A Course in Model Theory III:
Classification Theory for Abstract Elementary Classes

Rami Grossberg

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 15213

E-mail address: rami@cmu.edu

1This preliminary draft is dated from June 26, 2008. In case your copy is more than couple of months old, please destroy it and contact me for a current version.
www.math.cmu.edu/~rami
©Rami Grossberg
Contents

Preface 5
Introduction 9

Chapter 1. Abstract Elementary Classes 13
 Introduction 13
 1. Abstract classes 13
 2. Abstract Elementary Classes 19

Chapter 2. Some extensions of first-order logic 27
 Introduction 27
 1. $L_{\omega_1 \omega}$ and examples 27
 2. Scott’s theorem 31
 3. The logics $L_{\omega_1 \omega}$, $L_{\lambda, \kappa}$ and $L_{\omega_1 \omega}(Q)$ 33

Chapter 3. Completeness and omitting types theorems for $L_{\omega_1 \omega}(Q)$ 47
 Introduction 47

Chapter 4. PC-classes and Hanf numbers 49
 Introduction 49
 1. Silver’s example 50
 2. Morley’s computation of the Hanf number 51
 3. Shelah’s Generalization of Ehrenfeucht-Mostowski models 58

Chapter 5. Abstract elementary classes are PC-classes 63
 Preliminaries 63
 1. Skolem Functions in Abstract Elementary Classes 64

Chapter 6. Galois types and saturation 69
 Introduction 69
 1. Types in Abstract Elementary Classes 70
 2. Galois saturation and model-homogeneity are the same 74
 3. Existence and uniqueness of model homogenous models 78
 4. Limit models 81

Chapter 7. Getting amalgamation 85
 Introduction 85
 1. An amusing proof 85
 2. universal models 86
 3. Weaker forms of amalgamation 88
 4. Few models imply the amalgamation property 89
 5. On the function $\lambda \mapsto IE(\lambda, K)$ 93

Chapter 8. Existence in K_{λ^+} 97
 Introduction 97
 1. The extension property for pre-types 98
2. No models in λ^{++} make models in λ^+ fat 102
3. Various extension properties 104
4. Not having maximal models is cool too 104

Chapter 9. Minimal and reduced types 107
 Introduction 107
 1. Direct limits of models and Galois types 108
 2. Existence of minimal types in K_λ assuming $K_{\lambda+3} = \emptyset$ and more 112
 3. Existence of minimal types in K_λ assuming Galois-stability and amalgamation 114
 4. Galois stability and non-splitting 116
 5. Using realizations of minimal types as a test of saturation 118

Chapter 10. The effect of assuming categoricity in $\lambda \geq \text{Hanf}(K)$ 123
 Introduction 123
 1. μ-Galois satbility for all $\mu < \lambda$ 123
 2. Density of amalgamation bases 125
 3. Vaughtian Pairs 126

Chapter 11. Uniqueness of limit models for AECs with amalgamation AECs 127
 Introduction 127
 1. The array 127
 2. Strong types 127

Chapter 12. Tameness 129
 Introduction 129
 1. μ-Galois tameness for all $\mu < \lambda$ 129
 2. Stability spectrum for tame AECs 129

Chapter 13. Shelah’s categoricity conjecture is true for Tame AECs 131
 Introduction 131

Chapter 14. Frames $\langle K, \perp \rangle$ 133
 Introduction 133
 1. A sufficient condition for tameness 133

Chapter 15. Excellent classes 135
 Introduction 135
 1. The basic framework and concepts 144
 2. Examples and applications 149
 3. Good sets 149
 4. Basic stability of the class of atomic models 149
 5. Transfering results up and down 150
 6. Categoricity 150
 7. Non-excellence gives many models 150

Chapter 16. Homogenous model theory 151
 Introduction 151

Chapter 17. Sufficient condition for tameness 153
 Introduction 153
 1. Weak forking 153
 2. Non-uniqueness property 153
 3. Excellence implies tameness 153

Chapter 18. Examples 155