as in [24, 25].

Definition 5.3 A tower (M̄, ā, N̄ ) ∈ K∗
μ,I is said to be reduced provided that for every (M̄ ′, ā, N̄ ) ∈ K∗

μ,I

with (M̄, ā, N̄ ) ≤ (M̄ ′, ā, N̄ ) we have that for every i ∈ I ,

(∗)i M ′
i ∩

⋃

j∈I

M j = Mi .

If we take a <-increasing chain of reduced towers, the union will be reduced. The following fact appears as
[24, Theorem 3.1.14]. We provide the proof for completeness.

Theorem 5.4 Let 〈(M̄, ā, N̄ )γ ∈ K∗
μ,Iγ ; γ < β〉 be a <-increasing and continuous sequence of reduced towers

such that the sequence is continuous in the sense that for a limit γ < β, the tower (M̄, ā, N̄ )γ is the union of the
towers (M̄, ā, N̄ )ζ for ζ < γ . Then the union of the sequence of towers 〈(M̄, ā, N̄ )γ ∈ K∗

μ,Iγ ; γ < β〉 is itself a
reduced tower.

P r o o f . Suppose that (M̄, ā, N̄ )β is not reduced. Let (M̄ ′, ā, N̄ ) ∈ K∗
μ,Iβ witness this. Then there exists an

i ∈ Iβ and an element b such that b ∈ (M ′
i ∩ ⋃

j∈Iβ
Mβ

j )\Mβ

i . There exists γ < β such that b ∈ ⋃
j∈Iγ

Mγ

j \Mγ

i .

Notice that (M̄ ′, ā, N̄ )�Iγ witnesses that (M̄, ā, N̄ )γ is not reduced. �

The following appears in [24, Theorem 3.1.13].

Theorem 5.5 (Density of reduced towers) There exists a reduced <-extension of every tower in K∗
μ,I .
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P r o o f . Assume for the sake of contradiction that no <-extension of (M̄, ā, N̄ ) is reduced. This allows
us to construct a ≤-increasing and continuous sequence of towers 〈(M̄, ā, N̄)ζ ∈ K∗

μ,I ; ζ < μ+〉 such that
(M̄, ā, N̄ )ζ+1 witnesses that (M̄, ā, N̄ )ζ is not reduced. The construction is done inductively in the obvious way.

For each b ∈ ⋃
ζ<μ+,i∈I Mζ

i define

i(b) := min
{
i ∈ I ; b ∈

⋃

ζ<μ+

⋃

j≤i

Mζ

j

}
and

ζ (b) := min
{
ζ < μ+ ; b ∈ Mζ

i(b)

}
.

The function ζ (·) can be viewed as a function from μ+ to μ+. Since |I | = μ and each Mζ

i has cardinality μ,
there exists a club E = {δ < μ+ ; ∀b ∈ ⋃

i∈I Mδ
i , ζ (b) < δ}. Actually, all we need is that E is non-empty.

Fix δ ∈ E . By construction (M̄, ā, N̄)δ+1 witnesses the fact that (M̄, ā, N̄ )δ is not reduced. So we may fix
i ∈ I and b ∈ Mδ+1

i ∩ ⋃
j∈I Mδ

j such that b /∈ Mδ
i . Since b ∈ Mδ+1

i , we have that i(b) ≤ i . Since δ ∈ E , we know

that there exists ζ < δ such that b ∈ Mζ

i(b) . Because ζ < δ and i(b) ≤ i , this implies that b ∈ Mδ
i as well. This

provides a contradiction since on the one hand b ∈ Mδ
i and on the other hand, it is not. �

By revising the proof of Lemma 5.2, we can conclude:

Lemma 5.6 Suppose that (M̄, ā, N̄ ) ∈ K∗
μ,I is reduced. If I0 is an initial segment of I , then (M̄, ā, N̄ )�I0 is

reduced.

P r o o f . Suppose that (M̄, ā, N̄ )�I0 is not reduced. Let (M̄ ′, ā�I0, N̄�I0) and δ < j ∈ I0 with b ∈ (M ′
δ ∩

M j )\Mδ witness this. We can apply the inductive step of Lemma 5.2 (replacing an initial segment of the
construction there with M̄ ′), to find (M̄ ′′, ā, N̄ ) an extension of (M̄, ā, N̄ ) such that there is a ≺K-mapping f
from the models of M̄ ′ into the models of M̄ ′′ with f �M j = idM j . Notice that (M̄ ′′, ā, N̄ ) and b, δ, j will witness
that (M̄, ā, N̄ ) is not reduced. �

The following theorem makes use of the unidimensionality assumption. This generalizes a special case of the
uniqueness of limit models result in the series of papers [25, 26] by replacing the assumption of categoricity in
μ+ with the weaker unidimensionality assumption. Further work of VanDieren in [28] weakens this assumption.

