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ABSTRACT. We study the classK of models of a first order theoryT omitting a prescribed
set of types, under the assumption thatK contains a model with a high level of sequential-
homogeneity. The stability theory of such classes was initiated by Shelah in 1969. We
introduce a rank which is bounded whenK isℵ0-stable. The main difficulties are the fail-
ure of the compactness theorem forK and the fact thatT may be unstable, even not simple.
The rank induces a dependence relation on the subsets of the models inK which shares
many of the formal properties of forking. We obtain pregeometries with respect to this
dependence relation; the pregeometries exist on the set of realization of types of minimal
rank. We prove the existence of prime models. We develop the parallel to orthogonality
calculus and unidimensionality. Finally we generalize many of the classical results ob-
tained for models of a first order totally transcendental theory. The global picture is similar
(but the proofs different): This is illustrated with positive results (E.g. Chang Conjecture,
Categoricity with a geometric proof) and negative results (construction of nonisomorphic
models), as well as a proof of the Main Gap. The structure part of the Main Gap is done
axiomatically, so that the proof covers the known first order NDOP cases, as well as a
known nonelementary case: when the class is excellent.

In order to generalize ideas from first order stability theory to contexts where the
compactness theorem fails, we also work in an abstract pregeometry satisfying some logi-
cal axioms. The main result is a proof of a group configuration theorem.

We also look at the consequences of the failure of theλ-order property inside the set
of realizations of a fixed type, in nonelementary contexts. We are able to generalize many
of the results known in the first order case.
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Introduction

The goal of this introduction is to draw attention to one of the main con-
cerns of this thesis; the use ofdependence relationsin severalnonelementarycon-
texts.

The word nonelementary refers to the failure of the compactness theorem;
it will be used as a synonym fornon first order. One motivation for studying
nonelementary classes of models is that many natural classes of structures, for ex-
ample in algebra, do not have a first order axiomatization: Archimedean fields,
periodic groups, p-groups, FC-groups, locally finite structures, to name only a few.
There are several families of nonelementary classes of models. Historically, the
study of nonelementary classes of models started in the late 1940s, when Erdős,
Hanf, and Tarski among others obtained basic existence results for infinitary log-
ics (Lλ+,ω, for infinite cardinalsλ). In the 1950s, Mostowski introduced several
new quantifiers, for example cardinality quantifiers, like ‘there exists uncountably
many’. In the 1960s and early 1970s, Barwise, Fuhrken, Keisler, Makkai, and She-
lah proved fundamental existence results for logics with Mostowski quantifiers.
Around the mid 1970s, motivated by a question of Baldwin, Shelah discovered
connections betweenexistenceof models forLω1,ω(Q) andcategoricityfor this
class. This analysis was done by working in an equivalent class of models: class of
models omitting a prescribed set of types. Classes of models omitting a prescribed
set of types under some additional assumption are going to be the main object of
study of this thesis. It should be pointed out that it follows from the work of Chang
and Shelah that many nonelementary contexts are essentially equivalent and that
one can expect methods developed for one context to be useful in another. (See the
introduction to each chapter for more details.)

A dependence relation is a relation among triples of subsets of a model,
satisfying some basic requirements: invariance under automorphism, finite charac-
ter, and so on. A dependence relation attempts to capture, in a reasonable way, the
notion that a setA is freefrom a setC over another setB.

In the first order case, the main dependence relation isforking. Forking is
a dependence relation discovered by Shelah, tailored to the compactness theorem,
which extends the notion of linear dependence in linear algebra or algebraic depen-
dence in field theory. It satisfies several additional properties (see the introduction
to Chapter V, for example) and has become the crucial tool of classification theory

9



10 INTRODUCTION

for the first order case. In fact, it is so central that various kinds of contexts stud-
ied in classification theory for first order classes are characterized in terms of what
properties forking satisfies.

In the nonelementary case, forking is useless; not only do several key prop-
erties of forking use the compactness theorem, but the first order theory of the
models of a given nonelementary class may not be simple, even if the class is cate-
gorical (we give an example of this below). While a dependence relation as nicely
behaved as forking has not been found, several dependence relations satisfying
fewer properties than forking can be used. This thesis makes use of them exten-
sively. In Chapter I and II, two dependence relations,splitting andstrong splitting
are used. In Chapter III, a new dependence relation is defined, via the introduction
of a rank. This new dependence relation satisfies many of the properties of fork-
ing. We also prove the existence ofpregeometries, which are sets inside which the
dependence relation gives rise to a good notion of dimension. In Chapter IV and V,
a more abstract point of view is developed and a dependence relation is considered
axiomatically.

This thesis fits generally in the classification theory for nonelementary
classes. It is organized as follows. There are five chapters and each starts with
an introduction which explains the goals and how the results fit with the general
theory.

Chapter I is an exposition of Shelah’s stability spectrum theorem, homo-
geneity spectrum theorem, and equivalence between order and instability in finite
diagrams. The framework of finite diagrams generalizes the first order case. It is
one of the main frameworks studied in this thesis, and will appear (sometimes im-
plicitly) in all the chapters. This exposition is done from a modern point of view,
incorporating recent improvements, both in the proofs and in the presentation. This
chapter provides the necessary background to Chapter III.

Chapter II is an extension of the first chapter in several ways. We study lo-
cal versions of the order property in several frameworks: (1) Inside a fixed model,
(2) for nonelementary classes of models (generalizing finite diagrams), (3) for fi-
nite diagrams, and (4) for the first order case. Appropriate localizations of the
order property, the independence property, and the strict order property are intro-
duced. We are able to generalize some of the results that were known in the case
of local stability for first order theories, and for stability for nonelementary classes
(existence of indiscernibles, existence of averages, stability spectrum, equivalence
between order and instability). In particular, all the results of Chapter I can be
localized in (3). In the first order case, we also prove the local version of She-
lah’s Trichotomy Theorem. Finally, as an application, we give a characterization
of stable types when the ambient first order theory is simple.
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Chapter III continues the work of Chapter I in a different direction. We
work in the framework of finite diagrams and introduce a natural dependence re-
lation on the subsets of the models for theℵ0-stable case, which share many of
the formal properties of forking. This is achieved by considering a rank for this
framework which is bounded when the diagram isℵ0-stable. We also obtain prege-
ometries with respect to this dependence relation. The dependence relation is the
natural one induced by the rank, and the pregeometries exist on the set of realiza-
tions of types of minimal rank. Finally, these concepts are used to generalize many
of the classical results for models of a totally transcendental first order theory. In
fact, strong analogies arise: models are determined by their pregeometries or their
relationship with their pregeometries. However the proofs are different, as we do
not have the compactness theorem. This is illustrated with positive results (cate-
goricity) as well as negative results (construction of nonisomorphic models). We
also give a proof of Chang’s Conjecture for this context.

In Chapter IV, we develop a more abstract framework which generalizes
the framework of Chapter III and that of several other cases (first order, excellent
Scott sentences). We show that if a given class of models admits a dependence re-
lation on the subsets of its models, as well as prime models satisfying a prescribed
set of axioms, then under the parallel of NDOP every model of this class is prime
and minimal over an independent tree of models. This axiomatization is different
from that of Shelah in the Main Gap in two crucial ways: the dependence rela-
tion satisfies weaker axioms than those of forking and the axiomatization does not
depend on the compactness theorem. In fact the theorem is in the vein of combina-
torial geometry; the logical ingredient is hidden in checking the particular axioms
for the classes of models under consideration. As a new application, we show that
the class of models isolated in Chapter III satisfies all the axioms, and thus admits
a decomposition theorem. We also develop more orthogonality calculus for this
class and prove the main gap.

Finally in Chapter V, we lay a foundation for separating the geometry from
the logic in geometric model theory. Our feeling is that this separation is an ele-
gant way of lifting results from geometric model theory to non first order logic.
We introduce a relation between subsets of a pregeometry and show that it satisfies
all the formal properties that forking satisfies in simple first order theories. This is
important when one is trying to lift forking to nonelementary classes, in contexts
where there exists pregeometries but not necessarily a well-behaved dependence
relation, for example the one of Chapter III. This is used to reproduce S. Buech-
ler’s characterization of local modularity in general. We also present an axiomatic
approach to the Hrushovski-Zilber group configuration theorem.

In this thesis, many terms like stable, totally transcendental, and stationary
will be employed for nonelementary classes of models; typically classes of models
of a first order theoryT omitting a set of typesΓ. We would like to alert the reader
that these terms do not refer to the first order theory, but to the entire class. For
example, such a class may be stable while the first order theoryT is not. It may be
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helpful to keep in mind the following simple-minded example. The example given
here merely illustrates that such natural situations exist. It is not the motivation for
developing the theory.

Consider the first order theoryT asserting that the unary predicateR is
the domain of an ordered field of characteristic zero and that each model is an
R-vector space (in the obvious language). Then,T has the strict order property,
which implies that it is not stable and not even simple. Furthermore,T is not
o-minimal. This roughly means thatT is complicated from the point of view of
first order model theory. Now consider the classK consisting of those models of
T omitting the type{¬R(x) ∨ (n ∗ x < 1) | n < ω}. Then,K is the class of
vector spaces over Archimedean fields of characteristic zero. (K does not have a
first order axiomatization.) Notice that no model ofK can encode a linear order of
length more than the continuum (K does not have the(2ℵ0)+-order property). This
implies immediately from results of Chapter II that, as a class,Kmust bestable. In
addition, for each cardinalλ, this class containsλ-homogeneous models (take any
sufficiently large real vector space). Hence,K can be made into afinite diagramin
the sense of Chapter I: LetV ∈ K be a real vector space of large cardinality. Let
D be the set of types in finitely many variables thatV realizes over the empty set.
Together with the previous observation, this shows thatD is stable (in the sense
of Chapter I). In fact, one can show directly thatD is stable in every cardinal at
least the continuum. Moreover,D is totally transcendentalin the sense of Chapter
III. Now consider the classK1 of (D,ℵ0)-homogeneous models ofK. This class
is studied for generalD in Chapter III. It is easy to see thatK1 is the class of real
vector spaces, as every rational cut must be realized. This shows thatK1 contains
exactly one model up to isomorphism for each cardinalλ above the continuum.
Thus, there exists nonelementary classes of models which are categorical in some
uncountable cardinal, stable in all large enough cardinals, for which there exists
a rank, a nice dependence relation, prime models and so forth, but can have a
complicated first order theory.



CHAPTER I

Shelah’s stability spectrum and homogeneity spectrum in
finite diagrams

.

Saharon Shelah’s Finite Diagrams Stable in Power [Sh3], published in
1970, is one of the seminal articles in model theory. It contains a large number of
key ideas which have shaped the development of classification theory. The model-
theoretic framework of the paper is more general than the first order case, but while
all the particular cases of the results in the first order case can be found in several
more recent publications, the non first order content of [Sh3] is still not available
in a concise from.

The primary purpose of this chapter is to present, in this more general
framework, most of the stability results of [Sh3], together with the order/stability
dichotomy from [Sh16], and the homogeneity spectrum appearing in The Lazy
Model Theorist’s Guide To Stability [Sh54]. A secondary purpose is to present in
a compact form the necessary background to Chapter III. This is done in a contem-
porary and self-contained form, and includes improvements and techniques from
[Sh b], [Sh300], and [Gr1]. Finally, the results are presented in such a way that
with very little additional work, the theorems of this chapter can be localized. Lo-
cal versions of the Stability Spectrum Theorem and the Homogeneity Spectrum
Theorem will be proved in Chapter II, devoted to local stability.

The framework introduced by S. Shelah in [Sh3] is the study of classes of
models of a finite diagram. These classes are described in more detail below. Such
classes are examples ofnonelementaryclasses and the results presented in this pa-
per belong to what Shelah calls theclassification theory for nonelementary classes.
The word nonelementary refers to the fact that the compactness theorem fails.
While many of the questions of classification theory for first order theories have
been solved [Sh b], classification theory for nonelementary classes is still under-
developed. This is not to say that the subject is small or not interesting. Thousands
of pages have been devoted to its questions: See for example [BaSh1],[BaSh2],
[BaSh3], [Gr1], [Gr2], [GrHa ], [GrSh1], [GrSh2], [GrSh3], [HaSh], [HySh1],
[HySh2], [Ke], [Ki ], [KoSh], [MaSh], [Sh3], [Sh48], [Sh87a], [Sh87b], [Sh88],
[Sh tape], [Sh299], [Sh300], [Sh394], [Sh472], [Sh576] and Shelah’s forthcom-
ing book [Sh h]. The techniques used are usually set-theoretic and combinatorial in
nature, although more recently, new ideas coming from geometric stability theory

13
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have been imported (see Chapter III). The failure of the compactness theorem for
a class of models makes their model theory delicate and sometimes sensitive to the
axioms of set theory. This is one of the reasons why some additional assumptions
are often required; a “monster model”, set-theoretic assumptions, amalgamation
properties and so on.

Let us describe briefly what is meant by the class of models of a finite
diagram. Two perspectives are given below.

