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ABSTRACT. We study the clask of models of a first order theof¥ omitting a prescribed

set of types, under the assumption tkatontains a model with a high level of sequential-
homogeneity. The stability theory of such classes was initiated by Shelah in 1969. We
introduce a rank which is bounded whkhis R-stable. The main difficulties are the fail-

ure of the compactness theorem foand the fact thal” may be unstable, even not simple.
The rank induces a dependence relation on the subsets of the modelshich shares
many of the formal properties of forking. We obtain pregeometries with respect to this
dependence relation; the pregeometries exist on the set of realization of types of minimal
rank. We prove the existence of prime models. We develop the parallel to orthogonality
calculus and unidimensionality. Finally we generalize many of the classical results ob-
tained for models of a first order totally transcendental theory. The global picture is similar
(but the proofs different): This is illustrated with positive results (E.g. Chang Conjecture,
Categoricity with a geometric proof) and negative results (construction of nonisomorphic
models), as well as a proof of the Main Gap. The structure part of the Main Gap is done
axiomatically, so that the proof covers the known first order NDOP cases, as well as a
known nonelementary case: when the class is excellent.

In order to generalize ideas from first order stability theory to contexts where the
compactness theorem fails, we also work in an abstract pregeometry satisfying some logi-
cal axioms. The main result is a proof of a group configuration theorem.

We also look at the consequences of the failure oftoeder property inside the set
of realizations of a fixed type, in nonelementary contexts. We are able to generalize many
of the results known in the first order case.
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Introduction

The goal of this introduction is to draw attention to one of the main con-
cerns of this thesis; the use @¢pendence relatioria severahonelementargon-
texts.

The word nonelementary refers to the failure of the compactness theorem;
it will be used as a synonym famon first order One motivation for studying
nonelementary classes of models is that many natural classes of structures, for ex-
ample in algebra, do not have a first order axiomatization: Archimedean fields,
periodic groups, p-groups, FC-groups, locally finite structures, to name only a few.
There are several families of nonelementary classes of models. Historically, the
study of nonelementary classes of models started in the late 1940s, whis) Erd
Hanf, and Tarski among others obtained basic existence results for infinitary log-
ics (Ly+,, for infinite cardinals)). In the 1950s, Mostowski introduced several
new quantifiers, for example cardinality quantifiers, like ‘there exists uncountably
many’. In the 1960s and early 1970s, Barwise, Fuhrken, Keisler, Makkai, and She-
lah proved fundamental existence results for logics with Mostowski quantifiers.
Around the mid 1970s, motivated by a question of Baldwin, Shelah discovered
connections betweeexistenceof models forL,, .,(Q)) and categoricityfor this
class. This analysis was done by working in an equivalent class of models: class of
models omitting a prescribed set of types. Classes of models omitting a prescribed
set of types under some additional assumption are going to be the main object of
study of this thesis. It should be pointed out that it follows from the work of Chang
and Shelah that many nonelementary contexts are essentially equivalent and that
one can expect methods developed for one context to be useful in another. (See the
introduction to each chapter for more details.)

A dependence relation is a relation among triples of subsets of a model,
satisfying some basic requirements: invariance under automorphism, finite charac-
ter, and so on. A dependence relation attempts to capture, in a reasonable way, the
notion that a set! is freefrom a set”' over another seB.

In the first order case, the main dependence relatiforksng. Forking is
a dependence relation discovered by Shelah, tailored to the compactness theorem,
which extends the notion of linear dependence in linear algebra or algebraic depen-
dence in field theory. It satisfies several additional properties (see the introduction
to Chapter V, for example) and has become the crucial tool of classification theory
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for the first order case. In fact, it is so central that various kinds of contexts stud-
ied in classification theory for first order classes are characterized in terms of what
properties forking satisfies.

In the nonelementary case, forking is useless; not only do several key prop-
erties of forking use the compactness theorem, but the first order theory of the
models of a given nonelementary class may not be simple, even if the class is cate-
gorical (we give an example of this below). While a dependence relation as nicely
behaved as forking has not been found, several dependence relations satisfying
fewer properties than forking can be used. This thesis makes use of them exten-
sively. In Chapter | and Il, two dependence relatiamitting andstrong splitting
are used. In Chapter Ill, a new dependence relation is defined, via the introduction
of a rank. This new dependence relation satisfies many of the properties of fork-
ing. We also prove the existencetgeometrieswhich are sets inside which the
dependence relation gives rise to a good notion of dimension. In Chapter IV and V,
a more abstract point of view is developed and a dependence relation is considered
axiomatically.

This thesis fits generally in the classification theory for nonelementary
classes. It is organized as follows. There are five chapters and each starts with
an introduction which explains the goals and how the results fit with the general
theory.

Chapter | is an exposition of Shelah’s stability spectrum theorem, homo-
geneity spectrum theorem, and equivalence between order and instability in finite
diagrams. The framework of finite diagrams generalizes the first order case. Itis
one of the main frameworks studied in this thesis, and will appear (sometimes im-
plicitly) in all the chapters. This exposition is done from a modern point of view,
incorporating recent improvements, both in the proofs and in the presentation. This
chapter provides the necessary background to Chapter IIl.

Chapter Il is an extension of the first chapter in several ways. We study lo-
cal versions of the order property in several frameworks: (1) Inside a fixed model,
(2) for nonelementary classes of models (generalizing finite diagrams), (3) for fi-
nite diagrams, and (4) for the first order case. Appropriate localizations of the
order property, the independence property, and the strict order property are intro-
duced. We are able to generalize some of the results that were known in the case
of local stability for first order theories, and for stability for nonelementary classes
(existence of indiscernibles, existence of averages, stability spectrum, equivalence
between order and instability). In particular, all the results of Chapter | can be
localized in (3). In the first order case, we also prove the local version of She-
lah’s Trichotomy Theorem. Finally, as an application, we give a characterization
of stable types when the ambient first order theory is simple.
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Chapter Ill continues the work of Chapter | in a different direction. We
work in the framework of finite diagrams and introduce a natural dependence re-
lation on the subsets of the models for thgstable case, which share many of
the formal properties of forking. This is achieved by considering a rank for this
framework which is bounded when the diagransjsstable. We also obtain prege-
ometries with respect to this dependence relation. The dependence relation is the
natural one induced by the rank, and the pregeometries exist on the set of realiza-
tions of types of minimal rank. Finally, these concepts are used to generalize many
of the classical results for models of a totally transcendental first order theory. In
fact, strong analogies arise: models are determined by their pregeometries or their
relationship with their pregeometries. However the proofs are different, as we do
not have the compactness theorem. This is illustrated with positive results (cate-
goricity) as well as negative results (construction of nonisomorphic models). We
also give a proof of Chang’s Conjecture for this context.

In Chapter IV, we develop a more abstract framework which generalizes
the framework of Chapter Il and that of several other cases (first order, excellent
Scott sentences). We show that if a given class of models admits a dependence re-
lation on the subsets of its models, as well as prime models satisfying a prescribed
set of axioms, then under the parallel of NDOP every model of this class is prime
and minimal over an independent tree of models. This axiomatization is different
from that of Shelah in the Main Gap in two crucial ways: the dependence rela-
tion satisfies weaker axioms than those of forking and the axiomatization does not
depend on the compactness theorem. In fact the theorem is in the vein of combina-
torial geometry; the logical ingredient is hidden in checking the particular axioms
for the classes of models under consideration. As a new application, we show that
the class of models isolated in Chapter Il satisfies all the axioms, and thus admits
a decomposition theorem. We also develop more orthogonality calculus for this
class and prove the main gap.

Finally in Chapter V, we lay a foundation for separating the geometry from
the logic in geometric model theory. Our feeling is that this separation is an ele-
gant way of lifting results from geometric model theory to non first order logic.
We introduce a relation between subsets of a pregeometry and show that it satisfies
all the formal properties that forking satisfies in simple first order theories. This is
important when one is trying to lift forking to nonelementary classes, in contexts
where there exists pregeometries but not necessarily a well-behaved dependence
relation, for example the one of Chapter Ill. This is used to reproduce S. Buech-
ler's characterization of local modularity in general. We also present an axiomatic
approach to the Hrushovski-Zilber group configuration theorem.

In this thesis, many terms like stable, totally transcendental, and stationary
will be employed for nonelementary classes of models; typically classes of models
of a first order theoryl” omitting a set of type§'. We would like to alert the reader
that these terms do not refer to the first order theory, but to the entire class. For
example, such a class may be stable while the first order tlié@yot. It may be
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helpful to keep in mind the following simple-minded example. The example given
here merely illustrates that such natural situations exist. It is not the motivation for
developing the theory.

Consider the first order theof§y asserting that the unary predicateis
the domain of an ordered field of characteristic zero and that each model is an
R-vector space (in the obvious language). ThErhas the strict order property,
which implies that it is not stable and not even simple. Furthermibres not
o-minimal. This roughly means thdt is complicated from the point of view of
first order model theory. Now consider the cl@Sgonsisting of those models of
T omitting the type{—R(z) V (n*x < 1) | n < w}. Then,K is the class of
vector spaces over Archimedean fields of characteristic z&faogs not have a
first order axiomatization.) Notice that no modeltdican encode a linear order of
length more than the continuurit does not have th@™°)*-order property). This
implies immediately from results of Chapter Il that, as a cl&Ssjust bestable In
addition, for each cardina|, this class contains-homogeneous models (take any
sufficiently large real vector space). Hengecan be made into finite diagramin
the sense of Chapter I: L&t € K be a real vector space of large cardinality. Let
D be the set of types in finitely many variables tiatealizes over the empty set.
Together with the previous observation, this shows fhds stable (in the sense
of Chapter I). In fact, one can show directly thatis stable in every cardinal at
least the continuum. Moreoveh) is totally transcendentah the sense of Chapter
[1l. Now consider the clas&’; of (D, Xg)-homogeneous models &f. This class
is studied for generaD in Chapter lll. It is easy to see th#y, is the class of real
vector spaces, as every rational cut must be realized. This show§ tltantains
exactly one model up to isomorphism for each cardinabove the continuum.
Thus, there exists nonelementary classes of models which are categorical in some
uncountable cardinal, stable in all large enough cardinals, for which there exists
a rank, a nice dependence relation, prime models and so forth, but can have a
complicated first order theory.



CHAPTER |

Shelah’s stability spectrum and homogeneity spectrum in
finite diagrams

Saharon Shelah’s Finite Diagrams Stable in Pov@&h3, published in
1970, is one of the seminal articles in model theory. It contains a large number of
key ideas which have shaped the development of classification theory. The model-
theoretic framework of the paper is more general than the first order case, but while
all the particular cases of the results in the first order case can be found in several
more recent publications, the non first order contentStf] is still not available
in a concise from.

The primary purpose of this chapter is to present, in this more general
framework, most of the stability results d§J, together with the order/stability
dichotomy from Sh164, and the homogeneity spectrum appearing in The Lazy
Model Theorist’s Guide To Stabilitygh54. A secondary purpose is to present in
a compact form the necessary background to Chapter Ill. This is done in a contem-
porary and self-contained form, and includes improvements and techniques from
[Sh b], [Sh304, and [Grl]. Finally, the results are presented in such a way that
with very little additional work, the theorems of this chapter can be localized. Lo-
cal versions of the Stability Spectrum Theorem and the Homogeneity Spectrum
Theorem will be proved in Chapter Il, devoted to local stability.

The framework introduced by S. Shelah Bhg is the study of classes of
models of a finite diagram. These classes are described in more detail below. Such
classes are examplesmdnelementarglasses and the results presented in this pa-
per belong to what Shelah calls tblassification theory for nonelementary classes
The word nonelementary refers to the fact that the compactness theorem fails.
While many of the questions of classification theory for first order theories have
been solved$h b], classification theory for nonelementary classes is still under-
developed. This is not to say that the subject is small or not interesting. Thousands
of pages have been devoted to its questions: See for exaB@a&h[l,[BaSh3,
[BaSh3, [Gr1], [Gr2], [GrHa], [GrSh1], [GrSh2], [GrSh3], [HaSh], [HySh1],
[HySh2], [Ke], [Ki], [KoSh], [MaSh], [Sh3], [Sh4]g, [Sh87d, [Sh87H, [Sh8],

[Sh tapd, [Sh299, [Sh30Q, [Sh394, [Sh47], [Sh57§ and Shelah’s forthcom-
ing book [Sh h]. The techniques used are usually set-theoretic and combinatorial in
nature, although more recently, new ideas coming from geometric stability theory

13
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have been imported (see Chapter Ill). The failure of the compactness theorem for
a class of models makes their model theory delicate and sometimes sensitive to the
axioms of set theory. This is one of the reasons why some additional assumptions
are often required; a “monster model”, set-theoretic assumptions, amalgamation
properties and so on.

Let us describe briefly what is meant by the class of models of a finite
diagram. Two perspectives are given below.

Given a first order theory” and a modelV of T', thefinite diagramof
the modelM is the set of complete types over the empty set realized irFix a
setD of completel’-types (over finitely many variables) and consider the class of
models whose finite diagram is a subsetlaf Such models are calle®-models
for convenience. In another language, we study the class of models omitting all
the types over the empty set which do not belongtdBoth in [Sh3 and [Sh54,
S. Shelah studied these classes under an additional assumption. Let us say a few
words about exactly what this additional assumption is (it takes two equivalent
forms in [Sh3 and [Sh54, and yet another equivalent formulation is given here).
Since the compactness theorem fails for this class of models, it is crucial to have
a good understanding of what theeaningfultypes are, that is which types can
be realized byD-models. A corollary of the compactness theorem is that given a
model M and a typep over a subsefl of M, it is possible to find an elementary
extensionN of M in which p is realized. This fails, in general, for the class just
described. There is a natural obstacle why this cannot work in general: Syppose
is a complete type over a set of parametdrsvhere A is a subset of &-model
M. Suppose there is B-model N containingM in which p is realized, say by
the sequence. Then, sincedA U¢ C N andN is a D-model, necessarily, all the
subsequences of the sétU ¢ realize (over the empty set) types that belongto
The assumption that Shelah made (although not in those terms) is that this is the
only restriction. This class of models, with the additional assumption on types, is
the framework that S. Shelah calfisite diagrams Note that wherD is the set of
all completeT-types over the empty set, then this is the first order case.

An alternative way of looking at this framework is as follows. Given a
theoryT', fix a largehomogeneousodel€ of T'. In generalg is not saturated. Let
D be the diagram of. Then, the class adb-models can be assumed to be the class
of elementary submodels éfand above meaningful types are the ones realized in
¢. Note that wher® is saturated, then this is the first order case.

Using the first order case as a guide, there are four important results in
stability theory all due to S. ShelaBH b).

e AtheoryT is stable if and only if it does not have the order property.

e If a theoryT is stable in), then given any set of finite sequencesf
cardinality \™ and a set4 of cardinality \ there exists a subsét C I of
cardinality\* indiscernible over.
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e (The Stability Spectrum) For a theofd, either7 is not stable of" is
stable and there exist cardinal¢T") and \(T') satisfyingx(T) < |T|"
andx(T) < X\(T) < 2/7l such thafl" is stable iny if and only if . > \(T')
andp<r(1) = 4.,

e (The Saturation Spectrum) A theoly has a\-saturated model of cardi-
nality \ if and only if A\ > |D(T)| and eitherA\<* = X or T is stable in
A

This chapter contains Shelah’s generalizations of above theorems to the
class of models of a finite diagram. In the first order case, the optimal versions of
these results (at least the first three and the existence part of the last) are proved us-
ing forking. However, forking does not work in this more general context and gen-
erally in contexts where the compactness fails. Originally, however, the first two
results were proved in this context using the notiosmftting and the third result
using the notion oktrong splitting[Sh3. As to the last result, in this context the
proof uses a combination of combinatorial methods based on splitting and strong
splitting [Sh54. Sincestrong splittingdoes not satisfy all the properties of forking,
the proofs are more intricate and combinatorial in flavor. The first order notion of
forking was invented by Saharon Shelah later and can be considered an improve-
ment of strong splitting. The modern proofs have gained in conceptual structure
over the original ones and we have attempted to integrate these improvements in
the presentation by treating strong splitting more like forking (for example, we use
the corresponding notion (7).

Classes of models of a finite diagram are important also because they pro-
vide a natural test-case to generalize ideas from first order logic to more general
nonelementary classes. On the one hand, many of the technical difficulties aris-
ing from the failure of the compactness theorem are present. On the other hand,
the model theory is more manageable as we have a good understanding of types.
Note also that, in contrast to other nonelementary contexts, this work is completely
done within ZFC. We added a discussion on the strength of the main assumption
of Finite Diagrams after Hypothesis .1.5.

I.1. The framework of finite diagrams

The notation is standard. Abbreviations liké3 stands fordA U B, andAb
for AU {ran(b)}. WhenM is a model|| M || stands for the cardinality af/. The
notationA C M means tha#d is a subset of the universe 6f.

Let T be a first order complete theory in a langudgeDenote byL(T)
the set of first order formulas ih. Let M be the a very saturated modelBf For
A C L, AC M, and a (not necessarily finite) sequence M, define theA-type
of a over A in M by

tpa(@/A, M) = {¢(z,b) | b € A,¢(z,7) or ~4(z,7) € A, andM |= ¢[a, b]}.
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WhenA is L(T) it is omitted and wher/ is M, it is omitted also.
DEFINITION I.1.1.

(1) Thefinite diagramof A is
D(A) = {tp(a/0) | a € A,afinite }.
Such sets will be denoted by and calledinite diagrams

(2) The setdisaD-setif D(A) C D. The modelM is aD-modelif D(M) C
D.

(3) We letSR (A) = {tpa(c/A) | ¢ € M, 4(¢) = n}, for A C L(T). When
A = L(T) itis omitted. A typep € S™(A) is called aD-typeif and only
if AU cisabD-set, for even realizingyp.

ST (A) will denote the set oD-types overA in n variables. We write
Sp(A) for S} (A).

WhenD = D(T), thenSp(A) = S(A).

DEFINITION .1.2. TheD-model M is a (D, A\)-homogeneousmodel if
M realizes every € Sp(A) for A C M with |[A] < A.

WhenD = D(T'), then a model i$D, A)-homogeneous if and only if it is
A-saturated.

The next lemma shows that i¥/ is (D, A\)-homogeneous, then it is-
universal for the class aD-models.

LEMMA 1.1.3. Let M be (D, \)-homogeneous and be a D-set of car-
dinality A. Let B C A such that|B| < A. Then for every elementary mapping
f: B — M, there is an elementary mapping A — M extendingf.

PROOF Write A = B U {a; : i < o < A}. Construct an increasing sequence
of elementary mappings; | ¢« < A) by induction oni < «, such thatfy = f,

BuU{a;:j<i} Cdom(f;) and ran(f;) C M.

In casei = 0 or i a limit, it is obvious. Assumg; is constructed. Defing; =
fi(tp(ai/B U {a; : j < i})). By induction hypothesig; € Sp(fi(BU{a; : j <
i})). Hence, sincé/ is (D, \)-homogeneousy; is realized by somé; € M. Let
fir1 = fi U {ai, b;). The elementary mapping= J,,, fi is as required. O

Recall from the first order case that a modehibomogeneoysf for any
partial elementary mapping from M into M with |dom(f)| < A andc € M,
there is an elementary mappindgrom M into M extendingf such thatlom(g) 2
dom(f) Uec. The next lemma is an extension of the familiar first order result that a
model M is A-saturated if and only i/ is A-homogeneous and Rg-universal.

LEMMA |.1.4. M is a(D, A)-homogeneous model if and only’f{ M) =
D and M is A-homogeneous.
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PrROOFE The only if part follows from the previous lemma. To see the con-
verse, we show that/ is (D, n)-homogeneous for eveny < X by induction on

Lb.

For the base case, assume that Ny. Letp € Sp(¢), wherec € M
is finite. Leta be any element realizing By assumptionip(a’¢/()) € D. Since
D(M) = D, there exista’ andé € M realizingtp(a'c/()). Let f be a partial
elementary mapping such thatc) = @ and f(a) = /. Then, byA-homogeneity
of M, there is a partial elementary mappindgrom M to M, extendingf—' | &,
with dom(g) 2 & U a’. Then we have that' realizesf(p), and sog(a’) realizes
g(f(p)) = p. Hence, p is realized in M.

By induction, letC' C M of cardinality < X\ and assume that we have al-
ready shown that/ is (D, ;1)-homogeneous. Let € Sp(C) anda be any element
realizingp. ThenC U a is a D-set of cardinalityu, so by(D, 1)-homogeneity of
M, using the previous lemma, there exists an elementary mag@egdingC' Ua
into M. Hence, byA\-homogeneity of\/, there isg, an elementary mapping from
M into M, extendingf ! | C with dom(g) 2 f(C) U f(a). To conclude, notice
that sinceu realizesp, f(a) realizesf(p) andg(f(a)) realizesg(f(p)) = p. This
shows thatV/ realizesp, sinceg(f(a)) € M, and completes the proof. O

The following hypothesis is made throughout the chapter. It is equivalent
to Shelah’s original assumption i8H3 and [Sh54. Also, the same assumption
was made by H. Jerome Keisler in his categoricity theonéaj.[

HypPOTHESISI.1.5. There exists &D, )-homogeneous modél, with %
larger than any cardinality mentioned in this chapter.

In view of the preceding lemma, we may assume thatiarget lies in¢.
Also, satisfaction is with respect t Notice also that for any)-setA

Sp(4) = {tp(a/A, €) | a € ¢}.

The study of dinite diagramD is thus the study of the class 6f-models
under the additional assumption that there exigt® ax)-homogeneous modé,
with & very large.

Hypothesis .1.5 is a natural assumption to make. Let us say a few words
about why we feel this is so. The maost outstanding test question in the classification
theory for nonelementary classes is a conjecture of S. Shelah, made in the mid-
1970s:

CONJECTUREI.1.6 (Shelah). Lef" be a countabld.,, ., theory. If there
exists a cardinak > 3, such thatl is categorical in\, thenT is categorical in
everyp > 3,,.

Results of C.C.Chang and S. Shelah show that it is equivalent to solve this
conjecture for the class dP-models of a countable first order theory, whépe
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is the set of isolated types over the empty set (whence the relevance of this dis-
cussion here). Most experts agree that the full conjecture seems currently out of
reach. However, several attempts to solve the conjecture since the late 1970s have
indicated that categoricity (sometimes in several cardinals and sometimes under
additional set-theoretic axioms ) implies the existence of various kindmafga-
mation propertiesand the existence ahonster modelésee for example§h4§,
[Sh874, [Sh87H, [Sh8], [KoSh], or [BaSh3J). By monster model, we mean a
large model with universal or homogeneous properties. By amalgamation proper-
ties we mean that the class of modelsiogatisfies the.-amalgamation property

for a class of cardinalg. Recall that a class of modets has theu-amalgamation
property if for every triple of modeld/,, My, M> € K of cardinality . such that

My < My, My < M,, andMy C My N M,, there exist a modeN € K and
embeddingg;: M; — N fori = 1,2 suchthatf; | My = fo | My. For example,

by Robinson’s Consistency Lemma, the class of models of a first order tieory
has theu-amalgamation property, for every cardinal> |T'|.

While Shelah observed from work of Leo Marcudr(], that a monster
model exactly as in Hypothesis .1.5 does not follow from the assumption of She-
lah’s conjecture, it is certainly reasonable to conjecture that it implies the existence
of a monster model with a similar flavor. Thus, experience gained in this frame-
work can shed light on the more general framework. These results are additional
motivations to develop classification theory either inside a homogeneous model
[Sh3, [Sh54, [Gr1], [Gr2], [HySh1], [HySh2] or for nonelementary classes with
amalgamation propertieSh4§, [Sh874, [Sh871, [GrHa], [Sh394. In fact, un-
dermonster modebr amalgamation propertieseveral approximations of Shelah
conjecture are known: for examplkd], [KoSh] [Sh87d, [Sh87H. A Categoric-
ity result for finite diagrams using geometric techniques appears in Chapter .
For a more detailed discussion of the categoricity problem, see the introduction to
Chapter lIl.

In this vein, the two following conjectures were made by Rami Grossberg
in 1989, in an email communication with John T. Baldwin:

CONJECTUREL1.7. LetT be a countablé,, ., theory. IfT is categorical
is some large enough, then there exists gy such that the class of models bf
has theu-amalgamation property for evepygreater than.

Amalgamation properties are closely related to monster model hypotheses:
WhenT' is a Scott sentence, the conclusion of the previous conjecture implies the
existence of arbitrarily large model-homogeneous models.

CONJECTUREI.1.8. LetT be a countablé., ., theory such that there ex-
ists auo such that the class of models ‘Bfhas theu-amalgamation property for
everyy greater thamy. If T is categorical in somg > 3, , thenT is categorical
in every cardinap, > 3,

Before finishing this discussion, we can ask the following related question:
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QUESTIONI.1.9. LetT be a countable theory ih,, . IS there a cardinal
w(T') such that if the class of models 6fhas theu(7")-amalgamation property
then it has the\-amalgamation property for arbitrarily large.?

I.2. Stability and order in finite diagrams

In this section, we present the equivalence between stability and the failure
of the order property in the context of finite diagrams (Corollary .2.12).

DEFINITION 1.2.1. LetD be a finite diagram.

(1) The diagranmD is said to bestable in\ if for every A C € of cardinality at
most\ and for everyn < w we have|S7(A)| < A.
(2) We say thai) is stableif there is a\ such thatD is stable in\.

By the pigeonhole principle, itis enough to consider 1, i.e. D is stable
in X if and only if for all A C ¢ of cardinality at mosf, we havelSp(A)| < A.

DEFINITION 1.2.2. LetD be a finite diagram.

(1) D has theX-order propertyif there exist aD-set{a; | i < A}, and a
formula¢(z,y) € L(T') such that

= ¢la;,a;] ifandonlyif i< j <A

(2) D has theorder propertyif D has the\-order property for every cardinal
A

Notice that the order property is formulated differently from the order
property used by Shelah ih b]. The formulation given here is equivalent to the
usual order property in the first order case, and is more natural in nonelementary
cases; when it holds there are many nonisomorphic models$6d€[ [ GrShl],
and [GrSh3)).

Recall some standard definitions. A set of finite sequefigesi < a} is
said to be a sequencewfindiscernibles oved, forn < wif tp(ao, . ..,a,-1/A) =
tp(@igy, - - -, Gi,_,/A). foreveryig < --- < i, < a. Then{a; | i < a} is an
indiscernible sequence ovd, if it is an n-indiscernible sequence ovdrfor ev-
eryn < w. Itis said to be arindiscernible setif in addition, the ordering does
not matter. We will not have to distinguish between the two, as in the presence
of stability, every indiscernible sequence is, in fact, an indiscernible set (Remark
.2.4 and Corollary .2.12). Hence, we will often say indiscernible for indiscernible
sequence, or set when they coincide or when it does not matter.

REMARK 1.2.3. If there exists @-set{a; | ¢ < w}, which is an indis-
cernible sequence, and a formdléz, y) such that

= ¢la;,a;) ifandonlyif i< j<w,
thenD has the order property.
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PROOF Let A be an infinite cardinal. Lef¢; | ¢ < A} be new constants.
Consider the union of the following sentences:

o 0(G,¢y),ifi <j<A

b ﬂqb(élﬁéj)' if > jl Za] < >\a

e (G, ...,c,), foreachy(zo,...x,) € tp(ao,...,a,/0), and eacln <
w,and eachig < -+ < i, < A\

The above set of sentences is consistent {as¢i < w}). Letb; be the interpreta-
tion of ¢; in M, the monster model fdf. The last clause implies th@b; | ¢ < A}
is a D-set. By the first two clauses, we have

= ¢[bi,b;] ifandonlyif i< j <A,

Hence,D has the\-order property. We are done sinkavas arbitrary. O

The next remark is a fact that goes back to Morley and Ehrenfeucht.

REMARK 1.2.4. SupposeD does not have the order property. Uet; |
i < «} be an infinite indiscernible sequence over Then{a; | i < «a} is an
indiscernible set oved.

PROOF Suppose that the conclusion fails. Then, there exist an integew,
a permutatiorr € S, and indices, < - - - < i, < a such that

tp(a()’ <o 7(_1”/‘4) 7é tp(aig(O)? R C_lzc,—(n)/fél)

Since{a; | i < a}isanindiscernible sequence overwe havep(ao, .. ., a,/A) #
tP(@o(0), - - - » Go(n)/A). Since any permutation is a product of transpositions, we
may assume that there exigf < ki < n such thato(ky) = ki, o(k1) = ko
ando(i) = 4, otherwise. Hence, there exist$z,7,b), whereb € A U {a; |

i < n,i # ko, k1} such that= ¢lag,,ar,,b] and = —¢lag,,ax,,b]. Then, the
D-set{a;’b | n < i < a} is an infinite indiscernible sequence (o¥Br Hence

= ¢lai,a;,b] ifand only if n < ¢ < j < «. This implies thatD has the order
property by the previous remark. O

The main tool to prove that the failure of the order property implies stabil-
ity (Theorem .2.9) isplitting. Recall the definition.

DeErFINITION .2.5. LetA; and Ay be sets of formulas. Lefl be a set
andB C A. Forp € S™(A), we say thap (A1, Ag)-splits overB if there are
b,c € Aandg(z,y) € Ay such thatpa, (b/B) = tpa, (¢/B) with ¢(z,b) € p
and—¢(z,¢) € p.

WhenA; = Ay = L(T), we just say thap splits overB. WhenA; =

{6(z,y)} and As = {W(z,7)}, we write (¢(z,7), ¥ (Z,y))-splits omitting the
parentheses.
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For a statementtand a formulap, the following convention is madei* =
—¢ if the statement is false andy® = ¢, if the statement is true. The same
notation is used when € {0, 1}, where0 stands for falsehood anidstands for
truth.

The next two lemmas give sufficient conditions guaranteeing the existence
and uniqueness of nonsplitting extensions.

LEMMA 1.2.6. Let A C B C C be sets such thab realizes all theA-
types overd that are realized irC'. Assume;,ps € Sa,(C)andp; | B =pa | B.
If p1, p2 do Not(Aq, Ay)-split overA, thenp; = po.

PROOF. By symmetry, it is enough to show that C ps. Let ¢(z,b) € py.
By assumptiortpAl(B/A) is realized by some € B. Hence¢(z,¢) € p; since
p1 does not(A1, Aq)-split over A, and ¢(z,4)! € A, fort = 0 or 1. Thus
#(z,¢) € pe and sop(z, b) € po also sincep, does No( Ay, Ay)-split overA. [

LEMMA 1.2.7. Let A C B C C be D-sets, such thaB realizes every
D-type overA, which is realized irC. Suppose € Sp(B) does not split over!.
Then, there is a unique typec Sp(C) extending that does not split oved.

PROOFE Uniqueness was proved in the previous lemma. Hence, it is enough
to show existence. Defingexplicitly by setting:

q := {¢(x,¢) | There existd € B realizingtp(¢/A) ande(z, b) € p}.

This is well-defined. By assumptigndoes not split overd and so the definition
does not depend on the choicebof B.

First notice thaty is complete. Suppose € C and ¢(z,y) € L(T).
Supposes(x, ¢) ¢ q. Letb € B realizetp(¢/A). By definition, we havey(z, b) ¢
p. Hence¢(z,b) € p, sincep | B is complete. Thusy¢(z, ) € ¢, by definition
of q. Also, ¢ is consistent. Leby(z,¢1),. .. ,¢n(z,E,) € q. Theng;(z,b;) € p,

forb,"...°b, € Brealizingtp(¢;,"... ¢,/A). Sincep is consistent, we have

= 3x[p1(z,b1) A~ A dp(z,by)].
Then, by an elementary mapping sending €adb ¢; fixing A we conclude that
): 3$[¢1($7 El) ARTIA ¢n(x75n)]
Hence, the sefo:(x,¢1), ..., ¢n(x, &)} is consistent.
Now let us see thatdoes not split oved. Otherwise, there ai@, ¢» € C,
andg(z,y) such thatp(ci/A) = tp(c2/A) andé(x, ¢1), ~¢(x, c2) € q. Choose

b, bo € B, such thattp(b1/A) = tp(b2/A) = tp(ci/A). We have(x,by),
—¢(z, by) € p, by definition ofq. Hencep splits overA, contradiction.

Finally, let us show thay is a D-type. Suppose not. Then, thereds
realizingg andc € C such thatp(a'c/0) ¢ D. Letb € B realizetp(¢/A). Since
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a realizesp, we havetp(ab/()) € D. Hence, in particular

tp(ab/0) # tp(ac/0).
Hence there i$(z, 7), with = ¢[a, b], and= —¢[a, €. This implies thaty(x, b),
and—¢(z, ¢) € q. This shows thag splits overA,a contradiction. O

We will use the following notational convention: Fdra set of formulas,
we write

Sp.a(B) = {tpalc/B,€) | c e C}.
WhenA = {¢(7,7)}, we write Sp 4(B) instead ofSp (4, (B).
COROLLARY 1.2.8. Let A C B be D-sets. Then
{p € Sp.a,(B) : pdoes no( Ay, Ay)-split overA}| < 2

Ol L(T) | +]A|

PROOF. Since|Sp(A)| < 2HMIFIAl for eachn < w, we can findC, with
|C| < 2LTHAl such thatC realizes all the types i87, 5 (A), for eachn < w.
Then, by Lemma .2.6, we have

{p € Sp.a,(B) : pdoesno(A;, Ay)-split overA}| <

<Hp:peSpa,(C)} <2< Q2! EDI+IAL

The proof of the next theorem follow&f1].

THEOREMI.2.9. Let\ > |L(T)|. If D is not stable ire2", thenD has the
AT-order property.

PrROOF We first claim that there exist B-set A of cardinalityQ2A and a for-
mulag¢(zx, ) such that

1Sp,6(A)] > [A].
SinceD is not stable ir22", there is aD-setA of cardinality22” such thatSp(A)| >
|A|. Define

f+Sp(A) = g perSpg(A), by f(p)=(p]d)cL-
Then, f is injective and since > |L(T")|, by the pigeonhole principle, there must
be¢(x,y) € L suchthatSp 4(A)| > |A|. This proves the claim.

Let A and¢ be as in the claim, we will show that
¥ (o, T1, T2, Yo, Y1, Y2) 1= ¢(z0, Y1) < (20, Y2)
demonstrates the order property. For conveniencey let 22" Let {a; i <
pt} € € be such that # j < p* impliestp,(ai/A) # tpy(a;/A). This is
possible sinceSp 4(A)| > |A|. Letx(y,x) = ¢(x,y) andn = £(y). Define an
increasing continuous chain of s€t$; : ¢ < p) such that:
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(1) Ag =0 and|A4;| < p,i < p.
(2) ForeveryB C A, of cardinality at mosh and every typ@ € Sp 4(A4;) U
Sh(4i). p | Bisrealized inA; ;.

This is possible since there are at mpst= 1 subsets of4; of cardinality A and
at most|Sp(B)| < 2Bl < (22 < 4 possible types for each sBt

CLAIM. For everyj < u™, there isi with j < i < pu™ such that for all
[ < AT the typeq; = tp(as, A;) (x, ¢)-splits over eactB C A, of cardinality at
MOostA.

PrROOF. Otherwise, there ig < u™ such that for every with j < ¢ < u™,
there isl < A and B* C A, of cardinality at most\ such thaty; does not(y, ¢)-
split over B*. Sinceu™ > A, by the pigeonhole principle, we can find< \ such
thatu™ manyg;'s do not(y, ¢)-split over a subset afl;. By a second application
of the pigeonhole principle, singe"™ > u > |A)|* = [{B C A; : |B| < \}|, we
can findu* > (22A) many types that do ndly, ¢)-split over a set of cardinality at
most\. This contradicts Corollary .2.8. Hence, the claim is true. O

Among thei’s satisfying the claim, pick one such that¢ |, A;. This
is possible sincél J, , Ai| < p. Then, by construction, for evefy< A™, the type
tpg(ai/Ar) (x, )-splits over evenyB C A; of cardinality at mosf. Definea,, b;
andc; in Ay .o, as well asB; = U{ag, by, ¢k, : k < 1} by induction onl < A\
such that

(1) B; C Ay and\BZ\ § A

(2) tpy(@i/Bi) = tp, (bi/By);

(3) Botho(x, @) and—¢(xz, b;) belong totp(a;/As);
(4) ¢ € Agiyy realizesp(x, ar) A —¢(z, by).

This is possible: SeBy = (. If B; is constructed, sinc&; C Ay of
cardinality at mosh, tp(a;/A2) (x, #)-splits overB;, hence we can find; and
by in Ay such thattp, (@;/B;) = tp,(bi/B;) and bothg(z,d;) and —¢(z, b;)
belong totp(a;/Asj). Then, by construction afly; 1, we can finde; € Ay,
realizingtp, (a;/As) | {a;, b} and hence realizing(x,a;) A —¢(x, b;). Whenl
is a limit ordinal, we defind3; by continuity.

Now, letd; = ¢;"a;’b;. Itis easy to see from (2), (3) and (4) thak, : | <
N} and (o, 1, 72, 90, 51, B2) = b0, 71) — (o, §2) together demonstrate
the (D, \*)-order property. O

The next theorem is a converse of Theorem .2.9. The proof uses Hanf
number techniques. For a first order the@rgndI” a set ofl'-types over the empty
set, the clas&C(7,T") is the class of models &f omitting every type irl". For
cardinals\ andk, the Hanf-Morley numbern:(\, ) is defined to be the smallest
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cardinaly with the property that for everigC(7,I") with || < A and|I'| < &,
if EC(T,I") contains a model of cardinality thenEC(7',I") contains models of
arbitrarily large cardinality. Clearly, whef = 0, u(\, k) = Ro; this is the first
order case. Wher > 1, the notion ofwellordering numbep (), ) needs to be
introduced. For cardinals, x, the numbeb (), ) is the smallest ordinal with the
property that for everf£C(7,I') with |T'| < Aand|'| < &, if EC(T,T") contains a
model with a predicate of order typethenEC(7', ") contains a model where this
predicate is not wellordered. Af > 1, itis a standard result that(\, k) = J;(» .)-
(Note that the methods of the proof below shof, k) < Js(» .).) A standard
result on wellordering numbers states théx, k) < (2*)*. This will be used in
the proof and explains the cardinal, -, appearing in the statement.

THEOREMI.2.10. If D has thei-order property for every\ < 3(2|T|)+,
thenD is not stable and> has thew-order property witnessed by an indiscernible
sequence.

PrRoOF We will show first thatD has thew-order property witnessed by an
indiscernible sequence. By assumption, for each (2!71)*, we can find aD-set

Py = {aa,; | j < (3a)™}

and a formulap, witnessing the order property. Hence, by the pigeonhole princi-
ple, we may assume that, = ¢ is fixed for alla.

Notice that)/ is a D-model of 7" if and only if M € EC(T,T"), with
I' = D(T)\ D. But|D(T) \ D| < 2/"l, and so the wellordering number for this
class is at mosi(|T],2!"!) = (2171)+,

Fora < (2/T1)*, defineM,, < € containing{a,; : j < (3,)*} of cardi-
nality (3,)". This is possible by the downwardlvenhweim-Skolem Theorem.
EachM, belongs toEC(T,T). DefineF: (2Tt — {M, : a < (2T)*}, by
F(a) = M,.

Consider the following model
M = (H(x), & F, """, T, P |-, ¥)yer,

where H () is the set of sets of hereditary power less tlyamndy is a regular
cardinal chosen so thaf () contains everything that has been mentioned so far in
this proof. The predicate(Q‘T|)+ andT are unary predicates whose interpretations
are the corresponding sets. The meaning of the binary predieatesl ¢ and of

the constants), for eachy) € L is their true meaning i{(x). Also F'is a
unary function and the interpretation bfis the one we just defined? is a unary
predicate, whose interpretation in eakh, is the D-set P, withessing the order
property. More precisely, we have that

M Vo € (2T [aa; € Mo Adaj € My A Pag; A Pig,j)
— (My = ¢[da,i7da7j] 1€ j).
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Let N < M such that2!”1)* C N of cardinality(2/”)*. Therefore, we can fix a
bijectionG: |N| — (2/71)*. Definea < bif and only if G(a) € G(b).

FormN’ = (N, <, G) an expansion olN. Let7” = Th(N') and for each
Y(z) € L definey’(z,y) by 3a € 2T (y = My AT € My A M, = [F]).
LetT” = {{¢/(z,y) : ¢¥(z) € p} : p € T'}. Then, we have thdfl’| = |T'| and
'] = [T, s06(77],27"1) = (271)*.

We first claim thatV’ omits every type id"”.

Suppose not. There jg € I' such that for som&a € N’ we have that
E ¢'[e, a], for all ¢’ € p'. But then, by definitiore is in someM,, andc realizes
everyy(z) in p. Butp € I" so this contradicts the fact thaf, € EC(T,T"). Hence,
we have a modeN’ ¢ EC(T”,T") wellordered by< and of order-type 27+,
Thus, we can find amod&” € EC(T”,T"), whose universe is not wellordered by
<. Therefore, by taking away elements if necessary, there exists eletpenty’”
such thatN” |= b, 11 +n + 1 < b, andN” |= b, € (2I"h* forn < w.

