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Abstract. We study a local version of the order property in several
frameworks, with an emphasis on frameworks where the compactness
theorem fails: (1) Inside a fixed model, (2) for classes of models where
the compactness theorem fails and (3) for the first order case. Appro-
priate localizations of the order property, the independence property,
and the strict order property are introduced. We are able to generalize
some of the results that were known in the case of local stability for the
first order theories, and for stability for nonelementary classes (existence
of indiscernibles, existence of averages, stability spectrum, equivalence
between order and instability). In the first order case, we also prove the
local version of Shelah’s Trichotomy Theorem. Finally, as an applica-
tion, we give a new characterization of stable types when the ambient
first order theory is simple.

1. Introduction

In the first order case, Victor Harnik and Leo Harrington in [HH],
while presenting an alternative approach of forking to that of Saharon She-
lah [Sh a], started a localized generalization of stability theory extending
Saharon Shelah’s Unstable Formula Theorem (Theorem II 2.2 [Sh a]). This
work was later continued and extended by Anand Pillay in [P]. About
ten years later Zoe Chatzidakis and Ehud Hrushovski in their deep study
of the model theory of fields with an automorphism [CH] as well as Ehud
Hrushovski and Anand Pillay [HP] discovered natural examples of this phe-
nomenon in algebra and obtained results in local stability for first order
simple theories.

In parallel, Rami Grossberg and Saharon Shelah continued their
study of stability and the order property in contexts where the compact-
ness theorem fails; inside a model and for nonelementary classes (see for
example [Gr1], [Gr2], [GrSh1], [GrSh2], [Sh12], and [Sh300]).
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The goal of this paper is to continue the study of local stability
both in the first order case and in cases where the compactness theorem
fails. When possible, we have tried to merge first order local stability with
nonelementary stability theory and obtain results improving existing the-
orems in two directions. Three frameworks, listed in decreasing order of
generality, are examined: (1) Inside a fixed structure; (2) For a nonelemen-
tary class of structures; (3) For the first order case. To explain what we
mean, consider the property (*) of a model, that the model has no defin-
able order of uncountable length. Studying (*) in (1) means that we study
some model M which has property (*). In particular, this allows for the
first order theory of M to be unstable. This framework was studied in [Gr1]
and [Gr2]. In (2), this means that we assume that all the models of a given
nonelementary class have property (*) (which still allows for the first order
theory of the models to be unstable). In particular, all the results of (1) can
be used. In addition, since (*) becomes a property of the class, some of the
tools of infinitary logic can be used. In (3), this means that we assume that
all the models of a first order theory have property (*). By compactness,
this implies that the theory is stable. All the results of (1) and (2) can be
used in (3).

We will focus on local versions of (*), namely local versions of sta-
bility and the order property. In addition to this, in (3) we also study local
versions of the independence property and the strict order property. By
local, we mean inside the set of realizations of a fixed type.

In (1) and (2), since the compactness theorem fails, we cannot use
the forking machinery or definability of types, as [HH], [P] and [Sh a] do.
Hence, the methods used have a combinatorial and set-theoretic flavor. Also,
by (2) we mean the study of models of an infinitary logic, or of the class
PC(T1, T,Γ) (see the beginning of Section 3 for a definition). Hence, in ad-
dition to the absence of compactness, we have to do without the existence
of saturated or even homogeneous models, as such models do not exist in
general. Thus, frameworks (1) and (2) are more general than the study of
finite diagrams [Sh3], also known as stability inside a homogeneous model,
which was recently the focus of some activity, for example by Tapani Hyt-
tinen and Saharon Shelah or Olivier Lessmann. In fact, for a treatment of
local stability in the context of finite diagrams including the complete local
stability spectrum and the local homogeneity spectrum, see [GrLe].

The basic structure assumption will be the impossibility of coding,
via a formula in a given logic, a linear order of a certain length inside the
set of realizations of a fixed type p. In the context (1), this means that this
impossibility happens in a particular model. For example, a model M may
have orders of length ω but not ω1 inside the set of realizations of p. We are
not concerned with what happens in other models with the same theory (in
particular by compactness there will be elementarily equivalent models that
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encode uncountable linear orders inside p). In the context of (2), we consider
when the impossibility of coding a long order happens for all the models of a
nonelementary class (for example, we can consider a class of structures which
has a predicate p(x) containing a nonarchimedean field; no linear order of
size more than the continuum can be embedded inside p). In (3), this will be
considered for all the models of a first order theory. In this case, because of
the compactness theorem, the structure assumption is that no infinite linear
order exist inside the set of realizations of p. In the first order case, there
are currently two notions of stable types in use. Our definition is equivalent
to the following: p is stable if there do not exist φ(x̄, ȳ), āi |= p for i < ω and
b̄j |= p for j < ω such that |= φ(āi, b̄j) if and only if i < j. Another notion
of stable type, sometimes called persistently stable (see for example [Bo]) is
like the definition above, except that the b̄j are not required to realize p.
Hence, a persistently stable type is stable, but the converse may fail. We
chose the first definition for two reasons: as a structure assumption it is
weaker than the other and still allows us to derive the expected conclusions,
and as a nonstructure assumption, the existence of long orders implies the
existence of many nonisomorphic models (see Theorem VIII 3.2 in [Sh a]),
even in nonelementary cases (see for example [Sh12] and [GrSh1]).

The paper is organized as follows:

In Section 2, we study stability and order for the realizations of a
type p inside a fixed model M . In particular, the model M may omit many
types. Denote by p(M) the set of realizations of p in M . We prove that the
impossibility of coding a linear order of a certain length inside p(M) implies
local stability (Theorem 5). By local stability, we mean the usual definitions
in terms of the number of types extending the fixed type p. This is used
to prove the existence of indiscernibles (Theorem 9), as well as averages
(Theorem 12). It may be helpful for the reader to keep in mind that in
Section 2, only what happens in M is relevant. Even if p is unstable in the
first order sense, for each cardinal λ there will be arbitrarily large models
M , where it is impossible to encode linear orders of size λ inside p(M). For
results of this nature, see Chapter VII section 4 of [Sh a].