Given a first order theoryT and a modelM of T , the finite diagramof
the modelM is the set of complete types over the empty set realized inM . Fix a
setD of completeT -types (over finitely many variables) and consider the class of
models whose finite diagram is a subset ofD. Such models are calledD-models
for convenience. In another language, we study the class of models omitting all
the types over the empty set which do not belong toD. Both in [Sh3] and [Sh54],
S. Shelah studied these classes under an additional assumption. Let us say a few
words about exactly what this additional assumption is (it takes two equivalent
forms in [Sh3] and [Sh54], and yet another equivalent formulation is given here).
Since the compactness theorem fails for this class of models, it is crucial to have
a good understanding of what themeaningfultypes are, that is which types can
be realized byD-models. A corollary of the compactness theorem is that given a
modelM and a typep over a subsetA of M , it is possible to find an elementary
extensionN of M in which p is realized. This fails, in general, for the class just
described. There is a natural obstacle why this cannot work in general: Supposep
is a complete type over a set of parametersA, whereA is a subset of aD-model
M . Suppose there is aD-modelN containingM in which p is realized, say by
the sequencēc. Then, sinceA ∪ c̄ ⊆ N andN is aD-model, necessarily, all the
subsequences of the setA ∪ c̄ realize (over the empty set) types that belong toD.
The assumption that Shelah made (although not in those terms) is that this is the
only restriction. This class of models, with the additional assumption on types, is
the framework that S. Shelah callsfinite diagrams. Note that whenD is the set of
all completeT -types over the empty set, then this is the first order case.

An alternative way of looking at this framework is as follows. Given a
theoryT , fix a largehomogeneousmodelC of T . In general,C is not saturated. Let
D be the diagram ofC. Then, the class ofD-models can be assumed to be the class
of elementary submodels ofC and above meaningful types are the ones realized in
C. Note that whenC is saturated, then this is the first order case.

Using the first order case as a guide, there are four important results in
stability theory all due to S. Shelah [Sh b].

• A theoryT is stable if and only if it does not have the order property.
• If a theoryT is stable inλ, then given any set of finite sequencesI of

cardinalityλ+ and a setA of cardinalityλ there exists a subsetJ ⊆ I of
cardinalityλ+ indiscernible overA.
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• (The Stability Spectrum) For a theoryT , eitherT is not stable orT is
stable and there exist cardinalsκ(T ) andλ(T ) satisfyingκ(T ) ≤ |T |+
andκ(T ) ≤ λ(T ) ≤ 2|T | such thatT is stable inµ if and only if µ ≥ λ(T )
andµ<κ(T ) = µ.
• (The Saturation Spectrum) A theoryT has aλ-saturated model of cardi-

nality λ if and only if λ ≥ |D(T )| and eitherλ<λ = λ or T is stable in
λ.

This chapter contains Shelah’s generalizations of above theorems to the
class of models of a finite diagram. In the first order case, the optimal versions of
these results (at least the first three and the existence part of the last) are proved us-
ing forking. However, forking does not work in this more general context and gen-
erally in contexts where the compactness fails. Originally, however, the first two
results were proved in this context using the notion ofsplitting and the third result
using the notion ofstrong splitting[Sh3]. As to the last result, in this context the
proof uses a combination of combinatorial methods based on splitting and strong
splitting [Sh54]. Sincestrong splittingdoes not satisfy all the properties of forking,
the proofs are more intricate and combinatorial in flavor. The first order notion of
forking was invented by Saharon Shelah later and can be considered an improve-
ment of strong splitting. The modern proofs have gained in conceptual structure
over the original ones and we have attempted to integrate these improvements in
the presentation by treating strong splitting more like forking (for example, we use
the corresponding notion toκ(T )).

Classes of models of a finite diagram are important also because they pro-
vide a natural test-case to generalize ideas from first order logic to more general
nonelementary classes. On the one hand, many of the technical difficulties aris-
ing from the failure of the compactness theorem are present. On the other hand,
the model theory is more manageable as we have a good understanding of types.
Note also that, in contrast to other nonelementary contexts, this work is completely
done within ZFC. We added a discussion on the strength of the main assumption
of Finite Diagrams after Hypothesis .1.5.

I.1. The framework of finite diagrams

The notation is standard. Abbreviations likeAB stands forA∪B, andAb̄
for A ∪ {ran(b̄)}. WhenM is a model,‖M‖ stands for the cardinality ofM . The
notationA ⊆M means thatA is a subset of the universe ofM .

Let T be a first order complete theory in a languageL. Denote byL(T )
the set of first order formulas inL. Let M̄ be the a very saturated model ofT . For
∆ ⊆ L, A ⊆M , and a (not necessarily finite) sequenceā ∈M , define the∆-type
of ā overA in M by

tp∆(ā/A, M) = {φ(x̄, b̄) | b̄ ∈ A, φ(x̄, ȳ) or¬φ(x̄, ȳ) ∈ ∆, andM |= φ[ā, b̄]}.



16 I. SHELAH’S STABILITY SPECTRUM AND HOMOGENEITY SPECTRUM IN FINITE DIAGRAMS

When∆ is L(T ) it is omitted and whenM is M̄ , it is omitted also.

DEFINITION I.1.1.

(1) Thefinite diagramof A is

D(A) = {tp(ā/∅) | ā ∈ A, ā finite }.
Such sets will be denoted byD and calledfinite diagrams.

(2) The setA is aD-setif D(A) ⊆ D. The modelM is aD-modelif D(M) ⊆
D.

(3) We letSn
∆(A) = {tp∆(c̄/A) | c̄ ∈ M̄, `(c̄) = n}, for ∆ ⊆ L(T ). When

∆ = L(T ) it is omitted. A typep ∈ Sn(A) is called aD-typeif and only
if A ∪ c̄ is aD-set, for everȳc realizingp.

Sn
D(A) will denote the set ofD-types overA in n variables. We write

SD(A) for S1
D(A).

WhenD = D(T ), thenSD(A) = S(A).

DEFINITION I.1.2. TheD-modelM is a (D, λ)-homogeneousmodel if
M realizes everyp ∈ SD(A) for A ⊆M with |A| < λ.

WhenD = D(T ), then a model is(D, λ)-homogeneous if and only if it is
λ-saturated.

The next lemma shows that ifM is (D, λ)-homogeneous, then it isλ-
universal for the class ofD-models.

LEMMA I.1.3. Let M be (D, λ)-homogeneous andA be aD-set of car-
dinality λ. Let B ⊆ A such that|B| < λ. Then for every elementary mapping
f : B →M , there is an elementary mappingg : A→M extendingf .

PROOF. Write A = B ∪ {ai : i < α ≤ λ}. Construct an increasing sequence
of elementary mappings〈fi | i < λ〉 by induction oni < α, such thatf0 = f ,

B ∪ {aj : j < i} ⊆ dom(fi) and ran(fi) ⊆M.

In casei = 0 or i a limit, it is obvious. Assumefi is constructed. Defineqi =
fi(tp(ai/B ∪ {aj : j < i})). By induction hypothesisqi ∈ SD(fi(B ∪ {aj : j <
i})). Hence, sinceM is (D, λ)-homogeneous,qi is realized by somebi ∈ M . Let
fi+1 = fi ∪ 〈ai, bi〉. The elementary mappingg =

⋃
i<α fi is as required.

Recall from the first order case that a model isλ-homogeneous, if for any
partial elementary mappingf from M into M with |dom(f)| < λ andc ∈ M ,
there is an elementary mappingg from M into M extendingf such thatdom(g) ⊇
dom(f)∪ c. The next lemma is an extension of the familiar first order result that a
modelM is λ-saturated if and only ifM is λ-homogeneous and< ℵ0-universal.

LEMMA I.1.4. M is a (D, λ)-homogeneous model if and only ifD(M) =
D andM is λ-homogeneous.
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PROOF. The only if part follows from the previous lemma. To see the con-
verse, we show thatM is (D, µ)-homogeneous for everyµ ≤ λ by induction on
µ.

For the base case, assume thatµ < ℵ0. Let p ∈ SD(c̄), wherec̄ ∈ M
is finite. Leta be any element realizingp. By assumptiontp(â c̄/∅) ∈ D. Since
D(M) = D, there exista′ and c̄′ ∈ M realizing tp(â c̄/∅). Let f be a partial
elementary mapping such thatf(c̄) = c̄′ andf(a) = a′. Then, byλ-homogeneity
of M , there is a partial elementary mappingg from M to M , extendingf−1 ¹ c̄′,
with dom(g) ⊇ c̄′ ∪ a′. Then we have thata′ realizesf(p), and sog(a′) realizes
g(f(p)) = p. Hence, p is realized in M.

By induction, letC ⊆M of cardinalityµ < λ and assume that we have al-
ready shown thatM is (D, µ)-homogeneous. Letp ∈ SD(C) anda be any element
realizingp. ThenC ∪ a is aD-set of cardinalityµ, so by(D, µ)-homogeneity of
M , using the previous lemma, there exists an elementary mappingf sendingC∪a
into M . Hence, byλ-homogeneity ofM , there isg, an elementary mapping from
M into M , extendingf−1 ¹ C with dom(g) ⊇ f(C) ∪ f(a). To conclude, notice
that sincea realizesp, f(a) realizesf(p) andg(f(a)) realizesg(f(p)) = p. This
shows thatM realizesp, sinceg(f(a)) ∈M , and completes the proof.

The following hypothesis is made throughout the chapter. It is equivalent
to Shelah’s original assumption in [Sh3] and [Sh54]. Also, the same assumption
was made by H. Jerome Keisler in his categoricity theorem [Ke].

HYPOTHESISI.1.5. There exists a(D, κ̄)-homogeneous modelC, with κ̄
larger than any cardinality mentioned in this chapter.

In view of the preceding lemma, we may assume that anyD-set lies inC.
Also, satisfaction is with respect toC. Notice also that for anyD-setA

Sn
D(A) = {tp(ā/A,C) | ā ∈ C}.

The study of afinite diagramD is thus the study of the class ofD-models
under the additional assumption that there exists a(D, κ̄)-homogeneous modelC,
with κ̄ very large.

Hypothesis .1.5 is a natural assumption to make. Let us say a few words
about why we feel this is so. The most outstanding test question in the classification
theory for nonelementary classes is a conjecture of S. Shelah, made in the mid-
1970s:

CONJECTUREI.1.6 (Shelah). LetT be a countableLω1ω theory. If there
exists a cardinalλ ≥ iω1 such thatT is categorical inλ, thenT is categorical in
everyµ ≥ iω1 .

Results of C.C.Chang and S. Shelah show that it is equivalent to solve this
conjecture for the class ofD-models of a countable first order theory, whereD
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is the set of isolated types over the empty set (whence the relevance of this dis-
cussion here). Most experts agree that the full conjecture seems currently out of
reach. However, several attempts to solve the conjecture since the late 1970s have
indicated that categoricity (sometimes in several cardinals and sometimes under
additional set-theoretic axioms ) implies the existence of various kinds ofamalga-
mation propertiesand the existence ofmonster models(see for example [Sh48],
[Sh87a], [Sh87b], [Sh88], [KoSh], or [BaSh3]). By monster model, we mean a
large model with universal or homogeneous properties. By amalgamation proper-
ties we mean that the class of models ofT satisfies theµ-amalgamation property
for a class of cardinalsµ. Recall that a class of modelsK has theµ-amalgamation
property if for every triple of modelsM0, M1, M2 ∈ K of cardinalityµ such that
M0 ≺ M1, M0 ≺ M2, andM0 ⊆ M1 ∩M2, there exist a modelN ∈ K and
embeddingsfi : Mi → N for i = 1, 2 such thatf1 ¹M0 = f2 ¹M0. For example,
by Robinson’s Consistency Lemma, the class of models of a first order theoryT
has theµ-amalgamation property, for every cardinalµ ≥ |T |.

While Shelah observed from work of Leo Marcus [Mr ], that a monster
model exactly as in Hypothesis .1.5 does not follow from the assumption of She-
lah’s conjecture, it is certainly reasonable to conjecture that it implies the existence
of a monster model with a similar flavor. Thus, experience gained in this frame-
work can shed light on the more general framework. These results are additional
motivations to develop classification theory either inside a homogeneous model
[Sh3], [Sh54], [Gr1], [Gr2], [HySh1], [HySh2] or for nonelementary classes with
amalgamation properties [Sh48], [Sh87a], [Sh87b], [GrHa ], [Sh394]. In fact, un-
dermonster modelor amalgamation propertiesseveral approximations of Shelah
conjecture are known: for example [Ke], [KoSh] [Sh87a], [Sh87b]. A Categoric-
ity result for finite diagrams using geometric techniques appears in Chapter III.
For a more detailed discussion of the categoricity problem, see the introduction to
Chapter III.

In this vein, the two following conjectures were made by Rami Grossberg
in 1989, in an email communication with John T. Baldwin:

CONJECTUREI.1.7. LetT be a countableLω1ω theory. IfT is categorical
is some large enoughλ, then there exists aµ0 such that the class of models ofT
has theµ-amalgamation property for everyµ greater thanµ0.

Amalgamation properties are closely related to monster model hypotheses:
WhenT is a Scott sentence, the conclusion of the previous conjecture implies the
existence of arbitrarily large model-homogeneous models.

CONJECTUREI.1.8. LetT be a countableLω1ω theory such that there ex-
ists aµ0 such that the class of models ofT has theµ-amalgamation property for
everyµ greater thanµ0. If T is categorical in someλ ≥ iω1 , thenT is categorical
in every cardinalµ ≥ iω1 .

Before finishing this discussion, we can ask the following related question:
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QUESTION I.1.9. LetT be a countable theory inLω1ω. Is there a cardinal
µ(T ) such that if the class of models ofT has theµ(T )-amalgamation property
then it has theλ-amalgamation property for arbitrarily largeλ?

I.2. Stability and order in finite diagrams

In this section, we present the equivalence between stability and the failure
of the order property in the context of finite diagrams (Corollary .2.12).

DEFINITION I.2.1. LetD be a finite diagram.

