A Course in Model Theory II:
Classification Theory for First-Order Theories

Rami Grossberg

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 15213

E-mail address: rami@cmu.edu

1This preliminary draft is dated from June 26, 2008. In case your copy is more than three months old, please destroy it and contact me for a current version.
www.math.cmu.edu/~rami
c©Rami Grossberg
Contents

Preface 6
Acknowledgments 11
Course outlines 13

Chapter 1. Stability 15
Introduction 15
1. Ranks Forking and Independence 15
2. Characterizations of stable theories 36
3. Definability of types 39
4. On the function $D[\theta(x; a), \Delta, \mu^+]$ 42
5. The finite cover property 58
6. Simple theories 60

Chapter 2. Stability in algebra 61
Introduction 61
1. Definable groups 61
2. Superstable fields are algebraically closed 62
3. Algebraic and model-theoretic dimensions 67
4. The indecomposability theorem 67
5. Model Theory of algebraically closed fields 67
6. An application to differentially closed fields* 70

Chapter 3. Strong splitting and averages 75
Introduction 75
1. The independence and strict order properties 76
2. Strong splitting and the stability spectrum 82

Chapter 4. Splitting, dividing and forking in arbitrary theories 85
Introduction 85
1. Forking 85
2. Indiscernible sequences based on a set* 98

Chapter 5. Theories without the independence property 109

Chapter 6. Forking calculus in simple theories 111
Introduction 111
1. General notion of independence 112
2. Forking in Simple Theories 120
3. Ranks and Simple Theories 128
4. Shelah’s Boolean Algebra 135
5. Semi simple theories 144

Chapter 7. Forking in stable theories 147
Introduction 147
1. Finite equivalence relations theorem 147
2. The stability spectrum theorem 152
3. Chains of saturated models 155
4. Canonical bases and \mathcal{C}^{eq} 155

Chapter 8. Abstract theory of dependence 157
 Introduction 157

Chapter 9. Orthogonality calculus 159
 Introduction 159
 1. Regular types 159
 2. Weight 159
 3. Unidimensional theories 159

Chapter 10. Morley’s theorem for uncountable theories 161
 Introduction 161
 1. Weakly minimal formulas 161
 2. Another proof 162
 3. A third proof? 162

Chapter 11. Prime models 163
 Introduction 163
 1. Isolation notions and existence 163
 2. Uniqueness 166

Chapter 12. The Hrushovski-Zilber group configuration 169
 Introduction 169
 1. Basics 169
 2. Unidimensional theories are superstable 169
 3. Laskowski’s proof of categoricity 169

Chapter 13. The main gap 171
 Introduction 171
 1. stable systems 171
 2. σtop and σdop 172
 3. good systems 172
 4. Tree decomposition theorem 172

Chapter 14. Non structure theory 173
 Introduction 173
 1. Unstable theories 177
 2. Unsuperstable theories and Boolean algebras 178
 3. Combinatorial theorems on trees 191
 4. The generalized order property 197

Chapter 15. Stable domination 205
 Introduction 205

Chapter 16. A miniguide to the literature 207

Chapter 17. Open Problems 209
 Introduction 209
 1. Main Gap for uncountable theories 209
 2. Other problems 209

Chapter 18. Historical comments 213
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>231</td>
<td></td>
</tr>
</tbody>
</table>