In Section 3, we study these local notions for classes of models that
fail to satisfy the compactness theorem. We obtain a characterization of
local stability for such a class of models in terms of the failure of the local
order property, and a version of the stability spectrum (Theorem 16).

Finally, in Section 4, we particularize our discussion to the first order
case. We introduce local version of the independence property and the
strict order property. We prove the local version of Shelah’s Trichotomy
Theorem: the local order property is equivalent to the disjunction of the
local independence property and the local strict order property (Corollary
21). We characterize the local independence property in terms of averages
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(Theorem 23) and give, as an application, a characterization of stable types
in terms of averages when the ambient first order theory is simple (Corollary
26).

Credits have been given throughout the text when particular cases of
these results were known, either in the local first order case, or the nonlocal
nonelementary case.

We are thank the anonymous referee for a carefull reading and many
constructive comments.

2. Local notions inside a fixed model

In this section, we work inside a fixed structure M . Denote by L(M)
the set of formulas in the language of M . These formulas may be considered
to be in first order logic, or in a fragment of a larger logic, or even some
subset of these with some weak closure properties. The basic assumption is
that in this given model M , some type-definable set does not contain a large
L(M)-definable order. Hence, exactly what L(M) is plays little role here, as
we make no assumption on the theory of M or its level of homogeneity. Thus,
even if L(M) is the set of first order formulas, these results are new since
we make no assumption on the behavior of elementary equivalent models.
This is a key difference with the work done by [HH] or [P].

Let p be a fixed set of formulas (maybe with parameters in M) such
that p is realized in M . Denote by p(M) the set of elements of M realizing
p.

Recall the notion of complete type inside a model. Let A ⊆ M , ∆
be a set of L(M)-formulas and c̄ ∈M . We let

tp∆(c̄/A,M) = {φ(x̄, ā) | ā ∈ A, φ(x̄, ȳ) ∈ ∆ or ¬φ(x̄, ȳ) ∈ ∆,M |= φ[c̄, ā]}.
We omit ∆ when ∆ = L(M).

For A ⊆M and ∆ a set of formulas, we let

S∆,p(A,M) = {tp∆(c̄/A,M) | c̄ ∈M and c̄ realizes p }.
We omit ∆ when ∆ = L(M).

For a type q and a set A, we denote by q ¹ A the set of formulas in q
with parameters in A. For a set of formulas ∆, we denote by q ¹ ∆ the set
of instances in q of formulas of ∆.

The next two definitions are the main concept of this paper.

Definition 1. For an infinite cardinal λ ≥ |L(M)|, the model M is said to
be (λ, p)-stable if |Sp(A,M)| ≤ λ for each A ⊆ p(M) of cardinality at most
λ.
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Note that in the above definition we make demands only on subsets
of p(M). In fact, throughout the rest of this paper, we will only deal with
types q ∈ Sp(A,M) such that A ⊆ p(M).

Definition 2. M has the (λ, p)-order property if there exists a formula
φ(x̄, ȳ) ∈ L(M) and a set {āi | i < λ} ⊆ p(M), such that

M |= φ[āi, āj ] if and only if i < j < λ.

The first theorem (Theorem 5) is a local version inside a model of
Shelah’s Theorem that the failure of the order property implies stability
for complete, first order theories. A generalization of Shelah’s theorem for
nonelementary classes and in the local case will appear in the next section
(Theorem 5). Theorem 5 will also be used in a key way to prove existence of
indiscernibles (Theorem 9) and averages (Theorem 12) in this section. The
technical tool needed to prove it is splitting. Recall the definition.

Definition 3. Let q ∈ Sp(B,M), with B ⊆ p(M). Let ∆1,∆2 ⊆ L(M).
The type q is said to (∆1,∆2)-split over A, if there exist elements b̄, c̄ ∈ B
and a formula φ(x̄, ȳ) ∈ ∆2 such that tp∆1

(b̄/A,M) = tp∆1
(c̄/A,M) and

both φ(x̄, b̄) and ¬φ(x̄, c̄) belong to q. We simply say splits for (L(M), L(M))-
splits.

The next fact is a variation on Exercise I.2.3 from [Sh a].

Proposition 4. Let ∆1 and ∆2 be sets of L(M) formulas (closed under
negation). Let B ⊆ C ⊆ p(M) and let A ⊆ M . Suppose that B realizes all
the types in S∆2,p(A) that are realized in C. Let q, r ∈ S∆1,p(C) such that
q, r do not (∆1,∆2)-split over A. If q ¹ B = r ¹ B, then q = r.

The following theorem localizes results from [Sh12] and [Gr1]. The
proof appearing in [Sh12] uses generalizations of a theorem of Paul Erdős
and Michael Makkai appearing in [EM]. The proof given here is simpler and
closer to [Gr1].

Theorem 5. Let µ and λ be cardinals such that µ ≥ |L(M)|, λµ = λ, and
λ ≥ 22µ. If M does not have the (µ+, p)-order property, then M is (λ, p)-
stable.

Proof. Suppose that M is not (λ, p)-stable. Then, there exists A ⊆ p(M) of
cardinality λ such that |Sp(A,M)| > λ.

For each q ∈ Sp(A,M), we have (q ¹ φ) ∈ Sφ,p(A,M). Define

f : Sp(A,M)→ Πφ∈LSφ,p(A,M), by f(q) = (q ¹ φ)φ∈L(M).

Then, f is a well-defined injection. Observe that

|Πφ∈L(M)Sφ,p(A,M)| ≤ λ|L(M)| ≤ λµ < λ+ ≤ |Sp(A,M)|.
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By the pigeonhole principle, we can find φ ∈ L(M) such that |Sφ,p(A,M)| >
λ.