(1) The diagramD is said to bestable inλ if for everyA ⊆ C of cardinality at
mostλ and for everyn < ω we have|Sn

D(A)| ≤ λ.
(2) We say thatD is stableif there is aλ such thatD is stable inλ.

By the pigeonhole principle, it is enough to considern = 1, i.e. D is stable
in λ if and only if for all A ⊆ C of cardinality at mostλ, we have|SD(A)| ≤ λ.

DEFINITION I.2.2. LetD be a finite diagram.

(1) D has theλ-order propertyif there exist aD-set {āi | i < λ}, and a
formulaφ(x̄, ȳ) ∈ L(T ) such that

|= φ[āi, āj ] if and only if i < j < λ.

(2) D has theorder propertyif D has theλ-order property for every cardinal
λ.

Notice that the order property is formulated differently from the order
property used by Shelah in [Sh b]. The formulation given here is equivalent to the
usual order property in the first order case, and is more natural in nonelementary
cases; when it holds there are many nonisomorphic models (see [Sh16], [GrSh1],
and [GrSh3]).

Recall some standard definitions. A set of finite sequences{āi | i < α} is
said to be a sequence ofn-indiscernibles overA, for n < ω if tp(ā0, . . . , ān−1/A) =
tp(āi0 , . . . , āin−1/A). for everyi0 < · · · < in−1 < α. Then{āi | i < α} is an
indiscernible sequence overA, if it is an n-indiscernible sequence overA for ev-
ery n < ω. It is said to be anindiscernible set, if in addition, the ordering does
not matter. We will not have to distinguish between the two, as in the presence
of stability, every indiscernible sequence is, in fact, an indiscernible set (Remark
.2.4 and Corollary .2.12). Hence, we will often say indiscernible for indiscernible
sequence, or set when they coincide or when it does not matter.

REMARK I.2.3. If there exists aD-set{āi | i < ω}, which is an indis-
cernible sequence, and a formulaφ(x̄, ȳ) such that

|= φ[āi, āj ] if and only if i < j < ω,

thenD has the order property.
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PROOF. Let λ be an infinite cardinal. Let{c̄i | i < λ} be new constants.
Consider the union of the following sentences:

• φ(c̄i, c̄j), if i < j < λ;
• ¬φ(c̄i, c̄j), if i ≥ j, i, j < λ;
• ψ(c̄i0 , . . . , c̄in), for eachψ(x̄0, . . . x̄n) ∈ tp(ā0, . . . , ān/∅), and eachn <

ω, and eachi0 < · · · < in < λ.

The above set of sentences is consistent (use{āi | i < ω}). Let b̄i be the interpreta-
tion of c̄i in M̄ , the monster model forT . The last clause implies that{b̄i | i < λ}
is aD-set. By the first two clauses, we have

|= φ[b̄i, b̄j ] if and only if i < j < λ.

Hence,D has theλ-order property. We are done sinceλ was arbitrary.

The next remark is a fact that goes back to Morley and Ehrenfeucht.

REMARK I.2.4. SupposeD does not have the order property. Let{āi |
i < α} be an infinite indiscernible sequence overA. Then{āi | i < α} is an
indiscernible set overA.

PROOF. Suppose that the conclusion fails. Then, there exist an integern < ω,
a permutationσ ∈ Sn, and indicesi0 < · · · < in < α such that

tp(ā0, . . . , ān/A) 6= tp(āiσ(0), . . . , āiσ(n)/A).

Since{āi | i < α} is an indiscernible sequence overA, we havetp(ā0, . . . , ān/A) 6=
tp(āσ(0), . . . , āσ(n)/A). Since any permutation is a product of transpositions, we
may assume that there existk0 < k1 ≤ n such thatσ(k0) = k1, σ(k1) = k0

andσ(i) = i, otherwise. Hence, there existsφ(x̄, ȳ, b̄), whereb̄ ∈ A ∪ {āi |
i ≤ n, i 6= k0, k1} such that|= φ[āk0 , āk1 , b̄] and |= ¬φ[āk1 , āk0 , b̄]. Then, the
D-set{āî b̄ | n < i < α} is an infinite indiscernible sequence (over∅). Hence
|= φ[āi, āj , b̄] if and only if n < i < j < α. This implies thatD has the order
property by the previous remark.

The main tool to prove that the failure of the order property implies stabil-
ity (Theorem .2.9) issplitting. Recall the definition.

DEFINITION I.2.5. Let ∆1 and∆2 be sets of formulas. LetA be a set
andB ⊆ A. For p ∈ Sn(A), we say thatp (∆1, ∆2)-splits overB if there are
b̄, c̄ ∈ A andφ(x̄, ȳ) ∈ ∆2 such thattp∆1

(b̄/B) = tp∆1
(c̄/B) with φ(x̄, b̄) ∈ p

and¬φ(x̄, c̄) ∈ p.

When∆1 = ∆2 = L(T ), we just say thatp splits overB. When∆1 =
{φ(x̄, ȳ)} and∆2 = {ψ(x̄, ȳ)}, we write (φ(x̄, ȳ), ψ(x̄, ȳ))-splits, omitting the
parentheses.
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For a statementt and a formulaφ, the following convention is made:φt =
¬φ if the statementt is false andφt = φ, if the statementt is true. The same
notation is used whent ∈ {0, 1}, where0 stands for falsehood and1 stands for
truth.

The next two lemmas give sufficient conditions guaranteeing the existence
and uniqueness of nonsplitting extensions.

LEMMA I.2.6. Let A ⊆ B ⊆ C be sets such thatB realizes all the∆1-
types overA that are realized inC. Assumep1,p2 ∈ S∆2(C) andp1 ¹ B = p2 ¹ B.
If p1, p2 do not(∆1, ∆2)-split overA, thenp1 = p2.

PROOF. By symmetry, it is enough to show thatp1 ⊆ p2. Let φ(x̄, b̄) ∈ p1.
By assumptiontp∆1

(b̄/A) is realized by somēc ∈ B. Henceφ(x̄, c̄) ∈ p1 since
p1 does not(∆1, ∆2)-split over A, andφ(x̄, ȳ)t ∈ ∆2 for t = 0 or 1. Thus
φ(x̄, c̄) ∈ p2 and soφ(x̄, b̄) ∈ p2 also sincep2 does not(∆1, ∆2)-split overA.

LEMMA I.2.7. Let A ⊆ B ⊆ C be D-sets, such thatB realizes every
D-type overA, which is realized inC. Supposep ∈ SD(B) does not split overA.
Then, there is a unique typeq ∈ SD(C) extendingp that does not split overA.

PROOF. Uniqueness was proved in the previous lemma. Hence, it is enough
to show existence. Defineq explicitly by setting:

q := {φ(x, c̄) | There exists̄b ∈ B realizingtp(c̄/A) andφ(x, b̄) ∈ p}.
This is well-defined. By assumptionp does not split overA and so the definition
does not depend on the choice ofb̄ ∈ B.

First notice thatq is complete. Supposēc ∈ C and φ(x, ȳ) ∈ L(T ).
Supposeφ(x, c̄) 6∈ q. Let b̄ ∈ B realizetp(c̄/A). By definition, we haveφ(x, b̄) 6∈
p. Hence,¬φ(x, b̄) ∈ p, sincep ¹ B is complete. Thus,¬φ(x, c̄) ∈ q, by definition
of q. Also, q is consistent. Letφ1(x, c̄1), . . . , φn(x, c̄n) ∈ q. Thenφi(x, b̄i) ∈ p,
for b̄1̂ . . .ˆ̄bn ∈ B realizingtp(c̄1̂ . . .ˆ̄cn/A). Sincep is consistent, we have

|= ∃x[φ1(x, b̄1) ∧ · · · ∧ φn(x, b̄n)].

Then, by an elementary mapping sending eachb̄i to c̄i fixing A we conclude that

|= ∃x[φ1(x, c̄1) ∧ . . . ∧ φn(x, c̄n)].

Hence, the set{φ1(x, c̄1), . . . , φn(x, c̄n)} is consistent.

Now let us see thatq does not split overA. Otherwise, there arēc1, c̄2 ∈ C,
andφ(x, ȳ) such thattp(c̄1/A) = tp(c̄2/A) andφ(x, c̄1), ¬φ(x, c̄2) ∈ q. Choose
b̄1, b̄2 ∈ B, such thattp(b̄1/A) = tp(b̄2/A) = tp(c̄1/A). We haveφ(x, b̄1),
¬φ(x, b̄2) ∈ p, by definition ofq. Hencep splits overA, contradiction.

Finally, let us show thatq is a D-type. Suppose not. Then, there isa
realizingq andc̄ ∈ C such thattp(â c̄/∅) 6∈ D. Let b̄ ∈ B realizetp(c̄/A). Since
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a realizesp, we havetp(ab̄/∅) ∈ D. Hence, in particular

tp(ab̄/∅) 6= tp(ac̄/∅).
Hence there isφ(x, ȳ), with |= φ[a, b̄], and|= ¬φ[a, c̄]. This implies thatφ(x, b̄),
and¬φ(x, c̄) ∈ q. This shows thatq splits overA,a contradiction.

We will use the following notational convention: For∆ a set of formulas,
we write

SD,∆(B) = {tp∆(c/B,C) | c ∈ C}.
When∆ = {φ(x̄, ȳ)}, we writeSD,φ(B) instead ofSD,{φ}(B).

COROLLARY I.2.8. LetA ⊆ B beD-sets. Then

|{p ∈ SD,∆2(B) : p does not(∆1, ∆2)-split overA}| ≤ 22|L(T )|+|A|
.

PROOF. Since|Sn
D(A)| ≤ 2|L(T )|+|A|, for eachn < ω, we can findC, with

|C| ≤ 2|L(T )|+|A| such thatC realizes all the types inSn
D,∆1

(A), for eachn < ω.
Then, by Lemma .2.6, we have

|{p ∈ SD,∆2(B) : p does not(∆1, ∆2)-split overA}| ≤
≤ |{p : p ∈ SD,∆2(C)}| ≤ 2|C| ≤ 22|L(T )|+|A|

.

The proof of the next theorem follows [Gr1].

THEOREM I.2.9. Letλ ≥ |L(T )|. If D is not stable in22λ , thenD has the
λ+-order property.

PROOF. We first claim that there exist aD-setA of cardinality22λ and a for-
mulaφ(x, ȳ) such that

|SD,φ(A)| > |A|.
SinceD is not stable in22λ , there is aD-setA of cardinality22λ such that|SD(A)| >
|A|. Define

f : SD(A)→ Πφ(x,ȳ)∈LSD,φ(A), by f(p) = (p ¹ φ)φ∈L.

Then,f is injective and sinceλ ≥ |L(T )|, by the pigeonhole principle, there must
beφ(x, ȳ) ∈ L such that|SD,φ(A)| > |A|. This proves the claim.

Let A andφ be as in the claim, we will show that

ψ(x0, x̄1, x̄2, y0, ȳ1, ȳ2) := φ(x0, ȳ1)↔ φ(x0, ȳ2)

demonstrates the order property. For convenience, letµ = 22λ . Let {ai : i <
µ+} ⊆ C be such thati 6= j < µ+ implies tpφ(ai/A) 6= tpφ(aj/A). This is
possible since|SD,φ(A)| > |A|. Let χ(ȳ, x) = φ(x, ȳ) andn = `(ȳ). Define an
increasing continuous chain of sets〈Ai : i < µ〉 such that:
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(1) A0 = ∅ and|Ai| ≤ µ, i < µ.
(2) For everyB ⊆ Ai of cardinality at mostλ and every typep ∈ SD,φ(Ai) ∪

Sn
D,χ(Ai), p ¹ B is realized inAi+1.

This is possible since there are at mostµλ = µ subsets ofAi of cardinalityλ and
at most|SD(B)| ≤ 2|L(T )|+|B| ≤ (2λ)λ < µ possible types for each setB.

CLAIM . For everyj < µ+, there isi with j < i < µ+ such that for all
l < λ+ the typeqi = tp(ai, Al) (χ, φ)-splits over eachB ⊆ Al of cardinality at
mostλ.

PROOF. Otherwise, there isj < µ+ such that for everyi with j < i < µ+,
there isl < λ andBi ⊆ Al of cardinality at mostλ such thatqi does not(χ, φ)-
split overBi. Sinceµ+ > λ, by the pigeonhole principle, we can findl < λ such
thatµ+ manyqi’s do not(χ, φ)-split over a subset ofAl. By a second application
of the pigeonhole principle, sinceµ+ > µ ≥ |Al|λ = |{B ⊆ Al : |B| ≤ λ}|, we
can findµ+ > (22λ) many types that do not(χ, φ)-split over a set of cardinality at
mostλ. This contradicts Corollary .2.8. Hence, the claim is true.

Among thei’s satisfying the claim, pick one such thatai 6∈
⋃

l<λ Al. This
is possible since|

⋃
l<λ Al| ≤ µ. Then, by construction, for everyl < λ+, the type

tpφ(ai/Al) (χ, φ)-splits over everyB ⊆ Al of cardinality at mostλ. Defineāl, b̄l

andcl in A2l+2, as well asBl = ∪{āk, b̄k, ck : k < l} by induction onl < λ+

such that

(1) Bl ⊆ A2l and|Bl| ≤ λ;
(2) tpχ(āl/Bl) = tpχ(b̄l/Bl);
(3) Bothφ(x, āl) and¬φ(x, b̄l) belong totp(ai/A2l);
(4) cl ∈ A2l+1 realizesφ(x, āl) ∧ ¬φ(x, b̄l).