Theorem 5.7 (Reduced towers are continuous) If (M̄, ā, N̄ ) ∈ K∗
μ,I is reduced, then it is continuous, namely

for each limit i in I , Mi = ⋃
j<i M j .

P r o o f o f T h e o r e m 5.7 Suppose the theorem fails for μ. Let δ be the minimal limit ordinal such that
there exists an index set I and (M̄, ā, N̄ ) ∈ K∗

μ,I a reduced tower which is discontinuous at the δth element of I .
We can apply Lemma 5.6 to assume without loss of generality that I = δ + 1. Fix (M̄, ā, N̄ ) ∈ K∗

μ,δ+1 reduced
and discontinuous at δ with b ∈ Mδ\

⋃
i<δ Mi . By Theorem 2.6, there exists a minimal type p over M0. So by our

unidimensionality Assumption 3, we know that the Galois type of p must be realized in Mδ\
⋃

i<δ Mi . Therefore,
we may assume that b |= p.

Claim 5.8 There exists a <-extension of (M̄, ā, N̄ )�δ, containing b. We will refer to such a tower in K∗
μ,δ as

(M̄ ′, ā�δ, N̄�δ). Furthermore, b may be assumed to be an element of M ′
0.

P r o o f o f C l a i m 5.8 We use the minimality of δ and the <-extension property to find a tower of length
δ, (M̄∗, ā�δ, N̄�δ), that is a proper extension of (M̄, ā, N̄ )�δ. By the definition of <-extension, M∗

0 is universal
over M0; so we can find b∗ ∈ M∗

0 \M0 realizing p.
Notice that by Lemma 5.6, (M̄, ā, N̄ )�δ is reduced. Thus we can conclude that b∗ ∈ M∗

0 \⋃
i<δ Mi and

ga-tp(b∗/
⋃

i<δ Mi ) is non-algebraic. Since p is minimal, it must be the case that ga-tp(b∗/
⋃

i<δ Mi ) =
ga-tp(b/

⋃
i<δ Mi ). Let f ∈ Aut⋃

i<δ Mi C take b∗ to b.
Consider the image of (M̄∗, ā, N̄ ) under f ; denote this tower by (M̄ ′, ā, N̄ ). Because f fixes (M̄, ā, N̄ )�δ,

(M̄ ′, ā, N̄ ) is an extension of (M̄, ā, N̄ )�δ as required. �
Using (M̄ ′, ā, N̄ ) from Claim 5.8, define M ′

δ to be a limit model of cardinality μ containing
⋃

i<δ M ′
i so that it

is universal over Mδ . Notice that the tower (M̄ ′ˆ〈M ′
δ〉, ā, N̄ ) extends (M̄, ā, N̄ ) with b ∈ (M ′

0\
⋃

i<δ Mi )
⋂

Mδ .
This contradicts our assumption that (M̄, ā, N̄ ) is reduced and completes the proof of Theorem 5.7. �
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Corollary 5.9 In Theorem 5.1, we can choose (M̄, ā, N̄ ) to be reduced, and hence continuous.

P r o o f . As in the proof of Theorem 5.1, first take (M̄ ′′, ā′, N̄ ′) extending (M̄, ā, N̄ ) to realize the required
strong types. By Theorem 5.5 we can find a reduced extension (M̄ ′, ā′, N̄ ′) of (M̄ ′′, ā′, N̄ ′), which realizes the
same required strong types. By Theorem 5.7, (M̄ ′, ā′, N̄ ′) is continuous. �

Now we return to the construction in the proof of the Main Theorem.
Corollary 5.9 tells us that the construction of our array of models as an increasing sequence of towers is possible

in successor cases. In the limit case, let Iω = ⋃
m<ω Im , and simply define (M̄, ā, N̄ )ω ∈ K∗

μ,Iω to be the union of
the towers (M̄, ā, N̄ )n .

To see that the construction satisfies our requirements, first notice that the last column of the array, 〈Mn
iϑ

; n < ω〉,
witnesses that M∗ is a (μ,ω)-limit model. Recall that the towers that form the rows of the array are indexed by In

which have cofinality ϑ + 1 (and not ϑ) and are continuous. Therefore by the definition of <-extensions of towers,
we know that each Mn+1

iϑ
is universal over Mn

iϑ
, which demonstrates that M∗ is indeed a (μ,ω)-limit model. If we

had constructed our towers to only have cofinality ϑ , we could not arrive at this conclusion concerning M∗.
In light of Theorem 4.4 we need only verify that the last row of the array is a continuous relatively full tower

of cofinality ϑ + 1.