Fix φ(x̄, ȳ) as above and choose {āi | i < λ+} ⊆ p(M) such that
i 6= j implies tpφ(āi/A,M) 6= tpφ(āj/A,M).

Write χ(ȳ, x̄) := φ(x̄, ȳ). Define 〈Ai | i < λ〉 an increasing continuous
sequence of subsets of p(M) containing A, each of cardinality at most λ, such
that

Ai+1 realizes every type in Sp(B,M), for each B ⊆ Ai with |B| ≤ µ.(*)

This is possible: Having constructed Ai of cardinality at most λ, there are
at most λµ = λ subsets B of Ai of cardinality µ. Further, for each such B,
we have |Sp(B,M)| ≤ 2µ ≤ λ, so we can add the needed realizations in Ai+1

from p(M) while keeping |Ai+1| ≤ λ.

We now claim that (*) allows us to choose, for every i < λ+, an index
j, with i < j < λ+, such that for each l < µ+ the type tpφ(āj/Al+1,M)
(χ, φ)-splits over each B ⊆ Al of cardinality at most µ.

Otherwise, there is i < λ+ such that for every index j, with i <
j < λ+, there exists l < µ+ and Bj ⊆ Al of cardinality µ such that
tpφ(āj/Al+1,M) does not (χ, φ)-split over Bj . By the pigeonhole princi-
ple (since λ+ ≥ µ) we can find S ⊆ λ+ of cardinality λ+, an ordinal l < µ+,
and B ⊆ Al+1 of cardinality µ such that tpφ(āj/Al+1,M) does not (χ, φ)-
splits over B, for every j ∈ S. By (*) we can choose C ⊆ Al+1 of car-
dinality at most 2µ such that C realizes every type in Sχ,p(B,M). Then,
since |Sφ,p(C,M)| ≤ 22µ < λ+, by the pigeonhole principle, we may assume
that tpφ(āj/C,M) is constant for j ∈ S. By Proposition 4, we must have
tpφ(āj/Al+1,M) = tpφ(āi/Al+1,M), for i, j ∈ S. This contradicts the choice
of āis and the fact that A ⊆ Al+1.

Define {c̄l, d̄l, b̄l | l < µ+} ⊆ A2l+2 and Bl =
⋃
{c̄k, d̄k, b̄k | k < l}

such that:

(1) Bl ⊆ A2l and |Bl| ≤ µ;
(2) tpχ(c̄l/Bl,M) = tpχ(d̄l/Bl,M);
(3) Both φ(x̄, c̄l) and ¬φ(x̄, d̄l) belong to tpφ(āj/A2l,M);
(4) b̄l ∈ A2l+1 realizes both φ(x̄, c̄l) and ¬φ(x̄, d̄l).

This is possible: Let B0 = ∅ and Bl =
⋃
k<lBk when l is a limit

ordinal. Having constructed Bl ⊆ A2l of cardinality at most µ, the type
tpφ(āj/A2l) (χ, φ)-splits overBl and hence there are c̄l, d̄l ∈ A2l with tpχ(c̄l/Bl,M) =
tpχ(d̄l/Bl,M) and φ(x̄, c̄l) and ¬φ(x̄, d̄l) ∈ tpφ(āj/A2l,M). Then, by con-
struction we can find b̄l ∈ A2l+1 realizing tpφ(āj/c̄ld̄l,M) so (4) is automat-
ically satisfied.
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Now, the set {b̄lˆc̄lˆd̄l | l < µ+} ⊆ p(M) and the formula

ψ(x̄0, x̄1, x̄2, ȳ0, ȳ1, ȳ2) := φ(x̄0, ȳ1)↔ φ(x̄0, ȳ2)

demonstrate that M has the (µ+, p)-order property.

The following definition generalizes the notion of relative saturation.

Definition 6. We say that a set C ⊆ M is relatively (λ, p)-saturated if C
realizes every q ∈ Sp(B,M) for every B ⊆ C such that |B| < λ.

The following lemma is a version of κ(T ) ≤ |T |+ for the notion of
splitting.

Lemma 7. Let µ be a cardinal such that µ ≥ |L(M)|. Suppose that M does
not have the (µ+, p)-order property. Suppose that B ⊆ p(M) is relatively
(µ+, p)-saturated. Then for each q ∈ Sp(B,M) there is A ⊆ B of cardinality
at most µ such that q does not split over A.

Proof. Suppose, for a contradiction, that there exist a relatively (µ+, p)-
saturated set B and a type q ∈ Sp(B,M), such that q splits over every
A ⊆ B of cardinality at most µ.

We will show that M has the (µ+, p)-order property. Construct a
sequence of sets 〈Ai | i < µ+〉 such that:

(1) A0 = ∅;
(2) Ai =

⋃
j<iAj , when i is a limit ordinal;

(3) Ai ⊆ B, for each i < µ+;
(4) |Ai| ≤ µ, for each i < µ+;
(5) There are φi ∈ L(M) and āi, b̄i ∈ Ai+1, such that tp(āi/Ai,M) =

tp(b̄i/Ai,M) and φ(x̄, āi) and ¬φ(x̄, b̄i) are in q;
(6) Ai+1 contains c̄i realizing q ¹ (Ai ∪ āib̄i).

This is possible: For i = 0 or a limit ordinal, it is obvious. Suppose
that Ai has been constructed. Since |Ai| ≤ µ and Ai ⊆ B, q splits over Ai.
Hence, there exist a formula φi ∈ L(M), and āi, b̄i ∈ B demonstrating this.
Since B is relatively (µ+, p)-saturated, and q ¹ (Ai∪ āib̄i) ∈ Sp(Ai∪ āib̄i,M),
there exists c̄i ∈ B realizing q ¹ (Ai ∪ āib̄i). Let Ai+1 = Ai ∪ {āi, b̄i, c̄i}. All
the conditions are satisfied.