This is possible: SetB0 = ∅. If Bl is constructed, sinceBl ⊆ A2l of
cardinality at mostλ, tpφ(ai/A2l) (χ, φ)-splits overBl, hence we can find̄al and
b̄l in A2l such thattpχ(āl/Bl) = tpχ(b̄l/Bl) and bothφ(x, āl) and¬φ(x, b̄j)
belong totp(ai/A2j). Then, by construction ofA2l+1, we can findcl ∈ A2l+1,
realizingtpφ(ai/A2) ¹ {āl, b̄l} and hence realizingφ(x, āl) ∧ ¬φ(x, b̄l). Whenl
is a limit ordinal, we defineBl by continuity.

Now, let d̄l = cl̂ āl̂ b̄l. It is easy to see from (2), (3) and (4) that{d̄l : l <
λ+} andψ(x0, x̄1, x̄2, y0, ȳ1, ȳ2) = φ(x0, ȳ1) ↔ φ(x0, ȳ2) together demonstrate
the(D, λ+)-order property.

The next theorem is a converse of Theorem .2.9. The proof uses Hanf
number techniques. For a first order theoryT andΓ a set ofT -types over the empty
set, the classEC(T, Γ) is the class of models ofT omitting every type inΓ. For
cardinalsλ andκ, theHanf-Morley numberµ(λ, κ) is defined to be the smallest
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cardinalµ with the property that for everyEC(T, Γ) with |T | ≤ λ and |Γ| ≤ κ,
if EC(T, Γ) contains a model of cardinalityµ thenEC(T, Γ) contains models of
arbitrarily large cardinality. Clearly, whenκ = 0, µ(λ, κ) = ℵ0; this is the first
order case. Whenκ ≥ 1, the notion ofwellordering numberδ(λ, κ) needs to be
introduced. For cardinalsλ, κ, the numberδ(λ, κ) is the smallest ordinalδ with the
property that for everyEC(T, Γ) with |T | ≤ λ and|Γ| ≤ κ, if EC(T, Γ) contains a
model with a predicate of order typeδ, thenEC(T, Γ) contains a model where this
predicate is not wellordered. Ifκ ≥ 1, it is a standard result thatµ(λ, κ) = iδ(λ,κ).
(Note that the methods of the proof below showµ(λ, κ) ≤ iδ(λ,κ).) A standard
result on wellordering numbers states thatδ(λ, κ) ≤ (2λ)+. This will be used in
the proof and explains the cardinali(2|T |)+ appearing in the statement.

THEOREM I.2.10. If D has theλ-order property for everyλ < i(2|T |)+ ,
thenD is not stable andD has theω-order property witnessed by an indiscernible
sequence.

PROOF. We will show first thatD has theω-order property witnessed by an
indiscernible sequence. By assumption, for eachα < (2|T |)+, we can find aD-set

Pα = {āα,j | j < (iα)+}
and a formulaφα witnessing the order property. Hence, by the pigeonhole princi-
ple, we may assume thatφα = φ is fixed for allα.

Notice thatM is a D-model ofT if and only if M ∈ EC(T, Γ), with
Γ = D(T ) \D. But |D(T ) \D| ≤ 2|T |, and so the wellordering number for this
class is at mostδ(|T |, 2|T |) = (2|T |)+.

Forα < (2|T |)+, defineMα ≺ C containing{āα,j : j < (iα)+} of cardi-
nality (iα)+. This is possible by the downward Löwenhweim-Skolem Theorem.
EachMα belongs toEC(T, Γ). DefineF : (2|T |)+ → {Mα : α < (2|T |)+}, by
F (α) = Mα.

Consider the following model

M = 〈H(χ̄),∈, F, (2|T |)+, T, P, |=, ψ〉ψ∈L,

whereH(χ̄) is the set of sets of hereditary power less thanχ̄, andχ̄ is a regular
cardinal chosen so thatH(χ̄) contains everything that has been mentioned so far in
this proof. The predicates(2|T |)+ andT are unary predicates whose interpretations
are the corresponding sets. The meaning of the binary predicates|= and∈ and of
the constantsψ, for eachψ ∈ L is their true meaning inH(χ). Also F is a
unary function and the interpretation ofF is the one we just defined.P is a unary
predicate, whose interpretation in eachMα is theD-setPα witnessing the order
property. More precisely, we have that

M |= ∀α ∈ (2|T |)+[āα,i ∈Mα ∧ āα,j ∈Mα ∧ P āα,i ∧ P āα,j ]

→ (Mα |= φ[āα,i, āα,j ]↔ i ∈ j).
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Let N ≺M such that(2|T |)+ ⊆ N of cardinality(2|T |)+. Therefore, we can fix a
bijectionG : |N | → (2|T |)+. Definea < b if and only if G(a) ∈ G(b).

FormN ′ = 〈N, <, G〉 an expansion ofN . Let T ′ = Th(N ′) and for each
ψ(x̄) ∈ L defineψ′(x̄, y) by ∃α ∈ (2|T |)+(y = Mα ∧ x̄ ∈ Mα ∧Mα |= ψ[x̄]).
Let Γ′ = {{ψ′(x̄, y) : ψ(x̄) ∈ p} : p ∈ Γ}. Then, we have that|T ′| = |T | and
|Γ′| = |Γ|, soδ(|T ′|, 2|T

′|) = (2|T |)+.

We first claim thatN ′ omits every type inΓ′.

Suppose not. There isp′ ∈ Γ′ such that for somēĉ a ∈ N ′ we have that
|= ψ′[c̄, a], for all ψ′ ∈ p′. But then, by definition̄c is in someMα andc̄ realizes
everyψ(x̄) in p. Butp ∈ Γ so this contradicts the fact thatMα ∈ EC(T, Γ). Hence,
we have a modelN ′ ∈ EC(T ′, Γ′) wellordered by< and of order-type(2|T |)+.
Thus, we can find a modelN ′′ ∈ EC(T ′, Γ′), whose universe is not wellordered by
<. Therefore, by taking away elements if necessary, there exists elementsbn ∈ N ′′

such thatN ′′ |= bn+1 + n + 1 < bn andN ′′ |= bn ∈ (2|T |)+ for n < ω.

Define a sequence of sets〈Xn | n < ω〉 such that

(1) N ′′ |= “Xn is a sequence ofn-indiscernibles inMb0 of cardinalityibn”.
(2) N ′′ |= “Xn has theD-order property”

This is possible. Construct theXn by induction onn < ω. For n = 0,
let X0 = {āb0,j : j < ib0}, i.e. the interpretation inN ′′ of the interpretation of
the predicateP in Mα. Then the first requirement is satisfied sinceX0 has the
right cardinality and there is nothing to check for 0-indiscernibility. The second
requirement is also satisfied sinceM and soN ′′ knows that they witness the order
property.

AssumeXn has already been constructed. Define

f : [Xn]n+1 → Sn+1
L(T )(∅), by (c1, . . . , cn+1) 7→ tp(c1, . . . , cn+1/∅).

We know by Erd̋os-Rado that

i+
n (ibn+1)→ (i+

bn+1
)n+1
ibn+1

and we haveibn ≥ ibn+n+1 ≥ i+
n (ibn+1), so we can find a subsetXn+1 of Xn

of cardinalityibn+1 such that every increasing(n + 1)-tuple from it has the same
type. This implies thatXn+1 is an(n + 1)-indiscernible sequence with the right
cardinality. Since the second requirement is preserved by renumbering if needed,
we are done.

This is enough. Let{c̄i : i < ω} be a new set of constants. DefineT1 to
be the union of the following set of sentences:

• T ;
• c̄i 6= c̄j , wheneveri 6= j;
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• φ(c̄i, c̄j)i<j , for everyi, j < ω;
• χ(c̄i1 , . . . , c̄in), for everyχ ∈ tp(ā1, . . . , ān/∅), i1 < · · · < in andn < ω;
• ψ(c̄i1 , . . . c̄in)↔ ψ(c̄j1 , . . . , c̄jn), wheneveri1 < · · · < in andj1 < · · · <

jn, n < ω andψ ∈ L(T ).

By the compactness theorem and the definition ofXn, T1 has a modelN1.
Call āi = c̄N1

i Notice also that the construction ensures that{āi : i < ω} is a
D-set. Hence we have theω-order property witnessed by indiscernibles.

We will use these to show thatD is not stable. Letµ be a given cardinality.
Defineκ = min{κ : 2κ > µ}. By compactness, using the indiscernibility of
{āi : i < ω}, we can get aD-set {āη : η ∈ κ≥2} such that|= φ[āη, āν ] if
and only if η ≺ ν. Let A =

⋃
η∈κ>2 āη. Then |A| ≤ µ, by choice ofκ, and

for η 6= ν ∈ κ2, we have thattp(āη/A) 6= tp(āν/A). Indeed, there is a first
i < κ such thatη[i] 6= ν[i], sayη[i] = 0. But thenψ(āη 0̂, x̄) ∈ tp(āη/A) and
¬ψ(āη 0̂, x̄) ∈ tp(āν/A). Thus|SD(A)| ≥ 2κ > µ and soD is not stable inµ.

The next corollary tells us that ifD is stable, we can findλ < i(2|T |)+

demonstrating this. Notice that ifD = D(T ) we are in the first order case and the
bound on the first stability cardinal is actually2|T |.

COROLLARY I.2.11. If D is stable, then there existsλ < i(2|T |)+ such
thatD is stable inλ.

PROOF. Suppose thatD is not stable in anyλ < i(2|T |)+ . Then, sincei(2|T |)+

is a strong limit, for eachλ < i(2|T |)+ , we have22λ < i(2|T |)+ and soD is

not stable in22λ . Hence by Theorem .2.9,D has theλ+-order property for all
λ < i(2|T |)+ and so by Theorem .2.10D is not stable.

The next corollary is the order/stability dichotomy.

COROLLARY I.2.12. D is stable if and only ifD does not have the order
property.

PROOF. If D is not stable, then it is not stable in22λ for anyλ ≥ |L(T )| so by
Theorem .2.9,D has theλ-order property for every cardinalλ. For the converse,
we use Theorem .2.10.

I.3. The stability spectrum

In the first part of this section, combinatorial properties related to splitting
are introduced for finite diagrams. They can be used to give another characteri-
zation of stability (see Corollary .3.7). In the second part, the focus is on a more
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delicate tool;strong splitting. It is a substitute for the notion of forking. The ap-
propriate cardinal invariant and combinatorial property related to strong splitting
are introduced. They are used to derive the Stability Spectrum Theorem (Theorem
.3.17).

DEFINITION I.3.1.

(1) D satisfies(∗λ) if there exists an increasing continuous chain ofD-sets
{Ai : i ≤ λ} andp ∈ Sn

D(Aλ) such that

p ¹ Ai+1 splits overAi, for all i < λ.

(2) D satisfies(B∗λ) if there exists a tree of types{pη ∈ SD(Bη) | η ∈ λ>2},
and formulasφη(x̄, āη) such thatpη ⊆ pν if η ≺ ν and

φη(x̄, āη) ∈ pη 0̂ and ¬φη(x̄, āη) ∈ pη 1̂.

The next two remarks are routine induction using the definition. As an
illustration we prove the first one.

REMARK I.3.2. If there exists a typep ∈ SD(A) that splits over every
subset ofA of cardinality less thanλ, thenD satisfies(∗λ).

PROOF. Let p ∈ SD(A) be such thatp splits over every subsetB of A of
cardinality less thanλ. Construct an increasing continuous chain of sets{Ai :
i ≤ λ} of cardinality less thanλ demonstrating(∗λ) as follows. LetA0 = ∅
andAδ =

⋃
i<δ Ai, if δ is a limit ordinal. If Ai is constructed of cardinality less

thanλ, then by assumptionp splits overAi. Hence, we can find̄b, c̄ ∈ A and
φ(x̄, ȳ) such thattp(b̄/Ai) = tp(c̄/Ai) andφ(x̄, b̄) ∈ p and¬φ(x̄, c̄) ∈ p. Let
Ai+1 = Ai ∪ b̄ ∪ c̄.

REMARK I.3.3. In the definitions of(∗λ) and(B ∗λ) we may assume that
|Ai| < |i|+ + ℵ0 and similarly that|Bη| < |`(η)|+ + ℵ0.

LEMMA I.3.4. If D satisfies(∗λ), thenD satisfies(B ∗ λ).

PROOF. We first show that ifp ∈ Sn
D(A) splits overB ⊆ A, then there is a

partial elementary mappingf such thatf ¹ B = idB andp andf(p) are contra-
dictory types:

If p splits overB, then there arēb, c̄ ∈ A andφ(x̄, ȳ) such thattp(b̄/B) =
tp(c̄/B) andφ(x̄, b̄) ∈ p and¬φ(x̄, c̄) ∈ p. Hence there is an elementary mapping
f such thatf ¹ B = idB andf(b̄) = c̄. Then clearlyp andf(p) are contradictory
types.

Now assume thatD satisfies(∗λ). By definition, there exists an increasing
continuous chain of sets{Ai | i ≤ λ} andp ∈ Sn

D(Aλ) such thatp ¹ Ai+1 splits
overAi for i < λ. By Remark .3.3, we may assume that|Ai| < |i|+ + ℵ0. By



28 I. SHELAH’S STABILITY SPECTRUM AND HOMOGENEITY SPECTRUM IN FINITE DIAGRAMS

the first paragraph, for eachi < λ there exists an elementary mappingfi such that
Ai ⊆ dom(fi) ⊆ Ai+1 andfi(p ¹ Ai+1) andp ¹ Ai+1 are contradictory types.