Define a sequence of set&,, | n < w) such that

(1) N" ="X, is a sequence of-indiscernibles in\{;, of cardinality3,, "
(2) N” ="X,, has theD-order property”

This is possible. Construct th¥,, by induction onn < w. Forn = 0,
let Xo = {ay,; : 7 < Iy, }, i.e. the interpretation itV of the interpretation of
the predicateP in M,. Then the first requirement is satisfied sinkg has the
right cardinality and there is nothing to check for O-indiscernibility. The second
requirement is also satisfied sint€ and soN” knows that they witness the order

property.
AssumeX,, has already been constructed. Define
foXa" ™t — SZEZ})(@), by (c1,...,¢nt1) — tpler, ..., cnt1/0).
We know by Erds-Rado that

3 Sn) = (3 )8

n+1 n41 :lbn+1

and we haved,, > J; 4nt1 > 3/ (3p,.,,), SO we can find a subséf, ; of X,

of cardinalityd;, , such that every increasir{@ + 1)-tuple from it has the same
type. This implies thafX,,, is an(n + 1)-indiscernible sequence with the right
cardinality. Since the second requirement is preserved by renumbering if needed,
we are done.

This is enough. Le{¢; : i < w} be a new set of constants. Defifieto
be the union of the following set of sentences:

o T
e ¢; # ¢j, whenevel # j,



26 I. SHELAH'S STABILITY SPECTRUM AND HOMOGENEITY SPECTRUM IN FINITE DIAGRAMS

e ¢(c;,¢;)", for everyi, j < w;

e x(Ciy,...,Gi,), foreveryy € tp(ai,...,a,/0),i1 < -+ < ipandn < w;

o U(Gy,...G,) < Y(C,...,cj,), whenevel; < --- <iyandj; <--- <
Jn,n <wandy € L(T).

By the compactness theorem and the definitioXgf 77 has a modelV;.
Calla; = Ef.vl Notice also that the construction ensures thiat: ¢ < w}is a
D-set. Hence we have theorder property witnessed by indiscernibles.

We will use these to show th&l is not stable. Let: be a given cardinality.
Definex = min{x : 2* > u}. By compactness, using the indiscernibility of
{a; : i < w}, we can get aD-set{a, : n € "2} such that= ¢[a,,a,] if
and only ifn < v. Let A = U776 K> . Then|A| < pu, by choice ofx, and
forn # v € "2, we have thatp(a,/A) # tp(a,/A). Indeed, there is a first
i < k such thaty[i] # v[i], sayn[i] = 0. But theny(a,,z) € tp(a,/A) and
= (a0, %) € tp(a,/A). Thus|Sp(A)| > 2% > pand saD is not stable in.  [J

The next corollary tells us that iD is stable, we can find < J(Z‘Tw
demonstrating this. Notice thati? = D(T") we are in the first order case and the
bound on the first stability cardinal is actuaiyf .

COROLLARY |.2.11. If D is stable, then there exists < 2(2|T|)+ such
that D is stable in\.

PROOFE Suppose thab is not stable in any < 3(2m)+. Then, since‘.l(zm)+
is a strong limit, for eact\ < Jyr))+, we have2?' < Jiry+ and soD is

not stable in22". Hence by Theorem .2.9) has the\*-order property for all
A< 3(2‘T|)+ and so by Theorem .2.1D is not stable. O

The next corollary is the order/stability dichotomy.

COROLLARY 1.2.12. D is stable if and only ifD does not have the order
property.

PROOF If D is not stable, then it is not stable2R” for any A > |L(T')| so by
Theorem .2.9D has theX-order property for every cardinal For the converse,
we use Theorem .2.10. O

[.3. The stability spectrum

In the first part of this section, combinatorial properties related to splitting
are introduced for finite diagrams. They can be used to give another characteri-
zation of stability (see Corollary .3.7). In the second part, the focus is on a more
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delicate tool;strong splitting It is a substitute for the notion of forking. The ap-
propriate cardinal invariant and combinatorial property related to strong splitting
are introduced. They are used to derive the Stability Spectrum Theorem (Theorem
.3.17).

DEFINITION 1.3.1.

(1) D satisfies(x\) if there exists an increasing continuous chain/bkets
{A; 11 < A} andp € S (A)y) such that

p | A1 splits overd;, foralli < .

(2) D satisfiegBx)) if there exists a tree of typdg,, € Sp(B,) | n € *>2},
and formulasp, (z, a,) such thap, C p, if n < v and

¢77(i'7 an) € Pyo and _‘an(ja @,7) c Pn1-

The next two remarks are routine induction using the definition. As an
illustration we prove the first one.

REMARK 1.3.2. If there exists a type € Sp(A) that splits over every
subset of4 of cardinality less than, thenD satisfieq(x\).

PROOF. Letp € Sp(A) be such thap splits over every subsds of A of
cardinality less tham\. Construct an increasing continuous chain of dets :
i < A} of cardinality less thar\ demonstrating ) as follows. LetA, = ()
andA; = (J;5 As, if 0 is a limit ordinal. If A; is constructed of cardinality less
than ), then by assumptiop splits over4;. Hence, we can find, ¢ € A and
#(z,7) such thattp(b/A;) = tp(¢/A;) and¢(z,b) € p and—¢(z,¢) € p. Let
Ai+1:AiUBUE. O

REMARK 1.3.3. In the definitions ofx\) and(B * ) we may assume that
| A;| < |i[* +Ro and similarly that B, | < [¢(n)|* + Ro.

LEMMA 1.3.4. If D satisfieg*)\), thenD satisfieg B * ).

PrROOF We first show that ifp € S7,(A) splits overB C A, then there is a
partial elementary mapping such thatf | B = idp andp and f(p) are contra-
dictory types:

If p splits overB, then there aré, ¢ € A and¢(z, ) such thatp(b/B) =
tp(¢/B) and¢(z,b) € p and—¢(z,¢) € p. Hence there is an elementary mapping

fsuchthatf | B =idg andf(b) = ¢. Then clearlyp and f(p) are contradictory
types.

Now assume thab satisfieg«\). By definition, there exists an increasing
continuous chain of sefs4; | i« < A} andp € S}, (A, ) such thap [ A;q splits
over 4; for i < A\. By Remark .3.3, we may assume thdt| < |i|™ + Ry. By
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the first paragraph, for ea¢h< )\ there exists an elementary mappifiguch that
A; Cdom(f;) € Ajv1andf;(p [ Ai41) andp | A;4q are contradictory types.

DefineG,,, p,, B, andF;, by induction on; € *=2 such that:

(1) Dn € SD(BW)'

(2) G, is an elementary mapping wittom(G,;) = Ay(,,) andran(G,;) = B,

3) Ifv < nthenG, € Gy, po € py, B, € By andF, C F,, and if
£(n) is a limit ordinal, we seG; = ;) Gntir Py = U<y Pytir @nd
By = Ui<€(n) By}

(4) py = Gy(p | Ayy), and the typesp, o andp, are explicitly contradic-
tory.

(5) F}, is an elementary mapping extendiigoo f;(,)) 0 Gy1 With dom(F)) =
B,yro, such thatFy, [ B, = idp, andF(p,0) = pi1.

This is enough. The tree of typés, | n € *=2} shows thatD satisfies
(B * \).

The construction is by induction of(n): Forn = (), let By = Ay,
G = ida, andpy = p [ Ag. If £(n) is a limit ordinal use (3). Now assume
that Gy, p,, B, are constructed fof(n) = i. Let G,y be an extension ofy,
with domainA;, . Define B,y = ran(G, o) andp,o = Gyo(p | Aiy1). Now
Giro © fom) © Gir1 is an elementary mapping with domain B, which is the
identity on3,,. Let F;, be an elementary mapping extending it with doma&ip.
SetB, = ran F, andp,o = F;;,(pyr1)- O

The following theorem shows that the combinatorial propertieg and
(B * \) contradict stability in\.

THEOREMI.3.5. If D satisfies(x)) or (B * \) then for every, < 2*, D
is not stable in..

PROOF By the previous lemma, it is enough to show thabibatisfieq B \)
then for everyu < 2%, D is not stable in..

Letp < 2*. Letk = min{x | 28 > pu}. Then\ > x so D satisfies
(B *K).

By definition, there exists,, € Sp(B,) and¢,(z, a,) for n € "2, such
thatp, C p, if n < v ande,(z,a,) € pyo and—e¢,(z,a,) € p,1. By Remark
.3.3, we may assume th@®, | < |¢(n)|" + Ro.

Let B = Une“>23"' Then|B| < Zne"‘>2 |By| < k-2<% < p, by
choice ofx and assumption op4;|. Now for eachn € "2, let a, realizep,,.

Definegq, = tp(a,/B). Then forv # n € "2, there is a first < ~ such that
nli] # vli], sayn[i| = 0 andv[i] = 1. Hencep,o C ¢, andp,1 < ¢,, SOg, and
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g, are contradictory types. Therefogp (B)| > |{g, | n € "2}| = 2" > p, soD
is not stable inu. O

The next theorem is a sort of converse.
THEOREMI.3.6. If there is aD-setA such that

|Sp(A)] > A+ 2"
p<A
thenD satisfiegx\).

PROOF. Letyg = [A[<*+ 3, ., 21P1". By Remark .3.2 it is enough to find a
typep € Sp(A) which splits over every subsé& C A of cardinality less than.

Such a typep always exists: Otherwise for evepyc Sp(A), there ex-
ists B, C A of cardinality less thar\ such thatp does not split ovei3,. Since
|Sp(A)| > uo > |A|<*, by the pigeonhole principle, we can fisdC Sp(A) of
cardinality ;& and B such thap does not split ove3, for eachp € S. But, by
Corollary .2.8,

I{p € Sp(A) : pdoes not split oveB}| < 2P < > 2P < g,
p<A
a contradiction. O

This gives another characterization of instability. This characterization
will be used in the Homogeneity Spectrum Theorem (Theorem .4.9). Notice that
(B * A) can be used in lieu gf«\) in the following corollary.

COROLLARY I.3.7. Disnotstable if and only iD satisfiegx\), for every
cardinal \.

PROOF If D satisfies(x)\) for every A, then Theorem .3.5 implies th&? is
not stable in\ for every . HenceD is not stable.

For the converse, suppose thatis not stable and lek be given. Then
D is not stable ir22". Hence, there exists R-set A of cardinality22A such that
1Sp(A)] > 22" = |A[<2 43,2, 21P1". ThereforeD satisfieg()) by the previous
theorem. O

For the second part, we will focus on strong splitting.

DEFINITION 1.3.8. Atypep € S™(A) splits stronglyover B C A if there
exists{a; : i < w} anindiscernible sequence ov@rande(z, y) such that(z, ag)
and—o¢(z,ay) € p.

A combinatorial property similar to«)) is now defined in terms of strong
splitting.
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DEFINITION I.3.9. D satisfieqC * \) if there exists an increasing contin-
uous chain of set§A; | i < A} andp € S}, (A)) such that

p | A;11 splits strongly overd;, for eachi < \.

Clearly if D satisfiegC x \), then it satisfieg+\) and similarly to Remark
.3.3, we may assume thgt;| < |i|™ + R in the definition of(C x \).

The next cardinal invariant plays the rolefI") for the notion of strong
splitting. It appears in the Stability Spectrum theorem.

DEFINITION 1.3.10. Let
k(D) = min{x : Forallp € Sp(A) there isB C A, |B| < « such that
p does not split strongly oveB }.
If it is undefined, we lek (D) = cc.

THEOREMI.3.11. Let D be stable in\. Thenk(D) is well-defined and
k(D) < A\

PROOF Suppose that(D) > A. Then, by definition ofx(D), there exists
a D-set A and a typep € Sp(A) such thatp splits strongly over every subset
B of A of cardinality at most\. Similarly to Remark .3.2 this implies thd?
satisfie§ C * \). Hence,D satisfiegx)\). By Theorem .3.9 is not stable in\, a
contradiction. O

To deal with strong splitting, some understanding of indiscernibles is needed.
Theorem .3.13 is one of the main results to produce indiscernible sequences in the
presence of stability. Recall Lemma 1.2.5 &f{ b].

FACT 1.3.12. Let B and let{a; | i« < a} be given. Consider; =
tp(ai/BU{a; | j <i}) € Sp(BU{a; | j <1i})and suppose that

(1) If i < j < atheng; C gj;
(2) For eachi < « the typey; does not split oveB.

Then{a; | i < a} is an indiscernible sequence ovBr

THEOREMI.3.13. Let D be stable in\. LetI be a set of finite sequences
and letA be a set such that U A is a D-set. If|A| < A\ < |I| then there exists a
subset of’ of cardinality AT which is an indiscernible set ovet.

PROOF By the pigeonhole principle, there exists a subkef I of cardinality
At andn < w such that € J implies{(a) = n. Write J = {a; : i < AT }.

CLAIM . There areD-setsB andC, A C B C C, such that every type
in Sp(B) is realized inC, and there exists a tygee S} (C) such that for every
D-setC containingC' of cardinality \, there exists an extensign € S7,(Cy) of
p such thap; does not split oveB and is realized iv \ C.
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PrROOF OF THECLAIM . Assume thatB, C' andp as in the claim cannot be
found. For each < A constructD-setsA; of cardinality at mosi such that every
p € Sp(Aiy1) which is realized inJ \ A;; splits overA,;.

This is possible: Letdy = 0 and A5 = |J,_5 A; for 6 a limit. Now
assumeA; of cardinality at most\ is already constructed. TheSp(4;)| < A
by stability in \. Hence, there exists B-set A’ of cardinality \, containingA4;,
realizing all the types oved;. Now for anyp € S%(A%), A;, A* andp do not
satisfy the assumptions of the claim. Therefore, there eista. D-set,C), O At
of cardinality A such that every extension pfin S}, (C),) that is realized i/ \ C,
splits over4;. Let A, = Upesg(Ai) C,p. ThenA,, is a D-set of cardinality at
most\ with the desired property.

Let Ay = |, 4i. SinceJ has cardinality\ ™, there isa € J \ A%. Let
p = tp(a/A,). By constructiorp | A;;1 splits overA; soD satisfiegx\). Hence,
D is not stable in\ by Theorem .3.5, a contradiction. O

Let B, C andp € S%(C) be as in the claim. Construéb; : i < AT} C J
by induction oni < AT as follows. Ifb; is defined forj < iletC; = C U {b; |
Jj < i} andp; € S (C;) be an extension gf which does not split oveB and is
realized inJ \ C. Letb; be inJ \ CP realizingp;. Then{b; | i < At} is an
indiscernible sequence by Fact .3.12. Siizés stable, then it does not have the
order property by Corollary .2.12 and hen@g | i < A*} is an indiscernible set,
by Remark .2.4. O

The next two theorems prepare for the Stability Spectrum Theorem.

THEOREMI.3.14. Let D be stable in\. Lety > X be such thap<#(P) =
u. ThenD is stable ing.

PROOF Suppose thab is not stable in:. Let A be aD-set of cardinalityy
such thatSp(A)| > |A|. By assumption,Sp(A)| > |A]<#P), Hence Sp(A)| >
ATT. SinceD is stable in)\, then that<(D) < X\ by Theorem .3.11. Hence, for
eachp € Sp(A) there exists a subsét, C A of cardinality less tham (D) such
thatp does not split strongly ovel,. Since there argd|<*(”) = |A| suchB,’s,
by the pigeonhole principle, there exists aSet Sp(A) of cardinality\™" and a
D-setB C A of cardinality less tham(D) such thap does not split strongly over
B, foreachp € S.

Construct{¢;(z,a;) | i < At} andp; € S, fori < A such that
*) {0j(z,a;) : j <i}U{=¢i(z,a:)} C pi-
To do this, defines; C S andA4; C A fori < AT such that

(1) Ao =0, As = ;.5 Ai for ¢ limit, and A; C A;q;
(2) |A;| < A, foreachi < A,
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(3) S; = {p € S| pis the unique extension @f[ A;};
(4) A;4;isasubsetofl suchthatifp € Sp(A;) has at least two contradictory
extensions inS, then it has at least two extensiogps: € S such that

ql Aixr #r | Aig1.

Fori = 0 or ¢ a limit ordinal, do (1). For the successor stageAlfis
constructed and € Sp(A;) has two extensiong;, ¢ € S, then there ig,(z,y)
anda, € A such thaip,(z,a,) € g1 and—¢,(z,aq) € 2. Since|Sp(4;)| < A,
A; 1 of cardinality A as in (4) can be found.

Notice that sinceS| = AT and |, y+ Si| < > ica+ [Sp(Ai)] < AT
A = AT, there existp € S\ U;.,+ Si- For eachi < AT considerp | A;.
Sincep ¢ S;, by definition of S; the typep | A; has at least two contradictory
qg,v € S. By (4), we may assume that | A,;1 # r | A;11. Hence, either
plAix1 #q | Aig1,0rp | Aipq #r | Aiyp1. Thus, in either case, therejise S
suchthap | A;+1 # p; | Ait1. Hence, there exist; € A; 1 andg;(z,y) € L(T)
such that;(z,a;) € pand—¢;(z,a;) € p;. This establishes (*)

Now for eachi < ™, letb; realizep;. The set{b;’a; : i < AT} has
cardinality A" and B has cardinality less than(D) < ), so by Theorem .3.13
there is a subset ofb;'a; | i« < AT} of cardinality AT which is indiscernible
over B. Without loss of generality, we may assume thafa; | i < At} is
indiscernible overB. By stability in A we have|Sp(lJ,.,ax)| < A. Hence,
by the pigeonhole principle, there existand j with A < j < i < AT such
thatp; [ Upcr@r = »j [ Upeyrar. By choice ofj, we haveg;(z,a;) € p;
and—¢;(z,a;) € pj. Now if ¢;(z,a0) € p; then since~¢;(z,a;) € pj, p;
splits strongly overB, since{ao,a;,a;+1,...} is indiscernible over3. And if
¢j(x,a0) € pi then—g¢;(z,ap) € p;, and sincep;(z,a;) € p; thenp; splits
strongly overB, since{a;, ag, a1, ...} is indiscernible ove3. This contradicts the
choice ofS andB. O

THEOREMI.3.15. Let D be stable in\. Lety > X be such thap<#(P) >
1. ThenD is not stable in.

To prove this theorem, a proposition is needed.

PrROPOSITIONI.3.16. Let D be stable in\. Letx < A be a cardinal such
that AX > X. Let [ be an indiscernible sequence. Then, for everg ¢ and
o(z,y) € L(T) either

Hael :Edla,dt<x or [{ael :f-¢lad}f <x

PROOF. LetI and¢(z,c) contradict the conclusion of the proposition. Then,
without loss of generality/| = y. Write I = {a; | ¢ < x}. Sincel is indis-
cernible, there exist$ = {a; | ¢ < A} containing!, indiscernible of cardinality.

By the pigeonhole principle, eithg¢i < X : |= ¢la;, ]} or{i < A : = —dlai, c]}
has cardinality\. Without loss of generality, assume that it is the second. Hence,
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by a re-enumeration (recall thdtis necessarily an indiscernible set), defihe=
{a; : i < x+ A} such that= ¢|a;, ¢| if and only ifi < x. Letq = tp(¢/J1). Then
for any £ C J; of cardinality y with complement of cardinalith we can find a
function fg: J1 — Jy with f(a;) € E'ifand only ifi < x. Then, for two such sets
E, # E5, we havefg, (¢) # fr,(¢). Hence|Sp(J1)| > AX > A, contradicting
the stability in\. O

PROOF OF THETHEOREM. By assumption, there exists< (D) such that
k =min{x | p® > p}. Letx < X such thaty = min{y | AX > A}. Observe that
u® > x": Otherwise A < p < p" < x® < A", and soy < x by minimality of y.
Hence\ < p" < x® = 2%, But (C * k) holds and\ < 2%, soD is not stable im\
by Theorem .3.5, a contradiction.

Now, by definition of(C x x), there exists an increasing, continuous chain
of D-sets{A; | i < k} and atypen € Sp(A,) such thatA;| < |i| + Ry and

p [ A;+1 splits strongly overd;, for eachi < k.
By definition of strong splitting, for each < «, there exist{a’, | « < w} in-

discernible overd; and¢;(z,§) € L(T) such that both;(x, @), and—¢;(z, a’)
belong top | A;.1.

For eachn € "~ yu, construct a type,, a D-set B, and an elementary
mappingG,, by induction or¢(n) such that:

(1) p, € Sp(B,) and ifn < v thenp, C p, andB,, C B,;

(2) G, is an elementary mapping frony,) onto B;;

(3) |By| < &3

(4) For eache € ¢ the set{a < u | crealizesp, .} has cardinality less than
X-

n)

Let By = Ao, Gy = ida, andp, = p | Ag. Forn such that/(n) is a limit
ordinal, define everything by continuity. For the successor case, suppogs that
B, andG,, have been constructed fgr with /(n) = i. Let I’ be an elementary
mapping extendings, with domainA,. Letbd!, = F(a’), for « < w. Then
{b}, | « < w} is indiscernible oveB,. Hence, we can extend this set{tt, |

o < p} such that{by, | o < u} is also indiscernible oveB,. Fora < p,
let G, be an elementary mapping extendi6g, with domainA;,; such that
Gyra(@h) = bl andGypq(a}) = bi,,,. This is possible by indiscernibility. Let
Pra = Guya(p | Aiy1) and B, = ranG,,. Hence (1)—(3) are satisfied. To
see (4), observe that for each< 4, both¢;(z, b},) and—¢;(z, b’ ;) belong to
pira- Since{bl, | a < u} is indiscernible andk < A < AX, ( 4) follows from the
previous proposition.

The construction implies the conclusion. LBt = U776 H>MB77. Then

|B| < p=" -k = p, by choice ofx. For eachy € “u, letp, = U,_, pyi- By
continuity, eacty, is a D-type and leta, realizep,. Thentp(a,/B) € Sp(B).
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By (4), for eachc € €, the set{n) € "1 | a,, = ¢} has cardinality at most” and
we observed that" < p”. Hence|Sp(B)| > i, soD is not stable in.. O

We finish this section with the Stability Spectrum Theorem.

THEOREM.3.17 (The Stability Spectrum)Let D be a finite diagram. Ei-
ther D is not stable, oD is stable and there exist cardinais< A < J,z/y+ such

that for every cardinal:, D is stable ing if and only ifu > X and <" = p.

PROOF If D is not stable, there is nothing to prove.I¥fis stable, let\(D)
be the first cardinak for which D is stable\. Then\(D) < 3(2‘T|)+ by Corollary
.2.11. Moreoverx(D) is defined and:(D) < A(D) by Theorem .3.11.

Let . be given. Ify < A(D), thenD is not stable in: by choice ofA\(D).
Suppose that: > \(D). If x<#P) = 4, thenD is stable inu by Theorem .3.14.
If 1<+(P) > 1, thenD is not stable inu by Theorem .3.15. O

I.4. The homogeneity spectrum

The section is devoted to the proof of the Homogeneity Spectrum Theorem
(Theorem .4.9). The proof will proceed by cases, and is broken into several theo-
rems. There are two types of results. On the one hand there are theorems showing
the existence of &D, \)-homogeneous model of cardinalityfrom assumptions
like stability in A\ and\<*. On the other hand, there are results showing that such
models do not exist from the failure of these conditions. The combinatorial prop-
erties defined in the previous section and parts of the Stability Spectrum Theorem
will play a crucial role.

THEOREMI.4.1. Let A > |D| be such that\<* = X. Then there is a
(D, A)-homogeneous model of cardinality

PROOEF First, by Zermelo-Knig, A is regular. By the downwarddwenheim-
Skolem theorem, define an increasing continuous cfiglin| i < A\) of D-models
of cardinality A, such thatM;,, realizes everyD-type over everyA C M of
cardinality less thar\. This is possible since we have omy* = ) subsets of
A of cardinality less than\ and only|D|l4l < A<} = X\ D-types overA. Let
M = {J;c\ M;. ThenM has cardinality\, and since\ is regular,M is (D, \)-
homogeneous. O

THEOREMI.4.2. Let)\ > |D| be such thath<* > \. If D satisfieg B * \)
then there is ng D, \)-homogeneous model of cardinality

PROOF. Suppos&<* > \ > |D|. Assume, by way of contradiction, that there
isa(D, A)-homogeneous mod@l of cardinality\. SinceD satisfie§ B \) there
exist D-typesp, € Sp(B,) and¢,(z,a,) forn € *>2 such thaw, (z, a,) € p,o
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and—¢,(z,a,) € p,y1. Inadditionp, C p, whenn < v. By Remark .3.3, we may
assume thatB,| < |[¢(n)|* + No. Hence, by(D, \)-homogeneity of\/, we may
assume thaB,, C M for eachy € *>2.

For eachyy < X andn € /2, there are* types inSp(B,). Each such
type is realized inV/, sinceM is (D, A\)-homogeneous and & < ), sinceM
has cardinality\. Hence \ is singular, since otherwisg<* = ). Furthermore)
is a strong limit (if there ig: < A such thaR* = ), thenAf(N) = owef(h) <
contradicting Zermelo-Knig).

Let x = cf()\) and letA; < X for i < « be increasing and continuous
such thath = >°.__\;. Let A; C M of cardinality \; for i < & such that
M =, Ai.

For each < r, define a sequeneg € 2 and a finite se€;; such that

(1) Ifi < jthenn; < n;;
(2) C;i11 is afinite subset o3, ;
(3) The typep,,,,, | C;is not realized in4;.

This is enough: Lep = (J,.,.py;- Thenp [ ., C; is a D-type (by
continuity) over a set of cardinality, which is not realized i/. This contradicts
the (D, A\)-homogeneity of\/ sincex < .

This construction is possible. Defing = (), and ford < « a limit ordinal
let ns = ;.5 m- For the successor case, assume that 2>9 is constructed.
Definer, = 1;0,, where0,, is a sequence of zeroes of order typefor a < 2.
Thenr, € *>2, since); < A and )\ is a strong limit.

We claim that there ares < § < (2%)* such that= ¢, [c,a,,] <
brg e, am], for everyc € A;.

Suppose that this is not the case. Ugt= {c, | v < A;}. Then, for every
a < 3 < (2%)T there existsy < A; such that= —=(¢r, [cy, @r,] < ¢r,lc, Gry)).
By the Erdds-Rado theorem, thereds< )\; and an infinite sef C (2*)* such
that for everya: < 3 in S we havel= —(¢-, [y, ar,]| < ér4(c, ar,]). Thisis an
immediate contradiction.

Hence, letv < g be asin (*). LetC;1 = ar, Udr, and letn;; = 7,71
Since¢r, (v, ar,) and—¢.,(z,a,,) are inpy, ., | C;, the typep,, , is omitted in
A;. This finishes the construction and proves the theorem. O

The next theorem is, in particular, an improvement of Proposition .3.16. It
allows us to defin@averagegDefinition .4.4). Averages are used in Theorem .4.6.
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THEOREMI.4.3. Let D be stable. Letl be an infinite indiscernible set
over A of cardinality at leasts(D). Letb € &. Then there is/ C I with [J] <
(D) such thatl \ J is indiscernible overd U J U b.

PROOF Let] = {¢; | i < a}. SinceD is stablex(D) is defined by Theorem
.3.11. Hence, there exist8 C A U I of cardinality less tham (D) such that
the typetp(b/A U I) does not split strongly oveB. LetJ = B\ A. Then
J C I has cardinality less thae( D). We will show that/ \ .J is indiscernible over
AU JUD. Clearly, I\ Jis indiscernible overd U J. If I\ J is not indiscernible
over A U J Ub, then, there exist an integer< w and indicesy - - - < i,, such that
tp(Co, - - -, Cn/AUJUD) # tp(Cig, - - - , &, JAUJUD). Then= e, . . ., ¢, a, b, ]
and= —¢[¢,, - - -, i, @, b, &, for some formulap € L(T), parameterg € A and
ceJ. Letdy =& ..."¢, andd; = ¢;,"..."¢;,. By taking sequences from\ J,
itis easy to find{d; | i < w} indiscernible overd U J. Thus{d;,a¢c | i < w} is
indiscernible overd U .J. Hence, the typep(b/A U I) splits strongly overd U .J,
a contradiction to the choice @. O

DEFINITION 1.4.4. LetI be an indiscernible sequence of cardinality at
leastx(D). Let A be such thatd U I is a D-set. Define thaverage off over A4,

by
Av(I,A) = {¢(z,a) | 9(z,9) € L(T),a € A, and [= ¢[b, al,
for at leasts(D) elements € I}.

THEOREMI.4.5. Let D be stable. Lefl be an indiscernible sequence of
cardinality at leastx(D) and A be such thatd U I is a D-set. ThemAv(I, A) €
ST (A), wheren = {(a) for a € I. In addition, if |I| > |A], thenAv(I, A) is
realized in/.

PROOF Averages are complete: Assuméz,c) ¢ Av(I,A), with ¢ € A.
Then by definition, the sef C I of elements realizing(z, ¢) has cardinality less
thanx (D). Thus, sincd \ J has cardinality at least(D), and all elements if\ .J
realize—¢(z, ¢), necessarily-¢(z,¢) € Av(I, A). Averages are consistent: Let
o1(x,¢1),... ,Pn(x,¢) € Av(I, A). Then, if¢c = ¢"...°¢,, by Theorem .4.3,
there isJz, Jz C I of cardinality less tham(D) such that/ \ J; is indiscernible
overc. Hence, since each;(z, ¢;) was realized by at least( D) elements off,
we can find one il \ Jz. But then, all elements id \ J: realize¢;(x,¢;) by
indiscernibility 1 < i < n), so{¢1(z,¢1),...,on(x,é,)} is consistent. The
last sentence follows similarly: For ayc A, every element of \ J; realizes
Av(I,A) | ¢, since they realize every formula in it, and sgif > |A|, we can
findb € I\ U4 JzrealizingAv(I, A). It remains to show thakv(I, A) is aD-
type: Notice that if we stretcli to J, I C J indiscernibles of cardinality greater
than|A|, we haveAv(I, A) = Av(J, A). ThenAv(I, A) is realized inJ, thus in
¢, sinceJ is aD-set, and sd\v([, A) is aD-type. O
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THEOREMI.4.6. Let A\ > |D|. If D is stable in), then there exists a
(D, A\)-homogeneous model of cardinality

PROOF Suppose first that is regular. Define an increasing continuous chain
(M; | i < X\) of models of cardinality\, such that\/, realizes all the types i®,
and M, realizes all the types ovéd/;. Such a construction is possible sindes
stable in\ and\ > |D|. Let M = J,_, M;. Then,M has cardinality\ and M is
(D, X)-homogeneous by regularity af

Now suppose that is singular. Construct an increasing continuous chain

of models(M; | i < XA - \) as above of lengthh - \. Let M = [J,_,., M.
Notice that)/ has cardinality. We now show that it i$D, A\)-homogeneous. Let

A C M of cardinality less than andpy € Sp(A). We will find I indiscernibles

of cardinality greater thand| with py = Av(I, A). Letp € Sp(M) extending

po and choose&” C M of cardinality less tham(D) such thatp does not split
strongly overC. SinceD is stable in), then \<*(P) = X\ by Theorem .3.15.
Hencecf(\) > (D). Thus, considering the sequenc¥,.; | ¢ < A) we can find

i < AsuchthatC C M,;.

We claim that does not split ovei, ;, ». Otherwise, there areandéin
M and¢(z,y) such thaty(z,b) € p, ~¢(z,¢) € pand
tp(b/Mp.itn) = tp(6/Mx.isr)-

Let ¢ := tp(b/My.;1+,). Now, since) is singular, we haver < \. Consider the
following set

{7 <A:iq | Myiqow.(j4+1) Splits overMy ;.5 }.
SinceD is stable in)\, in particular(x\) fails so we can find, with
A< y<y+w <A

such thatg | M, does not split ovel/,. For eachn < w, we can choose

by, € Myin1 realizingtp(b/M,+r). Now, tp(b, /M, ,) does not split ovei/,

(Vn < w) by monotonicity. Hencgb, | n < w} are indiscernible oved,, by

Fact .3.12. Similarly, bot#ibg, by, . .., b} and{bg, b1, . .., ¢} are indiscernible over

M.,. In fact, sinceD is stable,D does not have the order property by Corollary
.2.12, and thus they are indiscernible sets by Remark .2.4. Now suppose that for
somen < w, the formulag(z, b,,) € p. Thenp splits strongly over” since

{bpn, €, byi1,. ..} isindiscernible ovee.
Otherwise~¢(Z, by) € p. Thenp splits strongly over” because
{b, by, b1, ...} is indiscernible ovet .
We have a contradiction in both cases, which proves the claim.
We now use the claim to prove the conclusion of the theorem. First, we

may assume that - i = 0, sop does not split ovei/y. Now for eacha: < A - A,
chooses,, € M, realizingp | M,. Sincep does not split ovei], the sequence
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I := {as | a < X\- A} is indiscernible. Lew(z,a) € po. There isay < N2
such thatp(z,a) € po | Ma,, SO we have tha= ¢[a,, a] for everya > ayp.
Hence there ara > (D) many elements of realizing ¢(z,a), showing that
¢(z,a) € Av(I,A). SOAv(I,A) D py and since both types are complete, we
havepy = Av(I, A). Thus sincgI| > |A|, there are elements dfrealizingpo.
This shows thapy is realized inM . HenceM is (D, \)-homogeneous. O

The next lemma is an improvement of Corollary .2.8. It is needed in the
proof of Theorem .4.8.

LEMMA 1.4.7. Let D be stable. LetA C B be D-sets such that every
D-type overA is realized inB. Fix n < w and define

I' .= {p € S}H(B) | p does not split over }.

Then, for eaclp € T, there is a sequenc@! | i < w) indiscernibles over A such
that

*) p#qel implies tp((@:i<w)/A)#tp((al:i<w)/A).
Moreover,
Il < | U SB[ < DA+,

m<w

PROOF Itis enough to establish (*), since the last statement follows from (*)
by a computation.
For eactp € I, define
Ip = (aj i < K(D)),

by induction oni < x(D) such thatp(aj/B U {a} : j < i}) extendg and does
not split overA. This is possible by Lemma .2.7. By Fact .3.12 the sequénce
indiscernible overd. Hence, it is enough to show that

tp((@; 1 i < w(D))/A) #tp((a] : i <rK(D))/A),  forp#qeTl.
We will use the following claim.
CLAIM. If b € B andb; € € such thatp(b/A) = tp(b1/A), then
(i < k(D) : tp(F'ah/A) # tp(ba? /A)}| < k(D)

PROOF OF THECLAIM . To show this, definda? : x(D) < i < k(D)"}, by
induction oni (x(D) < i < k(D)%) such thattp(a} /B U {a} : j < i} Ub)
extends and does not split ovet. Hence, by Fact .3.12] = {a : i < x(D)"}
is indiscernible. By construction

tp(bial /A) = tp(bal JA) = tp(b'al /A), fori > k(D),
sinceb € B andI, is indiscernible oveB. Thus
{i € I - tp(bag/A) = tp(bi'a} /A)}| > (D),
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but then, alla; € I’ but a subset of cardinality less thafgD) are indiscernibles
overbU by and so

[{i € I : tp(b'ah /A) # tp(bial JA)}| < k(D).
The claim follows sincd,, C I'. O

Suppose by way of contradiction that there aeg g € I" with
tp((@; : i < x(D))/A) = tp({aj : i < K(D))/A).

Sincep # q, there ish € B and¢(z, 7) such thais(z, b) € p and—¢(z,b) € q. By
construction}= ¢[a?, b] and= —~¢[a?, b], for alli < k(D). Let f be an elementary
mapping such thaf | A = id4 and f(a) = a] fori < x(D). Clearly, f exists
by assumption op andq. Callb; = f~1(b). By applying the claim, we know
that|{i < x(D) : tp(bah/A) # tp(bi'a?/A)}| < x(D), hence leta?, (i <
(D)) such thatp(b'ah /A) = tp(by"a? /A). But, by definition off, we know that
tp(bi"a? JA) = tp(ba!/A). Hencetp(bah/A) = tp(bal/A). Sinced(z,b) €
tp(b'ah/A), we then must have= ¢[a?, b], the desired contradiction. O

We now prove the last significant ingredient of the Homogeneity Spectrum
Theorem.

THEOREMI.4.8. Let A > |D| be such thab<* > \. Suppose thab is
stable but not in\ If D does not satisfy«\) then there is ng D, \)-homogeneous
model of cardinality\.

PROOF By way of contradiction, assume thaf is a (D, \)-homogeneous
model of cardinality\. Let {A, | a < cf(A\)} be an increasing continuous chain
of sets such thatd| < A andM = {J,c¢(n) Aa-

Since D is not stable in\, there is aD-set B of cardinality A such that
|ISp(A)| > A. Then, by Lemma .1.3 we may assume thaiC M since M is
(D, A\)-homogeneous. Hen¢8p (M)| > A.

We first claim that for eaclh € Sp(M), there isa < cf(A) such thap
does not split over,,.

Suppose not. Lep € Sp(M) such thatp splits over everyA,. If A is
regular, then\ = cf(\) and this implies thaD satisfies(x\), a contradiction.
Suppose thak is singular. For each < cf()), chooseb,, ¢, in M and ¢, (z, )
such thatp(b, /As) = tp(¢a/As) ande,(x,bs) € p and—g¢e(z,eq) € p. Then
p | {ba, s} is not realized ind,. SetA := Ua<cf(/\){5a,éa}. Thenp | Ais
not realized il J,, () Aa = M. This contradicts théD, A)-homogeneity of\/
since|A| < cf(A) < A. This proves the claim.

Now since|Sp(M)| > A, by the pigeonhole principle, there exigtsC
Sp(M) of cardinality AT anda < cf()), such that ifp € T', thenp does not split
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overA,. SinceA, C M of cardinality less than andM is (D, A)-homogeneous,
we are in the situation of the previous lemma. Thus for @aehI there is{a’ :
i < w} an indiscernible set ovet,, such that

p#q ifandonlyif tp((al:i<w)/As) #tp((al :i < w)/Aq).

- Using the(D, A)-homogeneity of\/ and the fact thatd, | < A, construct
{b? : i <w} C M for eachp € I" with the following two properties:

(1) tp((¥; : j <i)/Aa) = tp((@] : j <14)/Aa)
(2) If tp((a} : j <4)/As) = tp((a] : j < i)/Aa), thend! = bf for every
J <.

We now show that
(*) W#bL,  ifp#qel.
Letp, q € T" such thap # ¢. By construction, we have that
tp((a? < j < w)/Aa) # tp((@! : j < w)/Aq).
Hence, there is a minimal< w such that
tp(ag, ..., a a4 /Aq) # tp(ag, . .., ajaj, , /Aa).
By minimality of i and (1), we have

**) tp(l;gv”wi)]z‘?/Aa) :tp(Eg,...,Bg/Aa).
Now, we have the following equations
tp(bh, ..., 0PBE /Ay) = tp(ab, ..., alaP /As) (by definition (2)
=tp(ag, ..., a a;, ,/As)  (byindiscernibility)
#tp(ag, ... aja;,,/Aq) (by choice ofi)
=tp(ad,...,alal /A,) (by indiscernibility)
= tp(bl, ..., 0702 /A,) (by definition (2)

Hence (*) follows from the previous equations and (**).

Therefore (*) implies that we hav&| many different elements, ¢ M.
This is a contradiction, since
T =A% > A= || M]|.
This finishes the proof. O

We can now present the Homogeneity Spectrum Theorem.

THEOREM.4.9 (The Homogeneity Spectruml.et\ be a cardinal. There
is a (D, A)-homogeneous model of cardinalityif and only if A > |D| and either
D is stable in\ or A\<* = ).

PrRoOOFE The proof is divided into 5 cases.
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Case 1: A < |D|. Then, there can be nd, A)-homogeneous modal/ of
cardinality A, since we require thad (M) = D, and there are not enough
elements inV/ to realize all the types i.

Case 2: \ > |D| and\<* = \. Then, there exists D, \)-homogeneous
model M of cardinality\ by Theorem .4.1.

Case 3: A > |D| andD is stable in\. Then, there is @D, \)-homogeneous
model M of cardinality\ by Theorem .4.6.

Case 4: \ > |D|, A<* > X andD is not stable. Then, by Corollary .3.D,
satisfies*\). HenceD satisfieq B « \) by Lemma .3.4. Therefore, there
is no (D, \)-homogeneous mod@l of cardinality\ by Theorem .4.2.

Case 5: A > |D|, A\<* > X andD is stable but not in\. This case is divided
into two sub-cases according to whetliesatisfieg x\). If D does satisfy
(x\), thenD also satisfiegB « \) by Lemma .3.4. Therefore the result
follows from Theorem .4.2. 1D does not satisfyx\), then by Theorem
4.8 we have ndD, \)-homogeneous model of cardinality

The proof is complete. O
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CHAPTER I

The local order property in nonelementary classes

In the first order case, Victor Harnik and Leo HarringtonktaHa], while
presenting an alternative approach of forking to that of Saharon Sh&tah],[
started a localized generalization of stability theory extending Saharon Shelah’s
Unstable Formula Theorem (Theorem Il 23h[b]). This work was later contin-
ued and extended by Anand Pillay iRi[. About ten years later Zoe Chatzidakis
and Ehud Hrushovski in their deep study of the model theory of fields with an
automorphism€ChHr] as well as Ehud Hrushovski and Anand PillayrPil] dis-
covered natural examples of this phenomenon in algebra and obtained results in
local stability for first order simple theories.

In parallel, Rami Grossberg and Saharon Shelah continued their study of
stability and the order property in contexts where the compactness theorem fails;
inside a model and for nonelementary classes (see for exa@plg, [[Gr2],
[GrSh1], [GrSh3], [Sh1{g, and [Sh30Q).