This is enough: By the pigeonhole principle, since µ ≥ |L(M)|, we
may assume that there exists φ ∈ L(M) such that φi = φ, for each i < µ+.
Now consider {c̄iˆāiˆ̄bi | i < µ+} and the formula

ψ(x̄0, x̄1, x̄2, ȳ0, ȳ1, ȳ2) := φ(x̄0, ȳ1)↔ φ(x̄0, ȳ2).

It is easy to see that they demonstrate thatM has the (µ+, p)-order property.
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The following fact is Lemma I.2.5 of [Sh a].

Fact 8. Let B ⊆ p(M) and let {āi | i < α} ⊆ p(M) be given. Consider the
type qi = tp(āi/B ∪ {āj | j < i},M) ∈ Sp(B ∪ {āj | j < i},M) and suppose
that

(1) If i < j < α then qi ⊆ qj;
(2) For each i < α the type qi does not split over B.

Then {āi | i < α} is indiscernible over B.

The next theorem is a generalization of two theorems. (1) When p
is stable for every model of a first order theory, a version of this theorem
appears in [P]. (2) When p := {x̄ = x̄}, it appears in [Gr1].

Theorem 9. Let µ and λ be cardinals such that µ ≥ |L(M)|, λµ = λ, and
λ ≥ 22µ. If M does not have the (µ+, p)-order property, then for every
I ⊆ p(M) and every A ⊆ p(M) such that |I| > λ ≥ |A|, there exists J ⊆ I
of cardinality λ+ indiscernible over A.

Proof. Let I = {āi | i < λ+}. By the pigeonhole principle, we may assume
that `(āi) = `(āj), for i, j < λ+.

Define 〈Ai | i < λ+〉 ⊆ p(M) such that:

(1) A0 = A;
(2) Ai =

⋃
j<iAj , when j is a limit ordinal;

(3) Ai ⊆ p(M);
(4) |Ai| ≤ λ, for every i < λ+;
(5) Ai+1 contains āi;
(6) Ai+1 realizes every type in Sp(B,M), for each B ⊆ Ai of cardinality

at most µ.

This is possible: For i = 0 it is clear. If i is a limit ordinal it is easy.
Let us concentrate on the successor stage. Assume that Ai of cardinality λ
has been constructed. By cardinality assumption, there are λ = λµ subsets
B of Ai of cardinality µ, and for each such B we have |Sp(B,M)| ≤ 2µ ≤ λ.
Hence, Ai+1 satisfying (3)–(6) can be found.

Consider the following stationary subset of λ+

S = {i < λ+ | cf(i) ≥ µ+}.
Let ri := tp(āi/Ai,M). Then clearly ri ∈ Sp(Ai,M). Now, for each i ∈ S,
since cf(i) ≥ µ+, the set Ai is relatively (µ+, p)-saturated. Hence, by Lemma
7, there exists Bi ⊆ Ai of cardinality at most µ such that ri does not split
over Bi. Furthermore, since cf(i) = µ+, there exists j < i such that Bi ⊆ Aj .
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This shows that the function f : S → λ+ defined by

f(i) = min{j | Bi ⊆ Aj},
is regressive. Hence, by Fodor’s lemma (see Theorem 22 of [Je]), there is
S′ ⊆ S of cardinality λ+ and i0 < λ+ such that for each i ∈ S′ we have
Bi ⊆ Ai0 . Since there are only λµ = λ subsets of Ai0 of size µ, we may
assume, by the pigeonhole principle, that there exists a set B ⊆ Ai0 such
that Bi = B for each i ∈ S′. Now, M does not have the (µ+, p)-order
property, and λµ = λ, so Theorem 5 implies that M is (λ, p)-stable. Hence,
|Sp(Ai0 ,M)| ≤ λ, and thus by the pigeonhole principle, we may further
assume that tp(āi/Ai0 ,M) = tp(āj/Ai0 ,M), for every i, j ∈ S′.

By re-enumerating if necessary, we may assume that S′\(i0+1) = λ+.
Now let

qi := tp(āi/Ai0 ∪ {āj | j < i}) ∈ Sp(Ai0 ∪ {āj | j < i}).
By Proposition 4 we have that qi ⊆ qj if i < j. Thus, all the assumptions
of Fact 8 are satisfied, so J = {āi | i < λ+} is indiscernible over A, since
A ⊆ Ai0 . This finishes the proof.

In the previous theorem, we demanded that A be a subset of p(M).
The next remark summarizes what we can do when A ⊆M is not necessarily
contained in p(M). It follows from the previous theorem by considering an
expansion of L(M) with constants for elements in A.

Remark 10. Let µ ≥ |L(T )| be a cardinal. Let A ⊆ M be given and
suppose that M does not have the (µ+, p)-order property even allowing
parameters from A. Let λµ = λ and λ ≥ 22µ . Then, for every I ⊆ p(M) of
cardinality λ+, there exists J ⊆ I of cardinality λ+ indiscernible over A.

Definition 11. Let I be an infinite set of finite sequences. Let A ⊆M . We
define the average of I over A in M as follows

Av(I, A,M) := {φ(x̄, ā) | ā ∈ A, φ(x̄, ȳ) ∈ L(M),

and M |= φ[c̄, ā] for |I| elements c̄ ∈ I}.

We will be interested in conditions guaranteeing that averages are
well-defined. It is a known fact (see Lemma III 1.7 (1) of [Sh a]) that if M
is a model of a complete, first order, stable theory T , then for every infinite
set of indiscernibles I and A ⊆ M , the average Av(I, A,M) is a complete
type over A. Also, if |I| > |A| + κ(T ), then the average is realized by an
element of I (this is essentially Lemma III 3.9 of [Sh a]). A corresponding
local result (Theorem 23) in the presence of compactness will be given in
Section 4. Inside a fixed model, the situation is more delicate. The next
theorem is a localization of Conclusion 1.11 in [Sh300]. Notice the similarity
with the assumptions of Theorem 9. However while in Theorem 9 the set J
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depends on the set A in the following theorem we mange to find a subset J
that is independent of A.