Claim 5.10 The tower (M̄, ā, N̄ )ω is full relative to (Mn
i )n<ω,i∈Iω .

P r o o f . Given i with iα ≤ i < iα+1, let (p, Mn
i ) be some strong type in St(Mω

i ). Notice that by monotonicity
of non-splitting (p�Mn+1

i , Mn
i ) ∈ St(Mn+1

i ). By construction there is a j ∈ In+1 with i < j < iα+1 such that
(ga-tp(a j/Mn+2

j ), N n+2
j ) is parallel to (p�Mn+1

i , Mn
i ). We will show that (ga-tp(a j/Mω

j ), Nω
j ) is parallel to

(p, Mn
i ).

First notice that ga-tp(a j/Mω
j ) does not μ-split over Nω

j = N n+2
j because (M̄, ā, N̄ )ω is a tower. By Lemma

3.5, (ga-tp(a j/Mω
j ), N n+2

j ) is parallel to (p, Mn
i ). �

This completes the proof of Theorem 1.9.

6 Concluding remarks

In this section we discuss other results related to the question of the uniqueness of limit models. First to understand
the boundaries of the question of the uniqueness of limit models, consider the elementary case. Limit models are
not necessarily unique even for first order complete stable theories.

Theorem 6.1 Suppose T is a complete, stable theory. Let μ ≥ 2|T | such that μ|T | = μ. If T is not superstable,
then no (μ,ω)-limit model is isomorphic to any (μ, κ)-limit model for any κ with cf(κ) ≥ κ(T ).

P r o o f . Let T be a stable, but not superstable, complete theory, and fix κ and μ as in the statement of
the theorem. As T is not superstable, by [15, Lemma VII, 3.5 (2)], for λ := (2μ)+, there are 〈āη|η ∈ ω ≥λ〉 and
〈ϕn(x̄, ȳn)|n < ω〉 such that for every n < ω, ν ∈ nλ, and all η ∈ ωλ,

(C |= ϕn[āη, āν ]) ⇐⇒ ν = η�n.

By induction on n < ω define 〈Mn|n < ω〉 all of cardinality μ and 〈ηn, νn|n < ω〉 such that

(1) The model Mn+1 is universal over Mn and saturated of cardinality μ,
(2) ηn+1 > ηn , νn+1 > ηn , and ηn+1 �= νn+1,
(3) āηn+1 , āνn+1 ∈ Mn+1 and
(4) tp(āηn+1/Mn) = tp(āνn+1/Mn).

This construction is enough. Let N ′ |= T be a (μ, κ)-limit over M0. By Theorem 1.6, N ′ must be saturated.
Let N = ⋃

n<ω Mn . Clearly N is a (μ,ω)-limit over M0. To conclude that N and N ′ are non-isomorphic, it
is enough to show that N is not saturated. Consider p := {ϕn+1(x̄ ; āηn+1) ∧ ¬ϕn+1(x̄ ; āνn+1)|n < ω}. The set of
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formulas p is a type since it is realized in C by āη where η := ⋃
n<ω ηn . Notice that N cannot satisfy p. If ā ∈ N

would satisfy p, then Mn realizes p for some n < ω. Thus by condition (4), we would have

C |= ϕn+1[ā, āηn+1 ] ⇐⇒ C |= ϕn+1[ā, āνn+1 ]

which would contradict the assumption that ā satisfies p.

This is possible. By stability and μ|T | = μ, using the proof of [15, Th. III 3.12], every model of cardinality μ

has a saturated proper elementary extension. Let M0 be a saturated model of cardinality μ and take η0 = ν0 := 〈〉.
Given ηn, νn, Mn , using Theorem 1.5 let M∗ be universal over Mn of cardinality μ. Let M∗∗ 
 M∗ of cardinality
μ containing āηn and āνn . By [15, Th. III 3.12], we can take Mn+1 
 M∗∗ saturated of cardinality μ. Clearly
it is universal over Mn . For n < ω, consider Fn(α) := tp(āηn ˆα/Mn). As λ is regular and λ > |S(Mn)|, there is
S ⊂ λ of cardinality λ such that α �= β ∈ S impliesFn(α) = Fn(β). Pick α �= β ∈ S and define ηn+1 := ηnˆα and
νn+1 := ηnˆβ. �

In the non-elementary setting, many authors have considered approximations to Theorem 1.9. Several authors
have proved and used the uniqueness of limit models in AECs under the assumption of categoricity: [1, 12, 20,
22, 24–26]. Also, Shelah’s [16] examines (as an aside) the uniqueness of limit models in good frames. Below we
briefly describe the results and techniques of these papers and distinguish them from our context.