The goal of this chapter is to continue the study of local stability both in the
first order case and in cases where the compactness theorem fails. When possible,
we have tried to merge first order local stability with nonelementary stability theory
and obtain results improving existing theorems in two directions. Four frameworks,
listed in decreasing order of generality, are examined: (1) Inside a fixed structure;
(2) For a general nonelementary class of structures; (3) For the class of models of
a finite diagram; (4) For the first order case. Hence, the results of (1) hold for (2),
those of (2) hold in (3), and the ones of (3) hold in (4). We study local versions
of stability and the order property in (1) and (2). In (3) we look at the localized
versions of the saturation spectrum. In (4), we also study local versions of the
independence property and the strict order propertyloBgl, we mean inside the
set of realizations of a fixed type.

In (1), (2), and (3), since the compactness theorem fails, we cannot use the
forking machinery or definability of types, ad@Ha], [Pi] and [Sh b] do. Hence,
the methods used have a combinatorial and set-theoretic flavor. Note that by (2)
we mean the study of models of an infinitary logic, or of the cla€87;,7,T)
(see the beginning of Section 3 for a definition). Hence, in addition to the failure
of the compactness theorem, we have to do without the existence of saturated or
even homogeneous models, as such models do not exist in general in (1) and (2).
Thus, frameworks (1) and (2) are more general than (3).

43
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The basicstructureassumption will be the impossibility of coding, via a
formula in a given logic, a linear order of a certain length inside the set of real-
izations of a fixed type. Note that there are two standard definitions refered to
as the order property. (For example both are givergin394.) In the first order
nonlocal case, they are equivalent when the complexity of the formula used to code
the order is of no importance. We chose this version for two reasons: as a struc-
ture assumption it is weaker than the other, and as a nonstructure assumption, the
existence of long orders implies the existence of many nonisomorphic models (see
Theorem VIII 3.2 in Bh b)), even in nonelementary cases (see for exanfpiel
and [GrSh1]).

This chapter is organized as follows:

In Section 1, we study stability and order for the realizations of a gype
inside a fixed modebM/. In particular, the model/ may omit many types. Denote
by p(M) the set of realizations gfin M. We prove that the impossibility of coding
alinear order of a certain length insige\/ ) implies local stability (Theorem .1.5).
By local stability, we mean the usual definitions in terms of the number of types
extending the fixed type. This is used to prove the existence of indiscernibles
(Theorem .1.9), as well as averages (Theorem .1.12).

In Section 2, we study these local notions for classes of models that fail
to satisfy the compactness theorem. We obtain a characterization of local stability
for such a class of models in terms of the failure of the local order property, and a
partial version of the stability spectrum (Theorem .2.4).

In Section 3, we study local stability for the class of models of a finite
diagram. We obtain all localized versions of the results of the first chapter: the local
stability spectrum (Theorem .3.12) and the local homogeneity spectrum (Theorem
.3.13).

Finally, in Section 4, we particularize our discussion to the first order case.
We introduce local versions of the independence property and the strict order prop-
erty. We prove the local version of Shelah’s Trichotomy Theorem: the local order
property is equivalent to the disjunction of the local independence property and the
local strict order property (Corollary .4.4). We characterize the local independence
property in terms of averages (Theorem .4.6) and give, as an application, a charac-
terization of stable types in terms of averages when the ambient first order theory
is simple (Corollary .4.9).

Credits have been given throughout the text when particular cases of these
results were known, either in the local first order case, or the nonlocal nonelemen-
tary case.
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[1.1. Local notions inside a fixed model

In this section, we work inside a fixed structuké. Denote byL (M)
the set of first order formulas in the languageldf!'. We will say formulas for
L(M)-formulas.

Let p be a fixed set of formulas (maybe with parameterdfipsuch thap
is realized inM . Denote byp(M ) the set of elements d¥/ realizingp.

Recall the notion of complete type inside a model. Ke€ M, A be a set
of L(M)-formulas and: € M. We let

tpA(E/A’ M) = {QZ)(S_U’C_L) | ac A, Qb(j,g) € Aor —|¢(:f,g) €EAM ): ¢[57 C_L]}
We omitA whenA = L(M).

For A C M andA a set of formulas, we let
Sap(A, M) = {tpa(¢/A, M) | ¢ € M andc realizesp }.
We omitA whenA = L(M).

For a typeg and a setd, we denote by [ A the set of formulas i with
parameters im. For a set of formulag\, we denote by, | A the set of instances
in ¢ of formulas ofA.

The next two definitions are the main concept of this chapter.

DEFINITION I.1.1. For an infinite cardinak > |L(M)|, the modelM is
said to be(\, p)-stableif |S,(A, M)| < X for eachA C p(M) of cardinality at
MOStA.

Note that in the above definition we make demands only on subsets of
p(M). In fact, throughout the rest of this chapter, we will only deal with types
q € Sp(A, M) such thatd C p(M).

DEFINITION I1.1.2. M has the(\, p)-order propertyif there exists a for-
mula¢(z,y) € L(M) and asefa; | i < A} C p(M), such that

M = ¢la;,a;] ifandonlyif i< j <A

The first theorem (Theorem .1.5) is a local version inside a model of She-
lah’s Theorem that the failure of the order property implies stability for complete,
first order theories. A generalization of Shelah’s theorem for nonelementary classes
and in the local case will appear in the next section (Theorem .1.5). Theorem .1.5
will also be used in a key way to prove existence of indiscernibles (Theorem .1.9)
and averages (Theorem .1.12) in this section. The technical tool needed to prove it
is splitting. Recall the definition.

LThis is arbitrary, we may consider fér( M) a fragment of a larger logic, or even a subset with some weak
closure properties.
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DEFINITION I1.1.3. Letq € S,(B, M), with B C p(M). Let Ay, Ay C
L(M). The typeq is said to( A1, As)-split over A, if there exist elements ¢ € B
and a formulap(z, j) € A, such thatp, (b/A, M) = tpa, (¢/A, M) and both
#(z,b) and—¢(z, ¢) belong tog. We simply saysplitsfor (L(M), L(M))-splits.

The next fact is a variation on Exercise 1.2.3 fro8h[b].

PROPOSITIONIIL1.4. Let B C C' C p(M) and letA C M. Suppose that
B realizes all the types it¥a, ,(A) that are realized inC. Letq,r € Sa, ,(C)
such thatg,  do not(A;, Ag)-splitoverA. If g | B=1r | B, theng =r.

PROOF Suppose # r. Then there exist$(z,y) € A; andé € C such that
¢(z,¢c) € qand—¢(z,¢) € r. Considertpa,(¢/A, M). By assumption orB,
there exist® € B such thatpa,(b/A, M) = tpa,(¢/A, M). Since neitheg, nor
r (A1, Az)-split over A, we havep(z,b) € ¢ and—¢(z,b) € r. This contradicts
the assumptionthat| B = r | B. O

The following theorem localizes results fro®H1§ and [Grl]. The proof
appearing in $h1q uses generalizations of a theorem of Paul@rdnd Michael
Makkai appearing infrMa]. The proof given here is simpler and closer @rl].
See Theorem 1..2.9.

THEOREMIIL.1.5. Lety and A be cardinals such that > |L(M)|, \* =
A, and\ > 22", If M does not have thgu™, p)-order property, thenV/ is (A, p)-
stable.

PROOF Suppose that/ is not(\, p)-stable. Then, there exists C p(M) of
cardinality A such thatS, (A, M)| > .

For eachy € S,(A, M), we have(q | ¢) € Sy (A, M). Define
f18p(A, M) — HyerSpp(A, M), by  f(q) = (g1 @)pernn-
Then, f is a well-defined injection. Observe that
‘H¢EL(M)S¢7P(A>M)| < AL <M< AT < |Sp(A, M)|.
By the pigeonhole principle, we can figde L(M) such that S, ,(A, M)| > A.

Fix ¢(z,y) as above and choode; | i < AT} C p(M) such that # j
impliestp,(a;/A, M) # tpy(a;/A, M).

Write x (v, ) := ¢(z,y). Define(A4; | i < A) an increasing continuous
sequence of subsetsf)M) containingA, each of cardinality at most, such that
(*) A4 realizes every type i8,(B, M), for eachB C A; with |B| < p.

This is possible: Having constructed of cardinality at most, there are at most
A = )X subsetsB of A; of cardinality u. Further, for each suc, we have
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|Sp(B, M)| < 2# < ), sowe can add the needed realizationd jn; from p(M)
while keeping 4;4+1| < .

We now claim that (*) allows us to choose, for evéry: AT, an indexj,
with i < j < A%, such that for each < p* the typetp,(a;/Ai+1, M) (x, ¢)-
splits over eactB C A; of cardinality at mosj:.

Otherwise, there i$ < \™ such that for every index, withi < j < AT,
there existd < ™ andB’ C A; of cardinalityy such thatp,(a;/A;41, M) does
not (x, ¢)-split over B7. By the pigeonhole principle (since™ > 1) we can find
S C A\t of cardinalityA™, an ordinal < u*, andB C A;; of cardinalityu such
thattp,(a;/A;41, M) does not(x, ¢)-splits overB, for everyj € S. By (*) we
can choos&” C A; ., of cardinality at mosg* such that”' realizes every type in
Sy p(B, M). Then, sincdS,, ,(C, M)| < 22" < AT, by the pigeonhole principle,
we may assume thap,(a;/C, M) is constant forj € S. By Proposition .1.4, we
must havetp,(a; /Ay, M) = tpy(ai/ A1, M), fori,j € S. This contradicts
the choice ofi;s and the fact thatt C A; ;.

Define{¢;, d;, b | | < pu*} C Agiyo andB; = | J{cx, dy, bi | k < I} such
that:

(1) B; € Ay and|By| < p;

(2) tpy(@/Bi, M) = tp,(di/ By, M);

(3) Botho(z,¢;) and—¢(7, d;) belong totp,(a;/ Az, M);
(4) by € Ay realizes bothy(z, ¢;) and—¢(z, d;).

This is possible: LeBBy = () andB; = |J,,; Br whenl is a limit ordi-
nal. Having constructed;, C Ay of cardinality at mosj, the typetp,(a;/Asz;)
(x, #)-splits over B; and hence there am@,d; € Ay with tp, (¢;/B;, M) =
tp, (di/ By, M) andg(z, ¢;) and—¢(7, d;) € tp,(a;/Aa, M). Then, by construc-
tion we can findb, € Ay realizingtp,(a;/cd;, M) so (4) is automatically
satisfied.

Now, the set{b;'¢d; | I < T} C p(M) and the formula
(o, T1, T2, Yo, Y1, J2) = ¢(Zo, 71) < ¢(Zo, J2)
demonstrate that/ has the(.™, p)-order property. O

The following definition generalizes the notion of relative saturation.
DEFINITION I1.1.6. We say thata sét C M isrelatively()\, p)-saturated
if C realizes every € S,(B, M) foreveryB C C suchthatB| < A.

The following lemma is a version of(T') < |T'|" for the notion of split-
ting.
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LEMMA 11.1.7. Letu be a cardinal such that > |L(M)|. Suppose that
M does not have thg:™, p)-order property. Suppose th& C p(M) is relatively
(ut,p)-saturated. Then for each e S,(B, M) there isA C B of cardinality at
mosty such thaty does not split oveH.

PROOF. Suppose, for a contradiction, that there exist a relatiely, p)-
saturated seB3 and a typeg € S,(B, M), such that; splits over everyA C B
of cardinality at mosju.

We will show that)M has the(;.™, p)-order property. Construct a sequence
of sets(4; | i < u*) such that:

(1) Ay = 0;

(2) A; = Uj<¢ Aj, wheni is a limit ordinal;

(3) A; C B, foreachi < u™;

(4) |A;| < p, foreachi < p;

(5) There arep; € L(M) anda;, b; € A;i1, such thattp(a;/A;, M) =
tp(b;/A;, M) ande(z, a;) and—¢(z, b;) are ing;

(6) A;11 containsg; realizingq | (A; U a;b;).

This is possible: Foi = 0 or a limit ordinal, it is obvious. Suppose that
A; has been constructed. Sincg;| < pandA; C B, ¢ splits over4;. Hence,
there exist a formula; € L(M), anda;, b; € B demonstrating this. SincB is
relatively (1T, p)-saturated, and | (A; U a;b;) € Sp(A; U ab;, M), there exists
¢; € Brealizingq | (A; Uagb;). Let A; 1 = A; U {a;, b;, & }. All the conditions
are satisfied.

This is enough: By the pigeonhole principle, since> |L(M)|, we may
assume that there exists € L(M) such thatp; = ¢, for eachi < p*. Now
consider{¢;"a;’b; | i < pt} and the formula

Y(To, T1, T2, Yo, Y1, ¥2) = ¢(ZTo, U1) < d(Zo, J2)-

It is easy to see that they demonstrate thiahas the(u ™, p)-order property. [

The following fact is Lemma 1.2.5 ofgh b.

FACT I1.1.8. Let B C p(M) and let{a; | i < a}
Consider the type; = tp(a;/BU{a; | j < i}, M) € S,(B
and suppose that

C p(M) be given.
Ua

{a; [ j < i}, M)

(1) If i < j < atheng; C gj;
(2) For eachi < a the typeg; does not split oveB.

Then{a; | i < a} isindiscernible overB.
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The next theorem is a generalization of two theorems. (1) Whsistable
for every model of a first order theory, a version of this theorem appeaRi]in [
(2) Whenp := {z = z}, it appears in@Grl].

THEOREMIIL.1.9. Lety and A be cardinals such that > |L(M)|, \* =
A, and X > 2%, If M does not have théu™, p)-order property, then for every
I C p(M) and everyA C p(M) such thatlI| > X > |A|, there exists/ C I of
cardinality AT indiscernible overA.

PROOF Letl = {a; | i < A*}. By the pigeonhole principle, we may assume
that/(a;) = ¢(a;), fori,j < A™.

Define(A; | i < AT) C p(M) such that:

(1) Ao = A;

2) A; = Uj<¢ A;, whenj is a limit ordinal;

(3) A € p(M);

(4) |A;] < A, foreveryi < \T;

(5) A;11 containsa;;

(6) A, realizes every type i5,(B, M), for eachB C A; of cardinality at
most.

This is possible: Foi = 0 it is clear. Ifi is a limit ordinal it is easy.
Let us concentrate on the successor stage. Assumedihatt cardinality A has
been constructed. By cardinal assumption, there\ate \* subsetsB of A; of
cardinality ., and for each suclB we have|S,(B, M)| < 2* < \. Hence,A;;
satisfying (3)—(6) can be found.

Consider the following stationary subsetof
S={i<A"|ef(i) 2 n"}

Let r; := tp(a;/A;, M). Then clearlyr; € S,(A;, M). Now, for eachi € S,
sincecf(i) > u™, the setA; is relatively (1™, p)-saturated. Hence, by Lemma
1.7, there exist®3; C A; of cardinality at mosj: such that; does not split over
B;. Furthermore, sincef(i) = u™, there existg < i such thatB; C A4;.

This shows that the functiofi: S — At defined by
f(i) =min{j | B; C A},

is regressive. Hence, by Fodor’'s lemma (see Theorem 2B]f fhere isS” C S

of cardinality\™ andiy, < A such that for each € S’ we haveB; C A;,. Since
there are only\* = )\ subsets of4;, of sizex, we may assume, by the pigeonhole
principle, that there exists a sBtC A, such thatB; = B for eachi € S’. Now,

M does not have thgu™, p)-order property, and” = ), so Theorem .1.5 implies
that M is (A, p)-stable. Hence}S,(A;,, M)| < X, and thus by the pigeonhole
principle, we may further assume that(a; /A;,, M) = tp(a;/A;,, M), for every
i,jes.
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By re-enumerating if necessary, we may assumeghat(io + 1) = \™.
Now let

gi = tp(ai/Aiy U {a; | j < i}) € Sp(Aio U {a; | j < i}).
By Proposition .1.4 we have thgt C ¢; if « < 5. Thus, all the assumptions of Fact

.1.8 are satisfied, sé = {a; | i < A"} is indiscernible over, sinceA C A;,.
This finishes the proof. O

In the previous theorem, we demanded tHdbe a subset of(A). The
next remark summarizes what we can do wHed M is not necessarily contained
in p(M). It follows from the previous theorem by considering an expansion of
L(M) with constants for elements iA.

REMARK 11.1.10. Lety > |L(T)| be a cardinal. Led C M be given and
suppose that/ does not have th@:™, p)-order property even allowing parameters
from A. Let \* = X and\ > 22", Then, for everyl C p(M) of cardinality A+,
there exists/ C I of cardinality\™ indiscernible over.

The next definition defines averages without usii@). In stable dia-
grams, both definitions are easily seen to be equivalent.

DEFINITION 11.1.11. Let] be an infinite set of finite sequences. LA&LC
M. We define theverage ofl over A in M as follows

Av(I, A, M) = {¢(z,a) | a € A,¢(z,9) € L(M),
andM = ¢[c, a] for |I| elements € I}.

We will be interested in conditions guaranteeing that averages are well-
defined. Itis a known fact (see Lemma lll 1.7 (1) 8H b]) that if M is a model of
a complete, first order, stable thedfythen for every infinite set of indiscernibles
I'and A C M, the averageAv(I, A, M) is a complete type oved. Also, if
|I| > |A| + k(T), then the average is realized by an elemeni ¢this is essen-
tially Lemma 1l 3.9 of [Sh b]). A corresponding local result (Theorem .4.6) in
the presence of the compactness theorem will be given in Section 4. Inside a fixed
model, the situation is more delicate. The next theorem is a localization of Con-
clusion 1.11 in $h30Q. Notice the similarity with the assumptions of Theorem
.1.9.

THEOREMIIL.1.12. Lety and X be cardinals such that > |L(M)|, \* =
A, and X > 2%, If M does not have théu™, p)-order property, then for every
I C p(M) of cardinality \*, there exists/ C I of cardinality A" such that for
eachA C p(M) the averageAv(J, A, M) is a complete type ovet. Moreover, if
|J| > |Al, thenAv(J, A, M) € S,(A, M).

PROOF Let] = {a, | a < A"}. We may assume by the pigeonhole principle
that there exists < w such that(a,) = n, for eacha < AT
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We first essentially repeat the proof of Theorem .1.9 and construct a se-
quence(4, | o < AT) such that:

(1) Ao =0, As = U5 Aa Whend is limit, and A, € Aq 1.
(2) Ao C p(M).

(3) |Aa| < A, for everya < AT,

(4) A, containsi,,.

(5) A1 realizes all types i, (Aq, M).

This is possible: Sincé/ does not have théu™, p)-order property, ther is
(A, p)-stable by Theorem .1.5. Hencg,(A., M)| < X inductively, for each
a < A\t

Now (5) implies that
(6) If cf(0) > pt thenAy is relatively (u ™, p)-saturated.

As in the proof of Theorem .1.9, we can find a §e€ {6 < A* | ¢f(6) > u*} of
cardinalityA* and an ordina(*) = min S such that

(7) For eachy € S, the typetp(a./Aq, M) does not split over,, ..
(8) If a, 5 € S anda < B thentp(an/An, M) C tp(ag/Ag, M).

We claim that the sef = {a, | « € S} is as desired. To show this, we
will show that

(*) Foreveryc € p(M) and¢(z,y) € L(M), either
{aeS: ME¢land}l<pu or [{a€S: ME -dfand} < p.

This implies the conclusion of the theorem: EbIC p(M ), condition (*) implies
that Av(J, A, M) is a consistent set of formulas ovdr as each finite subset is
realized by all bu: many elements aof . SinceAv(J, A, M) is always complete,
we have thatAv(J, A, M) is a complete type over A. For the last sentence, notice
that all but| A| + |L(M)| + p elements of realizeAv(J, A, M). Hence, ifA™ >

|A|, then there exis®®, € J C p(M) realizingAv(J, A, M) (asA > u+|L(M))).
This shows that\v(J, A, M) € S,(A, M).

Let¢c € p(M) and¢(z,y) € L(M) be given. Thentp(¢/Aq, M) €
Sp(Aa, M), sincec € p(M). Hence, by (5), we can finfic, | a € S} C p(M)
satisfying

(9) Ca € Aa+2-
(10) ¢, realizestp(¢/Aq+1, M).

We will prove (*) by finding a set of ordinal&’ of cardinality . such that
either{a € S: M |= ¢lan,c]} CEor{a e S: M | —¢la,, ]} C E.
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We construct the sek, as well as a se’ C A,+ with the following
properties:

(11) [E| < pand|C| < p.

(12) A\t € E.

(13) Ifa+1 € Ethena € Eandifé € E andcf(d) < pthensup(EN6) = 4.

(14) If 6 € E andcf(8) > ut, thentp(c/As, M) does not split ove€ N Ay,
Moreover,C N As C Agup(Ens)-

This is possible: Construdf,, and C,, of cardinality at mosj: by induction on
n < w. Let By = {\T} andCy = 0. Then, by (6) and Lemma .1.7 we can
find C,,+; of cardinality . such thatp(¢/As, M) does not split ove€,, 1 N As
for eachd € E, with cf(§) > u™. Furthermore, we can add at mgstmany
ordinals toF;, 1 to ensure tha, 11 € Agyp(g,,.n6)- THUS,E = U E, and
C =U,<, Cn are as desired.

n<w

This is enough to prove (*). In fact, to show thédr € S : M
dlaa,c]} CEor{a e S: M| —¢laa, ¢} C E, it clearly suffices to show

(**) M = ¢lan, ¢ < ¢lag,c|, foreveryo,B e S\ E.

Notice that by construction (11)—(14) the et FE is partitioned into at
mosty intervalsof the form{a € S | sup(E NJ) < a < ¢}, whered € E with
cf(8) > wpt. If such an interval is nonempty, then it must have size at lgast
We will make use of this and prove (**) in two stages. In the first part, we will
show that (**) holds, provided: andg belong to the same interval, and then in the
second part, that (**) holds also whenandg belong to different intervals.

Letd € E be such thatf(§) > ut. Denote by, = sup(E N §). Now let
a, 3 € Ssuchthaty < a < 4 < 6. Without loss of generality, assume thdt =
élaa, c]. Theno(aq,y) € tp(¢/As, M). By (14) the typetp(¢/As, M) does not
splitoverC' N As C As,. But, by (8), we havep(an/As,, M) = tp(ag/As,, M).
Hence, by nonsplitting(as, y) € tp(¢/As, M) and soM = ¢lag, cl.

To prove the second part, we first claim that

() M = ¢laa,, s < Plaa,,Cs,], foreverya; > B andas > B2 in S,

To see this, lety = max(«1, az). Then by (8) and (9) (recall that ordinals.$hare
limit), we have M = ¢[aq,,cs] < ¢la,, ¢z ] and alsoM = ¢laa,, Cs,] <
pla~,cs,]. Now by (10) we have thatp(cs, /Ay, M) = tp(ey/Aa), M),
and by (9), bothég, ,é3, € A,. But by (7) the typetp(a,/A, M) does not
split over A,,). Hence,¢(z,¢s,) € tp(a,/A,, M) if and only if ¢(z,cs,) €
tp(ay /Ay, M). Thus,M |= ¢[a., ¢, ] < ¢lay,cs,]. This provesf).

Now for the second part, let ¢ € E with cf(§) > p™ andcf(§) > u™.
Denote bydy = sup(E N §) andéy = sup(E N &). Assume thad, < & and let
i€ Swithdy <i < dandj € Swith &y < 5 < & To show: M | ¢la;, c]
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¢laj, c). SupposeV! = —(¢la;,c] < ¢la;,c]). We will derive a contradiction by
showing that\/ has the(u, p)-order property.

Assume, without loss of generality, thét = ¢[a;, ¢] andM = —¢la;, c].
We distinguish two cases.

Case 1: Suppos#! = ¢[a;,c;| (recallj > i). Then, by ), we have
that M |= ¢laa, cgl, for everya, 5 € S with a > 3. On the other hand since
M = —¢la;, ¢, the first part of this argument shows thidt = —¢|a., ¢], for each
a € Swith & < a < £ Hence, by (10), for each € S with a < 3 we have that
M = —¢laq, cgl. Thus, fora, B € SN &, &), we have

M = —¢lan,cg] ifandonlyif o < g.
This implies easily thad/ has the(u™, p)-order property.

Case 2: Suppos#/ = —¢la;,¢). Similarly to Case 1, we obtain the
(u™, p)-order property by using the interval N [§y,d) and the fact that\/ =

qb[fli, C].
]

II.2. Local order and stability for nonelementary classes

In this short section, we will examine the stabilitypfvith respect to all
the models of a given class of modéls Let us fix the concepts. We will work
inside the clas& = PC(73,7,T"). Recall that forI’ C 7} andI" a set of7-types
over the empty set, we let

PC(Ty,T,T') ={M | L(T) : M =T, andM omits every type id'}

We will denote byu(K) = wu(|Ty],|T|), the Hanf-Morley number fokl. The
properties of Hanf-Morley numbers work in this more general context. Recall that
(A, k) is the least cardingk with the property that for every?C(73, 7, T") with

|T1| < Aand|T'| < &, if PC(T1,T,T) contains a model of cardinality, then it
contains models of arbitrarily large cardinality. It is known for example that when
k = |T'| =0, thenu(K) = V. For|['| > 1, thenu(K) = 57, r))- Recall
thato (A, ) is the least ordinal with the property that for every C(73, T, T') with

|T1| < Aand|T'| < &, if PC(T1,T,T") contains a model with a predicate whose
order type isj, then it contains a model where this predicate is not wellordered.
Much is known about such numbers. Here are some of the known facts. First
d(A,0) = wandd(\, k) is always a limit ordinal. We have monotonicity proper-
ties: if \; < Ao andry < ko, thend (A1, k1) < 6(Ag, k2). Also, if 1 < k < Athen

S\, k) = 0(\,1). Ingeneralb(\, k) < (2M)*. Finally, suppose: < X and )\ is a
strong limit cardinal of cofinalityy, thend(\, ) = A™. See Lemma VI1.5.1 and
Theorem VI1.5.5 of §h b] or [Gr b]
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Choosing to carry out the theorems of this section iR(class is ar-
bitrary. We could have chosen to study any sufficiently general class of models
extending the first order case in which the compactness theorem fails. For exam-
ple, the class of models of an infinitary sentegice L., or Ly+,,. All the results
of this section hold for such classes and the proofs can usually be used verbatim.

As in the previous section, we will fix a set of L(T)-formulas (with
parameters).

We expand the definitions we made in the first section for the &lass

DEFINITION 11.2.1.

(1) Let\ be a cardinal. We say thatis stable in), if for every M € K, M is
(A, p)-stable.
(2) We say thap is stableif there exists a cardinal such thap is stable in\.

DEFINITION 11.2.2.

(1) We say thap has the\-order propertyif there existsM € K such that\/
has the A, p)-order property.

(2) We say thap has theorder propertyif p has the\-order property for every
A

Using proof techniques similar to those used in Theorem .2.10 of Chapter
| we observe:

FAcT 11.2.3. The following conditions are equivalent.

(1) p has the order property;

(2) p has thex-order property for every\ < p(K);

(3) p has theu(K)-order property;

(4) There exists a model/ € K, a formula¢(z,y), and an indiscernible
sequencda; | i < u(K)} € p(M), such that

M = ¢la;,a] ifandonlyif i< j < pu(K).

We now prove a version of the stability spectrum and the equivalence be-
tween local instability and local order. Nonlocal theorems of this vein appear in
[Shiq.

THEOREMII.2.4. The following conditions are equivalent.

(1) pis stable;

(2) There exists a cardinat(K) < u(K) + |L(T)|" such thatp is stable in
every\ > u(K) satisfying\#(®) = X\,

(3) p does not have the order property.
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PROOF (2) = (1) trivially.

(3) = (2): Sincep does not have the order property, by Fact .2.3 there
exists a cardinat < p(K) such that no model of has the(x™, p)-order property.
Let A > u(K). Then, automatically, since < u(K) and pu(K) is eitherX, or
a strong limit, we have. > 22", Letx(K) = x + |L(T)|. Hence, if\ > u(K)
satisfies\*() = X, andM e K, then Theorem .1.5 implies thaf is (\, p)-stable.
Thus,p is stable in\.

(1) = (3): This is again a standard application of Hanf number techniques.
We give just a sketch. Suppogés stable in\. LetT™* be an expansion @f; with
Skolem functions, such théf*| = |T}|. Letx be smallest such that > \. Using
the order property and the methods of Morley, we can fintl = 7 such that
M = M* | L(T) € K, with ¢(z, ), and{a; | i < w} C p(M) demonstrating
the p-order property. Furthermorga; | ¢ < w} C p(M) is T*-indiscernible.
Hence, by the compactness theorem, we can find a mddel= 7* and a set
{ay, | n € £29} C p(N*) demonstrating the-order property with respect to the
lexicographic order. Furthermore, for everyx w

tp(Gugs - - - 5w, /0, N*) = tp(ao, . .., an/0, M™), foreveryvy < --- < vp.

We may assume thaf* is the Ehrenfeucht-Mostowski closureff,, | n € =2},
sinceT™ has Skolem functions. LeV = N* | L(T). ThenN € K. Consider
A= UnE w>o Gy © p(IN). Then|A] < 2% < Aand|S,(A, N)| = 27 > A. Thus,
N is not(\, p)-stable, a contradiction. O

REMARK I1.2.5. In the first order casgy(K) = No and sop is stable if
and only ifp is stable in every\ such that\l“(T)l = X, In the first order case, most
authors definstabletypes using (3) with.(K) = No.

I1.3. Local stability and local homogeneity in finite diagrams

In this section, we examine the stability pffor the class of models of
a finite diagramD. The framework of finite diagrams was discussed in the first
section of Chapter |. The same notation is used.

We set the necessary definitions to localize all results of the first chapter.
Note that some of them have already been established in a more general context,
like the equivalence between local stability and the failure of the local order prop-
erty.

Fix p a set of L(T')-formulas (maybe with @&-set of parameters). All the
results of Section 1 and 2 of this chapter hold, as finite diagrams is a particular case
of aPC-class.
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We adopt the following notation. Note that there is a slight clash of nota-
tion between the subscriptemployed here and the subscripas it is used in the
first chapter, but this shouldn’t cause any ambiguity.

DEFINITION 11.3.1. ForA a D-set, let
Spp(A) = {tp(c/A) | AUcis aD set and:realizesp}.

Although the definition makes sense for atiyC M, it will only be used
whenA C p(M). The next definition is only a restatement of what we meant by
relatively (A, p) saturatedin the first section of this chapter, whéid = €.

DEFINITION I1.3.2. A modelM is (D, A\, p)-homogeneouysf M realizes
every type inSp ,,(A), for eachA C p(A) of cardinality less tha.

We can relax the monster model assumption to:

HyPOTHESISIL.3.3. There exists 4D, <, p)-homogeneou®-model &,
for somek larger than any cardinal needed in this chapter.

We will work insidep(€). The results of Chapter |, Section 1 hold rel-
ativized to realizations op. Thus, € can be assumed to contain evabyset
A C p(M), for any D-model M. And also€ is homogeneous with respect to
subsets 0p(<). Write Sp ,(A) for Sp (A, €).

We rephrase the definitions of local stability and local order.
DEFINITION 11.3.4.

(1) Dis (A, p)-stableif |Sp,(A)| < AforeveryA C p(<) of cardinality \.
(2) D isp-stableif D is (A, p)-stable for some cardinal.

DEFINITION 11.3.5.

(1) D has the(\, p)-order propertyif there exist a formulap(z,y) € L(T)
and asefa; | i < A} C p(€), such that

= ¢la;,a;] ifandonlyif @< j <A
(2) D has thep-order propertyif D has the(\, p)-order property for every
cardinal\.

Then, all the statements of Chapter | Section 2 are true provided all the sets
mentioned are taken insigg¢) and the local notions'p ,(A), p-order property,
p-stability are used instead. Most of the proofs can be used without modification.
The only kind of changes which are occasionally required are the obvious ones, for
example: In the proof of Remark .2.4 add the requiremgayt) for i < X in the
list of conditions, as well as a requirement that | ¢ < A} be indiscernible over
the parameters qf. In the proof of Theorem .2.9, choo$e; | i < u*} C p(€)
and so on. The main result of Section 2 is the local version of the stability/order
dichotomy. We state it for completeness
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THEOREMIL3.6. D is p-stable if and only ifD does not have thg-order
property.

We need to introduce a local version of strong splitting:

DEFINITION 1.3.7. Let A C p(¢) andgq € Sp,(A). The typeq splits
stronglyover B C A if there exist{¢,, | n < w} C p(€), an indiscernible sequence
over B, and a formulay(z, i) such that(z,c1) € q, —¢(z,¢2) € q.

Define the localized version ¢%)\) as follows:

DEFINITION I1.3.8. D satisfies(p * \) if there exists an increasing and
continuous chaif 4; | i < A}, with A; C p(<), and atypey € Sp ,(A) such that
q | Aj+1 splits overA;.

The localized version ofB « \) is defined similarly using subsets o),
call it (p, B x \). For (C * \), use subsets gf(¢) and the definition of strong
splitting above for(C x \), call it (p, C' * \)

The same lemmas can be shown with very similar proofs using the homo-
geneity of¢ insidep(¢). We obtain:

THEOREMIIL.3.9. D is notp-stable if and only if(p « A) holds for every
cardinal A if and only if (p, B * ) holds for every cardinaA.

DEFINITION 11.3.10. Let
k(p, D) = min{x | Forallg € Sp ,(A), A C p(€), thereisB C A, |B| < « such that
g does not split strongly oveB }.
If it is undefined, we lek(p, D) = cc.

Then, by inspecting the proofs, the local version of the existeneg 0
exists, when the diagraif is p-stable.

THEOREMIIL.3.11. If D is (), p)-stable, then:(p, D) < A.

This allows us to obtain a local version of the stability spectrum. The
cardinalx in the statement below ig(p, D) and the cardinah the first cardinal
such thatD is (), p)-stable.

THEOREMIIL.3.12. Either D is not p-stable or D is p-stable and there
exists cardinals; < A < Jy 7))+ such that for every cardinal, the diagrambD is

(u, p)-stable if and only ifu > X and <% = p.

Finally making the necessary adaptations, the local homogeneity spectrum
follows:

THEOREMII.3.13. There exists &D, \, p)-homogeneous model of cardi-
nality A if and only ifA > |Sp ,(0)| andA<* = X or D is (A, p)-stable.
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I1.4. Local order, independence, and strict order in the first order case

In this section, we will fix a complete, first order theafyand obtain
results for the class of models®f As usual, we work inside th@monster moded,
a model which is-saturated, for a cardinallarger than any cardinality mentioned
in this chapter. Hence, all sets will be assumed to be ingidad satisfaction is
defined with respect t@. We will write S,(A) for S,(A, <) andAv(I, A) for
Av(I, A, Q) as is customary. As before, we fix a (nonalgebrdidype p. Denote
by dom(p) the set of parameters pf

All the results we have obtained so far hold witfiC) = X,.

We first give local versions of Saharon Shelah’s first order notion of inde-
pendence and strict order proper8h[b).

For a statemerttand a formulap, we use the following notations® = —¢
if the statement is false andp® = ¢, if the statement is true. We will use the
same notation whetie {0, 1}, where0 stands for false antistands for truth.

DEFINITION 11.4.1.

(1) We say that)(z,y) has thep-independence properif for everyn < w
there existga; | i < n} C p(€) such that

p(z) U {gb(i:,ai)iew | i < n}is consistent, forevery C n.

We say thatp has theindependence propertif there exists a formula
¢(z, y) with the p-independence property;

(2) A formula¢(z,y) is said to have the-strict order propertyif for every
n < w there existda; | i < n} C p(€) such that

= 3z(—¢(Z,a;) N ¢(Z,a;)) ifandonlyif i< j<n.

We say thap has thestrict order propertyif there exists a formula(z, j)
with the p-strict order property.

PropPosITIONIL4.2. If p has the independence property or the strict or-
der property, them has the order property.

PROOF Suppose first thathas the independence property. Then, seiey)
has thep-independence property. Hence, by the compactness theorem there exist
I ={a; | i < w} C p(M) such that for everyr < w andw C n there exists
¢ € p(@) realizing the formulg)\,_,, ¢(z, a;)*<. We show that has thep-order
property. For eack < n, letc, € p(€) realize{¢(z,a;) | i < k} U {-o(Z,a;) |
i > k,i <n}. Then, we usdc;"a; | i < n} and the compactness theorem to show
that the formula)(zo, Z1; 0, ¥1) := ¢(Zo, y1) has thep-order property.

Suppose thap has the strict order property. Letz,y) have thep-strict
order property. Then, the formul&(y,, y2) := 3Z(—-¢p(Z, 1) A ¢(Z,y2)) has the
p-order property. O
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The next two results depend explicitly on the parametefs of

THEOREMII.4.3. Leto(z, i) be a formula with the-order property. Then,
either ¢(z, y) has thep-independence property, or there exigtz), the conjunc-
tion of finitely many formulas gf, an integern < w and a sequence € "2 such
that the formulax(z) A A, ¢(z, 7)™ has thep-strict order property (maybe
with parameters frondom(p)).

PROOF By Fact .2.3 (4) there exists an indiscernible sequdngcé¢i < w} C
p(€) such that

= ¢lai,a;] ifandonlyif < j<w.

Further, by a standard compactness argument using Ramsey’s Theorem, we may
assume thafa; | i < w} is indiscernible ovedom(p), the set of parameters pf

If ¢(z,y) does not have the-independence property, then there exists
n < wandw C n such that

*) p(Z) U {o(z,@)'" | | < n} is not consistent

Letw* = {n—|w|,n—|w|+1,n—|w|+2,...,n—1}. Sinceg has thep-
order property, we have thgt @a,, |1, @] if and only ifn—|w| < I. Therefore,

by definition ofw*, the tuple,, |, realizesp(z) U {¢(z,a,)'s"" |l < n}, and
)
(**) p(Z) U{o(Z,@)'S"" |1 < n} is consistent

Now, construct a sequence); | ¢ < *) of subsets of of cardinality |w| such
thatwy = w, w;x = w*, and for each < i*, there existsk € w; such that
wi+1 = w; U{k + 1} \ {k}. Notice that because of (*) and (**) and the definition
of (w; | i < i*), we can findi < i* such thap(z) U {¢(Z,a;)!€¥+ |1 < n}is
consistent, while)(z) U {¢(z,a;)'<" | I < n} is not.

Letk € w; such thatw; 11 = w; \ {k} U {k + 1} (note thatk + 1 & w;).
We then have,

(1)
p(2) U{o(z, @)'", —p(Z, ar), (T, are1) | | < n,l # k, k + 1} is consistent

and
p(Z) U{p(Z,@)'"Y, ~ (T, Gjrr), d(Z,ax) | | < n,l # k, k + 1} is inconsistent

Hence, by the finite character of consistency, we canjifx), the conjunction of
finitely many formulas op, such that

@ E-k@AC N 0@ a@)<) A=g(@,ar) A b, ar)).

I<n,l#k,l#k+1
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Define the formula)(z, y, z), wherez = Zy, ..., Zk—1, Zg4+2, - - - , Zn—1 DY
_ = —\lew; _
X@AC N @) A G(E, 7).
l<n,l#k l£k+1
To conclude the proof we show thatz, g, z) has thep-strict order property:
Letm < w be given. For every < m we let
& = Ak 001 A1 T kr2 - A1,
whereay ; is to be substituted for thg-variable, andag”. .. @, ,—1 iS to be
substituted for the variablg). .. Z; 1" Zp12". .. Zn—1.

It is enough to check that
= 3z2(—(z, &) Ap(z,&2)) ifandonlyif j; < jo.

For convenience, denote byhe following sequencey . .. ax_1Gk12 - - . Gp—1- BY
indiscernibility of{a; | i < w}, we have the following equalities

(***) tp(&", &/ dom(p)) = tp(axe, ax41¢/ dom(p)), if j1 < jo,
= tp(@x416¢, axc/ dom(p)), if 71 > jo.

We distinguish three cases.

If j1 < j2. By the first equality of (***), it suffices to check 3z (- (z, ag, ¢)A

w(jv Gk+1, 5))) This is true SinCQ)(.CZ‘) U {¢(.f, dl)lewia _'Qb(:f? C_Lk:)v ¢(‘f) C_Lk-‘rl)) |
I <n,l#k,1#Ek+ 1} is consistent, byf.

If j1 = jo, then by the second equality of (**)= 3z(-(z,c*) A
W(z,c2)) if and only if = 32(—¢(Z, ax, ¢) A ¥(Z,ax, ¢)). Therefore, we have
’: _\Ei‘(_"(/)(.f, Ejl) A w(j> EJQ))]'

If 1 > ja, then use the third equality of (***), and) to conclude that
= —[Bz(m)(@, ) Ap(@, ). =

The next corollary is the local version of Shelah’s Trichotomy Theorem
(see Theorem Il 4.7 ofgh by).

COROLLARY Il.4.4. Assume thapt has no parameters. The typdnas the
order property if and only ifp has the independence property phas the strict
order property.

PROOF Supposey has the order property. Then some formglaas thep-
order property. Thus, by Theorem .4p3has the independence property or the
strict order property (without parameters, sircen(p) = 0).

The converse is Proposition .4.2. O
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The following is an improvement of Theorem 11.2.20 & b].