Theorem 12. Let µ and λ be cardinals such that µ ≥ |L(M)|, λµ = λ,
and λ ≥ 22µ. If M does not have the (µ+, p)-order property, then for every
I ⊆ p(M) of cardinality λ+, there exists J ⊆ I of cardinality λ+ such that
for each A ⊆ p(M) the average Av(J,A,M) is a complete type over A.
Moreover, if |J | > |A|, then Av(J,A,M) ∈ Sp(A,M).

Proof. Let I = {āα | α < λ+}. We may assume by the pigeonhole principle
that there exists n < ω such that `(āα) = n, for each α < λ+.

We first essentially repeat the proof of Theorem 9 and construct a
sequence 〈Aα | α ≤ λ+〉 such that:

(1) A0 = ∅, Aδ =
⋃
α<δ Aα when δ is limit, and Aα ⊆ Aα+1.

(2) Aα ⊆ p(M).
(3) |Aα| ≤ λ, for every α < λ+.
(4) Aα+1 contains āα.
(5) Aα+1 realizes all types in Sp(Aα,M).

This is possible: Since M does not have the (µ+, p)-order property, then M
is (λ, p)-stable by Theorem 5. Hence, |Sp(Aα,M)| ≤ λ inductively, for each
α < λ+.

Now (5) implies that

(6) If cf(δ) ≥ µ+ then Aδ is relatively (µ+, p)-saturated.

As in the proof of Theorem 9, we can find a set S ⊆ {δ < λ+ | cf(δ) ≥ µ+}
of cardinality λ+ and an ordinal α(∗) = minS such that

(7) For each α ∈ S, the type tp(āα/Aα,M) does not split over Aα(∗).
(8) If α, β ∈ S and α < β then tp(āα/Aα,M) ⊆ tp(āβ/Aβ ,M).

We claim that the set J = {āα | α ∈ S} is as desired. To show this,
we will show that

(*) For every c̄ ∈ p(M) and φ(x̄, ȳ) ∈ L(M), either

|{α ∈ S : M |= φ[āα, c̄]}| ≤ µ or |{α ∈ S : M |= ¬φ[āα, c̄]}| ≤ µ.

This implies the conclusion of the theorem: For A ⊆ p(M), condition (*)
implies that Av(J,A,M) is a consistent set of formulas over A, as each
finite subset is realized by all but µ many elements of J . Since averages
are always complete, we need only show that Av(J,A,M) is consistent. For
the last sentence, notice that all but |A|+ |L(M)|+ µ elements of J realize
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Av(J,A,M). Hence, if λ+ > |A|, then there exists āα ∈ J ⊆ p(M) realizing
Av(J,A,M) (as λ ≥ µ+ |L(M)|). This shows that Av(J,A,M) ∈ Sp(A,M).

Let c̄ ∈ p(M) and φ(x̄, ȳ) ∈ L(M) be given. Since c̄ ∈ p(M) then
tp(c̄/Aα,M) ∈ Sp(Aα,M). Hence, by (5), we can find {c̄α | α ∈ S} ⊆ p(M)
satisfying

(9) c̄α ∈ Aα+2.
(10) c̄α realizes tp(c̄/Aα+1,M).

We will prove (*) by finding a set of ordinals E of cardinality µ such
that either {α ∈ S : M |= φ[āα, c̄]} ⊆ E or {α ∈ S : M |= ¬φ[āα, c̄]} ⊆ E.

We construct the set E, as well as a set C ⊆ Aλ+ with the following
properties:

(11) |E| ≤ µ and |C| ≤ µ.
(12) λ+ ∈ E.
(13) If α+1 ∈ E then α ∈ E and if δ ∈ E and cf(δ) ≤ µ then sup(E∩δ) = δ.
(14) If δ ∈ E and cf(δ) ≥ µ+, then tp(c̄/Aδ,M) does not split over C∩Aδ.

Moreover, C ∩Aδ ⊆ Asup(E∩δ).

This is possible: Construct En and Cn of cardinality at most µ by induction
on n < ω. Let E0 = {λ+} and C0 = ∅. Then, by (6) and Lemma 7 we
can find Cn+1 of cardinality µ such that tp(c̄/Aδ,M) does not split over
Cn+1 ∩ Aδ for each δ ∈ En with cf(δ) ≥ µ+. Furthermore, we can add at
most µ many ordinals to En+1 to ensure that Cn+1 ⊆ Asup(En+1∩δ). Thus,
E =

⋃
n<ω En and C =

⋃
n<ω Cn are as desired.

This is enough to prove (*). In fact, to show that {α ∈ S : M |=
φ[āα, c̄]} ⊆ E or {α ∈ S : M |= ¬φ[āα, c̄]} ⊆ E, it clearly suffices to show

M |= φ[āα, c̄]↔ φ[āβ , c̄], for every α, β ∈ S \ E.(**)

Notice that by construction (11)–(14) the set S \ E is partitioned
into at most µ intervals of the form {α ∈ S | sup(E ∩ δ) ≤ α < δ}, where
δ ∈ E with cf(δ) ≥ µ+. If such an interval is nonempty, then it must have
size at least µ+. We will make use of this and prove (**) in two stages. In
the first part, we will show that (**) holds, provided α and β belong to the
same interval, and then in the second part, that (**) holds also when α and
β belong to different intervals.