DefineGη, pη, Bη andFη by induction onη ∈ λ≥2 such that:

(1) pη ∈ SD(Bη).
(2) Gη is an elementary mapping withdom(Gη) = A`(η) andran(Gη) = Bη.
(3) If ν ≺ η then Gν ⊆ Gη, pν ⊆ pη, Bν ⊆ Bη and Fν ⊆ Fη, and if

`(η) is a limit ordinal, we setGη =
⋃

i<`(η) Gη¹i, pη =
⋃

i<`(η) pη¹i, and
Bη =

⋃
i<`(η) Bη¹i.

(4) pη = Gη(p ¹ A`(η)), and the typespη 0̂ andpη 1̂ are explicitly contradic-
tory.

(5) Fη is an elementary mapping extendingGη 0̂◦f`(η)◦Gη 1̂ with dom(Fη) =
Bη 0̂, such thatFη ¹Bη = idBη andFη(pη 0̂) = pη 1̂.

This is enough. The tree of types{pη | η ∈ λ≥2} shows thatD satisfies
(B ∗ λ).

The construction is by induction oǹ(η): For η = 〈〉, let B〈〉 = A0,
G〈〉 = idA0 andp〈〉 = p ¹ A0. If `(η) is a limit ordinal use (3). Now assume
that Gη, pη, Bη are constructed for̀(η) = i. Let Gη 0̂ be an extension ofGη

with domainAi+1. DefineBη 0̂ = ran(Gη 0̂) andpη 0̂ = Gη 0̂(p ¹ Ai+1). Now
Gη 0̂ ◦ f`(η) ◦ Gη 1̂ is an elementary mapping with domain⊆ Bη 0̂ which is the
identity onBη. Let Fη be an elementary mapping extending it with domainBη 0̂.
SetBη 1̂ = ran Fη andpη 0̂ = Fη(pη 1̂).

The following theorem shows that the combinatorial properties(∗λ) and
(B ∗ λ) contradict stability inλ.

THEOREM I.3.5. If D satisfies(∗λ) or (B ∗ λ) then for everyµ < 2λ, D
is not stable inµ.

PROOF. By the previous lemma, it is enough to show that ifD satisfies(B∗λ)
then for everyµ < 2λ, D is not stable inµ.

Let µ < 2λ. Let κ = min{κ | 2κ > µ}. Thenλ ≥ κ so D satisfies
(B ∗ κ).

By definition, there existspη ∈ SD(Bη) andφη(x̄, āη) for η ∈ κ>2, such
thatpη ⊆ pν if η ≺ ν andφη(x̄, āη) ∈ pη 0̂ and¬φη(x̄, āη) ∈ pη 1̂. By Remark
.3.3, we may assume that|Bη| < |`(η)|+ + ℵ0.

Let B =
⋃

η∈κ>2 Bη. Then |B| ≤
∑

η∈κ>2 |Bη| ≤ κ · 2<κ ≤ µ, by

choice ofκ and assumption on|Ai|. Now for eachη ∈ κ2, let aη realizepη.
Defineqη = tp(aη/B). Then forν 6= η ∈ κ2, there is a firsti < κ such that
η[i] 6= ν[i], sayη[i] = 0 andν[i] = 1. Hencepη 0̂ ⊆ qη andpη 1̂ ⊆ qν , soqη and
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qν are contradictory types. Therefore|SD(B)| ≥ |{qη | η ∈ κ2}| = 2κ > µ, soD
is not stable inµ.

The next theorem is a sort of converse.

THEOREM I.3.6. If there is aD-setA such that

|SD(A)| > |A|<λ +
∑
µ<λ

2|D|
µ

thenD satisfies(∗λ).

PROOF. Let µ0 = |A|<λ +
∑

µ<λ 2|D|
µ
. By Remark .3.2 it is enough to find a

typep ∈ SD(A) which splits over every subsetB ⊆ A of cardinality less thanλ.

Such a typep always exists: Otherwise for everyp ∈ SD(A), there ex-
ists Bp ⊆ A of cardinality less thanλ such thatp does not split overBp. Since
|SD(A)| > µ0 ≥ |A|<λ, by the pigeonhole principle, we can findS ⊆ SD(A) of
cardinalityµ+

0 andB such thatp does not split overB, for eachp ∈ S. But, by
Corollary .2.8,

|{p ∈ SD(A) : p does not split overB}| ≤ 2|D|
|B| ≤

∑
µ<λ

2|D|
µ ≤ µ0,

a contradiction.

This gives another characterization of instability. This characterization
will be used in the Homogeneity Spectrum Theorem (Theorem .4.9). Notice that
(B ∗ λ) can be used in lieu of(∗λ) in the following corollary.

COROLLARY I.3.7. D is not stable if and only ifD satisfies(∗λ), for every
cardinalλ.

PROOF. If D satisfies(∗λ) for everyλ, then Theorem .3.5 implies thatD is
not stable inλ for everyλ. HenceD is not stable.

For the converse, suppose thatD is not stable and letλ be given. Then
D is not stable in22λ . Hence, there exists aD-setA of cardinality22λ such that
|SD(A)| > 22λ = |A|<λ+

∑
µ<λ 2|D|

µ
. ThereforeD satisfies(∗λ) by the previous

theorem.

For the second part, we will focus on strong splitting.

DEFINITION I.3.8. A typep ∈ Sn(A) splits stronglyoverB ⊆ A if there
exists{āi : i < ω} an indiscernible sequence overB andφ(x̄, ȳ) such thatφ(x̄, ā0)
and¬φ(x̄, ā1) ∈ p.

A combinatorial property similar to(∗λ) is now defined in terms of strong
splitting.
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DEFINITION I.3.9. D satisfies(C ∗λ) if there exists an increasing contin-
uous chain of sets{Ai | i ≤ λ} andp ∈ Sn

D(Aλ) such that

p ¹ Ai+1 splits strongly overAi, for eachi < λ.

Clearly if D satisfies(C ∗λ), then it satisfies(∗λ) and similarly to Remark
.3.3, we may assume that|Ai| < |i|+ + ℵ0 in the definition of(C ∗ λ).

The next cardinal invariant plays the role ofκ(T ) for the notion of strong
splitting. It appears in the Stability Spectrum theorem.

DEFINITION I.3.10. Let

κ(D) = min{κ : For allp ∈ SD(A) there isB ⊆ A, |B| < κ such that

p does not split strongly overB }.
If it is undefined, we letκ(D) =∞.

THEOREM I.3.11. Let D be stable inλ. Thenκ(D) is well-defined and
κ(D) ≤ λ.

PROOF. Suppose thatκ(D) > λ. Then, by definition ofκ(D), there exists
a D-setA and a typep ∈ SD(A) such thatp splits strongly over every subset
B of A of cardinality at mostλ. Similarly to Remark .3.2 this implies thatD
satisfies(C ∗ λ). Hence,D satisfies(∗λ). By Theorem .3.5D is not stable inλ, a
contradiction.

To deal with strong splitting, some understanding of indiscernibles is needed.
Theorem .3.13 is one of the main results to produce indiscernible sequences in the
presence of stability. Recall Lemma I.2.5 of [Sh b].

FACT I.3.12. Let B and let {āi | i < α} be given. Considerqi =
tp(āi/B ∪ {āj | j < i}) ∈ SD(B ∪ {āj | j < i}) and suppose that

(1) If i < j < α thenqi ⊆ qj ;
(2) For eachi < α the typeqi does not split overB.

Then{āi | i < α} is an indiscernible sequence overB.

THEOREM I.3.13. Let D be stable inλ. LetI be a set of finite sequences
and letA be a set such thatI ∪ A is a D-set. If|A| ≤ λ < |I| then there exists a
subset ofI of cardinalityλ+ which is an indiscernible set overA.

PROOF. By the pigeonhole principle, there exists a subsetJ of I of cardinality
λ+ andn < ω such that̄a ∈ J implies`(a) = n. Write J = {āi : i < λ+}.

CLAIM . There areD-setsB andC, A ⊆ B ⊆ C, such that every type
in SD(B) is realized inC, and there exists a typep ∈ Sn

D(C) such that for every
D-setC1 containingC of cardinalityλ, there exists an extensionp1 ∈ Sn

D(C1) of
p such thatp1 does not split overB and is realized inJ \ C.
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PROOF OF THECLAIM . Assume thatB, C andp as in the claim cannot be
found. For eachi < λ constructD-setsAi of cardinality at mostλ such that every
p ∈ SD(Ai+1) which is realized inJ \Ai+1 splits overAi.

This is possible: LetA0 = ∅ and Aδ =
⋃

i<δ Ai for δ a limit. Now
assumeAi of cardinality at mostλ is already constructed. Then|SD(Ai)| ≤ λ
by stability inλ. Hence, there exists aD-setAi of cardinalityλ, containingAi,
realizing all the types overAi. Now for anyp ∈ Sn

D(Ai), Ai, Ai andp do not
satisfy the assumptions of the claim. Therefore, there existsCp, aD-set,Cp ⊇ Ai

of cardinalityλ such that every extension ofp in Sn
D(Cp) that is realized inJ \Cp

splits overAi. Let Ai+1 =
⋃

p∈SnD(Ai) Cp. ThenAi+1 is aD-set of cardinality at
mostλ with the desired property.

Let Aλ =
⋃

i<λ Ai. SinceJ has cardinalityλ+, there is̄a ∈ J \ An
λ. Let

p = tp(ā/Aλ). By constructionp ¹ Ai+1 splits overAi soD satisfies(∗λ). Hence,
D is not stable inλ by Theorem .3.5, a contradiction.

Let B, C andp ∈ Sn
D(C) be as in the claim. Construct{b̄i : i < λ+} ⊆ J

by induction oni < λ+ as follows. If b̄j is defined forj < i let Ci = C ∪ {b̄j |
j < i} andpi ∈ Sn

D(Ci) be an extension ofp which does not split overB and is
realized inJ \ Cn

i . Let b̄i be in J \ Cn
i realizingpi. Then{b̄i | i < λ+} is an

indiscernible sequence by Fact .3.12. SinceD is stable, then it does not have the
order property by Corollary .2.12 and hence{b̄i | i < λ+} is an indiscernible set,
by Remark .2.4.

The next two theorems prepare for the Stability Spectrum Theorem.

THEOREM I.3.14. LetD be stable inλ. Letµ ≥ λ be such thatµ<κ(D) =
µ. ThenD is stable inµ.

PROOF. Suppose thatD is not stable inµ. Let A be aD-set of cardinalityµ
such that|SD(A)| > |A|. By assumption,|SD(A)| > |A|<κ(D). Hence|SD(A)| ≥
λ++. SinceD is stable inλ, then thatκ(D) ≤ λ by Theorem .3.11. Hence, for
eachp ∈ SD(A) there exists a subsetBp ⊆ A of cardinality less thanκ(D) such
thatp does not split strongly overBp. Since there are|A|<κ(D) = |A| suchBp’s,
by the pigeonhole principle, there exists a setS ⊆ SD(A) of cardinalityλ++ and a
D-setB ⊆ A of cardinality less thanκ(D) such thatp does not split strongly over
B, for eachp ∈ S.

Construct{φi(x, āi) | i < λ+} andpi ∈ S, for i < λ+ such that

{φj(x, āj) : j < i} ∪ {¬φi(x, āi)} ⊆ pi.(*)

To do this, defineSi ⊆ S andAi ⊆ A for i < λ+ such that

(1) A0 = ∅, Aδ =
⋃

i<δ Ai for δ limit, andAi ⊆ Ai+1;
(2) |Ai| ≤ λ, for eachi < λ;
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(3) Si = {p ∈ S | p is the unique extension ofp ¹ Ai};
(4) Ai+1 is a subset ofA such that ifp ∈ SD(Ai) has at least two contradictory

extensions inS, then it has at least two extensionsq, r ∈ S such that
q ¹ Ai+1 6= r ¹ Ai+1.

For i = 0 or i a limit ordinal, do (1). For the successor stage: IfAi is
constructed andq ∈ SD(Ai) has two extensionsq1, q2 ∈ S, then there isφq(x, ȳ)
andāq ∈ A such thatφq(x, āq) ∈ q1 and¬φq(x, āq) ∈ q2. Since|SD(Ai)| ≤ λ,
Ai+1 of cardinalityλ as in (4) can be found.

Notice that since|S| = λ++ and|
⋃

i<λ+ Si| ≤
∑

i<λ+ |SD(Ai)| ≤ λ+ ·
λ = λ+, there existsp ∈ S \

⋃
i<λ+ Si. For eachi < λ+ considerp ¹ Ai.

Sincep 6∈ Si, by definition ofSi the typep ¹ Ai has at least two contradictory
q, r ∈ S. By (4), we may assume thatq ¹ Ai+1 6= r ¹ Ai+1. Hence, either
p ¹ Ai+1 6= q ¹ Ai+1, orp ¹ Ai+1 6= r ¹ Ai+1. Thus, in either case, there ispi ∈ S
such thatp ¹ Ai+1 6= pi ¹ Ai+1. Hence, there exist̄ai ∈ Ai+1 andφi(x, ȳ) ∈ L(T )
such thatφi(x, āi) ∈ p and¬φi(x, āi) ∈ pi. This establishes (*)

Now for eachi < λ+, let bi realizepi. The set{bî āi : i < λ+} has
cardinalityλ+ andB has cardinality less thanκ(D) ≤ λ, so by Theorem .3.13
there is a subset of{bî āi | i < λ+} of cardinality λ+ which is indiscernible
over B. Without loss of generality, we may assume that{bî āi | i < λ+} is
indiscernible overB. By stability in λ we have|SD(

⋃
k<λ āk)| ≤ λ. Hence,

by the pigeonhole principle, there existi and j with λ < j < i < λ+ such
that pi ¹

⋃
k<λ āk = pj ¹

⋃
k<λ āk. By choice ofj, we haveφj(x, āj) ∈ pi

and¬φj(x, āj) ∈ pj . Now if φj(x, ā0) ∈ pi then since¬φj(x, āj) ∈ pj , pj

splits strongly overB, since{ā0, āj , āj+1, ...} is indiscernible overB. And if
φj(x, ā0) 6∈ pi then¬φj(x, ā0) ∈ pi, and sinceφj(x, āj) ∈ pi then pi splits
strongly overB, since{āj , ā0, ā1, ...} is indiscernible overB. This contradicts the
choice ofS andB.