LEMMA I1.4.5. The following conditions are equivalent

(1) p does not have the independence property;
(2) For every infinite indiscernible sequente_ p(¢€) and for everys(z, y) €
L(T) there exists an integer,, < w such that for every € p(M) either

Hael :Edladif<ng or [{acl:k-glad}| <ng.

PROOF (1) = (2) Let¢(z,y) andI be given. Suppose (2) fails. Then, by the
compactness theorem, we can find p(¢) and a sequencl; | i < w} C p(€)
indiscernible ovetlom(p) such that

® Hi<w :Edlai,d}| =R and [{i<w :} —¢la;,cl} = No.

We are going to show that(z, ) has thep-independence property. Let< w and
w C n. Itis enough to show that

(**) p(7) U {é(a;, 7)€" | i < n} is consistent

To see this, construct a strictly increasing sequence of intéggrsm < n) such
that¢ = ¢la;,,,c| if and only if m € w. This is easily done by induction using
(*). By indiscernibility of {a; | i < w}, (**) holds if and only the set of formulas
p(y)U{é(ai,,,5)™ <" | m < n} is consistent, which is the case, since itis realized
by c.

(2) = (1) Suppose that(z, y) has thep-independence property ard=
{a; | i <w} C p(€) demonstrate this. Then, for eagh< w, and for eachw C n
we have

p(Z) U{o(Z,a;)'€" | i < n} is consistent
Hence, by the compactness theorem, we can find an indiscernible seglence
{b; | i < w} C p(€) andc € p(€) such that bothi < w : = ¢[c,b;]} and
{i <w : | ~¢[c b} are infinite. Hence both(¢, y) and—¢(¢, y) belong to
Av(J,¢). ThusAv(J, ¢) is not consistent, which contradicts (2). O

We can now answer the question of when averages are well-defined and
characterize types without the independence property.

THEOREMIL4.6. The following conditions are equivalent:

(1) p does not have the independence property;

(2) For every infinite indiscernible sequenéeC p(€) and every subset C
p(€) the averageAv (1, A) is a complete type. Furthermordy(/, A) €
Sp(A).

PROOFE (1) = (2): LetI,A C p(€) and ! be an infinite indiscernible se-
quence. By Lemma .4.5 (B (2), we have that\v(I, A) € S(A). Furthermore,
sincel C p(€), we haveAv(l, A) € Sy(A).
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(2) = (1): We prove the contrapositive. Suppose thalas the indepen-
dence property. Then, by Lemma .4.5 €) (1), there exists an infinite indis-
cernible sequencé C p(¢€) anda € p(¢€) such that bothy(z,a) and—¢(z, a)
belong toAv(7,a). This contradicts (2). O

We now give an easy characterization of stable types in simple theories.
The following fact is due to Shelah and appearsSh93.

FACT 11.4.7. If T is simple ther¥” does not have the strict order property.

We make use of the following observation.

PROPOSITIONII.4.8. If the formula¢(z, 7, b) with paramete € ¢ has
the p-strict order property, the” has the strict order property.

PrROOF We show thaf” has the strict order property, by showing thét, 7, z)
has the strict order property. But, for each< w, there existda; | i < n} C p(€)
such that

= 32(—¢(Z,ai,b) A ¢(z,a;,b)) ifandonlyif i< j<n.

Thus, for eachn < w, the set{a;’b | i < n} shows that(z, y, z) has the strict
order property. O

COROLLARY 11.4.9. LetT be simple. The following conditions are equiv-
alent:

(1) pis stable;
(2) Forevery infinite indiscernible sequente& p(¢€) and for everyAd C p(€),
we haveAv(l, A) € S,(A).

PROOF (1) = (2): Letp be stable, thep does not have the order property by
Theorem .2.4. Hencg does not have the independence property by Proposition
.4.2. Hence, (2) follows from Theorem .4.6.

(2) = (1): Supposep is not stable. Them has the order property by
Theorem .2.4. Thusy has either the independence property or the strict order
property (maybe with parameters) by Theorem .4.3. Sihisesimple, by Fact .4.7,
we have thaf” does not have the strict order property. Bupy Has the strict order
property with parameters, th@hhas the strict order property by Proposition .4.8.
Thereforep has the independence property, and so (2) fails by Lemma .4.6]



CHAPTER 11l

Ranks and pregeometries in finite diagrams

The problem of categoricity has been a driving force in model theory since
its early development in the late 1950’s. For the countable first order case, M. Mor-
ley in 1965 Mo] introduced a rank which captur&g-stability, and used it to con-
struct prime models and give a proof of & conjecture. In 1971, J. Baldwin and
A. Lachlan BalLa] gave an alternative proof using the fact that algebraic closure in-
duces a pregeometry on strongly minimal sets. Their proof generalizes ideas from
Steinitz's famous 1910 theorem of categoricity for algebraically closed fields. Lo
conjecture for uncountable languages was solved in 1970 by S. Sisdfgintro-
ducing a rank which corresponds to the superstable case. Later, Shelah discovered
a dependence relation called forking and more general pregeometries, and since
then, these ideas have been extended to more and more general first order contexts,
each of them corresponding to a specific rank:stable, superstable, stable, and
simple.

The problem of categoricity for nonelementary classes is quite consid-
erably more involved. In 1971, H. J. Keislekd] proved a categoricity theo-
rem for Scott sentenceg € L.,., Which in a sense generalizes Morley’s The-
orem. To achieve this, Keisler made the additional assumptionythadmits
N;-homogeneous models. Later, Shelah produced an example of a categorical
Y € Ly, that does not have any;-homogeneous model, using an example of
L. Marcus Mr]. So this is not the most general case. Since then, many of She-
lah’s hardest papers in model theory have been dedicated the categoricity problem
and to the development of general classification theory for nonelementary classes.
Among the landmarks, one should menti@h#§ about sentences ih,,, ., (Q)
which answers a question of Harvey Friedman’s kst][ In [Sh874 and [Sh87
a version of Morley’s Theorem is proved for a special kind of formutas L,,,,
which are called excellent. It is noteworthy that to deal with these nonelementary
classes, these papers introduced several crucial ideas, among them stable amalga-
mation, 2-goodness and others, which are now essential parts of the proof of the
“Main Gap” for first order, countable theories. Later, R. Grossberg and B. Hart
continued the classification of excellent classes and gave a proof of the Main Gap
for those classesdrHa]. H. Kierstead also continued the study of sentences in
L.,(Q) [Ki]. He introduced a generalization of strongly minimal formulas by
replacing “nonalgebraic” by “there exists uncountably many” and obtained results
about countable models of these classes usaigl§. In [Sh30Q, Shelah began
the classification theory for universal classes (see also ICM 1986/videotape) and is
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currently working on a book entirely dedicated to them. He also started the clas-
sification of classes in a context somewhat more general i1, 7,1"), see
[Sh88, [Sh574 and [Sh 60(0. In a related work, Grossberg started studying the
classification of the class of models ¢f for » € L,+,, under the assumption
that there exists a “Universal Model” faf and studied relatively saturated sub-
structures (seedrl] and [Gr2]). This seems to be a natural hypothesis, as we
discussed in Chapter I.

There are several striking differences between the problem of categoricity
for first order and the nonelementary case. First, it appears that classification for
nonelementary classes is sensitive to the axioms of set theory. Second, the meth-
ods used are heavily combinatorial: there is no “forking” (though splitting and
strong splitting are sometimes well-behaved), and the presence of pregeometries
to understand systematically models of a given class is scarce. (A nice example of
pregeometries is hidden in the last section%ii4g and only Ki] has used them
to study countable models.) However, stability was not developed originally for
first order. As we saw in Chapter I, in 1970, Shelah publist®&u3], where he
introduced some of the most fundamental ideas of classification theory (stability,
splitting of types, existence of indiscernibles, several notions of prime models and
so on). Let us describe Shelah’s original definitions in this context (as opposed
to the ones we presented in Chapter I). He considered classes of models which
omit all types inD(T') \ D, for a fixeddiagramD C D(T'). This class is usually
denotedEC(T,T'), whereT" stands forD(T') \ D. He made assumptions of two
kinds (explicitly in his definition of stability): (1) restriction on the cardinality of
the space of types realizable by the models, and (2) existence of models realizing
many types. In fact, the context studied by Keisler in his categoricity result for
L, ., turns out to be th&y-stable case in the above sense.

In retrospect, it seems that what prevented the emergence of a smooth the-
ory for Xg-stable diagrams is the absence of a rank like Morley’s rank. Considering
the success of the use of pregeometries to understand models in the firstgrder
stable case, if one hopes to lift these ideas to more general contexts, it appears
thatN,-stable diagrams constitute a natural test case. This is the main goal of this
chapter. We try to develop what Shelah calls the structure part of the theory for the
classEC(T,T'), under the assumption that it¥g-stable (in the sense 0Bp3). In
fact, as in Bh54, we assume thdfC(7,T") contains a large homogeneous model
(which follows from Shelah’s original definition of stability féiC(7',T"), see The-
orem 3.4. in h3), so that the stability assumptions only deal with the cardinality
of the spaces of types. This hypothesis allows us to do all the work in ZFC, in
contrast to $h494, [Sh874, [Sh87H or [Ki] for example.

The chapter is organized as follows.

In Section 1, we introduce a rank for this framework which captiyes
stability (it does not generalize Morley rank, but generalizes what Shelah calls
RIp, L,2]). This rank differs from previously studied ranks in two ways: (1) it
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allows us to deal with general diagrams (as opposed to the atomic case or the first
order case) and (2) the definition is relativized to a given set (which allows us to
construct prime models). By analogy with the first order case, welzdttally
transcendental when the rank is bounded. For the rest of the chapter, we only
consider totally transcendentBl, and we make no assumption on the cardinality

of T'. We study basic properties of this rank and introduce the notion of stationarity.

In Section 2, we examine the natural dependence relation that it induces
on the subsets of the models. We are then able to obtain many of the classical
properties of forking, which we summarize in Theorem .2.3. We also obtain sta-
tionary types with respect to this dependence relation, and they turn out to behave
well: they satisfy in addition the symmetry property, and can be represented by
averages.

In Section 3, we focus on pregeometries. Regular types are defined in the
usual manner (but with this dependence relation instead of forking, of course), and
the dependence relation on the set of realizations of a regular type yields a prege-
ometry. We can show that stationary types of minimal rank are regular, and this
is used to show that they exist very often. We also consider a more concrete kind
of regular types, which are called minimal. They could be defined independently
by replacing “nonalgebraic” by “realized outside any model which contains the set
of parameters” in the usual definition of strongly minimal formulas. (This can be
done for any suitable class of models, as in the last sectio8lefd.) We could
show directly that the natural closure operator induces a pregeometry on the set of
realizations in any D, Xy)-homogeneous model. We choose not to do this, and
instead we consider minimal types only when the natural dependence relation co-
incides with the one given by the rank. This allows us to use the results we have
already obtained and have a picture which is conceptually similar to the first or-
der totally transcendental case (where strongly minimal types are stationary and
regular, and the unique nonforking extension is also the unique nonalgebraic one).
Another reason is that the proofs are identical to those which use the rank, and this
presentation permits us to skip them.

In Section 4, we use the rank to prove the existence of prime models for
the classiC of (D, Xy)-homogeneous models of a totally transcendental diagram
(this improves parts of Theorems 5.3 and 5.10S33).

In Section 5, we first prove a version of Chang’s Conjecture for the class
K (Theorem .5.2). We then introduce unidimensionality for diagrams. We are able
to adapt techniques of Baldwin-LachlaBdLa] to this context for the categoricity
proof. In fact, we obtain a picture strikingly similar to the first order totally tran-
scendental case. (1) D is totally transcendental, thé is categorical in some
A > |T| + |D| if and only if K is categorical in every > |T'| + |D] if and only
if every model oflC is prime and minimal over the set of realizations of a minimal
type if and only if every model ok of cardinality> |T'| +|D| is D-homogeneous.
(2) If D is totally transcendental and if there is a modekobf cardinality above
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|T| + |D| which is notD-homogeneous, then for afy| + |D| < u < A, there
exists maximally( D, 1)-homogeneous models i of cardinality A (see the defi-
nition below). If T is countable this implies, in particular, that for each ordimal
the classC has at leasfn| models of cardinality,,. (3) When|T'| < 2%, the cat-
egoricity assumption oft implies thatD is totally transcendental, iD is the set

of isolated types of". As a byproduct, this gives an alternative proof to Keisler's
theorem which works so long &&| < 2% (whereas Keisler’s soft,,,,, methods
do not generalize to uncountable languages).

Using regular types and prime models, we will give in chapter IV a de-
composition theorem for the class @b, ¥p)-homogeneous models of a totally
transcendental diagram, which follows from a more general abstract decompo-
sition theorem.

[ll.1. Rank and stationary types

The framework of this chapter is the class of models of a finite diagram.
The notation is as in the first chapter. We first introduce a rank for the claSs of
models which generalizes the rank fro8hB74. We then prove basic properties
of it which show that it is well-behaved and is natural for this class.

DEFINITION Il1.1.1. For any set of formulag(z, b) with parameters i,
and A a subset o containingb, we define theank R4 [p]. The rankR 4 [p] will
be an ordinal—1, or co and we have the usual orderirgl < o < oo for any
ordinala. We define the relatio® 4 [p] > « by induction ono.

(1) Ralp] > 0if p(z,b) is realized in¢;
(2) R[p] > 0, whend is a limit ordinal, if R4 [p] > « for everya < 0;
(3) Ralp] > a + 1if the following two conditions hold:

(@) Thereisi € A and a formulap(z, ) such that

RalpU¢(z,a)] > a and RalpU—¢(Z,a)] > a;
(b) For everya € A thereisq(z, ) € D such that
RalpUq(z,a)] 2 a.
We write:
Ralp| = —1if pis not realized ir;
Ralp| = aif Ralp] > a butitis not the case thdta[p] > o + 1;
Ralp| = oo if Ra[p] > « for every ordinaky.

For any set of formulag(z) over A C ¢, we let
Ry[p] = min{ Ralq] | ¢ C p | B, B C dom(p), B finite }.

We write R[p] for Re|p].
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We need several basic properties of this rank. Some of them are purely
technical and are stated here for future reference. Most of them are analogs of
the usual properties for ranks in the first order case, with the exception of (2) and
(3). The proofs vary from the first order context because of the second clause at
successor stage, but they are all routine inductions.

LEMMA 111.1.2. Let A be a subset of.

(1) Ral{z=c}]=0.

(2) If pis over a finite set op is complete, the® 4[p] > 0 if and only if there
is B C Aandg € Sp(B) such thap C q.

(3) Let A be (D, Xg)-homogeneous and latb ¢ A. If tp(a/0) = tp(b/0)
thenR4[p(z,b)] = Ralp(z,a)].

(4) (Monotonicity)If p F ¢ andp is over a finite set, theR 4[p] < Ralq].

(5) If pisoverB C Aand f € Aut(€) thenRa[p] = Rya)[f(p))-

(6) (Monotonicity)lf p C gthenR4[p] > Ralq].

(7) (Finite Characterhere is a finiteB C dom(p) such that

Ralp] = Ralp | B].

(8) If Ralp] = aand < «, then there ig; over A such thatR 4[q] = 3.
(9) If Ralp] > (JA| + 2ITh*, thenR4[p] = oc.
Moreover, whe is (D, Ry)-homogeneous, the bound(&”1)*.

PrROOFE (1) Trivial

(2) Suppose C q € Sp(B), andB C A. Theng is realized in€, since¢
is (D, x)-homogeneous, ange Sp(B). Hencep is realized in€ and R 4[p] > 0.

For the converse, jf is over afinite set, an& 4 [p] > 0, thenthereig € €
realizingp. Thustp(¢/ dom(p)) extendsp andtp(c/ dom(p)) € Sp(dom(p)).

If p is complete, then there iB C A such thatp € S(B). Now leté
(not necessarily i) realizep. For everyb € B, Ra[p | b] > 0, and so there is
¢ € ¢realizingp | b. Buttp(¢/b) = p | b = tp(&/b) sincep is complete. Thus
tp(cb/0) € D, sop € Sp(B).

(3) By symmetry, it is enough to show that for every ordinal
Ralp(z,b)] > a implies Ralp(z,a)] > a.

We prove that this is true for all types by induction @n

e Whena = 0, we know that there is € ¢ realizingp(z,a). Then, since
tp(a/0) = tp(b/0) and A is (D, Xp)-homogeneous, there isc A such
thattp(ca/0) = tp(db/0). But thenp(z,b) C tp(d/b). Hencep(z,b) is

realized in€, soR4[p(z,b)] > 0.
e Whenq is a limit ordinal, this is true by induction.
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e SupposeR[p(Z,a)] > « + 1. First, there i € A and¢(z,y) € L(T)
such that both
Ralp(z,a)U¢(z,¢)] > and Ralp(z,a)U-¢(z,c)] > a.
Since A is (D, Ng)-homogeneous, there is € A such thattp(ca/0) =
tp(db/0). Therefore by induction hypothesis, both
Ralp(z,b) Up(z,d)] > a and Ralp(Z,b) U—¢(z,d)] > a.
Second, for everyl € A, there isc € A such thatp(ca/0) = tp(db/0).
SinceR[p(Z,a)] > a + 1, there isq(Z,y) € D, such thatRs[p(z,a) U
q(z,¢)] > a. Therefore, by induction hypothesiB.[p(z,b) U ¢(Z,d)] >
«. This shows thaR4[p(z, b)] > a + 1.

(4) Suppose F ¢. By definition of the rank, we may choogg C ¢ over

a finite set, such thak 1 [qo] = Ra[q|. Hence, since - qo, it is enough to show
the lemma whei is over a finite set also. Write = p(z,b) - ¢ = ¢(z,a). We
show by induction orv that for every such pair of types over finite sets, we have

Ralp(Z,b)] > o implies  Ralq(Z,b)] > a.

e Fora = 0, this is true by definition.

e Fora alimit ordinal, this is true by induction.

e SupposeRa[p(z,b)] > « + 1. On the one hand, there is€ A and
¢(z,y) € L(T) such that both

Ralp(z,b) Up(z,¢)] > a and Ra[p(z,b) U-9¢(z,c)] > a.
But
p(z,b) Ud(z,¢) - q(T,a) U (z,0)
and similarly
p(%,0) U=¢(7,¢) - ¢(7,a) U=¢(7,¢),
so by induction hypothesis, both
Ralg(z,a) U ¢(z,¢)] > and  Ralq(Z,a) U—¢(Z,c)] > o

On the (_)ther hand, given anty € A, there isr(z,y) € D, such that
Ralp(z,b) Ur(z,¢)] > a. But

p(z,b) Ur(z,¢) - q(z,a) Ur(z,c),
so by induction hypothesi® 4 [¢(Z, a)Ur(z,¢)] > «. HenceR 4[q(z,a)] >
o+ 1.

(5) First, choose(z,a) C p, such thatR4[q] = Ralp] (this is possible

by definition of the rank). Similarly, sincé(q) € f(p), we could have chosen
so that in addition? ¢4 [f(q)] = Rya)[f(p)]. Now, by symmetry, it is enough to
show thatifR4[q] > athenRy 4 [f(q)] = a.

e Fora = 0 or « a limit ordinal, it is obvious by definition.
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e Supposex = 3 + 1. First, there existg(z, b) such that
RalqU ¢(z,b)] > 8 and RalqU-¢(z,b)] > 3.
Thus, by induction hypothesis, we have

Rya)f(@ U, f(b)] = 8 and Ryaf(a) U-o(@, f(b))] = 6.
Second, notice that for evebyc f(A), there isc € A, such thatf(¢) = b.
SinceR4lg] > f+1, there exists(z,y) € D, such thatR 4[qUr(z,¢)] >
(3. Hence, by induction hypothesiB,4)[f(¢) Ur(Z,b)] > 8. This shows
thatRp(4)[f(q)] = B+ 1.

(6) This is immediate by definition of the rank.

(7) By definition of the rank, leB € dom(p) andqg C p [ B be such that
Ralg] = Ralp]. Now, clearlyg C p [ B C p, S0R4g] > Ralp | B] > Ra[p] by
Lemma 6. Saka[p | B] = Rp)].

(8) Suppose there is, such thatR 4[p] # «a for everyp. We prove by
induction ona: > «, that for no typep do we haveR 4 [p] = a.

e Fora = ay, this is the definition oty.

e Now suppose that therejssuch thatR 4[p] = a+1. By 7, we may assume
thatp is over a finite set. Then theredse A and¢(z,y) € L(T') such
that both

RalpU¢(z,¢)] > and RalpU-¢(z,¢)] > a.

But by induction hypothesis, neither can be equakt®o we must have
both

RalpUd(z,6)] > a+1 and RalpU-¢(z,6)] > a+ 1.

Similarly, given any¢ € A, there isq(z,y) € D, such thatR4[p U
q(z,¢)] > «. But, by induction hypothesis, we cannot hakg[p U
q(z,¢)] = a, SORA[pUq(Z, ¢)] > a+1. Butthis shows thaR 4 [p] > a+2,
a contradiction.

e Supposer > qg is a limit ordinal. Them > «a + 1, so as in the previous
case, there is € A and¢(z,y) € L(T) such that both

Ral[pU@(z,¢)] > ap and RylpU-¢(z,c)] > ap.
But by induction hypothesis, for n@ such thatx > 5 > «ag can we have
Ra[pU ¢(z,c)] = Bor Ra[pU—¢(z,c)] = 3, so necessarily sinceis a
limit ordinal, we have
RalpU¢(z,c)] >a and RylpU-¢(z,c)] > a.

Similarly, for anyc € A, there isq(z,y) € D, such thatR 4[p U q(z,¢)] >
ap and hence by induction hypothedis,[p U ¢(Z,¢)] > ( for anyag <
B < a so sincex is a limit ordinal, we have? 4[p U ¢(z, ¢)] > «. But this
shows thatR 4 [p] > a + 1, a contradiction.
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(9) By the previous lemma, it is enough to find < (|A| + 2ITHh*, (re-
spectively< (2!71)* if Ais a(D,Ry)-homogeneous model) such that

*) Ralp] # a9 for every type over.

We do this by counting the number of possible values for the rank. By 7 itis enough
to count the values achieved by types over finite subsets 8iut there are at most
|A|<Mo < |A| + Ry finite subsets ofd, and given any finite subset, there are only
27l distinct types over it. Hence there are at mlot+ 2/71 many different ranks,

and so by the pigeonhole principle (*) holds for some< (|A| + 2/71)*.

When A is a (D, 8p)-homogeneous model, the bound can be further re-
duced by a use of 3, since only the type of each of those finite subséti®f
relevant. O

The next lemma shows that the rank is especially well-behaved when the
parameterA is the universe of 8D, Xj)-homogeneous model. This is used in
particular to study D, Xy)-homogeneous models in the last two sections. Recall
that R[p] is an abbreviation foR¢[p].

LEMMA 111.1.3. (1) If p is over a subset of &D, X;)-homogeneous
modelM, thenR[p] = R[p].
(2) If pis overM; N My, with M; (D, Xg)-homogeneous, fdr= 1, 2, we have

RM1 [p] = RMQ [p]
(3) If ¢(z,a1) andg(z, az) are sets of formulas, with; € M; anday € Mo

satisfyingtp(a1/0) = tp(az/0), thenRuy, [q(z, a1)] = Rap,[a(7, a2)].
PrROOF (1) First, by Finite Character, we may assume th& over a finite
set. Now we show by induction amthat
Rylp] > « implies  R[p| > «.

Whena = 0 or ais a limit, it is clear. Suppos&,;[p] > o« + 1. Then there is
b € M and¢(z,y) such that both

Ry[pUo(z,b)] >a and RylpU-¢(z,b)] > a.
By induction hypothesis, we have

R[pU®(z,b)] >a and R[pU-¢(z,b)] > a.

Further, ifb € €, choosé’ € M, such thatp(b/a) = tp(t'/a). SinceRy[p] >
a + 1, there isq(Z,9) € D such thatRy[p U q(z,0')] > «a. Thus, sincee is
(D, Ro)-homogeneous, by induction hypothesis we h&yeu q(z,b')] > «, and
so by Lemma .1.2 R[p U q(7,b)] > a. HenceR[p] > a + 1.

For the converse, similarly by induction arwe show that

Rlp] > « implies  Ry/[p] > a.
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Again, fora = 0 or o« a limit, it is easy. Suppos&[p] > « + 1. Then there is
b € € and¢(z, y) such that both

R[pU¢(z,b)] >a and R[pU-¢(z,b)] > a.

Since M is (D, Xg)-homogeneous, there exisis € M, such thattp(b/a) =
tp(t’'/a). By Lemma .1.2 3, we have

RlpU®(z, )] >a and R[pU-¢(z,b)] > a.
Hence, by induction hypothesis, we have (sitice M)
RylpUo(z, V)] >a and RylpU-¢(z,b)] > a.

Also, foranyb € M, sinceb € € there isq(z, §) € D such thatk[pUq(z,b)] > a.
By induction hypothesis, we havé,;[p U ¢(z,b)] > «, which finishes to show
thatRys[p] > « + 1 and completes the proof.

(2) By (1) applied twice Ry, [p] = R[p] = R [p)-
(3) SinceRny, [q(Z,a1)] = Rlq(z,a1)] = Rlq(T,a2)] = Rar[q(Z, az)].
L]

We now show that the rank is bounded wh@rs Xy-stable. WhenD =
D(T), D has bounded rank if and only if the thedfyis totally transcendental.
Therefore, the rank may be bounded for diagrams thaicate)-stable. See Theo-
rem .1.13 for a precise converse.

THEOREMIII.1.4. If D is stable in\ for some®;, < A\ < 2% then
R4[p] < oo, for every type and every subset of €.

PROOF We prove the contrapositive. Suppose there is a subsét¢ and a
typep over A such thatR 4 [p] = co. We construct setd,, C A and typeg,), for
n € <¥2, such that:

(1) Dn € SD(An)n

(2) py € p, Whenn < v;

(3) A, isfinite;

(4) pyro andp, are contradictory;
(5) Ralpy] = oc;

This is possible: Let, = (271t if A is a(D,Xg)-homogeneous model,
andy = (JA| + 2/Th* otherwise. The construction is by inductionar= £().

e Forn = 0, by Finite Character we choose filst A, such thatR,[p] =
Ralp | b] = co. SinceRlp | b] = oo, in particularRa[p [ b] > p+ 1
so there existg(z, i) € D, such thatR4[(p | b) U q(,b)] > u. But then
p b C q(Z,b), q(x,b) € Sp(b) andRaq(z,b)] > p, SORAq(Z,b)] =

oo by Lemma .1.2 9. Therefore, we ldt.~ = b andp.~ = ¢(z,b) and
the conditions are satisfied.
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e Assumen > 0 and that we have constructpg € Sp(A,) with £(n) = n.
SinceR4[py] = oo, in particularR 4[p,] > (¢ + 1) + 1. Hence, there is
a, € Aande(z,y) such that

(*)  RalppUo(z,a,;)] >p+1 and Ralp,U-d(Z,ay)] > p+ 1.

Let A0 = A = A, Ua, C A. Both A,-q and A, are finite, so (*)
and the definition of the rank imply that there gr€t, ) € D forl =0, 1,
such that

RA[pn U QS(Q_:» (_17]) U qﬂ(j> AnAU)] > H
and

Ralpy U—¢(Z,an) U 1 (2, Ay1)] 2 .

Definep, o := p, U o(Z, ay) U qo(Z, Ayyo) andp,y1 := p, U =¢(Z, ay,) U
q1(Z, Ayr1). Thenp, € Sp(A,y) sinceq(z, Ayy) € Sp(A,) and A,y

is finite for/ = 0, 1. Moreoverp,-o andp,; are contradictory by construc-
tion. Finally R4[p,~] = oo, sinceRalp,y] > p. Hence all the require-
ments are met.

This is enough: For eachc “2, defineA;, := (¢, Ay @andpy, := U, c, Pyin-
We claim thatp,, € Sp(A4,,). Certainlyp, € S(A4,), so we only need to show that
if ¢ = py, thenA, Ucis aD-set ¢ is not assumed to be i®). Itis enough to show
thattp(cd/0) € D for every finited € A,. But, if d € A,, then there is € w
such thatd € A,,. Since¢ = py, andpy,, € Sp(Aym), thenc U Ay, is a
D-set, and thereforep(ed/0) € D, which is what we wanted. Now that we have
established that, € Sp(A4,), sincel is (D, x)-homogeneous, there i € ¢
such that, = p,. Now letC = U776 <wg Ap. Then|C| =R and ifn # v €

“2, thentp(c,/C) # tp(c,/C), sincep, andp, are contradictory. Therefore
|Sp(C)| > 2%, which shows thaD is not stable in\ for anyXy < A < 2%, [

REMARK 111.1.5. Recall thatin §h3, D is stable in\ if and only if there
is a(D, \™)-homogeneous model anélp (A4)| < A for all D setsA of cardinality
at mostA (this is Definition 2.1 of §h3). The proof of the previous theorem
shows that ifD is stable in\ for someRX, < \ < 2% in the sense of$h3 then
Ra[p] < oo for all D-setA and D-typep. In other words, we do not really need
for this proof.

By analogy with the first order case (se&h[b] definition 3.1), we intro-
duce the following definition. It is not difficult to see thati?t = D(T), D is
totally transcendental if and only ¥ is a totally transcendental first order theory.

In general however, the underlying theory may be unstable (even if the diagram is
categorical).

DEFINITION [1.1.6. We say thatD is totally transcendentaif R4[p] <
oo for every subsetl of € and every type over A.
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For the rest of the chapter, we will make the following hypothesis. We will
occasionally repeat thd? is totally transcendental for emphasis.

HypoTHESISIIL1.7. D is totally transcendental.

In what follows, we shall show that wheh is totally transcendental, the
rank affords a well-behaved dependence relation on the subs&t¥\ef first focus
on a special kind of types.

DEFINITION 111.1.8. A typep is calledstationaryif for every B contain-
ing dom(p) there is a unique types € Sp(B), such thatpp extendsp and

R[p| = R[pg].

Note that since our rank is not an extension of Morley’s rank, one does
not necessarily get the usual stationary types when the class is first order. The
argument in the next lemma is a generalization of Theorem 1.4.(1)(I9h&74.

Recall thatp € Sp(A) splits overB C A if there existsy(z, ) anda, ¢ € A with
tp(a/B) = tp(¢/B), such that(z, a) € p and—¢(z, ¢) € p.

LEMMA II1.1.9. Let M be a(D,Ry)-homogeneous model and léte €
realizingp(z, b) such that
(*) Rltp(d/M)] = R[p(z,b)] = o
Then, for anyd C & containingb there is a unique 4 € Sp(A) extending(z, b),
such that
Rlpa] = R[p(z,b)] =
Moreover,p 4 does not split oveb.

PROOF. We first prove uniqueness. Suppose two different typeandgs €

Sp(A) extendp(z, b) and
Rlpa] = R[p(z,b)] = Rlqa] =
Then there i$)(z, ¢) € pa such that-¢(z, ¢) € q4. Thus, by Monotonicity,
R[p(z,0) U(#,0)] = Ralpl = and  R[p(z,b) U~¢(z,)] > Ralp] = o
Further, for every: € €, there is¢’ € M such thatp(c/b) = tp(c'/b) sinceM is
(D, Ng)-homogeneous. Now writ@z, ¢') = tp(d/c’), and notice that
Rlp(z,b) Uq(z,)] > R[tp(d/bU &)] > Rltp(d/M)] =
But ¢(z,%) € D by definition and so by Lemma .1.2 (B[p(z,b) U (5: o) > a
+

sincetp(eb/0) = tp(cb/0). But this shows thal[p(z,b)] > « 1, which
contradicts (*).

We now argue that4 does not split oveb. Suppose it does, and choose a
formula¢(z,y) € L(T) and sequences, ¢; € A with tp(¢y/b) = tp(¢1/b) such
thato(z, ¢p) and—¢(z, ¢;) both belong te 4. Then by Monotonicity,

R[p(z,b) Up(Z,8)] > Ralp) =a and R[p(z,b) U—-¢(z,¢)] > Ralp] = a.
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Buttp(co/b) = tp(c1/b) so by Lemma .1.2(3) we have
Rlp(z,b) U ¢(z,21)] > a.

An argument similar to the uniqueness argument in the first paragraph finishes to
show thatR[p(z, b)] > « + 1, which is again a contradiction to (*).

For the existence, lgt4 be the following set of formulas with parameters
in A:
{¢(z,¢) | There existg’ € M such thattp(c/b) = tp(¢'/b) and = ¢[d,c] }.

By the nonsplitting part, using the fact thaf is (D, Xg)-homogeneous, we have
thattp(d/M) does not split oveb. Henceps € Sp(A) and does not split over
b. We show that this implies thak[pa] = R[tp(d/M)] = «. Otherwise, since
pa extendsp(z,b), by Monotonicity we must havék[ps] < «, and therefore
R[pa] < a. Letus choosé’ € A such thab C b’ andR[p4] = R[pa | ¥']. For
convenience, we writg(z,b') := p4 | b/, and soR[q(z,b')] < «. Now sinceM

is (D, Rg)-homogeneous, we can choddec M such thatp(b”/b) = tp(V'/b).
Hence

(**) R[q(z,V)] = R[q(7,V)] < c.
But by definition ofp 4, we must havey(z,b') C tp(d/M), so by Monotonicity
we haveR|[q(Z,b')] > R[tp(d/M)] = «, which contradicts (**). O

COROLLARY 111.1.10. The following conditions are equivalent:

(1) p € Sp(A) is stationary. B
(2) There is a(D, ®p)-homogeneous modéf containingA andd < ¢ real-
izing p such thatR[tp(d/M)] = R]p].

DeFINITION II.1.11. Thetypep € Sp(A) isbased orB if p is stationary
andR[p| = R[p | B].

REMARK [11.1.12.

(1) If pis stationary, there is a finitB8 C dom(p) such thap is based orB3.

(2) If pis based orB, thenp | B is also stationary anglis the only extension
of p | B such thatR[p] = R[p | B].

(3) If pis stationary andom(p) C A C B, thenps = pp | A.

(4) Supposep(a/0) = tp(a’/0). Thenp(z,a’) is stationary if and only if
p(Z, a) is stationary. (Use an automorphismé®sendinga to a’.)

Stationary types allow us to prove a converse of Theorem .1.4.
THEOREMIIL1.13. If D istotally transcendental theR is stable in every
A > |D|+|T|. In particular k(D) = Ny.

PROOF Let\ > |D|+|T|, and letA be a subset of of cardinality at mos.
SinceX > |D| + |T'|, by using a countable, increasing chain of models we can find



11l.1. RANK AND STATIONARY TYPES 75

a(D, Np)-homogeneous modél containingA of cardinalityA. Since|Sp(A4)| <
|Sp(M)], itis enough to show thdSp(M)| < X. Suppose thatSp (M) > AT.
SinceM is (D, Xg)-homogeneous, eaghe Sp (M) is stationary. Hence, for each
p € Sp(M), we can choose a finit8, C M such thap is based onB,. Since
there are onlyA many finite subsets af/, by the pigeonhole principle there is a
fixed finite subsetB of M such that\™ many typesp € Sp(M) are based on
B. SinceA™ > |Sp(B)| = |D|, another application of the pigeonhole principle
shows that there a single stationary type Sp(B) with A many extensions in
Sp(M) of the same rank. This contradicts the stationarity.dflenceD is stable
inA.

For the last sentence, ldt= 3,,(|D|+|T|). By Zermelo-Konig, A™0 > ),
hence by Theorem 1..3.k(D) = N,. O

The following results show that stationary types behave nicely. Not only do
they have the uniqueness and the extension properties, but they can be represented
by averages. Surprisingly, it turns out that every type is reasonably close to a
stationary type (this is made precise in Lemma .4.9).

DEFINITION I1.1.14. Letp € Sp(A) be stationary and let be an infinite
ordinal. The sequence= {¢; | i < ' } is called aMorley sequence based orif
for eachi < o we havec; realizesp 4, whered; = AU {c¢; | j < i}.

LEMMA I11.1.15. Letp € Sp(A) be stationary. Iff is a Morley sequence
based orp, thenI is indiscernible over.

PROOF. By stationarityp4, C pa, Wheni < j, and by the previous lemma
eachp,, does not split overl. Hence, a standard result (see for example If]
Lemma 1.2.5) implies thaf is an indiscernible sequence owér O

The definition of averages is rephrased using the factth@t) = N, for
totally transcendental diagrams.

DEFINITION I11.1.16. (k(D) = Np) For I an infinite set of indiscernibles
and A a set (withl U A C ¢€), recall that

AV(I,A) = {6(z,a) | a € A,6(z,7) € L(T) and|é(1,a)] > Ry }.

LEMMA I11.1.17. Suppose € Sp(A) is stationary and! is a Morley
sequence based @n Then for anyB containingA we have thaps = Av(I, B).

PROOF Let B C ¢ and writel = {¢; | i < a}. Choose; € €fora <i <
a + w realizingpp,, whereB; = B U |J{a; | j < i}. SinceAv(I, B) € Sp(B)
extends, it is enough to show thak[Av(/, B)] = R[p]. Suppos&R[Av(I, B)] #
RI[p]. Then, by Monotonicity, we must hav@[Av(I, B)] < R[p]. We can find a
finite C C B such thap is based o’ and by Finite Character, we may assume in
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addition that
* R[Av(I,B)] = R[Av(I,C)] < R[p].

But, sinceC is finite andx(D) = Ny, by Theorem 1. 4.5 thereig € I
fora < i < a4+ w realizing Av(Z,C), and sinceC C B, we must have
tp(ci/C) = Av(I,C) = pc (sincec; realizespp,). But then, by choice of”
we haveR[Av(I,C)] = R[pc| = R|[p] which contradicts (*). O

LEMMA 111.1.18. Let I be an infinite indiscernible setd be finite and
p = Av(I, A) be stationary. Then for any O A we havepc = Av(I,C).

PROOF Write I = {¢; | i < a}, for « > w and letC be given. Choose
¢ € €fora < i < a+ wrealizingpe,, whereC; = CUJ{c; | j < i}.
LetI” = {¢; | i < a + w} and notice that necessariyv(I, B) = Av(I’, B)
for any B. Supposec # Av(I,C), then sinceAv(l, A) C Av(I,C), we must
have R[Av(I,C)] < R[p], so R[Av(I',C)] < R[pc]. ChooseC’ finite, with
A C ' CC,suchthatR[Av(I',C)] = R[Av(I’,C")]. Now there is] C I’ finite
such thatl’ \ J is indiscernible ovet”’. Choose; € I’ \ J with i > a. Theng;
realizesAv(I’',C"), soAv(I',C") = tp(c;/C") C pc, by choice ofc;. But then

R[AV(I/7 C/)] > R[pC«;] = R[p] > R[AV(L C)] = R[AV(I’, C/)]v

a contradiction. O

l11.2. Dependence relation

By analogy with the first order case (see for exampga § or [Ma]), it
is natural at this point to introduce the anchor symbol, used for nonforking in the
first order case. We do not claim that the two notions coincide even when both
are defined. First, forking may be better behaved. Whes D(T'), the relation
A L C we will define is very close to nonsplitting and in fact, nonsplitting satisfies

allftghe axioms of Theorem .2.3. At the same time, forking is defined, but it is not
clear that they coincide for general sets (the main obstacles are that the notions of
extension, stationarity and symmetry hold only over models that are, in this case,
Np-saturated). Second, forking may not work at all. Typically a diagram may be
totally transcendental while the underlying theory is unstable. Thus, in addition to
the problem of failure of the compactness theorem (which is key to proving many
of the properties of forking), one could not expect forking to be so well-behaved.

DEFINITION 11.2.1. Supposéd, B, C C ¢, with B C A. We say that
ALC if Rltp(a/B)] = R[tp(a/BUC)],  foreverya c A.
B

As in many other contexts, the symmetry property can be obtained from
the failure of the order property.
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THEOREMIII.2.2 (Symmetry). If tp(a/B) and tp(¢/B) are stationary,
then

alc ifandonlyif ¢l a.
B B

PROOEF First, D is stable by Theorem .1.13, and therefore does not have the
order property by Corollary .2.12. Suppose, for a contradiction, that

R[tp(¢/BUa)] < R[tp(¢/B)] and R[tp(a/BUc¢)|] = R[tp(a/B)].
Let A = 3(2m)+ and lety = (2*)*. We show thatD has thesc-order property,

by constructing an order of length Choosep(z, 7,b) € Sp(b) with b € B, such
that

Rltp(a/B U )] = Rlp(%,¢,b)] = Rltp(a/B)]
and

Rltp(c/BUa)] = R[p(¢,y,b)] < Rltp(¢/B)].
Letaq,cq € €fora < pandB, = J{ag, ¢z | B < a} be such that:

(1) Bo = B;
(2) a, realizestp(a/B) andR[tp(an/Ba)| = R[tp(a/B)];
(3) ¢, realizestp(¢, B) andR[tp(¢q/Ba U aa)] = R[tp(¢/B)].

This is achieved by induction on < u. Let By := B, ap := a and
¢y := ¢. At stagea, we let first B, := (J{ag,¢s | B < a} which is well-
defined by induction hypothesis. We then satisfy in this order (2) by stationarity of
tp(a/B), and (3) by stationarity ofp(c/B).

This is enough: First, notice that, does not realize(a, 7, b), otherwise

Rl[tp(¢a/Ba U aa)] < Rlp(a,7,0)] < R[tp(c/B)],
contrary to the choice of,. Similarly, sincetp(a./B) = tp(a/B) andb € B,
then

Rlp(ag, ,0)] < Rltp(c/B)],

so¢, does not realizg(ag, v, b) whena > 4.