Let δ ∈ E be such that cf(δ) ≥ µ+. Denote by δ0 = sup(E ∩ δ).
Now let α, β ∈ S such that δ0 ≤ α < β < δ. Without loss of general-
ity, assume that M |= φ[āα, c̄]. Then φ(āα, ȳ) ∈ tp(c̄/Aδ,M). By (14)
the type tp(c̄/Aδ,M) does not split over C ∩ Aδ ⊆ Aδ0 . But, by (8), we
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have tp(āα/Aδ0 ,M) = tp(āβ/Aδ0 ,M). Hence, by nonsplitting φ(āβ, ȳ) ∈
tp(c̄/Aδ,M) and so M |= φ[āβ, c̄].

To prove the second part, we first claim that

M |= φ[āα1 , c̄β1 ]↔ φ[āα2 , c̄β2 ], for every α1 > β1 and α2 > β2 in S.(†)
To see this, let γ = max(α1, α2). Then by (8) and (9) (recall that or-
dinals in S are limit), we have M |= φ[āα1 , c̄β1 ] ↔ φ[āγ , c̄β1 ] and also
M |= φ[āα2 , c̄β2 ]↔ φ[āγ , c̄β2 ]. Now by (10) we have that tp(c̄β1/Aα(∗),M) =
tp(c̄γ/Aα(∗),M), and by (9), both c̄β1 , c̄β2 ∈ Aγ . But by (7) the type
tp(āγ/Aγ ,M) does not split over Aα(∗). Hence, φ(x̄, c̄β1) ∈ tp(āγ/Aγ ,M)
if and only if φ(x̄, c̄β2) ∈ tp(āγ/Aγ ,M), and therefore, M |= φ[āγ , c̄β1 ] ↔
φ[āγ , c̄β2 ]. This proves (†).

Now for the second part, let δ, ξ ∈ E with cf(δ) ≥ µ+ and cf(ξ) ≥ µ+.
Denote by δ0 = sup(E ∩ δ) and ξ0 = sup(E ∩ ξ). Assume that δ0 < ξ0

and let i ∈ S with δ0 ≤ i < δ and j ∈ S with ξ0 ≤ j < ξ. To show:
M |= φ[āi, c̄]↔ φ[āj , c̄]. Suppose M |= ¬(φ[āi, c̄]↔ φ[āj , c̄]). We will derive
a contradiction by showing that M has the (µ+, p)-order property.

Assume, without loss of generality, that M |= φ[āi, c̄] and M |=
¬φ[āj , c̄]. We distinguish two cases.

Case 1: Suppose M |= φ[āj , c̄i] (recall j > i). Then, by (†), we have
that M |= φ[āα, c̄β ], for every α, β ∈ S with α > β. On the other hand since
M |= ¬φ[āj , c̄], the first part of this argument shows that M |= ¬φ[āα, c̄],
for each α ∈ S with ξ0 ≤ α < ξ. Hence, by (10), for each β ∈ S with α ≤ β
we have that M |= ¬φ[āα, c̄β ]. Thus, for α, β ∈ S ∩ [ξ0, ξ), we have

M |= ¬φ[āα, c̄β ] if and only if α ≤ β.
This implies easily that M has the (µ+, p)-order property.

Case 2: Suppose M |= ¬φ[āj , c̄i]. Similarly to Case 1, we obtain
the (µ+, p)-order property by using the interval S ∩ [δ0, δ) and the fact that
M |= φ[āi, c̄].

3. Local order and stability for nonelementary classes

In this short section, we will examine the stability of p with respect
to all the models of a given class of models K. This specializes the context
of Section 2 in that we will assume that all models M ∈ K fail to have the
(λ, p)-order property, for some λ. This allows us to use infinitary model
theoretic techniques. Let us fix the concepts. We will work inside the class
K = PC(T1, T,Γ). Recall that for T ⊆ T1 and Γ a set of T1-types over the
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empty set, we let

PC(T1, T,Γ) = {M ¹ L(T ) : M |= T1 and M omits every type in Γ}
We will denote by µ(K) = µ(|T1|, |Γ|), the Hanf-Morley number for K. Re-
call that µ(λ, κ) is the least cardinal µ with the property that for every
PC(T1, T,Γ) with |T1| ≤ λ and |Γ| ≤ κ, if PC(T1, T,Γ) contains a model of
cardinality µ, then it contains models of arbitrarily large cardinality. When
κ = |Γ| = 0 there is no type to omit and so by the Upward Löwenheim-
Skolem Theorem we have µ(K) = ℵ0. For |Γ| ≥ 1, then µ(K) = iδ(|T1|,|Γ|).
Recall that δ(λ, κ) is the least ordinal δ with the property that for every
PC(T1, T,Γ) with |T1| ≤ λ and |Γ| ≤ κ, if PC(T1, T,Γ) contains a model
with a predicate whose order type is δ, then it contains a model where this
predicate is not well-ordered. Much is known about such numbers. Here
are some of the known facts. First δ(λ, 0) = ω and δ(λ, κ) is always a limit
ordinal. We have monotonicity properties: if λ1 ≤ λ2 and κ1 ≤ κ2, then
δ(λ1, κ1) ≤ δ(λ2, κ2). Also, if 1 ≤ κ ≤ λ then δ(λ, κ) = δ(λ, 1). In general
δ(λ, κ) ≤ (2λ)+. Finally, suppose κ ≤ λ and λ is a strong limit cardinal of
cofinality ℵ0, then δ(λ, κ) = λ+. See Lemma VII.5.1 and Theorem VII.5.5
of [Sh a] or [Gr b]. All these results about δ(λ, κ) and µ(λ, κ) and more can
be found in [Sh a] Chapter VII.5.

Choosing to carry out the theorems of this section in a PC-class is
arbitrary. We could have chosen to study any sufficiently general class of
models extending the first order case in which the compactness theorem
fails. For example, the class of models of an infinitary sentence ψ ∈ Lω1ω or
Lλ+ω. All the results of this section hold for such classes and the proofs can
usually be used verbatim.