THEOREM I.3.15. LetD be stable inλ. Letµ ≥ λ be such thatµ<κ(D) >
µ. ThenD is not stable inµ.

To prove this theorem, a proposition is needed.

PROPOSITIONI.3.16. LetD be stable inλ. Letχ ≤ λ be a cardinal such
that λχ > λ. Let I be an indiscernible sequence. Then, for everyc̄ ∈ C and
φ(x̄, ȳ) ∈ L(T ) either

|{ā ∈ I : |= φ[ā, c̄]}| < χ or |{ā ∈ I : |= ¬φ[ā, c̄]}| < χ.

PROOF. Let I andφ(x, c̄) contradict the conclusion of the proposition. Then,
without loss of generality|I| = χ. Write I = {āi | i < χ}. SinceI is indis-
cernible, there existsJ = {āi | i < λ} containingI, indiscernible of cardinalityλ.
By the pigeonhole principle, either{i < λ : |= φ[āi, c̄]} or {i < λ : |= ¬φ[āi, c̄]}
has cardinalityλ. Without loss of generality, assume that it is the second. Hence,
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by a re-enumeration (recall thatJ is necessarily an indiscernible set), defineJ1 =
{āi : i < χ + λ} such that|= φ[āi, c̄] if and only if i < χ. Let q = tp(c̄/J1). Then
for anyE ⊆ J1 of cardinalityχ with complement of cardinalityλ we can find a
functionfE : J1 → J1 with f(āi) ∈ E if and only if i < χ. Then, for two such sets
E1 6= E2, we havefE1(q) 6= fE2(q). Hence|SD(J1)| ≥ λχ > λ, contradicting
the stability inλ.

PROOF OF THETHEOREM. By assumption, there existsκ < κ(D) such that
κ = min{κ | µκ > µ}. Let χ ≤ λ such thatχ = min{χ | λχ > λ}. Observe that
µκ > χκ: Otherwise,λ ≤ µ < µκ ≤ χκ ≤ λκ, and soχ ≤ κ by minimality ofχ.
Henceλ < µκ ≤ χκ = 2κ. But (C ∗ κ) holds andλ ≤ 2κ, soD is not stable inλ
by Theorem .3.5, a contradiction.

Now, by definition of(C ∗ κ), there exists an increasing, continuous chain
of D-sets{Ai | i ≤ κ} and a typep ∈ SD(Aκ) such that|Ai| ≤ |i|+ ℵ0 and

p ¹ Ai+1 splits strongly overAi, for eachi < κ.

By definition of strong splitting, for eachi < κ, there exist{āi
α | α < ω} in-

discernible overAi andφi(x, ȳ) ∈ L(T ) such that bothφi(x, āi
0), and¬φi(x, āi

1)
belong top ¹ Ai+1.

For eachη ∈ κ>µ, construct a typepη, a D-setBη and an elementary
mappingGη, by induction oǹ (η) such that:

(1) pη ∈ SD(Bη) and ifη ≺ ν thenpη ⊆ pν andBη ⊆ Bν ;
(2) Gη is an elementary mapping fromA`(η) ontoBη;
(3) |Bη| ≤ κ;
(4) For eachc ∈ C the set{α < µ | c realizespηˆα} has cardinality less than

χ.

Let B〈〉 = A0, G〈〉 = idA0 andp〈〉 = p ¹ A0. For η such that̀ (η) is a limit
ordinal, define everything by continuity. For the successor case, suppose thatpη,
Bη andGη have been constructed forη, with `(η) = i. Let F be an elementary
mapping extendingGη with domainAκ. Let b̄i

α = F (āi
α), for α < ω. Then

{b̄i
α | α < ω} is indiscernible overBη. Hence, we can extend this set to{b̄i

α |
α < µ} such that{b̄i

α | α < µ} is also indiscernible overBη. For α < µ,
let Gηˆα be an elementary mapping extendingGη, with domainAi+1 such that
Gηˆα(āi

0) = b̄i
α andGηˆα(āi

1) = b̄i
α+1. This is possible by indiscernibility. Let

pηˆα = Gηˆα(p ¹ Ai+1) andBηˆα = ran Gηˆα. Hence (1)–(3) are satisfied. To
see (4), observe that for eachα < µ, bothφi(x, b̄i

α) and¬φi(x, b̄i
α+1) belong to

pηˆα. Since{bi
α | α < µ} is indiscernible andχ ≤ λ < λχ, ( 4) follows from the

previous proposition.

The construction implies the conclusion. LetB =
⋃

η∈κ>µ Bη. Then

|B| ≤ µ<κ · κ = µ, by choice ofκ. For eachη ∈ κµ, let pη =
⋃

i<κ pη¹i. By
continuity, eachpη is aD-type and letaη realizepη. Thentp(aη/B) ∈ SD(B).
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By (4), for eachc ∈ C, the set{η ∈ κµ | aη = c} has cardinality at mostχκ and
we observed thatχκ < µκ. Hence,|SD(B)| > µ, soD is not stable inµ.

We finish this section with the Stability Spectrum Theorem.

THEOREM I.3.17 (The Stability Spectrum).LetD be a finite diagram. Ei-
therD is not stable, orD is stable and there exist cardinalsκ ≤ λ < i(2|T |)+ such
that for every cardinalµ, D is stable inµ if and only ifµ ≥ λ andµ<κ = µ.

PROOF. If D is not stable, there is nothing to prove. IfD is stable, letλ(D)
be the first cardinalλ for whichD is stableλ. Thenλ(D) < i(2|T |)+ by Corollary
.2.11. Moreover,κ(D) is defined andκ(D) ≤ λ(D) by Theorem .3.11.

Let µ be given. Ifµ < λ(D), thenD is not stable inµ by choice ofλ(D).
Suppose thatµ ≥ λ(D). If µ<κ(D) = µ, thenD is stable inµ by Theorem .3.14.
If µ<κ(D) > µ, thenD is not stable inµ by Theorem .3.15.

I.4. The homogeneity spectrum

The section is devoted to the proof of the Homogeneity Spectrum Theorem
(Theorem .4.9). The proof will proceed by cases, and is broken into several theo-
rems. There are two types of results. On the one hand there are theorems showing
the existence of a(D, λ)-homogeneous model of cardinalityλ from assumptions
like stability in λ andλ<λ. On the other hand, there are results showing that such
models do not exist from the failure of these conditions. The combinatorial prop-
erties defined in the previous section and parts of the Stability Spectrum Theorem
will play a crucial role.

THEOREM I.4.1. Let λ ≥ |D| be such thatλ<λ = λ. Then there is a
(D, λ)-homogeneous model of cardinalityλ.

PROOF. First, by Zermelo-K̈onig,λ is regular. By the downward L̈owenheim-
Skolem theorem, define an increasing continuous chain〈Mi | i < λ〉 of D-models
of cardinality λ, such thatMi+1 realizes everyD-type over everyA ⊆ M of
cardinality less thanλ. This is possible since we have onlyλ<λ = λ subsets of
A of cardinality less thanλ and only|D||A| ≤ λ<λ = λ D-types overA. Let
M =

⋃
i<λ Mi. ThenM has cardinalityλ, and sinceλ is regular,M is (D, λ)-

homogeneous.

THEOREM I.4.2. Letλ ≥ |D| be such thatλ<λ > λ. If D satisfies(B ∗λ)
then there is no(D, λ)-homogeneous model of cardinalityλ.

PROOF. Supposeλ<λ > λ ≥ |D|. Assume, by way of contradiction, that there
is a(D, λ)-homogeneous modelM of cardinalityλ. SinceD satisfies(B∗λ) there
existD-typespη ∈ SD(Bη) andφη(x̄, āη) for η ∈ λ>2 such thatφη(x̄, āη) ∈ pη 0̂
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and¬φη(x̄, āη) ∈ pη 1̂. In additionpη ⊆ pν whenη ≺ ν. By Remark .3.3, we may
assume that|Bη| < |`(η)|+ + ℵ0. Hence, by(D, λ)-homogeneity ofM , we may
assume thatBη ⊆M for eachη ∈ λ>2.

For eachµ < λ andη ∈ µ2, there are2µ types inSD(Bη). Each such
type is realized inM , sinceM is (D, λ)-homogeneous and so2µ ≤ λ, sinceM
has cardinalityλ. Hence,λ is singular, since otherwiseλ<λ = λ. Furthermore,λ
is a strong limit (if there isµ < λ such that2µ = λ, thenλcf(λ) = 2µ·cf(λ) ≤ λ,
contradicting Zermelo-K̈onig).

Let κ = cf(λ) and letλi < λ for i < κ be increasing and continuous
such thatλ =

∑
i<κ λi. Let Ai ⊆ M of cardinality λi for i < κ such that

M =
⋃

i<κ Ai.

For eachi < κ, define a sequenceηi ∈ λ>2 and a finite setCi+1 such that

(1) If i < j thenηi ≺ ηj ;
(2) Ci+1 is a finite subset ofBηi+1 ;
(3) The typepηi+1 ¹ Ci is not realized inAi.

This is enough: Letp =
⋃

i<κ pηi . Thenp ¹
⋃

i<κ Ci is a D-type (by
continuity) over a set of cardinalityκ, which is not realized inM . This contradicts
the(D, λ)-homogeneity ofM sinceκ < λ.

This construction is possible. Defineη0 = 〈〉, and forδ < κ a limit ordinal
let ηδ =

⋃
i<δ ηi. For the successor case, assume thatηi ∈ λ>2 is constructed.

Defineτα = ηî 0α, where0α is a sequence of zeroes of order typeα, for α < 2λi .
Thenτα ∈ λ>2, sinceλi < λ andλ is a strong limit.

We claim that there areα < β < (2λi)+ such that|= φτα [c, āτα ] ↔
φτβ [c, āτβ ], for everyc ∈ Ai.

Suppose that this is not the case. LetAi = {cγ | γ < λi}. Then, for every
α < β < (2λi)+ there existsγ < λi such that|= ¬(φτα [cγ , āτα ] ↔ φτβ [c, āτβ ]).
By the Erd̋os-Rado theorem, there isγ < λi and an infinite setS ⊆ (2λi)+ such
that for everyα < β in S we have|= ¬(φτα [cγ , āτα ] ↔ φτβ [c, āτβ ]). This is an
immediate contradiction.

Hence, letα < β be as in (*). LetCi+1 = āτα ∪ āτβ and letηi+1 = τα̂ 1.
Sinceφτα(x, āτα) and¬φτβ (x, āτβ ) are inpηi+1 ¹ Ci, the typepηi+1 is omitted in
Ai. This finishes the construction and proves the theorem.

The next theorem is, in particular, an improvement of Proposition .3.16. It
allows us to defineaverages(Definition .4.4). Averages are used in Theorem .4.6.
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THEOREM I.4.3. Let D be stable. LetI be an infinite indiscernible set
overA of cardinality at leastκ(D). Let b̄ ∈ C. Then there isJ ⊆ I with |J | <
κ(D) such thatI \ J is indiscernible overA ∪ J ∪ b̄.

PROOF. Let I = {c̄i | i < α}. SinceD is stable,κ(D) is defined by Theorem
.3.11. Hence, there existsB ⊆ A ∪ I of cardinality less thanκ(D) such that
the typetp(b̄/A ∪ I) does not split strongly overB. Let J = B \ A. Then
J ⊆ I has cardinality less thanκ(D). We will show thatI \J is indiscernible over
A ∪ J ∪ b̄. Clearly,I \ J is indiscernible overA ∪ J . If I \ J is not indiscernible
overA∪ J ∪ b̄, then, there exist an integern < ω and indicesi0 · · · < in such that
tp(c̄0, . . . , c̄n/A∪J∪b̄) 6= tp(c̄i0 , . . . , c̄in/A∪J∪b̄). Then|= φ[c̄0, . . . , c̄n, ā, b̄, c̄]
and|= ¬φ[c̄i0 , . . . , c̄in , ā, b̄, c̄], for some formulaφ ∈ L(T ), parameters̄a ∈ A and
c̄ ∈ J . Let d̄0 = c̄0̂ . . .ˆ̄cn andd̄1 = c̄i0ˆ. . .ˆ̄cin . By taking sequences fromI \ J ,
it is easy to find{d̄i | i < ω} indiscernible overA ∪ J . Thus{d̄î ā̂ c̄ | i < ω} is
indiscernible overA ∪ J . Hence, the typetp(b̄/A ∪ I) splits strongly overA ∪ J ,
a contradiction to the choice ofB.

DEFINITION I.4.4. Let I be an indiscernible sequence of cardinality at
leastκ(D). Let A be such thatA ∪ I is aD-set. Define theaverage ofI overA,
by

Av(I, A) = {φ(x̄, ā) | φ(x̄, ȳ) ∈ L(T ), ā ∈ A, and |= φ[b̄, ā],

for at leastκ(D) elements̄b ∈ I}.