In [20, Theorem 6.5], Shelah claims uniqueness of limit models of cardinality μ for classes with the amalga-
mation property under little more than categoricity in some λ > μ > LS(K) together with existence of arbitrarily
large models. Shelah’s claim in [20, Theorem 6.5] (isomorphism over the base) seems too strong for the proof that
he suggests. Instead, he proves that (μ, κ)-limit models are Galois saturated, which implies uniqueness only over
models of size < μ. The argument in [20] depends in a crucial way on an analysis of Ehrenfeucht-Mostowski
models. For an exposition of this result cf. [1]. Our result differs in two ways from Shelah’s [20, Theorem 6.5].
First, we do not explicitly use Ehrenfeucht-Mostowski machinery; although, Ehrenfeucht-Mostowski machinery
is used to derive the superstability assumptions in this paper from categoricity. Secondly, our result produces an
isomorphism between the two limit models that fixes a submodel of cardinality μ.

Kolman and Shelah in [12] prove the uniqueness of limit models of cardinality μ in λ-categorical AECs that
are axiomatized by a Lκ,ω-sentence where λ > μ and κ is a measurable cardinal. Then Kolman and Shelah use
this uniqueness result to prove that amalgamation occurs below the categoricity cardinal in Lκ,ω-theories with κ

measurable. Both the measurability of κ and the categoricity are used integrally in their proof of uniqueness.
Shelah in [22, Claim 7.8] proved a special case of the uniqueness of limit models under the assumption of the

μ-AP, categoricity in μ and in μ+ as well as assuming Kμ++ �= ∅. In that paper Shelah needs to produce reduced
types and use some of their special properties.

In [24], Shelah and Villaveces attempted to prove a uniqueness theorem without assuming any form of
amalgamation; however, they assumed that K is categorical in some sufficiently large λ, that every model in
K has a proper extension and that 2λ < 2λ+

. VanDieren in [25, 26] managed to prove the uniqueness statement
under the assumptions of [24] together with the additional assumptions that the class is categorical in μ+ and
Kam := {M ∈ Kμ ; M is an amalgamation base} is closed under unions of increasing ≺K chains.

In [16] the most important new concept is that of a λ-good frame, which is an axiomatization of the notion
of superstability, with hypothesis on just one cardinal λ. Its full definition is more than a page long. Shelah’s
assumptions on the AEC include, among other things, the amalgamation property, the existence of a forking like
dependence relation and of a family of types playing a role akin to that of regular types in first order superstable
theories – Shelah calls them bs-types. One of the axioms of a good frame is the existence of a non-maximal
super-limit model. This axiom along with μ-stability implies the uniqueness of limit models of cardinality μ. In
[16, Lemma II.4.8] he states that in a good frame, limit models are unique. Boney and Vasey have isolated this
result and use both symmetry and tameness to derive the uniqueness of limit models [2].

We are particularly interested in Theorem 1.9 not only for the sake of generalizing Shelah’s result from [22] but
due to the fact that the first and second author originally used an earlier draft of this uniqueness theorem (which
did not assume unidimensionality) along with tools from [20] in a crucial step to prove:3

3 Some time after Grossberg and VanDieren announced Theorem 6.2, Baldwin circulated an alternative proof of Theorem 6.2 that
eventually appeared in [1]. Lessmann in [13] proved the result for K with LS(K) = ℵ0 beginning with categoricity in ℵ1.
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Theorem 6.2 (Upward categoricity theorem; [8]) Suppose that K has arbitrarily large models, is χ -tame and
satisfies the amalgamation and joint embedding properties. Let λ be such that λ > LS(K) and λ ≥ χ . If K is
categorical in λ+ then K is categorical in all μ ≥ λ+.

After the addition of the unidimensionality assumption in 2014 to resolve an error found in 2012 in the proof
of Theorem 5.7, Grossberg and VanDieren have revisited the proof of Theorem 6.2 to insure that the upward
categoricity transfer still holds [9]. Grossberg and VanDieren’s initial use of the uniqueness of limit models in this
theorem hints at a connection between classical definitions of superstability in first order logic and the uniqueness
of limit models. This link is explored in further work of VanDieren [27, 28].

It is worth mentioning that the links between classical notions of superstability from first order logic and the
uniqueness of limit models have also produced interesting results in the connections between “continuous model
theory” and so-called “metric AECs”. Villaveces and Zambrano [29] have adapted our proofs and notions of
independence used here to the metric AEC context, under the stronger hypothesis of categoricity ([30] but for
the wider ambit of metric AECs) and at the same time explored various consequences of assuming forms of
uniqueness of limit models in that metric (continuous) context.
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