Now supposer < 3. Thenag realizesp(z, c, b) since by stationarity, we
must havep(as/A U ¢) = tp(a/B U ¢). Further, sincep(a./B,) does not split

over B andtp(¢,/B) = tp(¢/B) we must have(z, ca,b) C tp(aa/Ba). Soags
realizesp(z, cq, b).

Letd, = Gotq and letq(Zy, §1, T2, 72, b) := p(Z1, 72, b) (We may assume
thatq is closed under finite conjunction). Then, above construction shows that
(*) CZaCZB }: q(jh gla ‘f27 g?v B) If and Only |f a < 6 < M,

i.e. we we have an order of lengthwitnessed by the type
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We use (*) to obtain an order of lengitwitnessed by a formula as follows.
On the one hand, (*) implies that for amy(z1, Z2, 1, ¥2,¢) € ¢, the following
holds:

(**) E ¢[da,ds,b]  whenever < 3.
On the other hand, i > 3, by (*) again, there i®, 5(71, T2, §1, J2, b) € g, such
thatl= ¢, glda, dg, b]. Hence, by the Erds-Rado Theorem, sindg| < |T'|, we

can findS C p of cardinality\ and¢(z1, Z2, 91, 2, b) € ¢, such that

(**) = —¢[da,ds,b]  wheneverw > 3, «,3 € S.
Therefore, (**) and (***) together show that we can find an order of length
which is the desired contradiction. O

We close this section by gathering together the properties of the anchor
symbol. They are stated with the names of the first order forking properties to
which they correspond.

THEOREMIIIL.2.3.

(1) (Definition)A L C'ifandonlyifA L BUC.
B B
(2) (Existence | B

B
(3) (k(D) =Ny) Forall aandC, there is a finiteB C C such thata L C.
B
(4) (Invariance under automorphismst f € Aut(¢).

ALC ifandonlyif  f(4) L f(CO).
B f(B)

(5) (Finite Character)

ALC ifandonlyif A" L/,
B B

for every finited’ C A, and finiteC’ C C .
(6) (Monotonicity)Supposed’ andC’ contain A and C respectively and that
B'’is a subset of3. Then

ALC implies A LC.
B B’

(7) (Transitivity)If B C C C D, then

ALC and ALD ifandonlyif AL D.
B C B

(8) (Symmetry)et M is a (D, Xy)-homogeneous model.

ALC ifandonlyif C L A.
M M



1ll.2. DEPENDENCE RELATION 79

(9) (Extension)etM be a(D, ¥j)-homogeneous model. For evetyC there
existsA’ such that

tp(A/M) = tp(A’/M) and A’ L C.
M

(10) (Uniguenesd)et M be a(D, Xp)-homogeneous model. Af, A’ satisfy
tp(A/M) =tp(A'/M) andboth AL C and A" LC
M M

thentp(A/MC) = tp(A'/MC).
(11) Suppose thatt | BC andC L B. ThenC L BA.
M M M

PROOF (1) This is just by Definition .2.1.

(2) Immediate from Definition .2.1.

(3) By Finite Character of the rank and Definition .2.1.

(4) Follows from Lemma .1.2 5.

(5) Immediate by finite definition and finite character of the rank.

(6) AssumeC ). A. By Finite CharacterR[tp(¢/M)] < R[tp(¢c/M)], for
M

somec € C. Also by Finite Character, there exisis€ A such that
Rltp(¢/M U a)] = R[tp(¢/M)]. Hencec ., a. But, by Corollary .1.10,
M

bothtp(a/M) andtp(¢c/M) are stationary, so by Theorem .2.2 we must
havea ) ¢. By Finite Character, this shows that ) C.
M

M
(7) Leta € A. Then,a L C anda .l D by Finite Character. By Defini-

B C
tion .2.1R[tp(a/C)] = R[tp(a/B)] andR[tp(a/D)] = R[tp(a/C)]. So
R[tp(a/B)] = R[tp(a/D)], anda .l D. Hence, by Finite Character, we
B

must haved . D. The converse is just by Monotonicity.

B
(8) Immediate by Theorem .2.2 and Corollary .1.10.
(9) Follows from Corollary .1.10 and Definition .2.1.
(10) Follows from Corollary .1.10 and Definition .2.1.

(11) First, notice that by Monotonicity, we must hade ! B. By definition,
M
this shows that for every € A, we have

Rltp(a/M B)] = R[tp(a/M)].

Sincetp(a/M) is stationary, this implies thatp(a/M B) is stationary.
Similarly, using the assumption th@t.l. B, we must have thap(¢/M B)
M

is stationary for everg € C.
Now, by Monotonicity, we have thatt | BC, so that by defini-
MB
tion, we haved | C. By Symmetry for stationary types, using the first
MB
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paragraph, we can derive thét | A. By definition, this means that

MB
C L AB.
MB
Finally, we use transitivity to show that | AB. HenceC .| MB
MB M
impliesC L BA.
M

I11.3. Regular and minimal types

In this section, we prove the existence of various pregeometries for totally
transcendental diagrams. First, we make the following definition (a similar defini-
tion appears in$h43).

DEFINITION 111.3.1.

(1) Leta be in M andgq(z,a) be a type. We say thal(z, a) is big for M if
q(z,a) is realized outsidé/;

(2) We say thaty(z,a) is bigif ¢(z, a) is big for anyM containinga;

(3) Atypeq € Sp(A) isbig (for M) if ¢ | ais big (for M) for everya € A.

In presence of the compactness theorem, big types are the same as nonal-
gebraic types. Even in the general case, we have a nice characterization of bigness
when the types are stationary.

LEMMA 111.3.2. Letq € Sp(A) be stationary. The following conditions
are equivalent:

(1) qis big for som& D, Xy)-homogeneous/ containingA4;
(2) Rlg] = 1
(3) qis big.

PROOF (1)=(2): SinceM is (D, Xy)-homogeneous, by Lemma .1Bjq] =
Rarlq], so it is enough to shouk,/[q] > 1. Leta € A be such thaiRy/[q] =
Rylg | a). Sinceq | a is big for M, there exists ¢ M realizingq | a. Also,
sinceM is (D, ¥y)-homogeneous, thered@ec M realizingq | a. Hence

Ryl(gla)u{z=¢}] >0 and Ryl(qla)u{z#dc}]>0.
Moreover, for every € M, (¢ | @) U tp(¢/b) is realized by, and so
Ru[(q I'a) Utp(c/b)] > 0,
andtp(¢/b) € Sp(b). This shows thafy[q | a] > 1.
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(2) = (3): Suppose is stationary,R[g] > 1 and M containinga are
given. By taking a large\! if necessary, we may assume thdtis (D, N)-
homogeneous. Sinegs stationary, there exists,; € Sp(M), such thatR[gys] =
Rlg] > 1. Letcrealizeqy,. If ¢ € M, then{z =¢} € qu, SO

0=R[Z=¢] = Rlqu] > 1,
which is a contradiction. Henae¢ M, soq is big for M.

(3) = (1): Clear by definition. O
DEFINITION I11.3.3. Letp € Sp(A) be a big, stationary type.

(1) We say thap is regular for M if A C M and for everyB C M we have

al Bandb )y B imply al BUbD, foralla,b € p(M).
A A A

(2) We say thap is regularif p is regular fore.

LEMMA 111.3.4. Letp € Sp(A) be a big, stationary type based ore A.
If p | ¢is regular, therp is regular.

PrROOF First notice that stationarity and bigness are preserved (bigness is the
content of Lemma .3.2). Suppogeés not regular. We will show that | ¢ is not
regular. Leta, b = p and B be such that

al B, b)yB andyet a) BUDb.
A A A

Thereforetp(a/A U B) = paup and so by choice of we havetp(a/A U B) =
(p1c)aus,i.e.al AU B. Now sinceR[p| = R[p | ¢,
C

R[tp(b/AU B)] < R[tp(b/A)] implies R[tp(bAU B)] < Rp | &,
i.e.b.) AU B. We show similarly thati ,. A U B U b, which shows thap | ¢ is
& C
not regular. O

REMARK II1.3.5. If p(Z, a) is regular andi’ € M is such thatp(a/0) =
tp(a'/0), thenp(z,a’) is regular.

DEFINITION I11.3.6. Letp € Sp(B), BC M andW = p(M) \ B # 0.
Define

aec(C) if alC, fora € WandC C W.
B

THEOREMIINL.3.7. Let M be (D, Ry)-homogeneous and let € Sp(B)
such thatB C M andp is realized inM. If p is regular then(W, ¢l) is a pregeom-
etry.

PrOOF We need to show that the four axioms of pregeometry hold (notice
W £ 0).



82 Ill. RANKS AND PREGEOMETRIES IN FINITE DIAGRAMS
(1) We show that for everg’ C W, C C cl(C).
Letc € C, then{z = ¢} € tp(c/AU C), hence
R[tp(c/BUC)] =0 < R[p],
soc.y C and thus: € cl(C).
B

(2) We show that it: € cl(C), there isC” C C finite, such that € cl(C”).
Let ¢ € cl(C). By Definition .3.6¢ ., C so by Theorem .2.3 5 there
B

existsC’ C C finite, such that ., C’, hencec € cl(C").
B

(3) We show that itv € cI(C) andC C cl(E), thena € cl(E).
Write C' = {¢; | i < a}. Thena J{¢; | i < a}. Supposer L E. We
B B

show by induction on < a thata L EU {¢; | j < i}.

e Fori = 0 this is the assumption and foa limit ordinal, this is true
by Theorem .2.3 5.
e For the successor case, suppose it is trug.fdmena L E U {¢ |

B
l < i}. SinceC C cl(F), we havec; J E, so by Theorem .2.3
B
6ci L EU{q |l < i}. Hence, since is regular, we must have
B
al EU{q|l<i}Ug.
B

Thusa L E U C, and sinceC C C'U E, we must have: L. C. Hence
B B
a ¢ cl(C), which contradicts our assumption.

(4) We show that it € cl(Ca) \ cl(C), thena € cl(Cc).
Since symmetry has been shown only for stationary types, this state-
ment is not immediate from Theorem .2.2.

Suppose that ) Ca andc L C. Thenc } a, since
B B C

R[tp(c/B U Ca)] < R[tp(¢/B)] = R[tp(¢/B U C)].
Thereforec realizespp e, sotp(c/BUC) is stationary. lfa L C, then by
Theorem .2.3 6 we must hawe). Cc, and we are done. b
Otherwise,a L C. Henceg realizespp,c and sotp(a/B U C) is
stationary. Therej?ore by Theorem .2.2 we must hayec, a contradiction.

C
Hence by Theorem .2.3 6, we hawe. Cc, i.e.a € cl(Cc).
B

O

We now show the connection between independent sets in the pregeome-
tries, averages and stationarity.
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LEMMA 111.3.8. Letp(z,¢) be regular. Let/ be infinite and independent
in p(€,¢). ThenI is indiscernible and for every containingc we havepp =
Av(I,B).

PRoOOF Write I = {a; | i < a}. Then sincel is independentz; 1 = pa,,
whereA; = cU{a; | j < i}. Thusl is a Morley sequence based prso the result
follows from Lemmas .1.15 and .1.17. O

Now we turn to existence. In order to do this, we need a lemma.

LEMMA 111.3.9. Let M be (D, Ry)-homogeneous, anelz, ¢) over M be
big and stationary. Thep(z, ¢) is regular if and only ifp(z, ¢) is regular for M.

PROOF. If p(z,c¢) is regular, them(z,c) is clearly regular forM. Suppose
p(z, €) is not regular. Then there afe C ¢, anda, b realizingp(z, ¢), such that
alB, b)B, and a} Bb.

C &

C
First, we may assume thatis finite: chooseB3’ C B such that

R[tp(a/B’ Ueb)] = R[tp(a/B U cb)]

and then choos®” C B finite, such thaty [~ pg | B”. Hence, forBy =
B'U B"” C B, we have

al By, l_)\}’,BO7 and ZL\LBol_).
c c c

Now, sinceM is (D, NO)-hgmogeneous and € M, we can findB;,a; and by
inside M such thattp(Byab/c) = tp(Bjaib1/¢). Therefore, by invariance we
have:

a.l By, E\)’,Bl, and a¢B15.
¢ c ¢
This shows thap is not regular for)/. O

The following argument for the existence of regular types is similar to
Claim V.3.5. of Bhb]. However, since our basic definitions are different, we
provide a proof.

THEOREMIIIL.3.10 (Existence of regular types)l.et M and NV be such that
M C NandM # N. If M and N are (D, Xy)-homogeneous, then there exists
p(z,a) regular, realized inN \ M. In fact, if p(x,a) is big and stationary, and
has minimal rank among all big, stationary types owérrealized inN \ M, then
p(z,a) is regular.

ProOOFE The first statement follows from the second. To prove the second
statement, we first chooge € N \ M, be such thatp(¢//M) has minimal rank
among all types oved! realized inN \ M, sayR|[tp(c'/M)] = «. We then choose
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a € M such thatR[tp(¢//M)] = R[tp(c’/a)] = a. Write tp(c’/a) = p(z,a) and
notice thatp is stationary and big fo#/, hence big, by Lemma .3.2.

By the previous lemma, to show thatr, a) is regular, it is equivalent to
show that(x, a) is regular forM. For this, leta, b € p(M) andB C M such that

a\,‘/B and b%B.
a

a
We must show that L Bb. Suppose, by way of contradiction that this is not the

a/ —
case. Then, by definition, we hav&tp(a/Bab)] < «. We now choose,d € B
such that

R[tp(a/Bab)] = R[tp(a/cab)] < o and Rtp(b/Ba)] = R[tp(b/da)] < a.
Since N is (D, Ng)-homogeneous and, a,b,a,¢,d € N, there ist’ € N such

thattp(ab/acd) = tp(a'b’ /acd). Now, tp(V' /ad) = tp(b'/ad), so
Rltp(V'/M)] < Rltp(¥ /ad)] = Rltp(b/ad)] < a.

By minimality of o, we musthavé’ € M. HenceR|[tp(a'/M)] < Rtp(a’/cab’)],
so R[tp(a’/cab’)] = a. Now there isf € Aut(€) such thatf(a’) = a, f(b') =b
andf | ca = idz, by choice oft’. Hence, by property of the rank

a = Rltp(d'/at))] = R[f(tp(d'/ealf))] = Rltp(a/cab)] < a,

which is a contradiction. Henee L Bb, so thatp(z, a) is regular. O
a

By observing what happens whéh= ¢ in above theorem, one discovers
more concrete regular types. For this, we make the following definition. A similar
definition in the context of_,,.,(Q) appears in the last section df4g. An
illustration of why this definition is natural can be found in the proof of Lemma
.5.11. In presence of the compactness theorem, S-minimal is the same as strongly
minimal.

DEFINITION I11.3.11.

(1) A big, stationary type(z,a) over M is said to beS-minimal forM if for
anyd(z, b) over M not bothq(z,a) Uf(z,b) andg(z,a) U—0(z,b) are big
for M.

(2) Abig, stationary type(z, a) is said to be&s-minimalf ¢(z, a) is S-minimal
for for every M containinga.

(3) If ¢ € Sp(A) is big and stationary, we say thais S-minimalif ¢ | a is
S-minimal for somex.

REMARK [11.3.12.
(1) Let M be (D, Xy)-homogeneous model. Letz,¢) be S-minimal forM .
LetW = ¢(M,¢) and fora € W andB C W define
accl(B) if tp(a/BUc)isnotbig (fori).



lll.4. PRIME MODELS 85

Then it can be shown directly from the assumption thas totally tran-
scendental, thaiV, cl) is a pregeometry.

(2) Let M be (D, Xy)-homogeneous. I§(x,¢) has minimal rank among all
big, stationaryy(x, ¢) over M, then the previous theorem shows thas
regular. Butg is also S-minimal forM. As a matter of fact, ifa L B,

C
then R[tp(a/B U ¢)] = R[q(z,¢)] > 1 andtp(a/B U ¢) is station-
ary, sotp(a/b U ¢) is big, soa ¢ cl(B). Conversely, ifa L B, then

C
Rltp(a/Be¢)] < R[q(z,¢]. Butif tp(a/B U ¢) was big, then we could
finda’ ¢ M such thatp(a’/BU¢) = tp(a/B U¢), SO

Rltp(a'/M)] < R[tp(a'/B U &)] = Rltp(a/B U )] < Rlg(x, )],

contradicting the minimality oR?[¢(z, ¢)]. Hencetp(a/B U ¢) is not big,
and sou € cl(B). In other words, both pregeometries coincide.

(3) Using the results that we have proven so far, it is not difficult to show that
if M, N are(D,Xp)-homogeneous, ang{x, ¢) has minimal rank among
all big, stationary types ove¥ andc’ € N such thatp(¢/0) = tp(c'/0),
then ¢(z, &) has minimal rank among all big, stationary types ogér
hence ifg(z, &) is S-minimal forN.

In the light of these remarks, we will make the following definition.

DEFINITION I11.3.13. LetM be (D, ¥y)-homogeneous. A stationary type
q(z,c¢) with ¢ € M is calledminimalif ¢(z, ¢) is big and has minimal rank among
all big, stationary types ovev/.

We close this section by summarizing above remark in the following theo-
rem.

THEOREMIIIL3.14. (1) For any (D, Xy)-homogeneous model, there
exists a minimag(z, ¢) with ¢ € M.
(2) Minimal types are regular and moreover for evefycontaininge, every
setB anda = g4 we have
tp(a/AU B) isbigifandonlyif ol B.
A

PROOF The first item is clear by definition. The second follows by Theorem
.3.10, and Remark .3.12 2 and 3. O

I11.4. Prime models

In this section, we consider the question of prime models. The rank is
especially useful to study the class (@9, Xy)-homogeneous models of a totally
transcendentaD.

We give definitions from$h3 in more modern terminology.
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DEFINITION 111.4.1.

(1) We say thap € Sp(A) is D3-isolated overB C A, |B| < A, if for any
q € Sp(A) extendingy | B, we havey = p.

(2) We say thap € Sp(A) is Di-isolatedif there isB C A, |B| < A, such
thatp is D3 -isolated over.

We next verify Axioms X.1 and XI.1 from Chapter IV o8h b).

THEOREMIIL.4.2 (X.1). Let A C € andpu > Xy. Every¢(z,a) over A
realized in¢ can be extended to R}, -isolated typep € Sp(A).

PROOEF Itis enough to show the result far= ;.

Since¢ = 3z¢[z,al, there exists € € such that® = ¢[¢,al. Thus
there exists i € Sp(A), namelytp(¢/A), containingp(z, a). SinceD is totally
transcendental and C ¢ we must haveR 4 [p] < co. Among all thosey € Sp(A)
containingy(z, a) choose one with minimal rank. Sdys[p] = o > 0.

We claim thatp is Dgo—isolated. First, there i5 € A such thatR [p] =
Ralp | b. We may assume that| b containsy(z, @) by Lemma .1.2 6. Suppose
that there is; € Sp(A), ¢ # p, such thay extendsp | b. ThenR[q] > a by
choice ofp (sinceq containse(z,a)). Now, choose)(z, ¢) with ¢ € A such that
¥(Z,¢) € pand—)(Z,¢) € q. Then sincdp | b) Uy (z,¢) C p, by Lemma .1.2 6
we have
Ral(p I b) U(z,¢)] > Ralp] > o

Similarly

Ral(p I b) U= (z,¢)] > Ralq] > a.

Now, given anyd € A, Ralp | bU d] >
p € Sp(A), necessarily if we write | d
b

(again by Lemma .1.2 6). Since

(6
p(z,d), then we have(z,y) € D

Ljd Fp | bUp(z,d)) we have
Ral(p 1 ) Up(Z,d)] > Ralp I bUd] > o

But this shows thak 4[p | b] > a + 1, a contradiction.

(sincep(z,d) € Sp(d)). Hence since |

Hencep is the only extension g | b, sop is Dy, -isolated. O

THEOREMIINL4.3 (XI.1). Letu be infinite andB, A be D-sets such that
B C A. BveryD;-isolatedr € Sp(B) can be extended to B, -isolated type
p € Sp (A)

PROOF Since€is (D, x)-homogeneous, there exigts € realizingr. Hence
thereisp € Sp(A) extending-, namelytp(¢/A). SinceD is totally transcendental
andA C ¢ we must haveR 4[p] < co. Among all thosey € Sp(A) extendingr
choose one with minimal rank. Sd¥s[p] = a > 0.
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We claim thatp is D;-isolated. First, there is € A such thatR4[p] =
Ralp | b]. Also, sincer is D;-isolated, there i€’ C B, |C| < psuch that | C
isolatesr. We may assume thdts[r] = Ra[r | C], by Lemma .1.2 7. We claim

that(r | C)U(p | b) isolatesp. By contradiction, suppose that therejis Sp(A)
extending(r | C)U(p | b) such that; # p. Notice that- C ¢, sincer was isolated
by r | C, and henceR4[q] > Ralp] = a by choice ofp. Now, choose)(z, a)
with @ € A such that)(z,a) € p and—)(z,a) € q. By Lemma .1.2 6 (since

(p | b) Uv(z,E) C p), we must have

Ral(p 1 ) Ut(Z,0)] = Ralp] = a.
Similarly

Ral(p 10) U—(2,¢)] = Rald] = a.
Now, given anyd € A we have thatRa[p | b U d] > « (again by Lemma .1.2
6). Sincep € Sp(A), necessarily if we writep | d = p(z,d), then we have
p(z,y) € D (sincep(z,d) € Sp(d)). Hence
Ral(p 1) Up(z,d)] > Ralp [ bUd] >
sincep | bUd F (p | b) Up(F,d). But this shows thaRa[p | b > o+ 1, a
contradiction.

>
d

Hencep is the only extension ofr | C)U(p [ b), sopis D} -isolated. [

Following Chapter IV of §h b], we set:

DEFINITION l11.4.4.

(1) We say that = {(a;, Ai, B;) | i < a}is a(D, X)-construction ofC' over
Aff
@ C=AUHa;|i<al
(b) B; C A;, |B;| < X\, whered; = AU {q; | j < i};
(c) tp(ai/A;) € Sp(A;) is D3-isolated overs;.
(2) We say thafl/ is D5-constructible over if there is a(D, \)-construction
for M over A.
(3) We say thaf\/ is D3-primary overA, if M is D3-constructible overl and
M is (D, A\)-homogeneous.
(4) We say thaiM/ is D3-prime overA if
(@) M is (D, \)-homogeneous and
(b) if Nis (D, \)-homogeneous and C N, then thereisf : N — M
elementary such thgt | A = id 4.
(5) We say that\/ is D5-minimal overA, if M is D3-prime overA and for
every(D, \)-homogeneous modd, if A C N C M, thenM = N.

REMARK 111.4.5. We use the same notation as Bh[b], except that we
replaceF by D to make it explicit that we deal exclusively wiib-types (or equiv-
alently, types realized ig). In particular, for example if\/ is D§_-primary over
A, thenM is D§0-prime overA.
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THEOREMIIIL4.6 (Existence of prime models).et i be an infinite cardi-
nal and A be aD-set. Then, there is &;,-primary model}M over A of cardinality
|A| +[T'| + |D| + p. Moreover,M is D;,-prime overA.

PROOF See page 175 ofSh b] and notice that we just establishéd1 and
X1.1. Observe that in the construction, each new element realiZegype, so
that the resulting model is indeed’amodel. The optimal bound on the cardinality
follows from Theorem .1.13. The second sentence follows automatically. [J

REMARK I11.4.7. A similar theorem, with a stronger assumptidnié X,-
stable) and without the bound on the cardinality appearSig| Note thatD-
primary, is called D, u, 1)-prime there.

It is natural to make the following conjecture.

CoONJECTUREIIIL4.8. LetD be totally transcendental. Then for adythe
Dg, -prime model overd is unique up to isomorphism fixing.

Notice that this allows us to show how any type can be decomposed into
stationary and isolated types. A similar result appearSh8[/g.

B LEMMA I11.4.9. Letp € Sp(A) and suppose realizesp. Then there is
b € € such that

(1) tp(b/A) is D§ -isolated;
(2) tp(a/Ab) is stationary;
(3) Rltp(a/Ab)] = R[tp(a/b)].

Furthermorep does not split over a finite set.

PROOF. Leta = p. Let M be Dy -primary model overd. Thentp(a/M)
is stationary sincé/ is (D, Rq)-homogeneous, and theretiss M finite, such
that R[tp(a/M)] = R[tp(a/b)]. HenceR[tp(a/Ab)] = R[tp(a/b)] by Lemma
.1.2 6, and sap(a/Ab) is stationary. Alsotp(b/A) is D, -isolated, sincéV! is
Dg, -primary overA.

Finally, to see thap does not split over a finite set, assume- p, tp(b/A)
is D, -isolated,tp(a/Ab) is stationary, andR[tp(a/Ab)] = R[tp(a/b)]. Then
there isC C A finite, such thatp(b/A) is Dg, -isolated overC'. Also, since
tp(a/Ab) is stationary, it does not split ovér Now it is easy to see that does
not split overC": otherwise there arg € A, and¢(z,y) such thatp(c,/C) =
tp(c2/C), ¢ € Aforl = 1,2, and= ¢[a, ] and= —¢[a, &]. Buttp(b/A) does

not split overC, and sotp(¢;/b) = tp(é2/b). However, this contradicts the fact

thattp(a/Ab) does not split oveb. All the conditions are satisfied. O
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This gives us an alternative and short proof that averages are well-defined,
and in fact, allows us to give short proofs of all the facts in Theorem 1..4.5.

LEMMA [11.4.10. Let! be infinite andA C €. ThenAv(I, A) € Sp(A)

PrROOF Completeness is clear. To see that(/, A) is consistent, suppose
that both¢(x,a) and—¢(z, a) are realized by infinitely many elements bf But
tp(a/I) does not split over a finite sé C I by the previous lemma. Hence, by
choice of¢(x,a), we can findb,c € I\ B such that= ¢[b,a] and= —¢]c, al.
This however, shows thap(a/I) splits overB, sincetp(b/B) = tp(c/B) by
indiscernibility of I and both¢(b,y), —¢(c,y) € tp(a/I). Now Av(I,A) €
Sp(A) since we can extentito a D-set of indiscernible/ of cardinality| A|*, and
then some element of realizesAv(I, A). O

The following is a particular case of a theorem of ShelahSh94. We
include it here not just for completeness, but because the proof is different from
Shelah’s original proof in finite diagrams and very similar in the conceptual frame-
work to the first order case.

THEOREMIII.4.11. Let D be totally transcendental. IfM; | i < «)
is an increasing chain ofD, ;1)-homogeneous models, thef)_, M; is (D, u1)-
homogeneousg(infinite).

PROOF. Let M = |J,_, M; and notice thaf/ is (D, Xg)-homogeneous. Let
p € Sp(A), A C M, |A| < pand choose € Sp(M) extendingp. Then, by
Corollary .1.104 is stationary and there B C M, finite such that; is based on
B. Leti < a, be such tha3 C M,. SinceM; is (D, u)-homogeneous, there
isI = {aj | j < p} € M; a Morley sequence fajg. Then, by Lemma .1.17,
gap = Av(I,AU B). But|I| > |AU B|, so by Theorem 1. .4.5 thereds € I
realizingAv(/, AU B). Butgap 2 p, sopis realized inM . This shows thab/ is
(D, n)-homogeneous. O

I11.5. Chang’s conjecture and categoricity

We now focus on the class 0D, Xy)-homogeneous models of a totally
transcendental diagra?. As we said in the introduction, there are several key
examples. WherD is the set of isolated types over the empty set, the class of
(D, Xg)-homogeneous models coincides with the clas®ahodels, that is we are
studying the class of atomic models of a given first order theory. Recall that this
class is especially important from the point of view of classification for nonelemen-
tary classes. A result due to S. Shel&h48g shows that, for example, given any
N, -categorical Scott sentengec L., ., there exists a first order theofy (pos-
sibly unstable) with the property that for every cardinalthere is a one-to-one
correspondence between the modelg aif cardinality A and the atomic models
of T" of cardinality \. Another example is whe®» = D(T'). As we mentioned,
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whenD = D(T), thenK is the class oRy-saturated models of a totally transcen-
dental theory. This case is important, since it demonstrates, in particular, that all
our estimates on the number of models are sharp.

DEFINITION I11.5.1. Define
K={M]| Mis(D,Ry)-homogeneous.

We first prove Chang’s Conjecture f&il, whenD is a totally transcenden-
tal diagram.

Chang’s Conjecture for the class of models of countable first order theo-
ries is the following statement. If is a theory in a language containing a unary
predicateP(x) and if there exists a modéll | T such that|M|| = A" and
|P(M)| = A, for some infinite), then there existd’ < M of cardinalityX; such
that| P(N)| = No. Itis known that this statement is, in fact, a large cardinal axiom.
However, Chang’s Conjecture holds for the class of models, athenT satisfies
additional assumptions. The next theorem implies Chang’s Conjecture for the class
K, whenD is a countable totally transcendental diagram @na countable first
order theory. Note the similarity with Theorem .5.8.

THEOREMIIL.5.2. LetT be a first order theory in a language containing
a unary predicateP(x). Let D C D(T) be a totally transcendental diagram. Let
A, i, x be cardinals such thdD| + |T'] < u < x < A™T. If there existsV € K of
cardinality \™ with P(M) of cardinality \, then there existd” € K with N < M
of cardinality xy such thatP(N') has cardinalityy.

PROOF. Let M € K of cardinality \* with P(M) of cardinality \. Since
D is totally transcendental, theR is stable inA by Theorem .1.13. Hence, by
Theorem 1..3.13, there exisfs; | ¢ < AT} € M \ P(M) indiscernible over
P(M). Let A C P(M) of cardinality . Now chooseN* < M of cardinality
w, with N* € K, containingA U {a; | i < No}. Let B = P(N*). ThenB
has cardinality. and B C P(M). By Theorem .4.6, there exists/a; -primary
model N overBU{a; | i < x} of cardinalityx. By using an automorphism fixing
BU/{a; | i < x} if necessary, we may assume thatC M. Thus,N < M.

We claim thatP(N) has cardinality.. It is enough to show tha®(N) =
B. Suppose this is not the case anddet P(N) \ B. Consider the types
tp(e¢/B) C tp(e/B U {a; | i < x}). Note that the formulaP(x) belongs
to tp(c/B) and thattp(c/B) is not realized insideB. Now sinceN is Dy -
primary overB U {a; | i < x}, there exists a type(z, b, a;,, .. .,a;,) € Sp(bU
{ai,...,a;,})withb € Bandi; < ...i, < x satisfying

q(z,b,a;,,...,a;) - tp(c, B),
sincetp(c/B U {a; | i < x}) I tp(c/B). By indiscernibility of{a; | i < x} over
B, we may assume thaf < ...i, < No. Henceb U {a;,,...,a;,} € N*. Since

N*is (D, Np)-homogeneous, there exists € N* realizingq(z, b, a;,, ..., ai,)-
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Thus,c* realizestp(c/B). But P(z) € tp(c¢/B) soc* € P(N*) = B, a contra-
diction. O

We now turn to Categoricity.

REMARK I11.5.3. We will say thatM € K is prime overA or minimal
over A, whenM is Dy, -prime overA or D, -minimal overA respectively.

By analogy with the first order case, we set the following definition.

DEFINITION 111.5.4. Let D be totally transcendental. We say thatis
unidimensionalf for every pair of modeld\/ C N in K and minimal type;(x, a)
minimal overM,,

g(M,a) =q(N,a) implies M = N.

Unidimensionality for a totally transcendental diagrahturns out to be a
meaningful dividing line. When it fails, we can construct non-isomorphic models,
like in the next theorem (this justifies the name), and when it holds we get a strong
structural theorem (see Theorem .5.10, which implies categoricity). In fact, the
conclusion of our next theorem is similar to (but stronger than) the conclusion of
Theorem 6.9 of $h3 (we prove it for everyu, not just regulay:, and can obtain
these models of cardinality exacth; not arbitrarily large). The assumptions of
Theorem 6.9 of $h3 are weaker and the proof considerably longer. Actually,
Corollary .5.16 makes the connection with Theorem 6.5t clearer.

We first prove two technical lemmas which are similar to Lemma 3.4 and
fact 3.2.1 from {5rHa] respectively. The proofs are straightforward generaliza-
tions and are presented here for the sake of completeness.

LEMMA II1.5.5. Letp,q € Sp(M)andM C N beinK. If a L b for
M
everya = g andb |= p, thena L b for everya = gy andb = py.
N

PROOF Suppose not. Then there are= py andb = gy such thata ) b.
N
ChooseE C N finite such thata ., b andtp(ab/N) is based onE. This is
ME

possible by Theorem .2.3 5 and by the fact thatab/N) is stationary. Sim-
ilarly, we can findC C M finite, such thatp;; andq;, are based o' and
a L b. SinceC C M finite andM € K, there exists*, b*, E* C M, such
CE
thattp(abE/C) = tp(a*b*E*/C), and soa* L b*. Sincetp(ab/N) is based
CE*
on E, thentp(ab/CE) is stationary based of, sotp(a*b*/CE*) is stationary
based ort*. Therefore, we can choos®’ |= tp(a*b*/CE*) s, and by choice of
C, necessarily/ = py andd’ = qpy.
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Hence, by assumption @n,, qas, we haver’ L V/, soalsae’ L . But
M CE*
this impliesa* L b*, by choice ofa’t/, a contradiction. O
CE*

LEMMA 111.5.6. Let N be (D, u)-homogeneous. .1 b andtp(a/Nb)
N

is Dz-isolated, themmw € N.

PROOF. Sincep = tp(a/Nb) is Dj-isolated, there i C N, [C] < u
such thattp(a/Cb) isolatesp. Sincetp(b/N) is stationary, we may assume that

tp(b/N) does not split ove€. Since, by Theorem .2.3 8 al$al a, SO we may
N
assume thatp(b/Na) does not split ove€'.

SinceN is (D, u)-homogeneous, there i$ € N, such thatp(a/C) =
tp(a’/C). But sincetp(b/Na) does not split ove€, thentp(ab/C) = tp(a’b/C).
Hencetp(a/N) = tp(a’/N), so thata € N. O

Recall a definition from$hJ.

DEFINITION II1.5.7. Let M be aD-model. M is said to bemaximally
(D, u)-homogeneoui$ M is (D, ;1)-homogeneous, but nb, 1 +)-homogeneous.

THEOREMIIL5.8. Supposé is not unidimensional. Then there is a max-
imally (D, u)-homogeneous modéY of cardinality A, for every\ > u > |T| +
|1D.

PROOFE SupposeD is totally transcendental and not unidimensional. Then
there existdV/, N in K and a minimal type/(x, a) over M with the property that

*) q(M,a)=q(N,a) and M CN, M #N.

Using the Downward bwenheim Skolem Theorem and prime models, we
may assume thay(M,a)| < |T| + |D|. LetA > pu > |T| + |D| be given.
We first show that we can find/, N € K satisfying (*) such that in addition
1M = [q¢(M,a)| = p.

SinceM # N € K, thereisb € N \ M, sop = tp(b/M) € Sp(M)
is big and stationary. This implies that [ " for anyad’ = ¢y andd’ = p (by
M

an automorphism sendirig to b, it is enough to see’ L b, but this is obvious,
M
otherwisetp(a’/Mb) is not big, thus cannot be big fdv by Lemma .3.2, hence

it has to be realized iV \ M, which implies thats’ € N \ M, contradicting
q(M,a) = q(N, a)).

Construct(M; | ¢ < u) increasing and = {a; | i < p}, a; € M;
realizinggyy,, such that:
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(1) M;41 € Kis D -primary overM; U a;;

(2) My = M;

(3) M; = U,-; M; whenj is a limit ordinal;

(4) If V' realizesp,y,, andN* is Dg, -primary overi; U v, theng(M;,a) =
q(N*,a).

This is enough: Conside¥ Dg, -primary over)M,, U, wheret' = pyy,,.
Thent € N\ M, and yetq(M,,a) = q(N,a), so (*) holds. Furthermore,
[ Myl = [q(M,, a)| = p

This is possible:

e Fori = 0, this follows from the definition of (sendb’ to b by an automor-
phism, fixingM, to obtain a realization afy; in N \ M).

e If 7 is alimit ordinal, and’ = pyy,, then this implies that’ = pu;, for
anyj < i. Also, if N* is prime overM; U/, andc € N*\ M; realizes
q(z,a), thentp(c/M;b') is Dy -isolated over somenb, andmb € M; for
somej < 7, hencec € M; by induction hypothesis, a contradiction.

e Fori = j+ 1. Lett |= py; andN* be prime overd; U b'. Suppose
thatc € N* \ M; realizesq(x,a). Then, sincec ¢ M;, we must have
tp(c/Mj) is big, soc = g, Hence, by Lemma .5.5 we haz;ze]\\7 b'. But

J
tp(c/M;b') is Dgo-isolated, so by Lemma .5.6, we must have M;, a
contradiction. Hence(M;) = q(IN*) and we are done.

Let M* = M, and fixb = pys+. We now show that we can find(®, u)-
homogeneous mod& < K of cardinality A such thatM* and N satisfy (*). This
implies the conclusion of the theore: is (D, 11)-homogeneous of cardinality,
N isnot(D, u)-homogeneous, sind€ omitsgy« € Sp(M*), and|| M*|| = p.

We constructV; | i < \) increasing, and; ¢ N; realizingpy, such that:

(1) bo = bandNy is Dy;-primary overM™ U b;
(2) Nit1is Dy-primary overN; U b;;

B N, = Uj<¢ N;, whent is a limit ordinal;
@) [IVill < A;

(5) N;is (D, u)-homogeneous;

(6) q(Ni,a) = q(M™, a).

This is clearly enoughiVy is as required.

This is possible: We construéf; by induction on; < \.

e Fori = 0, let N* C Ny be Dy -primary overM* U b. By construc-
tion of M*, we haveq(N*,a) = q(M*,a), so it is enough to show that
q(N*,a) = q(Np,a). Suppose not and letc Ny \ N* realizeq(z,a).
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Then,c realizesgy~ sincetp(c/N*) is big, and further there id C M*,
|A| < p such thatp(c/Ab) isolatestp(c/M*b). By Lemma .1.17 since
I is based ony, we haveAv(I,N*) = qn+, wherel = {a; | i <
p} C M* defined above. But since bothy(c/Ab) and tp(c/M*) are
big, we must havep(c/Ab) = Av(I, Ab) andtp(c/M*) = Av(I, M*).
HenceAv(I, Ab) - Av(I,M*). Now, by Theorem 1..4.5, we can find
I' C I,|I'| < psuchthatl \ I’ is indiscernible overb. Since|l| = u,
thenl \ I’ # () and all elements of \ I’ realize Av(I, Ab), hence also
Av(I,M*) = qu~. But this is impossible sincé C M*. Therefore
q(No,a) = q(N*,a) = q(M*, a).

e For i a limit ordinal, the only condition to check is thaf; is (D, u)-
homogeneous, but this follows from Theorem .4.11.

e Fori = j + 1, by induction hypothesis, we hav¢N;,a) = ¢(M*,a),
so it is enough to show tha(N;;1,a) = ¢(N;,a). Suppose € Njiq
realizesy. SinceN; 1 is D} -primary overN; Ub;, we havetp(c/N; Ub;)
is D;-isolated. Butc]# b;, by Lemma .5.5. Therefore, by Lemma .5.6,

J
we have that € N;. This shows thag(N;,1,a) = ¢(M*, a).

This completes the proof. O

CoROLLARY 111.5.9. Let D be totally transcendental. K is categorical
insome\ > |T'| + | D| thenD is unidimensional.

PrROOF Otherwise, there is #-homogeneous model of cardinalityand a
maximally (D, |T'| + |D|)-homogeneous model of cardinality HencelC is not
categorical in\, since these models cannot be isomorphic. O

We now obtain strong structural results whns unidimensional.

THEOREMIILL5.10. Let D be unidimensional. Then eved € K is
prime and minimal oveg(M, a), for any minimal type(z, a) over M.

PROOF Let M € K be given. SinceD is totally transcendental, there exists
a minimal typeg(z,a) over M. ConsiderA = ¢(M,a). To check minimality,
suppose there wds € K, suchthatd C N C M. Sinceg(N,a) = A = q(M, a),
we must haveV = M, by unidimensionality of>. We now show thaf/ is prime
over A. SinceD is totally transcendental, thereldg* € X prime overA. Hence,
we may assume that C M* C M. Now the minimality of M implies that
M = M*, soM is prime overA. Clearly, any other minimal type would have the
same property. ]

We next establish two lemmas, which are key results to carry out the geo-
metric argument for the categoricity theorem.
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LEMMA [11.5.11. Let M € K and suppose thaj(x,a) is minimal over
M. If W = ¢(M,a) has dimensiom\ infinite, thenW realizes every extension
p € Sp(A) of typeq, providedA is a subset ol of cardinality less than the
dimension\.

PROOF Letp € Sp(A) be given extending. Letc € € realizep. If pis
not big for M, thenp is not realized outsidd/ soc € M. Hencec € W since
p extendsqg. If howeverp is big for M, thenp is big and then by Lemma .3.8
and Theorem .3.14 we have that= Av(I, A), where is any basis o/’ of
cardinality\. But|I| = X > |A|" + R, so by Theorem 1..4.5 and definition of
averagesAv(I, A) is realized by some element 6fC WW. Hencep is realized in
w. O

LEMMA 111.5.12. Let D be unidimensional and let/ be in KC of cardi-
nality A > |T'| + |D|. Supposey(z,a) is minimal overM. Theng(M,a) has
dimension\.