THEOREM I.4.5. Let D be stable. LetI be an indiscernible sequence of
cardinality at leastκ(D) andA be such thatA ∪ I is a D-set. ThenAv(I, A) ∈
Sn

D(A), wheren = `(ā) for ā ∈ I. In addition, if |I| > |A|, thenAv(I, A) is
realized inI.

PROOF. Averages are complete: Assumeφ(x̄, c̄) 6∈ Av(I, A), with c̄ ∈ A.
Then by definition, the setJ ⊆ I of elements realizingφ(x̄, c̄) has cardinality less
thanκ(D). Thus, sinceI \J has cardinality at leastκ(D), and all elements inI \J
realize¬φ(x̄, c̄), necessarily¬φ(x̄, c̄) ∈ Av(I, A). Averages are consistent: Let
φ1(x, c̄1), . . . , φn(x, c̄n) ∈ Av(I, A). Then, if c̄ = c̄1̂ . . .ˆ̄cn, by Theorem .4.3,
there isJc̄, Jc̄ ⊆ I of cardinality less thanκ(D) such thatI \ Jc̄ is indiscernible
over c̄. Hence, since eachφi(x, c̄i) was realized by at leastκ(D) elements ofI,
we can find one inI \ Jc̄. But then, all elements inI \ Jc̄ realizeφi(x, c̄i) by
indiscernibility (1 ≤ i ≤ n), so {φ1(x, c̄1), . . . , φn(x, c̄n)} is consistent. The
last sentence follows similarly: For anȳc ∈ A, every element ofI \ Jc̄ realizes
Av(I, A) ¹ c̄, since they realize every formula in it, and so if|I| > |A|, we can
find b̄ ∈ I \

⋃
c̄∈A Jc̄ realizingAv(I, A). It remains to show thatAv(I, A) is aD-

type: Notice that if we stretchI to J , I ⊆ J indiscernibles of cardinality greater
than|A|, we haveAv(I, A) = Av(J, A). ThenAv(I, A) is realized inJ , thus in
C, sinceJ is aD-set, and soAv(I, A) is aD-type.



I.4. THE HOMOGENEITY SPECTRUM 37

THEOREM I.4.6. Let λ ≥ |D|. If D is stable inλ, then there exists a
(D, λ)-homogeneous model of cardinalityλ.

PROOF. Suppose first thatλ is regular. Define an increasing continuous chain
〈Mi | i < λ〉 of models of cardinalityλ, such thatM0 realizes all the types inD,
andMi+1 realizes all the types overMi. Such a construction is possible sinceD is
stable inλ andλ ≥ |D|. Let M =

⋃
i<λ Mi. Then,M has cardinalityλ andM is

(D, λ)-homogeneous by regularity ofλ.

Now suppose thatλ is singular. Construct an increasing continuous chain
of models〈Mi | i < λ · λ〉 as above of lengthλ · λ. Let M =

⋃
i<λ·λ Mi.

Notice thatM has cardinalityλ. We now show that it is(D, λ)-homogeneous. Let
A ⊆ M of cardinality less thanλ andp0 ∈ SD(A). We will find I indiscernibles
of cardinality greater than|A| with p0 = Av(I, A). Let p ∈ SD(M) extending
p0 and chooseC ⊆ M of cardinality less thanκ(D) such thatp does not split
strongly overC. SinceD is stable inλ, thenλ<κ(D) = λ by Theorem .3.15.
Hence,cf(λ) ≥ κ(D). Thus, considering the sequence〈Mλ·i | i < λ〉 we can find
i < λ such thatC ⊆Mλ·i.

We claim thatp does not split overMλ·i+λ. Otherwise, there arēb andc̄ in
M andφ(x̄, ȳ) such thatφ(x̄, b̄) ∈ p, ¬φ(x̄, c̄) ∈ p and

tp(b̄/Mλ·i+λ) = tp(c̄/Mλ·i+λ).

Let q := tp(b̄/Mλ·i+λ). Now, sinceλ is singular, we haveω < λ. Consider the
following set

{j < λ : q ¹Mλ·i+ω·(j+1) splits overMλ·i+ω·j}.
SinceD is stable inλ, in particular(∗λ) fails so we can findγ with

λ · i < γ < γ + ω < λ · λ
such thatq ¹ Mγ+ω does not split overMγ . For eachn < ω, we can choose
b̄n ∈ Mγ+n+1 realizingtp(b̄/Mγ+n). Now, tp(b̄n/Mγ+n) does not split overMγ

(∀n < ω) by monotonicity. Hence{b̄n | n < ω} are indiscernible overMγ , by
Fact .3.12. Similarly, both{b̄0, b̄1, . . . , b̄} and{b̄0, b̄1, . . . , c̄} are indiscernible over
Mγ . In fact, sinceD is stable,D does not have the order property by Corollary
.2.12, and thus they are indiscernible sets by Remark .2.4. Now suppose that for
somen < ω, the formulaφ(x̄, b̄n) ∈ p. Thenp splits strongly overC since

{b̄n, c̄, b̄n+1, . . . } is indiscernible overC.

Otherwise¬φ(x̄, b̄0) ∈ p. Thenp splits strongly overC because

{b̄, b̄0, b̄1, . . . } is indiscernible overC.

We have a contradiction in both cases, which proves the claim.

We now use the claim to prove the conclusion of the theorem. First, we
may assume thatλ · i = 0, sop does not split overM0. Now for eachα < λ · λ,
chooseaα ∈Mα+1 realizingp ¹Mα. Sincep does not split overM0 the sequence
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I := {aα | α < λ · λ} is indiscernible. Letφ(x, ā) ∈ p0. There isα0 < λ2

such thatφ(x, ā) ∈ p0 ¹ Mα0 , so we have that|= φ[aα, ā] for everyα ≥ α0.
Hence there areλ ≥ κ(D) many elements ofI realizingφ(x, ā), showing that
φ(x, ā) ∈ Av(I, A). So Av(I, A) ⊇ p0 and since both types are complete, we
havep0 = Av(I, A). Thus since|I| > |A|, there are elements ofI realizingp0.
This shows thatp0 is realized inM . HenceM is (D, λ)-homogeneous.

The next lemma is an improvement of Corollary .2.8. It is needed in the
proof of Theorem .4.8.

LEMMA I.4.7. Let D be stable. LetA ⊆ B be D-sets such that every
D-type overA is realized inB. Fix n < ω and define

Γ := {p ∈ Sn
D(B) | p does not split overA}.

Then, for eachp ∈ Γ, there is a sequence〈āp
i | i ≤ ω〉 indiscernibles over A such

that

p 6= q ∈ Γ implies tp(〈āp
i : i < ω〉/A) 6= tp(〈āq

i : i < ω〉/A).(*)

Moreover,

|Γ| ≤ |
⋃

m<ω

Sm
D (A)|ℵ0 ≤ |D||A|+ℵ0 .

PROOF. It is enough to establish (*), since the last statement follows from (*)
by a computation.

For eachp ∈ Γ, define

Ip := 〈āp
i : i < κ(D)〉,

by induction oni < κ(D) such thattp(āp
i /B ∪ {āp

j : j < i}) extendsp and does
not split overA. This is possible by Lemma .2.7. By Fact .3.12 the sequenceIp is
indiscernible overA. Hence, it is enough to show that

tp(〈āp
i : i < κ(D)〉/A) 6= tp(〈āq

i : i < κ(D)〉/A), for p 6= q ∈ Γ.

We will use the following claim.

CLAIM . If b̄ ∈ B andb̄1 ∈ C such thattp(b̄/A) = tp(b̄1/A), then

|{i < κ(D) : tp(b̄̂ āp
0/A) 6= tp(b̄1̂ āp

i /A)}| < κ(D)

PROOF OF THECLAIM . To show this, define{āp
i : κ(D) ≤ i < κ(D)+}, by

induction oni (κ(D) ≤ i < κ(D)+) such thattp(āp
i /B ∪ {āp

j : j < i} ∪ b̄1)
extendsp and does not split overA. Hence, by Fact .3.12,I ′ = {āp

i : i < κ(D)+}
is indiscernible. By construction

tp(b̄1̂ āp
i /A) = tp(b̄̂ āp

i /A) = tp(b̄̂ āp
i /A), for i ≥ κ(D),

sinceb̄ ∈ B andIp is indiscernible overB. Thus

|{i ∈ I ′ : tp(b̄̂ āp
0/A) = tp(b̄1̂ āp

i /A)}| > κ(D),
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but then, all̄a1 ∈ I ′ but a subset of cardinality less thanκ(D) are indiscernibles
over b̄ ∪ b̄1 and so

|{i ∈ I ′ : tp(b̄̂ āp
0/A) 6= tp(b̄1̂ āp

i /A)}| < κ(D).

The claim follows sinceIp ⊂ I ′.

Suppose by way of contradiction that there arep 6= q ∈ Γ with

tp(〈āp
i : i < κ(D)〉/A) = tp(〈āq

i : i < κ(D)〉/A).

Sincep 6= q, there is̄b ∈ B andφ(x̄, ȳ) such thatφ(x̄, b̄) ∈ p and¬φ(x̄, b̄) ∈ q. By
construction,|= φ[āp

i , b̄] and|= ¬φ[āq
i , b̄], for all i < κ(D). Letf be an elementary

mapping such thatf ¹ A = idA andf(āp
i ) = āq

i for i < κ(D). Clearly,f exists
by assumption onp andq. Call b̄1 = f−1(b̄). By applying the claim, we know
that |{i < κ(D) : tp(b̄̂ āp

0/A) 6= tp(b̄1̂ āp
i /A)}| < κ(D), hence let̄ap

i , (i <
κ(D)) such thattp(b̄̂ āp

0/A) = tp(b̄1̂ āp
i /A). But, by definition off , we know that

tp(b̄1̂ āp
i /A) = tp(b̄̂ āq

i /A). Hencetp(b̄̂ āp
0/A) = tp(b̄̂ āq

i /A). Sinceφ(x̄, b̄) ∈
tp(b̄̂ āp

0/A), we then must have|= φ[āq
i , b̄], the desired contradiction.

We now prove the last significant ingredient of the Homogeneity Spectrum
Theorem.

THEOREM I.4.8. Let λ ≥ |D| be such thatλ<λ > λ. Suppose thatD is
stable but not inλ If D does not satisfy(∗λ) then there is no(D, λ)-homogeneous
model of cardinalityλ.

PROOF. By way of contradiction, assume thatM is a (D, λ)-homogeneous
model of cardinalityλ. Let {Aα | α < cf(λ)} be an increasing continuous chain
of sets such that|Aα| < λ andM =

⋃
α<cf(λ) Aα.

SinceD is not stable inλ, there is aD-setB of cardinalityλ such that
|SD(A)| > λ. Then, by Lemma .1.3 we may assume thatB ⊆ M sinceM is
(D, λ)-homogeneous. Hence|SD(M)| > λ.

We first claim that for eachp ∈ SD(M), there isα < cf(λ) such thatp
does not split overAα.

Suppose not. Letp ∈ SD(M) such thatp splits over everyAα. If λ is
regular, thenλ = cf(λ) and this implies thatD satisfies(∗λ), a contradiction.
Suppose thatλ is singular. For eachα < cf(λ), choosēbα, c̄α in M andφα(x, ȳ)
such thattp(b̄α/Aα) = tp(c̄α/Aα) andφα(x, b̄α) ∈ p and¬φα(x, c̄α) ∈ p. Then
p ¹ {b̄α, c̄α} is not realized inAα. SetA :=

⋃
α<cf(λ){b̄α, c̄α}. Thenp ¹ A is

not realized in
⋃

α<cf(λ) Aα = M . This contradicts the(D, λ)-homogeneity ofM
since|A| ≤ cf(λ) < λ. This proves the claim.

Now since|SD(M)| > λ, by the pigeonhole principle, there existsΓ ⊆
SD(M) of cardinalityλ+ andα < cf(λ), such that ifp ∈ Γ, thenp does not split
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overAα. SinceAα ⊆M of cardinality less thanλ andM is (D, λ)-homogeneous,
we are in the situation of the previous lemma. Thus for eachp ∈ Γ there is{āp

i :
i ≤ ω} an indiscernible set overAα such that

p 6= q if and only if tp(〈āp
i : i < ω〉/Aα) 6= tp(〈āq

i : i < ω〉/Aα).

Using the(D, λ)-homogeneity ofM and the fact that|Aα| < λ, construct
{b̄p

i : i ≤ ω} ⊆M for eachp ∈ Γ with the following two properties:

(1) tp(〈b̄p
j : j ≤ i〉/Aα) = tp(〈āp

j : j ≤ i〉/Aα)
(2) If tp(〈āp

j : j ≤ i〉/Aα) = tp(〈āq
j : j ≤ i〉/Aα), thenb̄p

j = b̄q
j for every

j ≤ i.

We now show that

b̄p
ω 6= b̄q

ω, if p 6= q ∈ Γ.(*)

Let p, q ∈ Γ such thatp 6= q. By construction, we have that

tp(〈āp
j : j < ω〉/Aα) 6= tp(〈āq

j : j < ω〉/Aα).

Hence, there is a minimali < ω such that

tp(āp
0, . . . , ā

p
i ā

p
i+1/Aα) 6= tp(āq

0, . . . , ā
q
i ā

q
i+1/Aα).