As in the previous section, we will fix p a set of L(T )-formulas (with
parameters).

We expand the definitions we made in the first section for the class
K.

Definition 13. (1) Let λ be a cardinal. We say that p is stable in λ, if
for every M ∈ K, M is (λ, p)-stable.

(2) We say that p is stable if there exists a cardinal λ such that p is stable
in λ.

Definition 14. (1) We say that p has the λ-order property if there exists
M ∈ K such that M has the (λ, p)-order property.

(2) We say that p has the order property if p has the λ-order property for
every λ.

Using the tools of [Sh12] (finer results are in [GrSh1] and [GrSh2])
we observe:

Fact 15. The following conditions are equivalent.
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(1) p has the order property;
(2) p has the λ-order property for every λ < µ(K);
(3) p has the µ(K)-order property;
(4) There exists a model M ∈ K, a formula φ(x̄, ȳ), and an indiscernible

sequence {āi | i < µ(K)} ⊆ p(M), such that

M |= φ[āi, āj ] if and only if i < j < µ(K).

We now prove a version of the stability spectrum and the equivalence
between local instability and local order. Nonlocal theorems of this vein
appear in [Sh12].

Theorem 16. The following conditions are equivalent.

(1) p is stable;
(2) There exists a cardinal κ(K) < µ(K) + |L(T )|+ such that p is stable

in every λ ≥ µ(K) satisfying λκ(K) = λ.
(3) p does not have the order property.

Proof. (2) ⇒ (1) trivially.

(3)⇒ (2): Since p does not have the order property, by Fact 15 there
exists a cardinal κ < µ(K) such that no model of K has the (κ+, p)-order
property. Let λ ≥ µ(K). Then, automatically, since κ < µ(K) and µ(K) is
either ℵ0 or a strong limit, we have λ ≥ 22κ . Let κ(K) = κ+ |L(T )|. Hence,
if λ ≥ µ(K) satisfies λκ(K) = λ, and M ∈ K, then Theorem 5 implies that
M is (λ, p)-stable. Thus, p is stable in λ.

(1) ⇒ (3): This is again a standard application of Hanf number
techniques. We give just a sketch. Suppose p is stable in λ. Let T ∗ be
an expansion of T1 with Skolem functions, such that |T ∗| = |T1|. Let κ be
smallest such that 2κ > λ. Using the order property and the methods of
Morley, we can find M∗ |= T ∗ such that M = M∗ ¹ L(T ) ∈ K, with φ(x̄, ȳ),
and {āi | i < ω} ⊆ p(M) demonstrating the p-order property. Furthermore
{āi | i < ω} ⊆ p(M) is T ∗-indiscernible. Hence, by compactness, we can
find a model N∗ |= T ∗ and a set {āη | η ∈ κ≥2} ⊆ p(N∗) demonstrating the
p-order property with respect to the lexicographic order. Furthermore, for
every n < ω

tp(āν0 , . . . , āνn/∅, N∗) = tp(ā0, . . . , ān/∅,M∗), for every ν0 < · · · < νn.

We may assume that N∗ is the Ehrenfeucht-Mostowski closure of {āη |
η ∈ κ≥2}, since T ∗ has Skolem functions. Let N = N∗ ¹ L(T ). Then
N ∈ K. Consider A =

⋃
η∈κ>2 āη ⊆ p(N). Then |A| ≤ 2<κ ≤ λ and

|Sp(A,N)| = 2κ > λ. Thus, N is not (λ, p)-stable, a contradiction.

Remark 17. The first order case can be read from the results above by
setting T1 = T and Γ = ∅. We have µ(K) = ℵ0 and so p is stable if and only
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if p is stable in every λ such that λ|L(T )| = λ. In the first order case, most
authors define stable types using (3) with µ(K) = ℵ0.

4. Local order, independence, and strict order in the first
order case

In this section, we will fix a complete, first order theory T and obtain
results for the class of models of T . As usual, we work inside the monster
model C, a model which is κ̄-saturated, for a cardinal κ̄ larger than any
cardinality mentioned in this paper. Hence, all sets will be assumed to be
inside C and satisfaction is defined with respect to C. We will write Sp(A)
for Sp(A,C) and Av(I, A) for Av(I, A,C) as is customary. As before, we fix
a (nonalgebraic) T -type p. Denote by dom(p) the set of parameters of p.

Given that PC(T1, T,Γ) with T1 = T and Γ = ∅, all the results we
have obtained so far hold with µ(K) = ℵ0.

We first give local versions of Saharon Shelah’s first order notion
of independence and strict order property (see [Sh a]). Several variations
of these definitions can be thought of, according to which variables should
be relativized to p. Only the one given below allows one to recover She-
lah’s Trichotomy Theorem (see Theorem 20 and the Corollary immediately
following).

For a statement t and a formula φ, we use the following notation:
φt = ¬φ if the statement t is false and φt = φ, if the statement t is true.
We will use the same notation when t ∈ {0, 1}, where 0 stands for false and
1 stands for truth.

Definition 18. (1) We say that φ(x̄, ȳ) has the p-independence property
if for every n < ω there exists {āi | i < n} ⊆ p(C) such that

p(x̄) ∪ {φ(x̄, āi)i∈w | i < n} is consistent, for every w ⊆ n.

We say that p has the independence property if there exists a formula
φ(x̄, ȳ) with the p-independence property;

(2) A formula φ(x̄, ȳ) is said to have the p-strict order property if for every
n < ω there exists {āi | i < n} ⊆ p(C) such that

|= ∃x̄(¬φ(x̄, āi) ∧ φ(x̄, āj)) if and only if i < j < n.

We say that p has the strict order property if there exists a formula
φ(x̄, ȳ) with the p-strict order property.

The next proposition is left for the reader.