PROOF Let M € K be given and;(z,a) be minimal. ConstructM,, | a <
A) strictly increasing and continuous such thae Mg, M, C M and||M,| =
ol + T +|DI.

This is possible by Theorem .4.6: Fer= 0, just chooselly C M prime
overa. Fora a limit ordinal, letM, = [z, Mp. At successor stage, since
| Mo < |af + |T| + |D| < A, there existsi, € M \ M,, so we can choose
My € M prime overM,, U ay,.

This is enough: Sinc® is unidimensional, we can fing, € M, \ M,
realizingq. By definition,tp(ca/U{cs | B < a}) is big, sincecq ¢ M,. Hence
ca & cl(U{cs | B < a}). Therefore{c, | o < A} is independent and sgM, a)
has dimension at least Hence sincd|M|| = A, thenq(M,a) has dimension
A O

THEOREMIIL.5.13. Let D be unidimensional. Thek is categorical in
every\ > |T'| + |D|.

PROOF Let M; € K for I = 1,2 be of cardinality\ > |T'| + |D|. SinceD
is totally transcendental, we can chooggs;, a;) minimal, witha; € M;. Now,
since M is (D, Xy)-homogeneous, we can find € M, such thatp(a, /() =
tp(az/0). Theng(zx,a;) is minimal also. LetV; = ¢(M;,a;) for I = 1,2. Since
D is unidimensional, by Lemma .5.12, we haliea(W;) = A > |T'|+|D|. Hence,
by Lemma .5.11 every type extendig@r, a;) over a subset oft/; of cardinality
less tham\ is realized inl¥;, for [ = 1, 2. This allows us to construct by induction
an elementary mappingfrom W, ontoWW, extending(ai, a2). By Theorem .5.10,
M; is prime and minimal ovelV;, for [ = 1,2. Hence, in particulad/; is prime
overWi, so there isf : M; — Ms elementary extending. But nowran(f) is a
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(D, Rg)-homogeneous model containifig, so by minimality ofMs over Wy we
haveran(f) = M,. Hencef is also onto, and sé/; and M, are isomorphic. [J

We can now summarize our results.

COROLLARY Il1.5.14. Let D be totally transcendental. The following
conditions are equivalent:

(1) K is categorical in every\ > |T'| + |D|;

(2) K is categorical in some. > |T'| + |DJ;

(3) D is unidimensional,

(4) EveryM € K is prime and minimal oveg(M,a), whereq(z,a) is any
minimal type ovei\/;

(5) Every modelM € K of cardinality A > |T'| + |D| is D-homogeneous.

PROOF (1) implies (2) is trivial.

(2) implies (3) is Theorem .5.9.

(3) implies (1) is Theorem .5.13.

(3) implies (4) is Theorem .5.10.

(4) implies (3) is clear since prime models exist by Theorem .4.6.

(5) implies (1) is by back and forth construction, similarly to the corresponding
proof with saturated models.

(1) implies (5) since for each > |D| + |T'| there exist & D, A\)-homogeneous
model of cardinality\ (e.g. by Theorem .4.6).

O

COROLLARY 111.5.15. Let D be totally transcendental. K is not cate-
gorical in some\; > |T'| 4+ |D|, then

(1) If T'is countable, then there are at leaaf models of cardinalityr,, in /C;
(2) ForeveryA > u > |T'|+ |D| there is a maximally D, ;1)-homogeneous of
cardinality \.

ProoOFE (1) follows from (2). For (2), notice thab is not unidimensional by
above Corollary, so the result follows from Theorem .5.8. O

COROLLARY Il1.5.16. Let D be totally transcendental. Suppose there is
a maximally(D, u)-homogeneous model of cardinalityy> |T'| + |D| for some
A > p > Ny. Then for every\ > 1 > |T'| + |D| there is a maximally D, p)-
homogeneous of cardinality.

PrROOF Notice thatM € K, and soK is not categorical ir\. Hence, by the
previous corollary,D is not unidimensional, so the result follows from Theorem
.5.8. O
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As a last Corollary, we obtain a generalization of Keisler's Theorem (no-
tice thatC is the class of atomic models in this case). fidenotassume thab is
totally transcendental.

COROLLARY 111.5.17. Let|T| < 2%, and suppos® is the set of isolated
types ofl". The following conditions are equivalent.

(1) K is categorical in every\ > |T|;

(2) K is categorical in some > |T|;

(3) D is totally transcendental and unidimensional;

(4) D is totally transcendental and every model/6fis prime and minimal
overq(M,a), whereq(z, a) is any minimal type oveh/;

(5) Every modelM € K of cardinality A > |T'| + | D| is D-homogeneous.

ProoF (5) implies (1) and (2) by back and forth construction. The rest of
the proof follows from .5.14, since conditions (1), (2), (3) and (4) imply thas
totally transcendental. More precisely (1) and (2) imply theis stable in|T'| <
2% and hence totally transcendental: this is a standard fact using Ehrenfeucht-
Mostowski models. For (3) and (4) it is a hypothesis. O
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CHAPTER IV

Main gap and an abstract decomposition theorem

In [Sh 131, one of his most celebrated papers, Saharon Shelah proved
what he called thenain gapfor the class oR.-saturated models of a complete first
order theoryr.

The result consists of showing that if there are less than the maximum num-
ber of nonisomorphic models of cardinality for some cardinak greater than the
cardinality of T', then the theory is superstable and satisfies NDOP. Using super-
stability and NDOP, Shelah shows that every model has a decomposition in terms
of an independent tree of small models. Furthermore, under the same assumption
as above, the tree must always be well-founded. This implies that the number of
nonisomorphic models in each cardinal is bounded by a slow growing function.
This exponential/slow growing dichotomy in the number of nonisomophic models
is what is refered to as the main gap.

About six years later, Rami Grossberg and Bradd HarHa] realized
that the main gap phenomenon is not limited to the elementary case. They proved
the main gap for the class of models of an excellent Scott sentenceSis@e
for the definition of excellence). The crucial property allowing a decomposition is
also NDOP.

In this chapter, we introduce an axiomatic framework to prove decomposi-
tion theorems for a general class of models under NDOP. This framework is general
enough to include in the same pro&H 131 and [GrHa], and includes the case
of (D, u)-homogeneous models of a totally transcendental diagpaimtroduced
in Chapter IV. For nonstructure results using DOP (the failure of NDOP), the ax-
iomatization needs several levels of saturation (or homogeneity, or fullness). We
give a proof of the nonstructure parts of the theorem in the context of Chapter IV.
This gives the main gap for the cla&sof (D, 1)-homogeneous models of a to-
tally transcendental diagrai (for any infinitex). Note that, since finite diagrams
generalize the first order case, it is easy to see that the failure of a finite diagram
to be totally transcendental does not imply the existence of many models. All the
basic tools in place, we can also show, using the methodShob] or [Ha] that
A — I()\, K) is weakly monotonic (Morley’s Conjecture) for sufficiently large

This result was presented as an abstract in the European Meeting of the
ASL in Leeds in June 1997. In January 1998, Shelah informed us that in a joint
paper with Hyttinen HySh2] includes a similar result to the one we present here
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for superstablaliagrams. The paper is not yet available, however, we suspect that
their decomposition falls within the axiomatic framework presented in Section 1.

This chapter is organized as follows.

In Section 1, we present the axiomatic framework. The aim of the frame-
work is to capture the essential features of the various contexts where decompo-
sition theorems using NDOP are known. A proof of a decomposition theorem is
given under the parallel of NDOP (Theorem 1.1.29).

In Section 2, we present the necessary orthogonality calculus to show that
the class of D, Xy)-homogeneous models of a totally transcendental diagbam
satisfies the axioms of Section 1. This implies that under NDOP, é\Very,)-
homogeneous model is prime and minimal over an independent tree of small mod-
els. We also prove several additional lemmas that will allow us to complete the
main gap for this class.

In Section 3, we introduce DOP (the negation of NDOP) for the class of
(D, Rp)-homogeneous models of a totally transcendental diagtame show
that DOP implies the existence of many nonisomorphic models (Theorem .3.1).

In Section 4, we work under the assumption that the class has NDOP. We
introduce depth for the class @b, X,)-homogeneous models of a totally transcen-
dental diagramD. We prove that if a class is deep then it has many nonisomor-
phic models (Theorem .4.23). Finally, we derive the main gap (Theorem .4.25).
Using the same methods, we can also derive the main gap for the cl@Ssof
homogeneous models of a totally transcendental diagpam

IV.1. The axiomatic framework and decomposition theorem

Let K be a class of models in a fixed similarity type Let N*, N** € I
be such thatv* C N**. This section will study conditions on the subsets\of
which guarantee that it can be decomposed.

All models will be inXC. All models, sets, and elements will be subsets of
N*. Forasetd C N*, denote byS(A) the set of complete types ovdrrealized
in N**,

At the end of this section, we included a short subsection describing some
of the known cases that this axiomatic framework covers. The reader may want to
consult it, in order to have a more concrete framework in mind.

We begin with a list of axioms.

We postulate the existence oflapendence relatioon subsets olV*, i.e.
a relation on triples of sets, writtei. | C, satisfying the following axioms. Note

that (5) is not used in the decomposition.
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AxioM IV.1.1 (Independence)Let A, B, C and D be sets. Lef\/ be a
model.

(1) (Definition)A L CifandonlyifA. L BUC;
B B
(2) (Triviality) A} A;
B

(3) (Finite Character)A L C if and only if A’ L C’, for all finite A" C A,
B B
c'ca,
(4) (Monotonicity) IfA L C andB C B; C M; andC’ C C, thenA | B’;
B 1
(5) (Rop-Local Character) For everg and M, there exists a finit& C M such
thata | M;

B
(6) (Transitivity) IfB C C C D,thenA .l DandA L CifandonlyifA L D;
C B B
(7) (Symmetry over modelg)) L C'if and only ifC' L A.
M

M
(8) (Invariance) Letf be a partial elementary mapping &f* with AUBUC C
dom(f). ThenA L C'ifandonlyiff(A) L f(C).
B f(B)
(9) (Concatenation) IfA L BC andC .. BthenC | BA.
M M M

We first examine independent families.
DEFINITION IV.1.2. We say tha{B; | i < o} isindependent oveb/ if
B; L|J{Bj|j#i.j<a}l,
M

for everyi < a.

LEMMA IV.1.3. Let{B; | i < a} be a family of sets and assume that
*) B L J{B)lj<i}, foreveryi<a.

M
Then(B; | i < «) is independent ovel/.
PROOF By finite character of independence, it is enough to prove this state-

ment forq finite. We do this by induction on, an integer.

Fora = 1, (*) implies that B; L By, so by symmetry over models we

M

haveB, L Bi, which shows thaf By, B; } is independent ovel/.
M

Assume by induction that the statement is truedor w. Leti < a+1
be given. We must show that

(**) Bi]\iU{Bg’USa—i—Lj;éi}.
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If i = a+ 1, then this is (*), so we may assume thigt « + 1 and therefore (**)
can be rewritten as

Bz‘]\%[U{Bj |j <, j#i}UBaya.
Notice that by induction hypothesis
MU ’
Further, by (*), we have
Bat ]\JZU{BJ' |j < a,j#i}UB;.

Therefore (**) follows from the previous two lines by concatenation of indepen-
dence. N

We will say that a set of sequencéss a tree if it is closed under initial
segment. We will use the notation< v to mean that) is an initial segment o#.

DEFINITION IV.1.4. Let! be atree, we say thal, | n e I) C M isa
systemf M,, € K for eachy € I andM,, € M, whenn < v € I.

The concept in the next definition is called system in stable amalgamation
by Shelah.

DEFINITION IV.1.5. We say that)M,, | n € I) C M is anindependent
systenif it is a system satisfying in addition:

M, L |JM,, foreverynel.
My 0

Under our axioms, independent systems are quite independent/ &or
subtree ofl, denote byM; := [J{M, | n € J}. The following is an abstract
version of Shelah’s generalized Symmetry Lemma. It appears in a similar way in
[Ma].

LEMMA IV.1.6. Let (M, | n € I) be an independent system. Then, for
any I, I, subtrees of, we have:

*) My, N M,
Ml1ﬂlg

PrROOF By the finite character of independence, it is enough to prove (*) for
finite treesl. We prove this by induction off; U I5|.

First, if I C I3, then it is obvious. Thus, assume that therg & 15 \ I3,
and choose) of maximal length. Let/; := I5 \ {n}. Notice that by choice of,
we haveMr,ny, = Mr,nr,. By induction hypothesis, we have that

*) My, L My,
Mflﬂfz
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SinceM, - C M ,, by monotonicity (*) implies that

(**) M]1 \‘/ MJZ'
M, -
By definition of independent system and monotonicity we have

(***) Mﬁ D M[1UMJ2.

n

Therefore, by concatenation applied to (**) and (***), we can conclude that

(t) My L My,
M

Now, using (*) and monotonicity we have

(i) Mh £ Mn—'
Mllﬁlg

Thus, the transitivity property applied td)@nd ), implies that

This finishes the proof. O

We now introduce the dependence relation on types; the invariance of the
dependence relation makes it natural. We set a few standard definitions in this
context.

DEFINITION IV.1.7. (1) We say thap € S(A) isfreeoverB C A if

foreveryM D A anda € M realizingp, we havea | A;
B
(2) We say thap € S(A) is stationaryif for every M containingA, there is a

unique extensiop,, € S(M) of p such thap,, is free overA.
(3) We say that the stationary type= S(A) is based onB if p is free overB.

Axiom IV.1.8 (Existence of Stationary typeshetM € K. Thenany €
S(M) is stationary.

Note that by the local character of the dependence relation, any stationary
type is based on a finite set.

We now introduce a strong independence between stationary types: or-
thogonality.

DEFINITION IV.1.9. Letp € S(B) andgq € S(A) be stationary. We say
thatp is orthogonalto ¢, writtenp L ¢, if for every M € K containingA U B and

for everya = py andb = gy, we haver L b.
M
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By symmetry of independence, L ¢ if and only if ¢ L p. Also, if
p € S(A) andq € S(B) are stationary wittd C B, then by definitiorp L ¢ if
and only ifpp L q.

We now expand this definition to orthogonality against models.
DEFINITION 1V.1.10.

(1) Letp € S(A) be stationary. We say thatis orthogonal toM, written
p L M, if pis orthogonal to eacl € S(M).

(2) If My C My N Mo, we write thatM, /My L M, if and only ifp L Mj,
for everyp € S(M)) realized in}M;.

We now concentrate on a special kind of types: regular types. It follows
from the definition of that over the set of elements realizing a regular type, the
dependence relation satisfies the axioms of a pregeometry.

DEFINITION IV.1.11. Astationary type € S(A) is calledregularif there
exist a finiteB and a set of formulas(z,b) C p | B, such thap is based or3 and
for every M containingA and everyg € S(M) extendingp(x, b) eitherq = pys
orqg L p.

AxioM IV.1.12 (Parallelism).Letp,q € S(M), be regular types. LeNV
containM. Thenp L g ifand only ifpy L qn.

LEMMA IV.1.13. Let M C M;. If p € S(M) is regular, thenp,;, €
S(M) is regular.

PROOF. Letp € S(M) be regular. LetB C M andp(x,b) be as in the
definition. Thenp,,, is stationary based i8. Letq € S(N) extendp(z,b). Then
eitherq = py = (pay ) Or ¢ L p. Hence by definition ofL we haveg L pyy,.
This shows thag is regular. O

AxioM IV.1.14 (Existence of Regular typesi M C N and M # N,
then there exists a regular typec S(M) realized inN \ M.

The next three axioms guarantees that it is enough to focus on regular
types.

AXxIoM IV.1.15 (Perp l).Let M, N € K such thatM C N. Letp €
S(N) be regular. Therp L M if and only ifp L ¢, for every regular type €
S(M).

DEFINITION IV.1.16. We say that a modal/(A) is primeover A C M,
if for every N containingA, there exists an elementary embeddjhgh/ (A) —
N, which is the identity om.

The next few axioms assert that prime models exist under some circum-
stances.
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Axiom IV.1.17 (Prime models).

(1) Let M; € K. There exists a prime mod&ly C M; over();

(2) If a € My \ M (wherea is finite) then there is a prime mod&l (a) C M;
overM U a;

(3) If (M,, | n € I) C M, is an independent system, then there exists a prime
modelM (A;) C M, overUneI M,,.

This is to establish connections with the dependence relation and orthogo-
nality.

Axiom IV.1.18 (Equivalence) Let M < K and letp,q € S(M) be regu-
lar and letb ¢ M realizep. Theng is realized inM (b) \ M if and only ifp [ q.

Note that by Equivalence, the relatigh among regular types (over the
same base set) is an equivalence relation.

LEMMA IV.1.19. Let My C M C M’ C N. Letp € S(M’') be regular
realized inN \ M’ andq € S(M) such thatp [ q. Letr € S(M;) be regular. If
p L rtheng L r.

PROOF By Lemma 1.1.13, the types,,;» andqy,s are regular. By definition,
p L g Ifq L r, thengyy L ryp. By the axiom of parallelismy L r if and
only if p L rp;» andq L rif and only if gy L 754/. The conclusion follows from
the equivalence axiom. O

AxIoM 1V.1.20 (Prime base)If M’ is a prime model ovel), ., My, where
(M, | n € I)is an independent system andjet S(M’) is regular. Then there
exists a finite subtreé C I and a model\/* prime over J, . ; M,, such thatp is
based on\/*.

neJ

Axiom IV.1.21 (Dominance).

(1) Leta be suchthatp(a/M ) is regular. ForeachC,ifa L CthenM (a) L C;
M M
(2) Let (M, | n € I) be an independent system and1é{A;) be prime over

it. Then, for eaclC, if | J{M,, |n e I} L CthenM(A;) L C.
M M

LEMMA IV.1.22. Letp = tp(a/M) be regular and suppose thatL M,
with M, C M. ThenM (a)/M L M.

PROOF By axiom (Perp 1) it is enough to show that any regular type
S(M) realized inM (a) \ M is orthogonal to any regular typeover M;. But,
if ¢ is regular realized inV/(a) \ M, then by Equivalence we must haye/ p.
Sincep L My by assumption, thep L . Then, by definitiong L r if and only if
g L rpr. Hence, we conclude by Equivalence. O



106 IV. MAIN GAP AND AN ABSTRACT DECOMPOSITION THEOREM

LEMMA IV.1.23. Let My C M and letay, as such thata; L as. Suppose
M
thattp(a;/M) L My, fori = 1,2. LetB be such thaB3 L My, thena,as L B.
M M
PROOF By finite character of independence, it is enough to prove this for

finite B. Letd be finite such that
*) b L Mo,
M

First, sincetp(az/M) L My, (*) implies that

(**) as L b.
M

Thus, by symmetry, we must habel a,, which shows thak |= tp(b/M) | Mas.
By assumption, we have that

(***) (_1‘1 \‘/ (—12 ,

and thusa; = tp(a1/M) | Mas. But, tp(a/M) L tp(b/M), so by defini-

tion, we must havea, . b. By the first axiom of the dependence relation, we

Mas
havea, L bay. By transitivity using (***), we obtaina; L bas. Hence, by the
Maso M
concatenation property of independence andgain, we can derive
ajas L l_),
Moy
which is what we wanted. O

COROLLARY IV.1.24. Let M C N. Let(A; | i < a) be independent over
N, such that4;/N 1 M, for eachi < «. Let B be such thatB . N. Then

M
U{4i|i<a} L B.
M

PROOF By finite character of independence and monotonicity, we may as-
sume thatv < w. We prove the statement by induction @rand use the previous
lemma at the successor step. O

COROLLARY IV.1.25. Let (M, | n € I) be a system satisfying:

(1) (M, | n~ = v,n € I) isindependent ovet/,, for everyv € I,
(2) The typetp(M,,/M,,-) L M, for everyn € I.

Then(M,, | n € I) is an independent system.
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PROOF By the finite character of independence, we may assumeltlat
finite. We prove this statement by induction din. First, notice that if there is no
n € I such thaty~— exists, then the result follows from (1). We must show that

M, L U{MV|7774V,VEI}.
M, -
Chooser € I of maximal length such that £ v. Let

Li:={p|nApv <pandp+# v}
Then, by (1), the system
*) (M,, M, | p € I), isindependent ovel/,, .
Let

L={p[nApv” Ap}
By induction hypothesis

(**) M, L MM,
M. __

v

Hence, by the previous corollary, using (*), symmetry on (**) and the fact that
M,/M,- L M,——,forp € I or p = v, we conclude that

(***) M, M, NP Mszn'

v

Now, by induction hypothesis, we must havg, L M, so by concatenation,

14

we must have

(T) Mn \‘/ M[1M12MV.

v

Now, M, L M, - by monotonicity and induction hypothesis. Therefore, using

(1), transitivity and the definition of; andl-, we conclude that

M, L U{MV|7774V,VEI}.
M, -
]

DEFINITION IV.1.26. N* has NDOP if for eveni{y, My, Ms C N* such
that My L Mo, for everyM’ C N* prime overM; U M, and for every regular
My
typep € S(M'). If pis realized inN* \ M’, then eithep [ Mj orp } M.

THEOREMIV.1.27. SupposeV* has NDOP. LetV/, M, C N*,forn e I
be such that{)M,, | n € I) is an independent system aid is prime over it.
Leta € N*\ M be such thatp(a/M) is regular. Then there ig such that

tp(a/M) L My
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PROOF. Letp = tp(a/M). Suppose thap L M, for everyn € I. By the
prime base axiom and parallelism we may assumeltigfinite. We will obtain a
contradiction to NDOP by induction d|.

If I = {n [ k:k < n},itis obvious becausg),.; M, = M,, so by
definition of prime, we havé/’ = M,. Butp L p by triviality of independence.
Thereforep f M,, by definition.

Otherwise, there exisis € I such that both subtreds := {n:ne€ v <
ntandly := {n : n € I v £ n} are nonempty. By the third axiom on prime
models, we can choosk/;, prime over| M, for k = 1,2. By induction
hypothesis, we have

nely

p L M and p L Ms.
Furthermore, sincéM,, | n € I) is an independent system, we have
UM, L | M,
nel; Ml/ nels
Therefore, by the symmetry of independence and dominance, we must have

My L M.
M,

But, M’ is prime overM; U Ms. This contradicts the fact thaf* has NDOP. [J

An w-tree is simply a tree of height at mast

DEFINITION IV.1.28. We say tha{)M,,, a,, | n € I) is adecomposition of
N* over M if it satisfies the following conditions:

(1) Iis anw-tree;

(2) (M, | n € I)is a system with\/,, C N* for eachn € I;

(3) If n~~ exists forn € I, thenMn/Mn_ 1L M,

(4) Forevery € I the system{M,, | n~ = v,n € I) is independent ovel/,.
(5) My = M andM,, is prime overM, - U ay;

(6) Forevery € I, the typetp(a, /M, -) is regular.

We say that M, a,, | n € I) is adecomposition oV* if it is a decomposition of
N* over M the prime model over the empty set.

We can introduce an ordering between decompositions obver M as
follows: We say that

(My,an [n € I) < (Ny,by | n€J)
if I C J and for everyh € I we have
M, =N,, and a, =b,.
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It is now easy to show that the set of decompositiong/éfis inductive:
Let (S; | © < a) be a chain of decomposition® = (M, a;, | n € I'). First,
let I := {J,_,I'. ThenI is anw-tree. Hence, we can define the systém=
(My,ay, | n € I), by M, := M} if n € I' anda,, := al, if n € I'. This is well-
defined sincéS; | ¢ < «) is chain. We need to check thétis a decomposition of
N*. The only nontrivial fact is to check that for everye I the system

(My|n~ =v,mel)

is independent oveld,,. If it failed, then by finite character, there would be a finite
setF C I such that

<M77|77_:V777€F>

is not independent. By then, there exists « such thatF” C I*, contradicting the
fact thatS; is a decomposition alV*.

Recall that we say that a modal is minimal over A if prime models
exist overA and if M (A) C N is prime overA, thenN = M(A). Note that a
decomposition as in the next theorem is cattethplete

THEOREMIV.1.29. SupposeN* has NDOP. Then for everyyy C N*,
there exist§ M, a,, | n € I) a decomposition aV* over M such thatV* is prime
and minimal ovetJ, o ; M.

PROOF First, notice that the set of decompositions\of over M is not empty.
Therefore, by Zorn’s Lemma, since the set of decomposition§ bbver M is
inductive, there exists a maximal decomposition

*) (My, an | n € I).

By Lemma 1.1.25, we know that\,, | n € I) is an independent system. There-
fore, by the third axiom for prime models, there exidts C N* prime over
U,er My. We will show thatM” = N*. This will show thatN* is prime and
minimal overl J, ., M.

Suppose that!’ # N*. Then, by the axiom of existence of regular types,
there exists a regular type € S(M’) realized inN* \ M’. We are going to
contradict the maximality ofM,),a, | n € I). SinceN* has NDOP, by Theo-
rem |.1.27, there existg € I such thap £ M,. Choose; of smallest length such
thatp } M,. By axiom (Perp I), there exists a regular type S(M,,)) such that
p L q. Sinceq is stationary, we can choogeg;s the unique free extension gfto
the prime modelM’. Then, by Lemma 1.1.13, the typg, is regular. Since [ g
andp € S(M'), by definitionp [ ¢;;. By Equivalence, since is realized in
N\ M’, there exista, € N \ M’ realizingq | M’'. Hencetp(a/M') = gy and
by choice ofg,,-, this implies that

(**) a L M.
M,
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Sincetp(a/M,) is regular and, € N\ M,, by the second axiom on prime models,
there exists a prime modél (a) C N* overM,, U a. By dominance and (**) we
must have

M(a) L M.
My

Thus, by monotonicity of independence and choic&f we conclude that

Fxx M(a) L M,|vT =n,vel}l.
(%) <>MU{ |v-=n vel}

n

But {M, | v~ = n} is independent by definition of decomposition. Thus, (***)
and Lemma 1.1.3 implies that

{M,,M(a) |v" =n,vel}

is independent ovel/,,. Suppose now that~ exists. By choice ofy we must have

p L M,-. Sincep [ tp(a/M,), we must have by Lemma |.1.19 and axiom (Perp
) thattp(a/M,) L M,-. Hence, by Lemma I.1.22, we must haVfa)/M,, L
M, . This shows that we can adg(a/M,) and M (a) to (*) and still have a
decomposition ofV*. This contradicts the maximality of (*). Thu§¥™* is prime
and minimal ovetJ, ., M. O

COROLLARY IV.1.30. If N* has NDOP, there exists a complete decompo-
sition of N*.

PROOF By the previous theorem since by axiom on prime models there exists
a prime model over the empty set. O

The same proof shows:

COROLLARY IV.1.31. If N* has NDOP andV* is prime over a decompo-
sition (M,, | n € I) of N* overM, then(M, | n € I) is a complete decomposition
of N* over M.

IV.1.0.1. Examples.The abstract decomposition given in the section above
generalizes the known NDOP cases.

There are several classical first order cases. The first oneNgfeamturated
models of a totally transcendental thedfy A second one is foik.-saturated
models of a superstable thedFy And finally, for the class of models of a totally
transcendental theof¥. In each caselV** can be taken to be the monster model
for T. The independence relation is forking. Regular types in the first two cases
are just the regular types in the sense of first order. In the last case, they correspond
to strongly regular types. The prime models are ffe-primary models, the.-
primary models for the second case, andﬂ?ﬁgprimary models in the third case.

All the results needed to apply the theorem can be foun8ing].
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In the nonelementary case, there is one published example: the models of
an excellent Scott sentence in,, ., [GrHa]. The modelN** can be taken to be
any sufficiently large full model oveW*. The dependence relation is that afforded
by the rank. Regular types are the SR types. The existence of prime models follows
from excellence (seesh874, [Sh87H, and [GrHa]).

The aim of the next section is to prove that the axiomatic framework de-
veloped in this section holds for the clasf (D, Xy)-homogeneous models of a
totally transcendentdD. Let N* be aD-model andV** = €.

Thedependence relatios given by the rank; the axioms for independence
were verified in Theorem .2.3. Th&ationary typesorrespond to the ones in
Chapter Ill, and the axiom postulating their existence follows from Corollary .1.10.
As forregular typesthey are defined slightly differently in the previous section, but
by inspecting the proof, one sees easily that their existence follows from Theorem
.3.10. Finally, the prime models are tii&; -models of Chapter Ill. Then their
existence follows from Theorem .4.6. By definition of isolation, Axiom (Prime
base) also holds immediately, since stationary types are based on a finite set.

This leaves us with the proof of Parallelism, Equivalence, and Dominance.
These results are part of what is called Orthogonality Calculus.

Note also that in each of the known cases, the failure of NDOP implies the
existence of many nonisomorphic models. This will be the object of section 3 for
totally transcendental diagrams.

IV.2. Orthogonality calculus in finite diagrams

In this section, the context is that of totally transcendental diagrams. We
already establised in Chapter Il that many of the axioms of the previous section
hold for totally transcendental diagrams. We will now develop what is refered to
asorthogonality calculugor this context and show that the remaining axioms used
to obtain an abstract decomposition theorem also hold for the cla&®,of))-
homogenous models of a totally transcendental diagtam

Note that some results falling under orthogonality calculus were already
proved in the last section of Chapter Il

The next few lemmas show Dominance.

First, for D-setsA and B, we say thatd Cpy B, if every D-type over
finitely many parameters irl realized inB is realized inA. The subscript TV
stands for Tarski-Vaught.

LEMMA IV.2.1. Let M be (D, Xg)-homogeneous. Suppaosel b. Then,
M
for everym € M the typetp(b/ma) is realized inM.
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PROOF. By symmetry,b L a. Hence, by taking a largem if necessary, we
M

may assume thap(b/Ma) does not split ovem. By (D, Xy)-homogeneity of\/,
we can findy’ € M, such thatp(b/m) = tp(b'/m). We claim thatp(b/ma) =
tp(t/ /ma). If not, there exists a formula(z, m, a) such that= ¢[b, m,a] and
= —¢[b',m,a). But,tp(b/m) = tp(b'/m), sotp(a/Mb) splits overm, a contra-
diction. O

The next lemma is standard.

LEMMA IV.2.2. Let A, B be D-sets such thatl Cry B. If tp(¢/A) is
Dy, -isolated, thentp(c/A) & tp(e/B).

PROOF Letq(z,a) F tp(¢/A), witha € A. Suppose thaip(c/A) I/ tp(c/B).
Then, there existd € B and a formulagp(z, %) such thaty(z,a) U ¢(z,b) and
q(%,a) U —¢(z,b) are both realized i. By assumption, there exisks € A re-
alizing be such thatp(b/a) = tp(¢/c¢). Hence, by an automorphism fixiragand
sendingb to t/, bothq(z,a) U ¢(Z,b) andq(z,a) U ~¢(z, ') are realized irg.
This contradicts the choice ¢fz, a). O

Recall that we denote hy/ (A) the Dy -primary model oved] U A.

THEOREMIV.2.3 (Dominance).Let M be (D, ¥y)-homogeneous and
be aD-set. For each, if A L B, thenM (A) L B.
M M

PROOF. By finite character of independence, it is enough to show tlaat ifb,
M
thené L b, for each finiter € M (a). Lete € M (a) be given. Thenp(c/Ma) is
M
Dy, -isolated. Hence, by assumption and Lemma .£1¢/Ma) + tp(e/Mab).

Thereforez L b. ]
M

Recall the definitions of orthogonality.

DEFINITION IV.2.4. Letp € Sp(B) andg € Sp(A) be stationary. We
say thatp is orthogonalto ¢, writtenp 1 ¢, if for every D-model M containing
AU B and for everyu = pys andb = qas, we haven L b;

M

Then, by Lemma .5.5 of Chapter Ill, we can immediately simplify the
definition: forp,q € Sp(M), we havep L ¢ if and only ifa L b for everya = p
M

andb = q.

The following lemma is a particular case of Lemma .5.6 of Chapter lll.
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LEMMA IV.2.5. Let M be(D, Xg)-homogeneous. i L bandtp(a/Mb)
M
is Dy -isolated, ther € M.

LEMMA IV.2.6. Lettp(a/Mb) be isolated, andp(b/M ) be regular. Sup-

pose that L b. Then, for anyeif a L ¢, thenb L é.
M M M

PROOF. Suppose thdt ). ¢. By symmetry, we have that . b. Letq(z,m,b) C
M M

tp(¢/Mb) be such that
Rlq(z,m,b)] = R[tp(¢/Mb)] < R[tp(c/M)].
Without loss of generality, sinae ). b, we can choosg(z,m,b) C tp(a/Mb) be
such that M
Rlp(y,m,a)] = R[tp(b/Ma)] < R[tp(b/M))]
and also
Rlp(b,m, T)] = Rltp(a/MDb)] < Rltp(a/M)].

Choose&” € M such thatp(¢/m) = tp(¢’/m). Sincea L ¢, we have in particular
M

thattp(a/Me) does not split overn so thattp(¢/ma) = tp(¢ /ma). Thus,b

realizes the following type

*) p(g,m,a) U q(a,m, ) U tp(b/m).
Sincetp(a/Mb) is isolated, we may assume thak(a)
a)

C
¥ € Mi(a) realizing (*). If &’ € M, thenRjtp(a/M)]
BI

M (b). Now choose
R[p(t',m, )], a contradiction. Henc& ¢ M and so b

< Rltp(a/mb)] =
L b, by the previous
M

lemma. Thustp(b'/M) extendstp(b/m) and is not orthogonal to it, thus since
tp(b/M) is regular based om, we must havep(b'/M) = tp(b/M). This is a
contradiction, since them, realizesg(&', m, 7). O

The next corollary is Equivalence.

COROLLARY IV.2.7 (Equivalence).Let M € K, letp,q € Sp(M) be
regular, and letb ¢ M realizep. Theng is realized inM (b) \ M if and only if

pLaq.

PROOF. Letb € M realizep. Let M (b) be D§, -primary overM U b.

Leta € M(b)\ M. Thentp(a/Mb) is D§, -isolated. Ifp L ¢, thenb L a.
M
Hence, by symmetrg L b, and saz € M, by Lemma .2.5, a contradiction.
M
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For the converse, suppose that g. This implies that there i8 = ¢ such
that

aJb.
M
Letq(z,m,b) C tp(a/Mb) be such that

R[q(z,m,b)] = Rltp(a/Mb)] < R[q].

Sincegq is regular, we may further assume thyas based onn. Thus, the element
a realizes the type

(*) q(z,m,b) Uq | m.

SinceM (b) is in particular(D, Rg)-homogeneous, thered$ € M (b) realizing the
type (*). SinceM (b) is (D, Rq)-primary, we must have thap(a’/Mb) is isolated.
Thus, sincé ) a, we must have by the Lemma .2.6 thiat, a. This implies that

M M
tp(a’/M) is an extension of the regular tyge| m which is not orthogonal to

q. Hence, sincg is regular, we must have = tp(a’/M). This shows thay is
realized (bya') in M (b). O

We prove the axiom of Parallelism.

THEOREMIV.2.8 (Parallelism).Letp, ¢ € S(M) be regular types. LeV
containM. Thenp L g ifand only ifpy L qn.

ProOOFE Certainly, ifp L ¢, thenpy L gn. Now suppose thaiy L gn. Let
b = py. Thenb = p and by Equivalencey L r if and only if r is realized in
M (b), the prime model ovel/ U b. Suppose that theredsc M (b) \ M realizing
r. Let N(b) be the prime model oveN U b. Thena € N(b). But, notice that
tp(a/Mb) is D, -isolated, andV/b Cryv Nb. Hence,tp(a/Mb) + tp(a/Nb).
This impliesa L b anda ¢ N. But, by stationarityaz |= qy. Hencegy is realized
N

in N(b) \ N, sogny £ pn, a contradiction. O

We encountered Morley sequences when we talked about stationary types
in the previous chapter. The definition can be made for any type.

DEFINITION IV.2.9. Letp € Sp(A). We say thata; | i < w) is aMorley
sequencéor p if

(1) The sequencg; | i < w) is indiscernible ove;
(2) Foreveryi < wwe havea; L AU{a; | j <i}.
A

The next fact was established in the previous chapter.

FACT IV.2.10. If p € Sp(A) is stationary, then there is a Morley sequence
for p.
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The next theorem is Axiom (Perp ).

THEOREMIV.2.11 (Perp I).Letp € Sp(N) be regular,M C N. Then
p L M ifand only ifp L g, for every regularg € S(M).

PROOF One direction is obvious. Suppose thpat M. We will find a regular
typeq € Sp(M) such thap [ q.

B Sincep is regular, there exists a finite SBC N such thap is regular over
f. Write p(z, f) for the stationary type;. Also, there exists a finite setC M

such thattp(f/M) is based ore. Sincep [ M, there exists a stationary type
r € S(M) such thap Y r. By monotonicity, we can find |= p, b = rx such that

a-L fb.
(&

Since M is (D, Xg)-homogeneous, there exist§ | i < w) C M, a
Morley sequence fotp(f/€). Letp; := p(z, f;)n. This is well-defined since
p(z, f) is stationary andp(f/e) = tp(f;/e), sop(z, f;) is stationary.

For eachi < w, we can choosé/; C N such that there is an automor-
phismg; with g;(f) = fi, gi(¢) = ¢ andg;(M) = M;. Sincep,,, is regular and
pi = g~ ' (pa;), then

* p; is regular, for each < w.

A similar reasoning using an automorphisms sendifigto f; f; shows that
**) p L po impliesp; L p;, foreveryi # j < w.

Finally, using the fact thai / r, we can derive

(***) pi L r, foreveryi < w.

If we show thatp £ po, then (*) implies the conclusion of the lemma. Suppose, for
a contradiction, thap L po. By (***) we can find ' |= r anda; = p;, such that
v L a; anda; ¢ M, for eachi < w. Now (**) implies thata;1 | {a; | i < j},

for everyj < w. Hence, by (*) and Lemma .2.5, we haig | ¢ M;, whereM;
is Dy, -primary overM U {a; | j < i}. Let N be D -primary overM U {a; |
j < w}. Sincex(D) = Ry, there exists1 < w such thaty L N. Hence, by
M,
monotonicity,t’ L a,. By symmetry over models,, L V. Buta, L {a;|i <
M

n

n
n}, and soa,, L M,, by dominance and symmetry. Hence, by transitivity of the
M

independence relation, we hawg L ¥/, sob’ L a,, a contradiction. ]
M M

We now prove two additional lemmas that will be used in the next section.



116 IV. MAIN GAP AND AN ABSTRACT DECOMPOSITION THEOREM

LEMMA IV.2.12. If p € S(M,) is regular,p L My, andM; L My, then
My
p L Ms.

PROOF Suppose that / Ms. Then, by definition, there existsc S(M,)
such thap / ¢. By definition, there iV O M; U M> such that

*) pN L gn.
We are going to find a typg € S(Mj) such thap / ¢'.

Sincep and g are stationary, there exist finite setsC Mi, d C Mo,
ande C M, such thatp is based ort, ¢ is based onl, and bothtp(¢/M,) and
tp(d/My) are based oa.

By (*) and finite character, there exist a $&tC N, anda, b such that

(**) a ': pM1M2F7 B ': quMQF, but a \L [3

By monotonicity, we may assume thate C F. Sincetp(ab/N) is stationary, we
may also assume thap(ab/M; My F) is stationary based of. Finally, we may
further assume thak[tp(a/c)] < R[tp(a/cF)].

Since My is (D, Rg)-homogeneous, we can choodec M, such that
tp(d'/e) = tp(d/e). By stationarity, we havep(cde/()) = tp(cde/()). Now
chooseF” C M; such thatp(cdeF/0) = tp(ed'eF/0). Finally, leta’d’ € € such
thattp(abcde F/0) = tp(a't'ed eF’ /).

By invariance under automorphism, we obtaftjtp(a’/c)] = Rltp(a’/F")]
andR[tp(b'/d")] = R[tp(b'/F")], since these statements are true without the

Now letq’ := tp(t//d' )y, € S(Mp). Such a type exists sinag(b'/d’)
is stationary. We claim that } ¢'. Otherwise, by the previous remark, we have
p L q)y,- Now, leta"d” |= tp(a't'/F’). We havea” |= p, V" |= ¢, and so
a" |= pynpe- ButthenR[tp(a”/c)] = Ritp(a”/b"F')] This contradicts the fact
thattp(a't’/F') = tp(a’b" | F"). O

LEMMA IV.2.13. Letp,q € Sp(M) be regular. Leta ¢ M realizep. If
p L g, then there exists € M (a) \ M realizingq such thatM (a) = M (b).

PROOF. By equivalence, there exisisc M (a) \ M realizingq. By definition
of prime, it is enough to show thap(a/Mb) is Dy, -isolated.

Letc € M be finite such thap is regular over, and writep(z,¢) = p |
¢. Now, sincetp(b/Ma) is Dy, -isolated, there exists (y,a) over M isolating
tp(b/Ma). By a previous lemma, we know that} b, so letry (7, b) witness this.

M
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We claim that the following type isolates (a/Mb):

(*) p(i’é) Url([;vj)UTQ(jaE)'

Leta’ € M(a) realize (*). Thena' ¢ M by choice ofr;. Hence,a ., @’ so by
M

choice ofp(z, ), we havetp(a’ /M) = tp(a/M). Thus,tp(a/Mb) = tp(a’/MDb)

usingra(a@’, j). O

We can now show using the language of Section 1.

THEOREMIV.2.14. Let K be the class of D, ¥j)-homogeneous models
of a totally transcendental diagrar?. Let N € K have NDOP. TherV has a
complete decomposition.

ProoE All the axioms of Section 1 have been checkedfor O

REMARK IV.2.15. Similary to the methods developed in this section for
the class of D, Xy)-homogeneous models of a totally transcendental diagpam
we can check all the axioms for the class(d@?, )-homogeneous models of a
totally transcendental diagram, for any infinite .. This implies that ifKC is the
class of( D, 1)-homogeneous models of a totally transcendental diagvaend if
N € K has NDOP, theriV has a complete decomposition (in terms of models of
K).

IV.3. DOP in finite diagrams

Let KC be the class of D, RXy)-homogeneous models of a totally transcen-
dental diagram. In the language of the axiomatic framework, we dke= ¢.
We say that satisfies DOP if there exist8* € K which does not have NDOP.
Recall that\(D) = |D| + |T|.

CLAIM . Suppose that has DOP. Then there existg, M;, M’ € K for
1 = 1,2 such that

(1) My L Mo;
M

(2) M’ is prime overM; U My;

(3) [|M'|| = A(D);

(4) M; = M(a;),fori=1,2;

(5) There exists a regular typec S(M’) such thap L M;, fori =1,2;
(6) The typep is based om andtp(b/M; U M) is isolated oveti; as.

PROOF By assumption, there existé* € X which fails to have NDOP. Then,
there existM; € K inside N*, for ¢ < 2 with M; . Ms, there exists\/” C N*
Moy
which is D§_-primary overM; U M, and there exists a regular typec S(M")
such thap L M;, fori=1,2.
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Letb € M" be a finite set such thatis based orb. Leta; € M;, for
i = 1,2 be such thatp(b/M; U M) is D;O—isolated ovemay. LetM € IC,
M C M of cardinality \(D) be such thati; L M,. Such a model exists using
M

local character and prime models. Left(a;) be prime ovetM U a;, fori = 1, 2.
Then, by Dominance, Transitivity, and Monotonicity, we havéa;) . M (as).
M

By axiom on prime there exists/’ C M" prime overM (a;) U M (az). We may
assume thaB C M'. Letp’ = p | M'. Thenp’ € S(M’) is regular based oh
andp’,;, = p. It remains to show that' L M (a;), fori = 1,2. Letr € S(M(a;)
be regular. Them,,, is regular by our axiom. Furthermore, by definitigh,L r if
and only ifp’ L ry,. By Parallelism, sincéd/’ C M”, itis equivalent to show that
p L. But,ryy, € S(M;) is regularp L M;, andry = (rar; ) s Therefore,
by choice ofp we havep L rjy;~, which finishes the proof. O

Let u > A(D) be a cardinal (for the following construction, we may have
w1 > (D), but the strict inequality is used in the last claim). k&f; | : < u) be
independent over a mod&¥ C M;. Suppose that)M;|| = A\(D). Let R C [u]?
and suppose that/, = M (M; U M;), for s = (7, j). Such a model exist for each
s € [u]? by the axioms on prime. Then, by Dominance and the axiom on primes,
the following system is independent:

*) (Mi [ i < p) U{M}U(M; | s € R).

Hence, there exists a model prime over J,_, M; U U cp Ms.

i<p
Let s = (i,7) and suppose that there exists a regular typec S(M;)
such thatp, L M;, p, L M;. LetI, be a Morley sequence far, of length p.
(Such a sequence exists sintés (D, ut)-homogeneous. Then, by Dominance,
definition of a Morley sequence, and axiom on prime, there eXists: M;(I;).

The next claim will allows us to choose prime models over complicated
independent systems with some additional properties.

CLAIM. The systenSg = (M; | i < ) U{M}U (N5 | s € R) is an
independent system.

PROOF. By definition, itis enough to show that, L D, whenD = {J,cp ;.5 NVi-

By finite character, it is enough to show this ’rBrfinite.ZWe prove this by induc-

tion on the cardinality ofR. WhenR is empty or has at most one element, there

is nothing to do. Suppose th& = {s; | i < n} U {s}. We show that we can

replacelM;, by N, andM; by N, and still have an independent system. By (*), it

is enough to show thati#/; . D, thenN;, | D, forD =|J,., Ns,. Using
M- M-

the axioms of the dependence relation, it is enough to showNhat D. By

s

i<n
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induction hypothesis, we have

(**) N, L |JN, and N, L |JN.

Ms <n Sn 1<n

Now, eithersns,, is empty saV/; .. M, by (*) or they extend and saM L M, ,
M .

J
by (*) again. SinceM C Mj, in either caseps L M;, by choice ofp;. Hence
ps L M, using Lemma .2.12. By induction hypothesis, there exiéts prime
model ovetJ,_,, Ns,. Hence, by (**) and Dominanc®, . N’andN,, . N’
Ms Sn
Hence, using again by Lemma .2.12, we havel N’. Thus,I; . N’ and
M,
I; L Ng,. Thereforel; .. N’ U N,, . By DominanceNs . N’ U Ng,. We are
N’ M M
done by monotonicity. O

<n

We will now use DOP to construct systems as in the claim.

Let the situation be as in the first claim. Writéz,b) = p | b. Let
(afaga < p) be a Morley sequence fap(aiaz/M). Such a Morley sequence
exists by assumption o@ and stationarity over models. L&t be prime over

M Ua$, fori = 1,2. Such a prime model exists by the axioms. TAéff | Mf
M

for everya < (3, by Dominance. By axiom on prime there exists*’ prime
over M U My . Letb*® be the image ob in M. Letp®® = p(z,5°) s €
S(Me8), which exists and is regular singds based om. Thus,p®® L M{ and
p*® L MJ. Let I°” be a Morley sequence of lengthfor p°. Let N7 be prime
over M®# U I*P. Then, for the claim, for eacR C [u]?, the system

Sp={M}U(M:a<pi=12)U(N:(a,3) € R)isanindependent system
Hence, there exist&/r prime over it.

The final claim explains the name of Dimensional Order Property: It is
possible to code the relatioR (in particular an order in the following theorem)
by looking at dimensions of indiscernibles in a modéf. Note that the converse
holds also, namely that the following property characterizes DOP (we do not prove
this fact as it is not necessary to obtain the main gap). Rgcall\(D).

CLAIM . The pair{a, 5) € R if and only if there existg € Mg with the
property thattp(a;azb/0) = tp(atasc/0) and for every prime\/* C My over
MU d?ag containinge there exists a Morley sequence fd1z, ¢) 5+ of lengthy.

PROOF. If the pair(a, 3) € R, thenp®? is based orb®®. Furthermore]*”

is a Morley sequence of length for p®° in Mz. Let M’ be prime overM U

a?ag containingb®?, thenp(z, b°%) - is realized by every element éf° except
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possibly A\(D) many. Hence, there exists a Morley sequence of lepgthince
> AD).

For the converse, let < 3 < p be given such thata, 3) ¢ R. Let
t = (a, ). Leté C Mp finite as in the claim. By using an automorphism, we have
thattp(é/dff&g) isolatestp(E/Mfo) and hence there existe; C My prime
oveer‘Mf containingé. By assumption o, there existd C Mg a Morley
sequence fop(z, ¢)y, of lengthp. Let N, be prime ovetM, (1), which exists by
assumption on prime. By the previous claim, the following system is independent

{MYU(M? | o < pyi=1,2) U(N® | (o, 3) € R) U{N;}.

Thus, in particulatVy L U, M;UUscg Ns. Hencea L U, MiUU g Ns,
M, M,
for eacha € I. By Dominancez .. My and soa € M;. This is a contradiction.
M
]

All the technology is now in place to apply the methods $hp] or
[GrHa] with the previous claim and to derive:

THEOREMIV.3.1. Suppose that has DOP. Thenk contains2* noniso-
morphic models of cardinality, for each\ > |D| + |T|.

THEOREMIV.3.2. Suppose that the class @D, 1)-homogeneous models
of a totally transcendental diagrat has DOP. Then, for each > |D|+ |T'| + p
there are2* nonisomorphid D, ;1)-homogeneous models of cardinality

IV.4. Depth and the main gap

We have now showed that if every moddD, X,)-homogeneous model
of a totally transcendental diagrathhas NDOP, then every such model admits a
decomposition. We will introduce an equivalence between decompositions, as well
as the notion of depth, in order to compute the spectrum functiof fdvlost of
the treatment will be done under the assumption xhaas NDOP.

DEFINITION IV.4.1. We say thak’ has NDOP if everyV € K has NDOP.

We introduce th@epthof a regular type.

DEFINITION IV.4.2. Letp € Sp(M) be regular. We define thaepthof
p, writtenDep(p). The deptiDep(p) will be an ordinal,—1, or co and we have the
usual ordering-1 < a < oo for any ordinakv. We define the relatiobep(p) > «
by induction ono.

(1) Dep(p) > 0if pis regular;
(2) Dep(p) > 4, whend is a limit ordinal, if Dep(p) > « for everya < 4;
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(3) Dep(p) > « + 1 if there existsa realizingp and a regular type €
Sp(M(a)) such that- L M andDep(r) > a.

We write:

Dep(p) = —1if pis not regular;
Dep(p) = a if Dep(p) > a but it is not the case thddep(p) > a + 1;
Dep(p) = oo if Dep(p) > « for every ordinakx.

We letDep(K) = sup{Dep(p)+1| M € K,p € Sp(M)}. Thisis called
thedepthof K.

LEMMA IV.4.3. Letp € Sp(M) be regular withDep(p) < co. Leta = p
withr € Sp(M (a)) regular withr L M. ThenDep(r) < Dep(p).

PROOF This is obvious, by definition of depth, Dep(r) = Dep(p) is as
above, theMep(p) > Dep(p) + 1, contradictingDep(p) < oo. O

LEMMA IV.4.4. Letp € Sp(M) be regular. IfDep(p) < co anda <
Dep(p), then there existg regular such thaDep(q) = «.

PROOF By induction onDep(p). ForDep(p) = 0 it is clear. Assume that
Dep(p) = 6+ 1. Leta = p and letr € Sp(M(a)) be such that L M and
Dep(r) > . Then, by the previous lemmBep(r) = 5. Hence, we are done by
induction. Assume thdDep(p) = ¢, whered is a limit ordinal. Leta < §. Then,
Dep(p) > « by definition, so there exist = p andr € Sp(M (a)) regular such
thatr L M andDep(r) > «. By the previous lemm®ep(r) < Dep(p), so we
are done by induction. O

We first show that the depth respects the equivalence reldtion

LEMMA IV.4.5. Letp,q € Sp(M) be regular such thap [ ¢. Then
Dep(p) = Dep(q).

PROOF By symmetry, it is enough to show thBep(p) < Dep(q). We show
by induction ona that Dep(p) > « implies Dep(q) > «. Fora = 0 or o a
limit ordinal, it is obvious. Suppose th@itep(p) > a + 1, and leta realizep
andr € Sp(M(a)) be such thaDep(r) > a andr L M. Sincep [ ¢, by

Lemma .2.13, there existsrealizingg such thatV/ (a) = M (b). This implies that
Dep(q) > o+ 1. O

LEMMA 1V.4.6. Suppos&C has NDOP. Let\/ C N, with M, N € K. Let
p € Sp(M) be regular. Theep(p) = Dep(pn).

PROOF We first show thaDep(p) > Dep(pn). By induction ona, we show
thatDep(p) > « impliesDep(pn) > «.
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Fora = 0 it follows from the fact thapy is regular. Forx a limit ordinal it
follows by induction. SupposBep(p) > a+1. Letarealizep andr € Sp(M(a))
regular be such thddep(r) > « andr L M. Without loss of generality, we may

assume that . N. Hence, by Dominancé/(a) . N. Sincer L M, then
M M
Lemma .2.12 implies that | N. By induction hypothesi®ep(ry@a)) > a.

HenceDep(py) > a + 1.

The converse uses NDOP. We show by inductiomdhatDep(py) > «
implies Dep(p) > «. Fora = 0 or « a limit ordinal, this is clear. Suppose
Dep(pn) > a+ 1. Leta realizepy. Thena L N, so by Dominancé/(a) L N.

M M

ConsiderN’ Dy -primary overM (a) U N. We may assume thadf’ = N(a).
Hence, there is € Sp(N’) regular such thabep(r) > « andr L N. Hence,
by NDOP, we must have t M(a). Therefore, by (Perp I) there exists a regular
typeq € Sp(M(a) such that £ ¢. But, sincer L M, alsog L M. Moreover,
by Parallelismy } ¢/ and sincegy- is regular, the previous lemma shows that
Dep(gn’) = Dep(r) > a. Hence, by induction hypothesiBep(q) > «. This
implies thatDep(p) > a + 1. O

Let \(D) = |D| + |T'|. As we saw in Chapter Ill, iD is totally transcen-
dental, thenD is stable in\(D).

LEMMA IV.4.7. LetK have NDOP. IDep(K) > A\(D)* thenDep(K) =

PROOF. Letp be regular based oB. Let M be Dy -primary over the empty
set. Then||M| < A(D). By an automorphism, we may assume thaiC M.
Then, by Lemma .4.6, we hav®ep(p) = Dep(p [ M). Thus, sincdSp(M)| <
A(D), there are at most(D) possible depths. By Lemma .4.4, they form an initial
segment of the ordinals. This proves the lemma. O

DEFINITION IV.4.8. The clasKC is calleddeepif Dep(K) = oc.

The next theorem is the main characterization of déep classiC is deep
if and only if a natural partial order oR is not well-founded. This will be used to
construct nonisomorphic models in Theorem .4.23.

THEOREMIV.4.9. Kis deep if and only if there exists a sequettg, a; |
i < w) such that

(1) My has cardinalityA(D);
(2) tp(a;/M;) is regular;

(3) M, is prime overM; U a;;
(4) Mi+l/Mi L M;_q,ifi>0.
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PROOF Suppose that is deep. Prove by induction an< w that a sequence
satisfying (1)—(4) exists and that in addition

(5) Dep(tp(ai/M;)) = oo.

This is possible. Foi = 0, let M € K andp € Sp(M) be regular such that
Dep(p) > A(D)* + 1. Such a type exists sindé€ is deep. Now, lefB be finite
such thatp is regular overB. Let M, € K contain B be of cardinality\(D).
Then, since = (p | My)n, we haveDep(p | My) by Lemma .4.6. Leti, realize
p | My. By the previous factDep(tp(ag/My)) = oo. Now assume that;, M;
have been constructed. L&f;, be prime overM; U a;. By (5), we must have
Dep(tp(a;/M;)) > A(D)* + 1, so there existg;; realizingtp(a;/M;) and a
regular typep; € Sp(M;;1) such thaDep(p;) > A(D)* andp; L M;. Leta; 4,
realizep;, then (1)—(5) hold.

For the converse, suppose there exidt§,a; | i < w) satisfying (1)—
(4). We show by induction o that Dep(tp(a;/M;)) > «, for eachi < w.
This is clearly enough since thddep(tp(ag/Mp)) = oo. Fora = 0, this
is given by (2), and forx a limit ordinal, this is by induction hypothesis. For
the successor case, assume thap(tp(a;/M;)) > «, for eachi < w. Fix
i. Then by (Atp(a;+1/Miy+1) L M;. By (2) tp(a;+1/M;+1) is regular and by
(3) M;+1 = M;(a;). By induction hypothesi®ep(tp(a;+1/Mi+1)) > «, hence
Dep(tp(ai/M;) > a + 1 by definition of depth. O

We will find it convenient to introduce dominance.

DEFINITION 1V.4.10. We say thatl dominatesB over M if for every set

C,if AL CthenB L C.
M M

We rephrase some of the results we have obtained in the following remark.

REMARK IV.4.11. For any setd, A dominates)M (A) over M. Thus, if
M C N,anda € N\ M there always is a modél/’ such that € M’ C N and
M’ is maximally dominated by over M, i.e. M’ is dominated by: over M and
every model contained iV strictly containing)/’ is notdominated by: over M.

We introduce triviality. The name comes from the fact that the pregeometry
on the set of realizations of a trivial type is trivial.

DEFINITION IV.4.12. Atypep € Sp(M) is trivial if for every M', N €
K such thatM C M’ C N and for every sef C pj,(NN) of pairwise independent
sequences oveY!’, thenI is a Morley sequence far,-.

If pistrivial, a = p anda dominates byB over M, then we say thaB /M
is trivial .

REMARK IV.4.13. Iftp(a/M) is trivial, thenM (a) /M is trivial.
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The next lemma says essentially that all the regular types of interest are
trivial.

LEMMA IV.4.14. If K has NDOP, then ifp € Sp(M) is regular with
Dep(p) > 0, thenp is trivial.

PROOF Suppose € Sp(M) is not trivial. Without loss of generality; for
i < 2 be pairwise independent ov@d such that{a; | i < 2} is not. Since
Dep(p) > 0, by using an automorphism, we can find Sp (M (ap)) regular such
thatr L M.

Let N = M(ag,a1,a2). Let M’ C N be maximal such that;as L M.
M
Thus, we may assume that= M'(ay, a1, az). Sinceag realizesp, andM’ /M L
p, we haveay L M’. Hence, by Lemma .2.12, we must havel M’. By the
M
previous remark, choose; C N maximally dominated by, over M’. By choice

of M; we haveM; L M. Thus, by definition of\/; and NDOP, necessarily is
M
Dg, -primary overM; U M.

/

Now, sinceM’/M L1 p, we haveapa; L M’'. HenceM (ay) L M;, for
M

i =1,2. By Lemma .2.12, we havey 1 M; fori = 1,2, contradicting NDOP.
O

The next lemmas are used to calculate the spectrum function.

LEMMA IV.4.15. AssuméC has NDOP. Le{M,, | n € J) be a complete
decomposition oV* over M. LetI be a subtree of. Then there existd; C N*
and N, C N* foreachn € J\ I suchthat{ N;} U{N, | n € J\I}isacomplete
decomposition oN* over N;.

ProOOF DefineN; C N* andN, C N*forn e J\ I as follows
(1) Nris Dy -primary ovel J{M;, | n € I};
(2) Nt L My;

M

I
() Ny = N,-(M,) forn € J\ I and when;~ € I thenN,, = N;(M,);
(4) N, L U,._, M
M,

n<y -V
n

This is easily done and one checks immediately that it satisfies the conclusion of
the lemma.

O

We now define an equivalence relation on decompositions.
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DEFINITION IV.4.16. Let(M,, | n € I) be a complete decomposition of
N*. Define an equivalence relatienon I \ {()} by

n~v ifandonlyif M,/M,- } M,/M,-.

By Equivalence, this is indeed an equivalence relation. By the following
lemma, any two sequences in the samequivalence class have a common prede-
cessor.

LEMMA IV.4.17. If (M,, | n € I) is a decomposition oiV*, then for
n,v € I\ {()} such that)y~ # v~ we haveM, /M, - L M, /M,.

PROOF Letn,v € I\ {()} such that)y” # v~. Letu be the largest com-
mon sequence of~ andv~. We haveM,- L M, -, by independence of the

decomposition. By definition\/,, /M, - 1 M,--. Hence, by Lemma .2.12,
we haveM, /M, - L M, and alsoM, /M,- 1 M,-. ThereforeM,/M,- L
M, /M, O

The next lemma will be used inductively.

LEMMA IV.4.18. Let (M,, | n € I) and (N, | v € J) be a complete
decompositions aN* over M. LetI’ = {n eI |n- = ()}andJ = {v e J |
v~ = ()}. Then there exists a bijectigfx I’ — J’ such that

(1) f preserves--classes;
(2) If n € I" and M,, /M is trivial then M,, ]\ﬁNf(n)'

PROOF Choose a representative for eatkclass among the regular types of
Sp(M). Build the bijection by pieces. For each regulae Sp(M), the cardi-
nalities of{n € I | M,/M ) p}and{v € J | N,/N [ p} are equal and both
equal to the dimension @ N*) by construction. I is not trivial, then choose any
bijection between the two sets.ffis trivial, for eachn € I such thatM,,/M [ p
there exists exactly one € J’ such thatM,, L N,. Let f send each such to

their corresponding. Since there is no relation betwegn belonging to different
equivalence classes, this is enough. O

The following quasi-isomorphism will be relevant for the isomorphism
type of models.

DEFINITION IV.4.19. Twow-treesl, J are said to bguasi-isomorphicif
there exists a partial functioffrom I to J such that

(1) f is order-preserving;
(2) Foreach) € I all but at most\(D) many successors gfare indom( f);
(3) Foreach € J all but atA\(D) many successors ofare in theran(f).
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A function f as above is called guasi-isomorphism

THEOREMIV.4.20. Let (M,, | n € I) and (M, | v € J) be complete
decompositions aV*. Then there exists &-class preserving quasi-isomorphism
from/ to J.

PROOF. For each) € I, let,} = {v € I | v~ = n}. We define a partial
class preserving functiofi, from I;r into J as follows. Thenl/, has cardinality
A(D), so we can find, and.Jy of cardinality at most\(D) such that there exists
N C N* containing),, such thatV! is Dy, -primary over bot{_J{M, | v € Io}
andJ{M,, | v € Jy}. By Lemma .4.15 and Lemma .4.18, there exists a partial
function f,, from 1,7 \ I, into J satisfying conditions (1) and (2) in Lemma .4.18.

Now let f = Unel fn (we letfy map() to ()). Clearly f is well-defined,
since the domains of all thg,’s are disjoint. Further, by construction, the condition
involving A\(D) is satisfied.

It remains to show thaf is one-to-one and order preserving. We check
order preserving and leave one-to-one to the reader Letv € I be given. We
may assume that # (). Then, by Lemma .4.14, we havwd, /M, - is trivial. We
are going to computg(n) and f(v). Recall thatf(n) = f,-(n). In the notation
of Lemma .4.15 and of the first paragraph, we have

(Ne:¢eI\Ip)U{N} and (N[ :¢eJ\Jo)U{N},
two complete decompositions &f* over N. By Lemma .4.18, we have
N,- LN, ..
n N fn=)
Then, necessarily/, /M, [ M}(V)/M}(V_) and any sequence-related tov is
<-abovery. Consider the following independent tree
(Ne:CeINTo, fy (n) AQU(Nc:neIn=<¢U{N}L
By triviality of M, /M, -, itis a decomposition oN* over N. Hence, by Lemma
.4.17 we havé\l, /M- 1 N¢/N,-,foreach( € I\ Iy, f, (n) A ¢. This implies
that the~-class off, - (v) is abovef, (n~). Thus,f is order preserving. O

In order to construct many nonisomorphic models, we will need a special
kind of trees. For a-treel andn € I, denote byl,, = {v € I | n < v}. We
write I, = I, if both trees are isomorphic as trees.

DEFINITION IV.4.21. Anw-treel is calledampleif for everyn € I, with
n~ € I, we have

{vel:v™ =n"andl, =1I,}| > X(D).

We now state a fact about ampletrees. If] is a tree, by definition every
n € I is well-founded in the order af. Therank of n in I will be the natural rank
associated with the well-foundedness relatiomon /.
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FACT IV.4.22. Let I, J be ample trees. Lef be a quasi-isomorphism
from I to J. Then for eachy € dom(f), the rank ofy in I is equal to the rank of

f(n)in J.

In the next proof, writé(n) for the level ofy.

THEOREMIV.4.23. If K is deep, for eacly > \(D), there are2* noniso-
morphic models of cardinality.

PROOF Letu > A(D). SinceK is deep by Theorem .4.9, there exi§ig;, a; |
i < w) such that

(1) My has cardinality\(D);
(2) tp(a;/M;) is regular;

(3) M,y is prime overM; U a;;
(4) Mi+1/Mi 1L M;_q,if71>0.

Let p = tp(ap/My). Thenp is regular based on a finite sBt We will find 2/
non-isomorphic models of sizewith B fixed. This implies the conclusion of the
theorem sincg<®0 = 4.

For eachX C p of sizeu, let I'x be an amplev-tree with the property that
the set of ranks of elements of the first levellgfis exactly.X. Such a tree clearly
exists {« > A(D)). Define the following systemM,f |nelx):

1) M<)>( = Mo;
(2) Ifno < - < nn € Ix, we havetp(M;y ... My¥ /0) = tp(Myy) - - - My, /0).

This is easy to do and by choice 0i/;,a; | ¢ < w) this is a decomposition.
Let Mx be aDg -primary model oveU{M,f | n € Ix}. ThenMx € K has
cardinality . By NDOP, (M;,a; | i < w) is a complete decomposition af x
over M.

We claim that forX # Y as aboveMyx %5 My. Let X, Y C pu of
cardinality 1 be such thatX # Y. SupposeMy =p My. Then, by Theorem
.4.20, there exists a class-preserving quasi-isomorphism betfiyesmd/y . Since
B is fixed, the first level of x is mapped to the first level df-. By the previous
fact, we conclude thak = Y, a contradiction. O

We have shown that deep diagrams have many models. The usual methods
(see Bh b] for example) can be used to compute the spectruii efhen/C is not
deep. Recall that wheki has NDOP but is not deep thé&rep(K) < A(D)*, by
Lemma .4.7.

THEOREMIV.4.24. If K has NDOP but is not deep, then for each ordinal
a with R, > X\(D), we havel (X, K) < jDep(,C)(\aP'T‘) < Ixpy+(Jaf).
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This proves thenain gapfor the classC of (D, ¥y)-homogeneous models
of a totally transcendental diagrafh

THEOREMIV.4.25 (Main Gap).LetK be the class ofD, X)-homogeneous
models of a totally transcendental diagraih Then, eithed (R, K) = 28, for
each ordinalx such tha®, > |T'|+|DJ, or I(Ra, K) < 34 p))+ (), for each
a such that, > |T'| + |D].

PROOEF If K has DOP (Theorem .3.1) or has NDOP but is deep (Theorem
.4.23), then has the maximum number of models. Otherwisehas NDOP and
is not deep and the bound follows from Theorem .4.24. O

Similar methods using the existencelof-prime models for totally tran-
scendental diagrams allow us to prove the main gap/foy.)-homogeneous mod-
els of a totally transcendental diagrdm

THEOREMIV.4.26. Let K be the class of D, ;1)-homogeneous models of
atotally transcendental diagram®. Then, eithed (R,,, ) = 2%+, for each ordinal
asuch thatty, > |T'| + [D[ + p, or I(Ra, K) < Jpj4pp+ (|), for eacha such
that®, > |T'| + |D| + p.

Finally, similarly to [GrHa] or [Ha], it is possible to show that fax large
enough, the function — I(X,, K) is non-decreasing, for the cla&sof (D, p)-
homogeneous models of a totally transcendental diagpam



CHAPTER V

Forking in pregeometries

At the center of classification theory for the first order case is the notion of
forking. Forking is a dependence relation discovered by S. Shelah. It satisfies the
following properties in the first order stable case, stfelf].

(1) (Finite character) The typedoes not fork oveB if and only if every finite
subtypeg C p does not fork oveiB.

(2) (Extension) Lewp be a type which does not fork ovét. Let C' be given
containing the domain gf. Then there existg € S(C') extendingp such
thatq does not fork oveiB;

(3) (Invariance) Letf € Aut(€) andp be a type which does not fork ovét.
Then f(p) does not fork over(B).

(4) (Existence) The type does not fork over its domain;

(5) (Existence ok(T')) For every typep, there exists a sd8 C dom(p) such
thatp does not forkB;

(6) (Symmetry) Lep = tp(a/B¢). Suppose that does not fork oveB. Then
tp(¢/Ba) does not fork overs;

(7) (Transitivity) LetB C C C A. Letp € S(A). Thenp does not fork over
B if and only if p does not fork ove€ andp | C does not fork ovei.

Already in the introduction of Chapter Il oh b], S. Shelah states what
is important about the forking relation is that it satisfies properties (1)-(7). S.
Shelah stated another property named by S. BuecBlg&l][the Pairs Lemma (see
Proposition 1.1.16 for the statement) as one of the basic properties of forking, which
he proved in §h b] using the Finite Equivalence Relation Theorem. Later Bald-
win in his book Ba @] presented an axiomatic treatment of forking in stable the-
ories. This allowed Baldwin to derive abstractly Shelah’s Pairs Lemma from the
other properties of forking. Following these ideas, it has now become common to
characterize various stability conditions in terms of the axiomatic properties that
forking satisfies.

A major problem in the classification theory for nonelementary classes is
to find a dependence relation which is as well-behaved as forking for first order
theories. See for exampl&f48, [Sh874, [Sh87H, [GrHa], [Ki], or [HySh1].

See also Chapter lll. The situation in nonelementary classes is very different from
the first order case. In the first order case, the Extension property for forking comes
for free; it holds for any theory and is a consequence of the compactness theorem.

129
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This is in striking contrast with the nonelementary cases; the Extension property is
usually among the most problematic and does not hold over sets in general for any
of the dependence relations introduced thus far.

A general dependence relation satisfying all the formal properties of fork-
ing has thus not been found yet for nonelementary classes. There are, however,
several cases where pregeometries appear; that is sets with a closure operation
satisfying the properties of linear dependence in a vector space. In the first or-
der case, the pregeometries are the sets of realizationsegltar type, and the
dependence is the one induced by forking and thus satisfies automatically many
additional properties. In nonelementary classes the situation is different.

Let us describe several nonelementary examples. The first three examples
have in common that there exists a rank, giving rise to a reasonable dependence
relation. However th&xtensiorproperty and th&ymmetryproperty fail in general
(they hold over sufficiently “rich” sets). The rank introduced for these classes are
generalizations of what S. Shelah calt§, L, 2]. Intuitively, a formula has rank
a+ 1 if it can be partitioned ifwo pieces of rank: with some additional properties
that are tailored to each context (see Chapter Ill, for example). It is noteworthy that
extensions of Morley rank are inadequate, as partitioning a formula in countably
many pieces makes sense only when the compactness theorem holds. In the last
example, no rank is known, but pregeometries exist.

Categorical sentences irl.,,,(Q): Shelah started working on this context
[Sh4§ to answer a question of J.T.Baldwin: Can a sentendg(i@) have
exactly one uncountable model? Shelah answers this question negatively
usingV=L (and later using different methods within ZFC) while devel-
oping very powerful concepts. One of the main tools is the introduction
of a rank. This rank is bounded under the parallagestability. It gives
rise to a dependence relation and pregeometries. Later, H. Kier&gad [
uses these pregeometries to obtain some results on the countable models of
these sentences.

Excellent Scott sentencesIn [Sh874 and [Sh87H S.Shelah introduces a
simplification of the rank of$h48. S. Shelah identifies the conceptex-
cellent Scott sentencesid proves (among many other things) the parallel
to Morley’s Theorem for them. Again, this rank induces a dependence rela-
tion on the subsets of the models. Later, R. Grossberg and B. Glidta]]
proved the existence of pregeometries (regular types) for this dependence
relation and used it to prove the Main Gap for excellent Scott sentences.

Totally transcendental diagrams: In Chapter Ill, we introduced a rank for
Np-stable diagrams. Diagrams for which the rank is bounded are called
totally transcendentalRecall that the rank gives rise to a dependence re-
lation on the subsets of the models and pregeometries exist often. This
is used to give a proof of categoricity generalizing the Baldwin-Lachlan
Theorem.
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Superstable diagrams: In [HySh1], Hyttinen and Shelah study stable finite
diagrams under the additional assumption #{d?) = ¥,. Such diagrams
are calledsuperstable They introduce a relation between sdtsB and an
elementa, writtena | g A. The main result is that the parallel of regular
types exist. More precisely, for every pair of “sufficiently saturated” mod-
elsM C N, M # N, there exists a typgrealized inV \ M such that the
relationa | s C (standing fora ¢ cl(C)) induces a pregeometry among
the realizations ap in N.

Thus, pregeometries seem to appear naturally in nonelementary classes,
while general well-behaved dependence relations are hard to find. The goal of
the first section of this chapter is to recover framy pregeometry a dependence
relation over the subsets of the pregeometry that satisfies all the formal properties
of forking. This is, of course, particularly useful when the pregeometry itself was
notinduced by forking.

A similar endeavor was attempted by John Baldwin in the early eighties.
In [Ba], J.Baldwin examined some pregeometries and several dependence relations
in the first order case. From a pregeometry, he defines the relatiod’, by

B
a € cl(BUC) —cl(B). He did not however introducd | C, whereA is a

tuple or asetas opposed to an element, which we do (seg Definition 1.1.7). This
is a crucial step; it is built-in in the model theory of first order, since forking is
naturally defined for types of any arity. To make this more precise] fi first
order stable theory. Let us write

alC for tp(a/BUC)does notfork oveB.
B

Inside a regular type(z) € S(B), the relationa € cl(C) given byajl C gives
B

rise to a pregeometry. But, the relation. C is defined in general whether or not
B

a andC consist of elements realizing Inside the pregeometry, the relation. C
B
holds (defined with forking) if and only if the relatioh.l C' holds (defined for-

B
mally from our definition using the closure operator of the pregeometry). This is a
consequence of the Pairs Lemma, which holds for first order simple theories. When
we start from an abstract pregeometry (or an abstract dependence relation), we do

not have the formalism of types or the Pairs Lemma. Therefore the relatiot’
B
has to be introduced for tuples, using the relatiah C' for elements. As a conse-
B
qguence, suppose we are given the corresponding notion of a regular ¢y|5¢B)

in a nonelementary context. Suppose there is some ambient dependence relation,
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written A L C such that over realizations efthe relationa € cl(C), given by
B

a ) C, induces a pregeometry. Then, the truth value of the relationC' (given
B B
from the ambient dependence relation) and C' (defined from the closure oper-

ation in the pregeometry) may not coincide. They will coincide only if the Pairs
Lemma holds for the dependence relation (and this fact is not known in general
for nonelementary cases). Therefore, this abstract formalism allows us to intro-
duce for nonelementary classes a (possibtierdependence relation, inside the
pregeometry.

In Section 2, we present S. Buechler’s characterization of local modularity
with parallel lines Bul] in this general context. This also has esthetic value as it
allows one carry out this work in the general context of combinatorial geometry,
without logic.

In Section 3, we supplement this work with some observations of a set-
theoretic nature, as well as a discussion of stable systems.

In Section 4, an abstract framework is presented where, using the depen-
dence relation defined is this chapter, a generalization of Zilber-Hrushovski group
configuration theorem can be derived. A rather lengthy introduction was added.

V.1. Forking in pregeometries

Recall a few well-known facts about pregeometries.

DEFINITION V.1.1. Apregeometrys a pair(W, cl), wherelV is a set and
clis a functioncl: P(W) — P (W) satisfying the following four properties

(1) (Monotonicity) For every seX € P(WW) we haveX C cl(X);

(2) (Finite Character) It € cl(X) then there is a finite séf C X, such that
a€cl(Y),

(3) (Transitivity) LetX,Y € P(W). If a € cl(X) andX C cl(Y) then
a€cl(Y),

(4) (Exchange Property) FoX € P(W) anda,b € W, if a € cl(Xb) but
a & cl(X), thenb € cl(Xa).

We always assumé(()) # W.

The next two basic properties are standard and easy.

FACT V.1.2. If (W, cl) is a pregeometry and C C' C W, thencl(B) C
cl(C).

FACT V.1.3. If (W,cl) is a pregeometry and@ C W, thencl(cl(B)) =
cl(B).
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DEFINITION V.1.4. Let(W,cl) be a pregeometry.

(1) ForX C W, we say thatX is closedif X = cl(X);

(2) I € W isindependenif for everya € I, we haven ¢ cl(I \ {a});

(3) We say thaf C A generatesA, if cl(1) = cl(A);

(4) A basisfor a setA C W is an independent sétgenerating:1(A);

(5) For X C W, thedimension of Xwritten dim(X), is the cardinality of a
basis forcl(X).

FAcT V.1.5. Using the axioms of pregeometry, one can show that for every
set, bases exist and that the dimension is well-defined see for example Appendix in
[Gra]

DEFINITION V.1.6. LetG = (W, cl) be a pregeometry.

(1) A bijection f: W — W is anautomorphism ot if for everya € W and
A C W we have

a€cl(d) ifandonlyif f(a) € cl(f(A4)).

We denotedut 4 (G) the set of automorphisms 6f fixing A pointwise.

(2) We say that7 is homogeneous for every a,b € W andA C W, such
thata ¢ cl(A) andb & cl(A) there is an automorphism @, fixing A
pointwise and taking to b.

The next definition is the main concept of this chapter.

DEFINITION V.1.7. Let(W,cl) be a pregeometry. Let, B andC be sub-
sets of V. We say thatd depends o’ over B, if there exista € A and a finite
A’ C A (possibly empty) such that

a€c(BUCUA)\c(BUA.

If A depends o over B, we write A J C;
B

If A does not depend ofi over B, we write A L C.
B
REMARK V.1.8. An alternative definition wittd’ = () does not permit a
smooth extension to sets. | C' when A is not a singleton.
B

REMARK V.1.9. A L C ifand only if AU B.L C U B. Hence, we will
B B
often assume tha C AnC.

We now prove that the properties of forking in simple theories hold with
this formalism, directly from the axioms of a pregeometry.

PROPOSITIONV.1.10 (Finite Character)Let (W, cl) be a pregeometry. Let
A, B andC be subsets diV. Then

ALC ifandonlyif A" L C’,
B B
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for every finited’ C A and finiteC’ C C.

PrROOF If A ) C,then there exist € A, and a finited’ C A such that
B

acc(BUCUA)\c(BUA).

By Finite Character, there exist a fini& C C such thats € cl(BU C’' U A’).
HenceA’ ) C’, by definition.
B

For the converse, if there exist a finitd C A and a finiteC’ C C such

thatA’ ) C’, then we can find € A’ andA” C A’ such that
B

acc(BUC'UA")\ cl(BUA").
SinceC’ C C, we havea € cl(BU C U A”), by Fact 1.1.2. Henced ., C, by
B
definition. 0

PROPOSITIONV.1.11 (Continuity). Let (W, cl) be a pregeometry. L&C; |
i < a) be a continuous increasing sequence of setd’imnd A, B C W.

(1) If AL C; for everyi < o, thenA L, C;.
B B

(2) If C; L Aforeveryi < o, thenJ,_, C; L A.
B B

PrROOF By Finite Character. O
PROPOSITIONV.1.12 (Invariance).Let G = (W, cl) be a pregeometry.
Let A, B andC be subsets df” and letf € Aut(G). Then
ALC ifandonlyif f(A) L f(CO).
B f(B)

PrROOF Note that since the inverse of an automorphism is an automorphism,

it is enough to show one direction. Assume tHag. C and leta € AandA’ C A
B
finite be such that

a€c(BUCUA)\c(BUA).
Thenf(a) € cl(f(BUCUA")\ cl(f(BUA")), by definition of automorphism.
But sincef is a bijection
fla) € A(f(B) U F(C) U f(A)) \ el(f(B) U f(A)).
Therefore,f(A) L f(C) by definition. O
f(B)

PROPOSITIONV.1.13 (Monotonicity). Let (W, cl) be a pregeometry. Let

A, B andC be subsets dfi”. Supposed L C.
B
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(1) If A/ C AandC’ C C, thenA’ L C’;
B
(2) If B'CC,thenA L C.
BUB

PROOF. (1) Suppose that’ J C’. Leta € A’ andA* C A’ finite such that
B

a€cl(BUC'UA")\cl(BUA").

Then, by Fact 1.1.2, we have € cl(BUC U A*) \ cl(B U A*). Buta € A and
A* C A, s0A L C.
B

(2) Supposed ), C.Leta € AandA’ C A finite such that
BUPB

a€c(BUB'UCUA)\c(BUB'UA).

SinceB’ C C, we havecl(BUB'UCUA') = cl(BUCUA'). Also,cl(BUA’) C
c(BUB'UA’). Hencea € cl(BUC U A’) \ cl(BUA’). ThereforeA L C. O
B

PROPOSITIONV.1.14 (Symmetry).Let(W, cl) be a pregeometry. Let, B
andC' be subsets dfi’. Then

ALC ifandonlyif C L A.
B B
PROOF. Suppose thatl ./ C. Choose:r € A and a finiteA’ C A such that
B

*) a€c(BUCUA)\c(BUA.

By Finite Character and (*), there existe C and a finite (and possibly empty)
C'’ C C such that

(**) acc(BUC'UcUA) and agcl(BUC UA).
Therefore, by the Exchange Property, we have
cec(BUC'UA Ua).
Butc & cl(BUC' U A"), (**). Hence,
cecd(BUC'UA Ua)\cl(BUC'UA").

ThereforeC' ) A’, for some finite subset’ of A. Hence,C' ., A, by Finite Char-

B B
acter. [

PROPOSITIONV.1.15 (Transitivity). Let (W, cl) be a pregeometry. Let
A, B, C and D be subsets dfi” such thatB C C C D. Then,

ALD and ALC ifandonlyif AL D.
C B B



136 V. FORKING IN PREGEOMETRIES

PROOF. Suppose first thatl J D. Choosen € A and a finiteA” C A such
B
that

acc(DUA)\ c(BUA).
Eithera € cl(C U A’), and so

a€cl(CUA)\c(BUA),
which implies thatA\éC. Ora ¢ cl(C U A"), and therefore

acc(DUA)\cl(CUA),
which implies thatd ., D.
C

The converse follows by Monotonicity sinde C C C D. O

The following is proved in$h b] directly using the finite equivalence re-
lation theorem. The proof that it follows from the other axioms of forking is due to
J. Baldwin. We present it here for completeness.