Proposition 19. If p has the independence property or the strict order
property, then p has the order property.
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The next two results depend explicitly on the parameters of p. The
proof of the next theorem is a minor variant of the proof of Theorem II 4.7
(2) of [Sh a]. One has to make sure to choose parameters that realize p.

Theorem 20. Let φ(x̄, ȳ) be a formula with the p-order property. Then,
either φ(x̄, ȳ) has the p-independence property, or there exist χ(x̄), the con-
junction of finitely many formulas of p, an integer n < ω and a sequence
η ∈ n2 such that the formula χ(x̄) ∧

∧
l<n φ(x̄, ȳl)η[l] has the p-strict order

property (maybe with parameters from dom(p)).

The next corollary is the local version of Shelah’s Trichotomy The-
orem (see Theorem II 4.7 of [Sh a]).

Corollary 21. Assume that p has no parameters. The type p has the order
property if and only if p has the independence property or p has the strict
order property.

Proof. Suppose p has the order property. Then some formula φ has the p-
order property. Thus, by Theorem 20 p has the independence property or
the strict order property (without parameters, since dom(p) = ∅).

The converse is Proposition 19.

The following is an improvement of Theorem II.2.20 of [Sh a]. The
proof is immediate, but we include it as we could not find it in the literature,
even when p is x = x.

Lemma 22. The following conditions are equivalent

(1) p does not have the independence property;
(2) For every infinite indiscernible sequence I ⊆ p(C) and for every for-

mula φ(x̄, ȳ) ∈ L(T ) there exists an integer nφ < ω such that for every
c̄ ∈ p(M) either

|{ā ∈ I : |= φ[ā, c̄]}| ≤ nφ or |{ā ∈ I : |= ¬φ[ā, c̄]}| ≤ nφ.

Proof. (1) ⇒ (2) Let φ(x̄, ȳ) and I be given. Suppose (2) fails. Then, by
compactness, we can find c̄ ∈ p(C) and a sequence {āi | i < ω} ⊆ p(C)
indiscernible over dom(p) such that

|{i < ω : |= φ[āi, c̄]}| = ℵ0 and |{i < ω : |= ¬φ[āi, c̄]}| = ℵ0.(*)

We are going to show that φ(x̄, ȳ) has the p-independence property. Let
n < ω and w ⊆ n. It is enough to show that

p(ȳ) ∪ {φ(āi, ȳ)i∈w | i < n} is consistent.(**)

To see this, construct a strictly increasing sequence of integers 〈im | m < n〉
such that C |= φ[āim , c̄] if and only if m ∈ w. This is easily done by induction
using (*). By indiscernibility of {āi | i < ω}, (**) holds if and only the set
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of formulas p(ȳ) ∪ {φ(āim , ȳ)m∈w | m < n} is consistent, which is the case,
since it is realized by c̄.

(2)⇒ (1) Suppose that φ(x̄, ȳ) has the p-independence property and
I = {āi | i < ω} ⊆ p(C) demonstrate this. Then, for each n < ω, and for
each w ⊆ n we have

p(x̄) ∪ {φ(x̄, āi)i∈w | i < n} is consistent.

Hence, by compactness, we can find an indiscernible sequence J = {b̄i |
i < ω} ⊆ p(C) and c̄ ∈ p(C) such that both {i < ω : |= φ[c̄, b̄i]} and
{i < ω : |= ¬φ[c̄, b̄i]} are infinite. Hence both φ(c̄, ȳ) and ¬φ(c̄, ȳ) belong to
Av(J, c̄). Thus Av(J, c̄) is not consistent, which contradicts (2).

We can now answer the question of when averages are well-defined
and characterize types without the independence property.

Theorem 23. The following conditions are equivalent:

(1) p does not have the independence property;
(2) For every infinite indiscernible sequence I ⊆ p(C) and every subset

A ⊆ p(C) the average Av(I, A) is a complete type. Furthermore,
Av(I, A) ∈ Sp(A).

Proof. (1)⇒ (2): Let I, A ⊆ p(C) and I be an infinite indiscernible sequence.
By Lemma 22 (1)⇒ (2), we have that Av(I, A) ∈ S(A). Furthermore, since
I ⊆ p(C), we have Av(I, A) ∈ Sp(A).

(2) ⇒ (1): We prove the contrapositive. Suppose that p has the
independence property. Then, by Lemma 22 (2) ⇒ (1), there exists an
infinite indiscernible sequence I ⊆ p(C) and ā ∈ p(C) such that both φ(x̄, ā)
and ¬φ(x̄, ā) belong to Av(I, ā). This contradicts (2).

We now give an easy characterization of stable types in simple the-
ories. The following fact is due to Shelah and appears in [Sh93].

Fact 24. If T is simple then T does not have the strict order property.

We make use of the following observation.

Proposition 25. If the formula φ(x̄, ȳ, b̄) with parameter b̄ ∈ C has the
p-strict order property, then T has the strict order property.

Proof. Show that T has the strict order property, by showing that φ(x̄, ȳ, z̄)
has the strict order property.

Corollary 26. Let T be simple. The following conditions are equivalent:

(1) p is stable;
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(2) For every infinite indiscernible sequence I ⊆ p(C) and for every A ⊆
p(C), we have Av(I, A) ∈ Sp(A).

Proof. (1) ⇒ (2): Let p be stable, then p does not have the order prop-
erty by Theorem 16. Hence p does not have the independence property by
Proposition 19. Hence, (2) follows from Theorem 23.

(2) ⇒ (1): Suppose p is not stable. Then p has the order property
by Theorem 16. Thus, p has either the independence property or the strict
order property (maybe with parameters) by Theorem 20. Since T is simple,
by Fact 24, we have that T does not have the strict order property. But, if
p has the strict order property with parameters, then T has the strict order
property by Proposition 25. Therefore, p has the independence property,
and so (2) fails by Lemma 23.
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