PROPOSITIONV.1.16 (Pairs Lemma)Let G = (W, cl) be a pregeometry.
Let A, B, C and D be subsets df such thatC C BN D. Then

AUuBULD ifandonlyif A .o DuB and B.LD.
C CUB C

PrROOF Notice first, that by definition

*) A L DUB ifandonlyif A L D.
CUB CcCuB

Therefore, by Symmetry and (*), it is equivalent to show that

DIlAUB if and only if D L A and DUl B,
C CuUB C

which is true by Transitivity. O

REMARK V.1.17. Let(W,cl) is a pregeometry. Le#, B,C and D be
subsets of¥/. Then

AD L C ifandonlyif AL CD.
B B

PROOF Supposed [ C'D. Then, by Monotonicity we havd .l D. There-

B B
fore, by Symmetry, we hav® | D. By Transitivity, we haved | C'D. Hence,
B BD
AD L C by Concatenation.
B
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For the converse, suppose that. C'D. Then by Symmetry we must have
B
CD L A. Hence, by the first paragraph, we know that. AD, so by Symmetry,
B

B
alsoAD | C. O
B

This finishes the list of usual properties of forking. We now prove a few
propositions relating closure and.

PROPOSITIONV.1.18 (Closed Set Theorem).et (W, cl) be a pregeome-
try. Let A, B andC be subsets dii’. Then

ALC ifandonlyif A" L C’,
B B’
provided thaicl(A U B) = cl(A’ U B'), cl(B) = cl(B’) andcl(C' U B) = cl(C" U
B).

PROOF ltis clearly enough to prove one direction. Furthermore, by Symme-
try, it is enough to show that .| C implies A L. C’. Suppose thatl ., C’. Let
B B’ B’

a € AandA* C A be such that

a€cl(B'UCUAY)\ cl(B'UAY).
But, it follows from the assumption that(B' U C' U A*) = cl(BU C U A*) and
cl(B"U A*) = cl(B U A*). Therefore

acc(BUCUA")\cl(BUA"),

which implies thatd ., C. O
B

REMARK V.1.19. Inview of the previous result, wheh | C, we can first

B
choose a basi8’ of B, and choose!’ C A andC’ C C, independent oveB (or
equivalentlyB’), such thatl(A U B) = cl(A’ U B) andcl(C U B) = cl(C' U B),
and thus4d’ L ¢’ and alsoA’ L C".
B B’
PROPOSITIONV.1.20. Let (W, cl) be a pregeometry. Led, B and C' be
subsets ofV.
ALC implies cl(AUB)Ncl(CUB)=cl(B).
B

PrRoOF Certainlycl(B) C cl(AU B) Ncl(C U B). Suppose that the reverse
inclusion does not hold, and lete cl(A U B) N cl(C U B) such that ¢ cl(B).
Thena € cl(C U B) \ cl(B), socl(A U B) ., C. But the previous proposition

B

implies thatA ., C, which is a contradiction. O
B
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REMARK V.1.21. In view of the definition and symmetry, when we look
at A L C, we will generally assume thd8 C A andB C C. Further, because

B
of the closed set theorem, we may assume thdt andC' are closed, and finally,
thatB = ANC.

V.2. Buechler’'s theorem

We list a few more definitions.

DEFINITION V.2.1. Let(W,cl) be a pregeometry.

(1) (W,cl) is calledmodularif for every closed subsetS; and S, of W we
have

dim(Sl U SQ) + dim(& N Sz) = dim(Sl) + dim(Sg);

(2) (W,cl) is calledlocally modularif for every closed subsetS; and.S; of
W we have

dim(Sl U SQ) + dim(51 N 52) = dim(Sl) + dim(Sg),

provided thatS; N Sy # 0;
(3) (W,cl) is calledprojectiveif for everya,b € W andC' C W such that

a € cl(CU{b}),
there exists: € C such that € cl({c, b}).

REMARK V.2.2. Itis not too difficult to see that a pregeometry is projec-
tive if and only if it is modular.

DEFINITION V.2.3. Let(W,cl) be a pregeometry.
(1) Aclosed sel. C W is alineif dim(L) = 2;
(2) Two disjoint linesL; and L, areparallel if dim(L; U Lg) = 3.

DEFINITION V.2.4. LetG = (W, cl) be a pregeometry and C 1. De-
fine thelocalization of G at AwrittenG 4 = (W4, cla), by

Wa=W\A and cla(X)=cl(XUA)\A, for X C Wy.

REMARK V.2.5. Itis easy to see thatdF is a pregeometry, the@ 4 is a
pregeometry. Iz 4, we denote the dimension &f by dim(X/A).

REMARK V.2.6. If G = (W, cl) is locally modular, therG 4 is modular
for any finite subsetl of W\ cl(0).

PROPOSITIONV.2.7. Let (W, cl) be a pregeometry. Lef;, Sy be finite
dimensional closed sets satisfyifg = 51 N Ss. Then,

S LSy ifand onIy if dim(51 U SQ) + dim(51 N SQ) = dim(Sl) + dim(Sg).
So
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PROOF Suppose firstthai; L S,. Let] be a basis fofy, and letl; © I be a
So
basis forS; for i = 1, 2. Clearly,cl(S; U S2) = cl(I; U I3). We claim, in addition,

that; U I, is independent. Otherwise theredisc cl(I; U Iz \ {a }). Without
loss of generality, we may assume that ;. Now, sincel; is independent,

a ¢ cl(l;\ {a}), thus
acc(lula\{a})\cl(;\{a}), fori=1,2.

We may also assume thatZ 1. To see this, assume that I. Choosel! C I;\ I,
minimal with respect to inclusion, such that cl(I; UL U I\ {a }), I] # 0, for
i = 1,2. By the Exchange Property, therebig I, such that

bec(I{ULuTU{b}) Ccl(ly Ul \ {b}).
But, ifa & I, thencl(l; \ {a}) = clJ U L1 \ {a}) so
a € cl(laU (I \{a})) \cl(IU (I2\{a})),

which means tha$; ., S5, a contradiction. Hencé, U I is independent. There-
So
foredirn(Sl U SQ) =|LU IQ’. But’h U IQ‘ + ‘I’ = ’Il‘ + ‘Ig

dim(Sl U SQ) + dim(S1 N Sz) = dim(Sl) + dim(Sg).

, SO

For the converse, suppose ., S,. Leta € S; andA; C S; such that
So

*) a € cl(Sa U Ap)\ cl(SpU Ap).

Choosea such thatA; has minimal cardinality. This implies that; U {a} is
independent oves,, and A is independent ove$,. Thus, we can pick a basig
for Sp, and extend, U A; U {a} to a basid; of S;. Now choos€}, disjoint from
Iy, such thatly U I} is a basis ofSs. But, Iy U A; U {a} U I} is not independent by
(*). Hence

dlm(Sl U SQ) + dlm(Sl N Sz) < dlm(Sl) + dlm(SQ),
which finishes the proof. O

In the previous section, we showed that in any pregeometry, there is a
relation that satisfies all the properties that forking satisfies in the context of simple
theories. This allows us to show a theorem of BuechBerl], originally proved
for stable theories, when the pregeometry comes from forking.

THEOREMV.2.8 (Buechler).Let G = (W, cl) be a pregeometry. The®
is locally modular if and only it74 has no parallel lines for every finitd C W,
such that4d ¢ cl(0).

PROOF Suppose first that there is a finite C W, such thatd ¢ cl(()) and
G4 contain parallel lines. Thus, Idt; and L, be disjoint lines inG 4 such that
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dim(L; U Ly/A) = 3. Let L] = cl(L; U A) fori = 1,2. ThenA C L} n L, so
Lin Ly Z cl(0), L, is closed fori = 1,2, and
dim (L} U L)) + dim(L} N L) # dim(L}) + dim(L5).
This shows that- is not locally modular.

For the converse, suppose tifatis not locally modular. Then there are
closedS; andS; subsets of¥” such thatS; NSy € cl(P) and

dim(Sl U SQ) + dim(51 N 52) 75 dim(Sl) + dim(SQ).

We may assume thaff; and S» are finite dimensional. Lety; = S; N S3. By
Proposition 1.2.7, this implies that; ., So.
So

Let D be the set of pairs of intege(sd;, d2) such that there are closed sets
S1 andSsy such that

e So=5,NS5andSy ¢ Cl(@);
o d = dim(sl/S()) anddg = dim(Sg/So);
e 51 ) Ss.

So

By assumptiorD # (). Choose(d;, d2) minimal with respect to the lexicographic
order. We claim thatd,,d2) = (2,2). Note that this is enough to prove the
theorem sincels, (S1 \ So) andclg, (S2 \ Sp) are parallel lines inf7 g, .

Certainly,d; > 1. Otherwisedim(S;/Sp) = 1 and sinceS; ., S there
So
must exista € S; \ Sp such that € cl(S2) \ cl(Sp). SinceS, andS, are closed,
we havea € S; N Sy \ Sy, a contradiction, sincd; NSy = Sp.

We now show thatl; < 3. Supposel; = dim(.S;/Sy) > 3. We will show
that this contradicts the minimality aof;. We first show that

™* S Nel(Sqa) = cl(Spa), foranya € S\ So.
First, notice thatSpa C S; andSpa C cl(S2a), SO
S1Nncl(Sq2a) 2 cl(Spa), foranya € Si\ Sp.
Hence, if (*) does not hold, it is because for some S; \ Sy, there exists
b e (S1Ncl(S2a)) \ cl(Spa).

By definition, this implies thaf a, b} ., Sa.
0

Let S] = cl(Spab). ThenS; NSy = Sy andSy € cl(P). Furthermore
St L S2. Butdim(S2/Sy) = d2 anddim(S]/Sy) = 2 < 3 < dy, which contra-
S

0
dicts the minimality ofd,. Therefore, (*) holds.
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Now, sinceS; L Ss, there existi € S; and a finiteA C S; such that
So

**) a€cl(SaUA)\cl(SoUA).
But A Z Sy. Otherwise, by (**) we haver € cl(S2) \ cl(Sp). This shows that
a € S9\ S; sinceSy andS are closed. But € S1, soa € (51N S2) \ Sp = 0,
which is impossible. Hence, theretiss A \ Sy. Then, sincedb = A, we have
a€cl(SaUA)\cl(SpbUA).
HenceS: ) Ss.
SoUb

Now considerS), := cl(Sq2b). Then,S; J  SeimpliesthatS; ., SY%.

SouUb SoUb
By (*) we haveS; N Sé = CI(SOb) Finally, dlm(Sl/(Sob)) < dlm(Sl/So) =d;
anddy = dim(S2/Sy) = dim(S%5/Sob). This contradicts the minimality af,. We
prove similarly thatl, = 2, which finishes the proof. O

V.3. Some “set theory”

In this section, we gather several observations with a set-theoretic flavor.
The next theorem is a generalization of a lemma from J. Baumgartner, M. Foreman
and O. SpinasBFS]. Although the proof is easy, it does not follow from the fact
that two resolutions of the same model coincide on a club, as we do not have control
over the cardinality of the closures. The value of this theorem is that it makes it
possible to attach a club as an invariant of the pregeometry.

THEOREMV.3.1. LetG = (W, cl) be a pregeometry. Suppagien(1V) =
A is regular and uncountable. Ldt= {a; | i < X} andJ = {b; | i < A} be
bases of¥. Then

C={i<X: d({a;|j<i})=c({b;|j<i})}
is a closed and unbounded subsehof

PROOF We first show that” is closed. Lety = sup(d N C). Then, for any
1 < d thereisi; € C such that < i1 < §. Hence, by definition of”

() cd{a; |j<ir})=cl({bjlj<ir})
Lemma 4 and (*) implies that; € cl({b; | 7 < J }). Hence,
{aj|j <6} Ca({b;]j<d)),
and therefore
cA({a; | j<8}) Cel({b;]j<3}),
by Fact I.1.2 again. The other inclusion is similar and so
cA({a;|j<6}) 2c{b;|j<0}).
This shows that € C, by definition ofC.
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We now show tha€’' is unbounded irk. Let: < X be given. We construct
in < Aforn € wincreasing withig = 7 such that

(1) cd{aj |j<in}) Ccl({bj|j <ing1})if niseven;
(2) cl({bj |j<in}) Ccl{aj|j < ingt1})if nisodd.

This is enough: Let(x) = sup{i, | n € w}. Theni(x) < A since\ is
regular uncountable. Furthel({a; | j <i(x)}) = cl({b; | j < i(x)}), since if
i < i(x), then there ig,, with n even such that < i,,, so

a; € cl({a; | j <in}) Ccl({bj|J <int1}) Cel({b;|j <i(x)}),
hence

cl(faj [ 7 <i(+)}) Scl({b;[j <i(+)})
The other inclusion is proved similarly. Thus< i(x) € C, which shows that’ is
unbounded.

This is possible: Given < A, we letiy = ¢. Assume that,, < A\ has been
constructed. Supposeis even. For each < i,, we have that; € W = cl({ b; |
Jj < A})sinceJ is a basis. By Finite Character, there is a firfiteC A such that
aj € cl({by | k€ S;}). Letk; =supS; < A, s0a; € cl({b | I < k;}), and by
increasingk; if necessary, we may assume that> i,. Seti,1 = sup{k; +1 |
Jj <'in }. Theni, 1 < A sincel is regular and satisfies our requirement. The case
whenn is odd is handled similarly. O

PROPOSITIONV.3.2 (Downward Theorem)Let G = (W, cl) be a prege-
ometry. LetA, B and C be subsets ofi”. Supposed L C and A’ is a subset of
B

A, of cardinality at most\, for A an infinite cardinal. Then there i8" C B of
cardinality at most\ such thatd’ | C.
B/

PROOF Let A’ C A of cardinality A be given. Let{ (a;, 4;) | i < A} be
an enumeration of all the pairs such thate A’ andA; C A’ is finite. Such an
enumeration is possible singds infinite. Sinced . B, necessarily

C

™* a; cl(BUCU A;) \cl(BUA;), foreveryi <.
Hence, eithen; ¢ cl(BUCUA;), ora; € cl(BUA;). If the latter holds, by Finite

Character, we can find a finit8; C B such thai; € cl(B; U A;). We letB; = 0,
if a; ¢ cl(BUA;). LetB’=|JB;. ThenB’ C B,and|B’| < \.

We claim thatd’ .| C'. Otherwise, there exigt€ A’ and a finited* C A,
B/
such that
(**) a€cl(B'UCUA")\ cl(B UA).

Choosei < A such thatu = a; and A* = A;. Thus,a; € cl(B'’UC U 4;), and
so by Fact 1.1.2 we have; € cl(B U C U A;). Therefore, by (*) we have that
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a; € cl(BU A;). Hencea; € cl(B; U A;) by construction. BuB; C B’, and so
a; € cl(B'U A;) by Fact 1.1.2. This contradicts (**) sincé* = A;. O

COROLLARY V.3.3. LetG = (W, cl) be a pregeometry. Let, B andC
be subsets dfi”. Suppose thatl, B and C' have cardinality at leash for some\
infinite. If A L B, then we can findl’ C A, B’ C BandC’ C C of cardinality \,

C
such thatd’ | B’.
Cl

PROOF By the previous theorem using monotonicity. O

ProPOSITIONV.3.4 (Ultraproducts of Pregeometried)et I be a set and
© anX;-complete ultrafilter ol. Suppose thati?;, cl;) is a pregeometry for each
1 € 1. ConsiderW = II;c;W; and fora € W and B C W, define

accl(B) if {iel]|a(i)ecl(B(i))}eD.
Then(W, cl) is a pregeometry.

ProOOFE We only show Finite Character, since all the other axioms of a prege-
ometry are routine. Supposec cl(B). ThenJ = {i € I | a(i) € cl;(B(i)) } €
D, and by Finite Character @f;, for eachi € J, there is a finiteB’(i) C B(i),
such thau(i) € cl;(B'(i)). LetJ,, = {i € J | B'(i) hasn element$. Then

{ieJ]al)eci(B'@)}= ] Jn
n<w
Hence, byX;-completeness, there exist< w such that/,, € ©. We now write
B'(i) = {b},...,b,}fori € J,. LetA = {fi,...,f.} € B be given by
fx(i) = bl wheni € J,, and fi(i) € B(q) arbitrary when & .J,,. Then

{ieT|a(i)ecl(A@))} 2 J, €D,

by construction. Hencéi € I | a(i) € cl;(A(4)) } € ©. Thus,a € cl(A) andA
is a finite subset oB, which is what we needed. O

We now introduce stable systems, a notion originally developed in model
theory. They are used for example BH874, [Sh87H and later in the proof of the
main gap Bh b]. See alsofa].

DEFINITION V.3.5. LetG = (W, cl) be a pregeometry.

(1) We callS = (A, | s € T) asystemif A, C W, I is a subset of ) I closed
under subsets andC ¢ implies A; C A;. We denote by~ the immediate
predecessor of in I if one exists;

(2) We callS = (A | s € I) astable systenif S is a system which satisfies
in addition

As L J{Ar|t2s,teT}, foreverystel.
A

S
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PROPOSITIONV.3.6 (Generalized Symmetry Lemma)et G = (W, cl)
be a pregeometry. Le¥ = (A; | s € I) be a system. Suppose there is an
enumeratior’ = (s(i) | ¢ < «) such that

(1) s(z) C s(y) impliesi < j, for everyi, j < «;
@) Aspy L UlAsy) 17 <}
As(i)*

Then§ is a stable system.

PrROOF By Finite Character, we may assume thad finite. We prove this by
induction on|I|. The base case is obvious. Suppose it is trugfpe= n < w.
Supposd = (s(7) | ¢ < n) is an enumeration satisfying (1) and (2). Assume for a
contradiction that'is not a stable system. By induction hypothesis, we have either

*) Ay & UM |30) € s},
Asin)-
or there exist$ < n with s(i) Z s(n) such that
(**) As(z) A\L U{As(j) | S(]) g 5(7’)7 5(]) 7& S(n)} U As(n)
s(i)~
By assumption, we know that

(1) Ay L HAsg) 15 <n}
As(n)*

By (1), we have that
U{As) 1 5G) € stn)} € J{Asgy 15 < n}.
Hence (*) is impossible, by Monotonicity angl)(

Now if s(i) C s(n), thens(i)~ C s(n)~. Hence,Ay;)- C Agp)- Since
S is a system. By Monotonicity used twicg) mplies that

As(n) NP U{As(]) | 5(]) Z S(i)a 5(]) 7é S(n)} U As(z)
s(i)~
But this and Remark 1.1.17 contradicts (**). Hengg) Z s(n). O

V.4. Abstract group configuration

A central result in Geometric Stability Theory is the presence in very gen-
eral circumstances of a definable group among the definable (maybe infinitely de-
finable) sets of a model. This is referred to by W. Hoddd][as the Zilber Group
Configuration Theorem, and by others as the Hrushovski Group Configuration The-
orem. We will call it the Hrushovski-Zilber Group Configuration Theorem. It has
an ancient flavor; it is in a line of work which dates back to Veblen and Young
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around 1910. The general template is the emergence of algebraic structures from
certain geometric configurations.

The Hrushovski-Zilber Group configuration Theorem for the first order,
countableR; -categorical case is due to Boris Zilbeti]. It builds on the meth-
ods of Baldwin-LachlanBalLa]). It was extended to stable theories by Ehud
Hrushovski Hrl] (see also the exposition of Elizabeth BouscarBo]]. This
generalization was done using S. Shelah’s notions of forking, regular types and
p-simple technology.

These methods have since developed into a field of its own. See for exam-
ple the recent books of Steve BuechlBu[a] and Anand Pillay Pi b]. They have
been used to answer classical logical questions, for example B. Zilber’s solution to
the finitely axiomatization problen]]; to general classification theory questions,
for example E. Hrushovski's proof that unidimensional stable theories are super-
stable Hr2], S. Buechler's work on Vaught's ConjecturBy2], and have found
several applications outside of model thed®hHr], [HrPil], [HrPi2], [EVHI1],
[EvHr2], [Hr3].

Our aim in this section is to separate the model-theoretic aspects from the
combinatorial geometry in the Hrushovski-Zilber Group Configuration Theorem
to enable us to transfer this tool to non first order contexts.

The setting of the Hrushovski-Zilber Group Configuration Theorem is the
following. We have a pregeometry where the closure operation comes from fork-
ing. Technically speaking, the pregeometry is the set of realization of a stationary
type p with the additional property that the closure operation given by

a €cl(B) ifandonlyif tp(a/BUdom(p))forks overdom(p).

Here are several of the key ingredients in the first order case that are used. (1) The
notion of types (2) The fact that the pregeometry comes from forking guarantees
that the ambient dependence relation is well-behavedI{3}dble) Every type is
definable. (4) Work ifi**?, which allows one to use the Canonical Basis Theorem.
All these results rely on the compactness theorem.

As described in the introduction of this chapter, there are several nonele-
mentary contexts, where pregeometries arise and where one may hope to apply
these ideas. In each of the contexts we described (categorical sentehgcesi@),
Excellent Scott sentences, totally transcendental or superstable finite diagrams)
some facts allow us to circumvent the difficulties posed by the absence of the com-
pactness theorem. In each of them, we have (1) a good notion of types. (2) In spite
of the fact that the dependence relation is not necessarily as well-behaved as fork-
ing, there exists pregeometries. By work started in Chapter IV, this implies that we
can define another dependence relation which satisfies all the formal properties of
forking for first order theories. (3) In many of them, there is a notion of stationary
types and those are definable. (4) There are several ways (as yet unpublished, some
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due to myself, some to Saharon Shelah) of introducing substitute¢’tand get
the Canonical Basis Theorem.

The aim of this section is to take into account the technology available (or
being developed in nonelementary classes) to find some natural axioms (behind
which the logical framework is hidden) under which group configurations may
yield a group. Let us make this more precise. The Hrushovski-Zilber Group Con-
figuration Theorem states in essence that if orefinablepregeometry we have a
certain dependence configuration (called group configuration, see the figure next
to Hypothesis 1.4.16), then there existdefinablegroup.

There are two steps in the Hrushovski-Zilber Group Configuration Theo-
rems.

Step 1: Starting from the group configuration, where the dependence relation
is forking, to obtain a similar group configuration, where in addition, some
points areuniquely determinety others. This is often called the unique
definability condition.

Step 2: From this special configuration, one derives a definable group.

Both steps rely on the general properties of forking and the canonical basis
theorem for stable theories.

Step 1 seems decidedly model-theoretic and there is little hope for general
conditions for the existence of an abstract theorem generalizing it. However, Step
2 is amenable.

There are two aspects of definability: Byntactic definabilitywe mean
some model theoretic notion; we live in an ambient matielsatisfying some
axioms (not necessarily first order) and have a notion of formula. A sesaid to
be syntactically definable ovét if there exists a set of formulasover B such that
a € Aif and only if o realizes all the formulas ip. Now given an automorphism
groupT’, there is also a notion afemantic definability We say that a sef is
semantically definable oves if for every f € T fixing B pointwise, f fixes A
setwise.

Now, syntactic definability implies semantic definability in case the auto-
morphism group is (a subgroup) of the automorphism group of the middélhe
converse is more delicate.

In this section, we work inside a pregeomett¥, cl), given with an auto-
morphism groud’. We require that the pregeometry be homogeneous with respect
to this automorphism group, which in our context means that the automorphism
group is rich. We then have a notion of semantic definable sets (henceforth just
called definable). We also consider a subcollecfibof definable sets (which in
the applications are going to be the syntactically definable sets). We assume that
D satisfies an axiom parallel to (i) the definability of (stationary) types and another



V.4. ABSTRACT GROUP CONFIGURATION 147

axiom parallel to (ii) the canonical basis theorem. If we assume in addition that in
the unique definability condition of Step 2, the definable sets &fg then this im-
plies the existence of a group, which is equal to a (potentially infinite) intersection
of sets in®.

If one is interested in applications to model theory for nonelementary
classes and in particular issues of definability, we will be given a natural notion
of syntactical definable sets and this theorem will give a definable group in this
language (provided this notion satisfies the conditiorDgf All the first order
notions for definability used so far belong to this set and the axioms hold in the
well-known first order cases.

We can also look at this without a notion of syntactically definable sets.
This allows us to ignoré®, that is to assume tha& is the set of all semantically
definable sets. Then, we do not need an axiom on definability of stationary types
and just consider the canonical basis theorem for semantically definable sets. This
gives a very smooth theorem in the context of combinatorial geometry.

The presentation owes much tdd], [Bo] and [EvHrl]. In fact, the set-
ting of [EvHrl1] is a particular case of our setting: L& C L be algebraically
closed fields. The pregeomet(i¥’, cl) is given byW = L\ K anda € cl(C)
if and only if a is in the algebraic closure (ih) of the field generated bix U C.
The automorphism group is aut(L/K). All the axioms are satisfied. Using the
fact that they work in algebraically closed fields, they managed to obtain additional
information on the definable groups.

V.4.1. The context. Let (W, cl) be a pregeometry arid be a group of auto-
morphisms of W, cl).

We always assume(()) # W, in fact we will make the following assump-
tion:
HyPOTHESISV.4.1. We assume th&tV, cl) is infinite dimensional.
NOTATION V.4.2. (1) We denotd’ x the group of automorphisms of
(W, cl) fixing X pointwise.
(2) Given a sequencé of elements off”. We denote by x (A) the orbit of A
underlx, hamely
Ix(A) ={f(A) | f e x}.
For a sequencel = (a; | i < «), we write f(A) for (f(a;) | i < ).

In the previous chapter we introduced the following relation between sub-
sets of a pregeometry. For convenience and readability, we use the usual notation
NP

DEFINITION V.4.3. Let(W,cl) be a pregeometry. Let, B andC be sub-
sets oflV. We say thatd depends o’ over B, if there exista € A and a finite
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A’ C A (possibly empty) such that
acc(BUCUA)\c(BUA).

If A depends o' over B, we write A ., C;

B
If A does not depend afi over B, we write A L C.
B

We proved in the first section of this chapter that this dependence relation
satisfies the familiar axioms of forking, as introduced by Shelah.

FACT V.4.4 (Forking Relations).
(1) (Definition)A L C'ifandonlyifA. L BUC;,
B B
(2) (Existence | C.
C

(3) (Finite Charactery L B if and only if A’ L B’ for every finiteA’ C A
C C
and finite B’ C B;
(4) (Invariance)f f € I', thenA L C'ifand only if f(A) L f(C);
B f(B)
(5) (Monotonicity)Let B C B; C ¢’ C C. ThenA L C impliesA L C”;
B B
(6) (Symmetry)A \ C ifand only ifC \ A;

(7) (Transitivity) If B C C C D, thenA L D ifand only if AL C and

B B
AL D;
C

(8) (k(T") = Rp) For everya andC there existsB C C, |B| < Ny, i.e. finite,

such thata .l C,

B
(9) (Closed Sety L C'if and only ifcl(4) L cl(C).
B cl(B)

REMARK V.4.5. Definition, Existence, Finite Character, Invariance, Mono-
tonicity, x(T') = Xy and Closed Set are obvious. The difficulty is to obtain (6) and

(7).

The first axiom corresponds to the extension property of forking as well as
some saturation.

Axiom V.4.6 (Extension).Let a be given andX be finite dimensional.
Then, there exist® € I'(a) such tha’ | X.

The next axioms correspond the uniqueness of the nonforking extension. |
call it Homogeneity because a pregeometry satisfying H1 is called homogeneous.
The axioms H2 and H3 have a similar flavor and in first order model theoretic cases
follow from the same facts: stationarity and saturation.
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AXxiom V.4.7 (Homogeneity).

H1 If a, b & cI(X) then there isf € I'y(x) such thatf(a) = b;
H2 If a; € T'x(az), b1 € I'x(b2) anda; L b; fori = 1,2, thenthereig € I'x
X
(a

)
such thaty(a1) = az andg(by) = by;
H3IfaLlb a Lbanda € I'x(a'), thena € Ty (a’).
X X

FACT V.4.8. If dim(X) < dim(W) and|'x(a)| < N, thena € cl(X).

PROOF SincelV is infinite dimensional, there exists an infinite ¢ef, | n <
w} € W\ cl(X). By Homogeneity, ifa ¢ cl(X), then{a, | n < w} C
Leacxy(a) € I'x(a), a contradiction. O

The next definition is a substitute for the logical notions of algebraic or
definable closure.

DEFINITION V.4.9.

(1) We say that is in thedefinable closuref X, if [I'x(a)| = 1,i.e.T'x(a) =
{a}. We writea € dcl(X), if a is in the definable closure of;

(2) We say that: is in thealgebraic closureof X, if [I'x(a)| < Rg. We write
a € acl(X), if a is in the algebraic closure of.

REMARK V.4.10. For small dimensional sel§ C W and elementg €
W, Fact 1.4.8 implies that if, € acl(X) ora € dcl(X), thena € cl(X).

Finally, we introduce the notions that can be used to bypass the general
¢ technology, in particular Shelah’s Canonical Basis Theorem.

DEFINITION V.4.11.

(1) We say that a set C W™ is definable overX C W, ifevery f € T'x
fixes A setwise;

(2) We say thatX C W is thesupportof a setA C W™ if forevery f € T, f
fixes A setwise if and only iff fixes X pointwise.

FACT V.4.12.

(1) Any automorphisnf fixesX pointwise if and only iff fixesdcl(X) point-
wise, so by definition of support, we ha¥e= dcl(X).

(2) The support of4 is unique if it exists. LeX andY be supports of4, Let
f € T fixing X pointwise. Thery fixes A setwise sinceX is a support
and sof fixesY pointwise sincé&” is a support also. ThuBx (Y) =Y so
del(Y) =Y C dcl(X). We are done by symmetry.
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REMARK V.4.13. By the previous fact, ifA has supportX, we define
dim(A) = dim(X) and AL C if and only if supp(4) L  supp(C). All
B supp(B)
these notions are well-defined and satisfy all the facts we have already proved.
There will be no ambiguity since we will not deal withC W

We consider a collectio® of definable sets (without) parameters. We
require that® be closed under union and intersection, projections, product and
permutation. We dmot require closure under complementation. For clarity, we
use the usual first order notation with formulas. For examplep(yy) € © we
mean a definable subset Bf‘(*), We write = ¢[a, b] to say that(a, b) is in the
definable set(z).

We require that ify € dcl(b), then there ig(z, §) € D such that= ¢|a, b]
and for everya’ such that= ¢[da’,b], we havea = o’. We also require that the
sets of ifD are compatible with", i.e. if = ¢[a, b], then alsd= ¢[f(a), f ()] for
fel.

Now on to the last axioms.

Axiom V.4.14 (Definability of types).Let a, bec WandR € D be a
relation on the orbits ofi andb. Then there isip € © such that for alla’ € T'(a)
we haver’ € di € © if and only if for every/ € T'(b) if a’ L ¥/, then(a', V') € R.

Axiom V.4.15 (Canonical Basis)If E(z,y) € D is an equivalence rela-
tion over orbits ofi’’, then each equivalence classE has a support.

V.4.2. The group configuration. We show that if a pregeometry, its automor-
phism group and the collection of definable sets satisfy our list of axioms, then the
special group configuration gives rise to a definable group.

HYPOTHESISV.4.16. There exisb;, a; for i = 1,2, 3, sequences of di-
mensionl, such that
(1) All sequences are pairwise independent;
(2) dim(b1babs) = 2, dim(b;ajar) = 2, foralli # j # k, and
dim(blbgbgalazag) = 3;
(3) as € dCl(b1a3), a € dCl(bgag), andas € dCl(b1a2) N dCl(bQCLl).

Given sets of sequencels B, we will denoteA + B, the set
A+ B={(a,b)|ae Abe B, anda L b}.

Given (b],0,) € T'(by) + I'(b1) anda € T'(a2) \ cl(b)b,), we define
h, p,)(a) as follows. Choosef € I' such thatf(bi) = b, f(b2) = b5 and
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f(a2) = a. To do this, choose first € T" such thato (b)) = b}, o(b2) = b,
Clearly o exists by Axiom H2, sincé, € I'(b;) for i = 1,2. Then, choose € I'
suchr(o(az)) = a andr [ byby = id. This is possible by Axiom H1 since by as-
sumption on the configuration, & cl(b1bs), S0 (az2) & cl(b)by) anda & cl(b)bh)
by choice ofa.

We now make a few observations. Firgtas) is uniquely determined
sinceas € dcl(bjaz). Indeed, supposg(b;) = b} andg(az) = a. Theng='f €
Tpa, SOg 1 f(a3) = a3. Thereforeg(as) = f(as). Second, notice that(a;)
is uniquely determined, sinee € dcl(bea3). Indeed, suppose(b:) = b, and
glaz) = f(a3). Theng™" f € T,45, 509" f(a1) = a1, andg(a1) = f(ar).

We definehy 5,)(a) = f(a1). Inview of the previous considerations, this
is well-defined and furthermorg(a;) € I'(a2). Notice also thatd, by, a,a’) €
D, for all h(b’l,b’g)(“) = d/, using projections and intersection.

We wish to extend the action &f(b;) + I'(b;1) on all elements of'(as).
To do this, we define the following relation @i{b;) + I'(b1):

(b1, 05) ~ (b1, 05) if hay yr)(a) = haya(a), foralla € T(az) \ cl(byb5b1b5).

CLAIM . ~ is an equivalence relation di(b;) + I'(b1).

PROOF Reflexivity and Symmetry are obvious. To see that Transitivity holds,
we first show that we can replace “for all” by “there exists” in the definitiom of
Indeed, suppose thata" € I'(az)\cl(b1byb7b5) and thath . 1) (a) = hr ) (a).

By Axiom H1, there existsr € Loxw, vprvy) such thato(a) = o’. Notice that
h(b’pbé) (O’(CL)) = O-(h(b/l,bg) (a) and similarly,h(b/{,bg) (U(a)) = U(h(b/{’bg) (a), and
henceh . vy (a’) = by 4y (a’). Transitivity now follows easily. O

We denote byjb], b,] the equivalence class @b/, b,) under~. It now
follows from Axiom 1.4.14 that~c ©. Hence, eaclf),b,] € © and by Axiom
.4.15 must have a support. Cleasypp(b), b] cl(b;, b,) C W.

Let H = {[by, b5] | (b7,05) € I'(b1) +I'(b1)}-

Notice thatl” acts transitively on the elements &fin the following sense:
if [b1,b2], [c1, 2] are elements aff, there isf € T" such thatf ([by, b2]) = [c1, 2.
To see this, recall that; € T'(b;) for i = 1,2 and that by definition off we
have that each sequence is independenbandb, andc; L co. Hence, by Axiom

H2 there existsf € T' such thatf(b;) = ¢; fori = 1,2. Then f([b1,b2]) =
[£(b1), f(b1)] = [c1, c2] as required.

Notice also that by Axiom 1.4.15, every element H has a suppotk,,
so that we can extend forking and dimensions on elements. dElements ofid
are calledgermsand they each act ofi(a2). We will want to compose germs,
but we will want to make sure that the composition is also an elemeft. dfor
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this, some more work is needed. We can expiédsy an infinite intersection of
elements o by Axiom 1.4.14.

LEMMA V.4.17. [by, bo] C cl(b3) and therefordby, by] L b; fori =1, 2.

PrRooOF First, observe that
* [b1,b2](a2) = a1 € cl(azbs),
by definition and the configuration. We want to show that
X :=supp([b1, ba]) C cl(bs).
By definition of support, itis enough to show that for AlE T',), we have
f([b1,b2]) = [b1, b2],
i.e. [by, bo] is fixed setwise byf.

For this, fix f € T'¢j,) and leta € T'(az) \ cl(X f(X)b1b2b3).

We claim that[b;, b2](a) € cl(abs). To see this, it is enough to find an
automorphismo € T'yp,4,5,) SUCh thato(a2) = a and then applyingr to (*).
But the existence of follows from H1 if we can show thats ¢ cl(b1b2b3). This
follows from the configuration. Supposg € cl(b1b2b3). Thena; € cl(bibabs),
sincea; € cl(agbs) and alsoas € cl(bibebs) sinceas € cl(aiby). This is a
contradiction since

dim(a1a2a3b1b2l)3) =3 75 2= dim(blbgbg).

Now choosgj € I'y,,) SUch thay [ X = f [ X.

Then, we have the following equalities:

[b1,b2](a) = g([b1, b2](a)) (since[by, ba](a) € cl(bsa))
= g([b1, b2])(g(a)) (g is an automorphism)
= g([b1, b2])(a) (9(a) =a)
= f([b1, b2])(a) (fI1X=g1X)

Thus, by definition of the germ§;, ba] = f([b1, b2]). This finishes the proof. O

The elements off act onl'(az). It makes sense to compose them. het
B € H. We writea * 3 for an elementy € H, such that for alb € I'(a2) such that
a L afy, we havey(a) = a(B(a)). Suchy’s do not necessarily exist. We will

show that, in facte * 3 exists ifa L 3.

Supposécy, co] and|ce, c3] are inH. Thenin this case, itis easy to see that
[c1, €] * [ca, c3] = [e1,c3). We will show that, in fact, this is the typical situation
whena L 3. This is done by the following lemmas.
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LEMMA V.4.18. If ¢;,co andes € T'(by) are such thatlim(c;cacs) = 3,
then[cica] L[e2, 3]

PROOF LetX = supp([c1, c2]) andY = supp([ce, c3]). Supposéc;ca| J[c2, c3].
Then, by definition,X L Y, and soX C Y since they are both closed, and fur-
thermoreX = Y since they have dimension 1. By the dimension,. cocs, SO
sinceY C cl(cac3), we must have; L coY. But, sinceX = Y, we now have
alsoc; L o X. Sincece L X, we thus havelim(cicoX) = 3. Butcl(cieeX) =
cl(cie2), so that's impossible. O

LEMMA V.4.19. Let o, 8 € H. If a L 3, then there exist;, co and c3

such thatw = [e1, ¢2], B = [c2, c3] anddim(ey, co, c3) = 3.

PROOF Notice thatl" acts transitively ovetH + H, via the supports: let
ai; L 1 anday L B2. Denote byX,,, (respectivelyX ;) the supports ofy; (re-

spectively3;). Then, by definitionX,, | Xg,, for ¢ = 1,2 and further,X,,, €

I'(Xa,), and X3, € I'(Xp,) by a homogeneous axiom. The result follows by
Stationarity. Now, by the previous lemma,df, co andcs € I'(a) are such that
dim(cyeacs) = 3, then[eice] L[eo, es3]. Thus, by transitivity, we can find € T'

such thatf([ci,c2]) = a and f([e2,c3]) = B. Thus,a = [f(c1), f(c2)] and
B = [f(c2), f(c3)]. Clearly,dim(f(c1), f(c2), f(c3)) = 3. We are done. O

LEMMA V.4.20. If o, 8 € H with o L 3, thena x 3 is a well-defined
element ofif. Moreovera * 8L canda x 3L 8.

PROOF Choosery, c2 andes with dim(cq, ¢, c3) = 3, such thaty = [c1, 2]
andg = [cg, c3]. Check thaty = [c1, ¢3]. The rest is now immediate. O

Define an equivalence relation éh+ H,

(a1,051) = (a2, B2) if a1 *Bi(e) = ag x fa(e),

for everye € I'(j) such thatw; * 3;(e) andas * B2(e) are both defined. Letr
be the set of equivalence classes. Let us|ealb] the equivalence class 6, )
under~. We define

[, ao] * [Br, B2] = [, 6],

wherea; x ag * 81 x B2 = v %6, and(v, ) € H + H. By considerations similar to
H, G can be expressed by an infinite intersection of sef,iand also its product
by Axiom 1.4.15.

The next claim shows théd is closed under composition.
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CLAIM. (G, ) is closed under composition.

PROOF Let|a1, asl, [51, 2] € G be given. Theny; L as andag * as L ay,

fori = 1,2 by a previous lemma. Similarly; L G, andsy %82 L 3;, fori =1, 2.

We distinguish two cases. Let := oy * as. If oL 81 * B2, then both
[a, (B1 % B2)] and[fB1, 2] € G, and obviouslyn x ag * B % B2 &~ a* (81 * [52).

If a L B1 s, thena € cl(B1 +B2) and so sine@ By L 1, alsoar L 5.
Thus,a L f; andg; L (3.

First, choosed € H such thaty .l af3152. In particular,3; L 6. Now
choosed; € H suchd; L 5. Thend; = 6 is well-defined, and; = § L §. Sincel’

acts transitively ot +H, we can findy € I" such thay () = 6 andg(d%61) = fi.
Thus,3; = g(61) 6. Callg(d1) = ¢’ € H. Thena * 31 * B2 = (a ) * (8" * B2).
We are done in we can show thatl § andd’ L 3. Certainlya L § by choice of

5. Now if 0’ L o, thenfy € cl(¢'). But By € cl(4,¢") sod” € cl(B10). Hence,
dim(é, 41, B2) = 2, contradicting the choice @k
This finishes the proof. O
LEMMA V.4.21. (G, ) is a group.

PROOF G is nonempty. Sinced is closed under inverse, it is easy to see
that the inverse ofv, 5] is [~ !, a~!], soG is closed under inverse. The previous
claim shows that is closed under composition. FinalliG?, ) acts onl*(a2) as
described. O
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