By minimality of i and (1), we have

tp(b̄p
0, . . . , b̄

p
i /Aα) = tp(b̄q

0, . . . , b̄
q
i /Aα).(**)

Now, we have the following equations

tp(b̄p
0, . . . , b̄

p
i b̄

p
ω/Aα) = tp(āp

0, . . . , ā
p
i ā

p
ω/Aα) (by definition (2))

= tp(āp
0, . . . , ā

p
i ā

p
i+1/Aα) (by indiscernibility)

6= tp(āq
0, . . . , ā

q
i ā

q
i+1/Aα) (by choice ofi)

= tp(āq
0, . . . , ā

q
i ā

q
ω/Aα) (by indiscernibility)

= tp(b̄q
0, . . . , b̄

q
i b̄

q
ω/Aα) (by definition (2))

Hence (*) follows from the previous equations and (**).

Therefore (*) implies that we have|Γ| many different elements̄bp
ω ∈ M .

This is a contradiction, since

|Γ| = λ+ > λ = ‖M‖.
This finishes the proof.

We can now present the Homogeneity Spectrum Theorem.

THEOREM I.4.9 (The Homogeneity Spectrum).Letλ be a cardinal. There
is a (D, λ)-homogeneous model of cardinalityλ if and only ifλ ≥ |D| and either
D is stable inλ or λ<λ = λ.

PROOF. The proof is divided into 5 cases.
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Case 1: λ < |D|. Then, there can be no(D, λ)-homogeneous modelM of
cardinalityλ, since we require thatD(M) = D, and there are not enough
elements inM to realize all the types inD.

Case 2: λ ≥ |D| andλ<λ = λ. Then, there exists a(D, λ)-homogeneous
modelM of cardinalityλ by Theorem .4.1.

Case 3: λ ≥ |D| andD is stable inλ. Then, there is a(D, λ)-homogeneous
modelM of cardinalityλ by Theorem .4.6.

Case 4: λ ≥ |D|, λ<λ > λ andD is not stable. Then, by Corollary .3.7,D
satisfies(∗λ). HenceD satisfies(B ∗ λ) by Lemma .3.4. Therefore, there
is no(D, λ)-homogeneous modelM of cardinalityλ by Theorem .4.2.

Case 5: λ ≥ |D|, λ<λ > λ andD is stable but not inλ. This case is divided
into two sub-cases according to whetherD satisfies(∗λ). If D does satisfy
(∗λ), thenD also satisfies(B ∗ λ) by Lemma .3.4. Therefore the result
follows from Theorem .4.2. IfD does not satisfy(∗λ), then by Theorem
.4.8 we have no(D, λ)-homogeneous model of cardinalityλ.

The proof is complete.
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CHAPTER II

The local order property in nonelementary classes

In the first order case, Victor Harnik and Leo Harrington in [HaHa], while
presenting an alternative approach of forking to that of Saharon Shelah [Sh b],
started a localized generalization of stability theory extending Saharon Shelah’s
Unstable Formula Theorem (Theorem II 2.2 [Sh b]). This work was later contin-
ued and extended by Anand Pillay in [Pi]. About ten years later Zoe Chatzidakis
and Ehud Hrushovski in their deep study of the model theory of fields with an
automorphism [ChHr ] as well as Ehud Hrushovski and Anand Pillay [HrPi1 ] dis-
covered natural examples of this phenomenon in algebra and obtained results in
local stability for first order simple theories.

In parallel, Rami Grossberg and Saharon Shelah continued their study of
stability and the order property in contexts where the compactness theorem fails;
inside a model and for nonelementary classes (see for example [Gr1], [Gr2],
[GrSh1], [GrSh3], [Sh16], and [Sh300]).

The goal of this chapter is to continue the study of local stability both in the
first order case and in cases where the compactness theorem fails. When possible,
we have tried to merge first order local stability with nonelementary stability theory
and obtain results improving existing theorems in two directions. Four frameworks,
listed in decreasing order of generality, are examined: (1) Inside a fixed structure;
(2) For a general nonelementary class of structures; (3) For the class of models of
a finite diagram; (4) For the first order case. Hence, the results of (1) hold for (2),
those of (2) hold in (3), and the ones of (3) hold in (4). We study local versions
of stability and the order property in (1) and (2). In (3) we look at the localized
versions of the saturation spectrum. In (4), we also study local versions of the
independence property and the strict order property. Bylocal, we mean inside the
set of realizations of a fixed type.

In (1), (2), and (3), since the compactness theorem fails, we cannot use the
forking machinery or definability of types, as [HaHa], [Pi] and [Sh b] do. Hence,
the methods used have a combinatorial and set-theoretic flavor. Note that by (2)
we mean the study of models of an infinitary logic, or of the classPC(T1, T, Γ)
(see the beginning of Section 3 for a definition). Hence, in addition to the failure
of the compactness theorem, we have to do without the existence of saturated or
even homogeneous models, as such models do not exist in general in (1) and (2).
Thus, frameworks (1) and (2) are more general than (3).

43
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The basicstructureassumption will be the impossibility of coding, via a
formula in a given logic, a linear order of a certain length inside the set of real-
izations of a fixed typep. Note that there are two standard definitions refered to
as the order property. (For example both are given in [Sh394].) In the first order
nonlocal case, they are equivalent when the complexity of the formula used to code
the order is of no importance. We chose this version for two reasons: as a struc-
ture assumption it is weaker than the other, and as a nonstructure assumption, the
existence of long orders implies the existence of many nonisomorphic models (see
Theorem VIII 3.2 in [Sh b]), even in nonelementary cases (see for example [Sh16]
and [GrSh1]).

This chapter is organized as follows:

In Section 1, we study stability and order for the realizations of a typep
inside a fixed modelM . In particular, the modelM may omit many types. Denote
byp(M) the set of realizations ofp in M . We prove that the impossibility of coding
a linear order of a certain length insidep(M) implies local stability (Theorem .1.5).
By local stability, we mean the usual definitions in terms of the number of types
extending the fixed typep. This is used to prove the existence of indiscernibles
(Theorem .1.9), as well as averages (Theorem .1.12).

In Section 2, we study these local notions for classes of models that fail
to satisfy the compactness theorem. We obtain a characterization of local stability
for such a class of models in terms of the failure of the local order property, and a
partial version of the stability spectrum (Theorem .2.4).

In Section 3, we study local stability for the class of models of a finite
diagram. We obtain all localized versions of the results of the first chapter: the local
stability spectrum (Theorem .3.12) and the local homogeneity spectrum (Theorem
.3.13).

Finally, in Section 4, we particularize our discussion to the first order case.
We introduce local versions of the independence property and the strict order prop-
erty. We prove the local version of Shelah’s Trichotomy Theorem: the local order
property is equivalent to the disjunction of the local independence property and the
local strict order property (Corollary .4.4). We characterize the local independence
property in terms of averages (Theorem .4.6) and give, as an application, a charac-
terization of stable types in terms of averages when the ambient first order theory
is simple (Corollary .4.9).

Credits have been given throughout the text when particular cases of these
results were known, either in the local first order case, or the nonlocal nonelemen-
tary case.
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II.1. Local notions inside a fixed model

In this section, we work inside a fixed structureM . Denote byL(M)
the set of first order formulas in the language ofM 1. We will say formulas for
L(M)-formulas.

Let p be a fixed set of formulas (maybe with parameters inM ) such thatp
is realized inM . Denote byp(M) the set of elements ofM realizingp.

Recall the notion of complete type inside a model. LetA ⊆M , ∆ be a set
of L(M)-formulas and̄c ∈M . We let

tp∆(c̄/A, M) = {φ(x̄, ā) | ā ∈ A, φ(x̄, ȳ) ∈ ∆ or¬φ(x̄, ȳ) ∈ ∆, M |= φ[c̄, ā]}.
We omit∆ when∆ = L(M).

ForA ⊆M and∆ a set of formulas, we let

S∆,p(A, M) = {tp∆(c̄/A, M) | c̄ ∈M andc̄ realizesp }.
We omit∆ when∆ = L(M).

For a typeq and a setA, we denote byq ¹ A the set of formulas inq with
parameters inA. For a set of formulas∆, we denote byq ¹ ∆ the set of instances
in q of formulas of∆.

The next two definitions are the main concept of this chapter.

DEFINITION II.1.1. For an infinite cardinalλ ≥ |L(M)|, the modelM is
said to be(λ, p)-stableif |Sp(A, M)| ≤ λ for eachA ⊆ p(M) of cardinality at
mostλ.

Note that in the above definition we make demands only on subsets of
p(M). In fact, throughout the rest of this chapter, we will only deal with types
q ∈ Sp(A, M) such thatA ⊆ p(M).

DEFINITION II.1.2. M has the(λ, p)-order propertyif there exists a for-
mulaφ(x̄, ȳ) ∈ L(M) and a set{āi | i < λ} ⊆ p(M), such that

M |= φ[āi, āj ] if and only if i < j < λ.

The first theorem (Theorem .1.5) is a local version inside a model of She-
lah’s Theorem that the failure of the order property implies stability for complete,
first order theories. A generalization of Shelah’s theorem for nonelementary classes
and in the local case will appear in the next section (Theorem .1.5). Theorem .1.5
will also be used in a key way to prove existence of indiscernibles (Theorem .1.9)
and averages (Theorem .1.12) in this section. The technical tool needed to prove it
is splitting. Recall the definition.

1This is arbitrary, we may consider forL(M) a fragment of a larger logic, or even a subset with some weak
closure properties.
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DEFINITION II.1.3. Let q ∈ Sp(B, M), with B ⊆ p(M). Let ∆1, ∆2 ⊆
L(M). The typeq is said to(∆1, ∆2)-split overA, if there exist elements̄b, c̄ ∈ B
and a formulaφ(x̄, ȳ) ∈ ∆2 such thattp∆1

(b̄/A, M) = tp∆1
(c̄/A, M) and both

φ(x̄, b̄) and¬φ(x̄, c̄) belong toq. We simply saysplits for (L(M), L(M))-splits.

The next fact is a variation on Exercise I.2.3 from [Sh b].

PROPOSITIONII.1.4. LetB ⊆ C ⊆ p(M) and letA ⊆ M . Suppose that
B realizes all the types inS∆2,p(A) that are realized inC. Let q, r ∈ S∆1,p(C)
such thatq, r do not(∆1, ∆2)-split overA. If q ¹ B = r ¹ B, thenq = r.

PROOF. Supposeq 6= r. Then there existsφ(x̄, ȳ) ∈ ∆1 andc̄ ∈ C such that
φ(x̄, c̄) ∈ q and¬φ(x̄, c̄) ∈ r. Considertp∆2

(c̄/A, M). By assumption onB,
there exists̄b ∈ B such thattp∆2

(b̄/A, M) = tp∆2
(c̄/A, M). Since neitherq, nor

r (∆1, ∆2)-split overA, we haveφ(x̄, b̄) ∈ q and¬φ(x̄, b̄) ∈ r. This contradicts
the assumption thatq ¹ B = r ¹ B.

The following theorem localizes results from [Sh16] and [Gr1]. The proof
appearing in [Sh16] uses generalizations of a theorem of Paul Erdős and Michael
Makkai appearing in [ErMa ]. The proof given here is simpler and closer to [Gr1].
See Theorem 1..2.9.

THEOREM II.1.5. Let µ andλ be cardinals such thatµ ≥ |L(M)|, λµ =
λ, andλ ≥ 22µ . If M does not have the(µ+, p)-order property, thenM is (λ, p)-
stable.

PROOF. Suppose thatM is not(λ, p)-stable. Then, there existsA ⊆ p(M) of
cardinalityλ such that|Sp(A, M)| > λ.

For eachq ∈ Sp(A, M), we have(q ¹ φ) ∈ Sφ,p(A, M). Define

f : Sp(A, M)→ Πφ∈LSφ,p(A, M), by f(q) = (q ¹ φ)φ∈L(M).

Then,f is a well-defined injection. Observe that

|Πφ∈L(M)Sφ,p(A, M)| ≤ λ|L(M)| ≤ λµ < λ+ ≤ |Sp(A, M)|.
By the pigeonhole principle, we can findφ ∈ L(M) such that|Sφ,p(A, M)| > λ.

Fix φ(x̄, ȳ) as above and choose{āi | i < λ+} ⊆ p(M) such thati 6= j
impliestpφ(āi/A, M) 6= tpφ(āj/A, M).

Write χ(ȳ, x̄) := φ(x̄, ȳ). Define〈Ai | i < λ〉 an increasing continuous
sequence of subsets ofp(M) containingA, each of cardinality at mostλ, such that

Ai+1 realizes every type inSp(B, M), for eachB ⊆ Ai with |B| ≤ µ.(*)

This is possible: Having constructedAi of cardinality at mostλ, there are at most
λµ = λ subsetsB of Ai of cardinality µ. Further, for each suchB, we have
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|Sp(B, M)| ≤ 2µ ≤ λ, so we can add the needed realizations inAi+1 from p(M)
while keeping|Ai+1| ≤ λ.

We now claim that (*) allows us to choose, for everyi < λ+, an indexj,
with i < j < λ+, such that for eachl < µ+ the typetpφ(āj/Al+1, M) (χ, φ)-
splits over eachB ⊆ Al of cardinality at mostµ.

Otherwise, there isi < λ+ such that for every indexj, with i < j < λ+,
there existsl < µ+ andBj ⊆ Al of cardinalityµ such thattpφ(āj/Al+1, M) does
not (χ, φ)-split overBj . By the pigeonhole principle (sinceλ+ ≥ µ) we can find
S ⊆ λ+ of cardinalityλ+, an ordinall < µ+, andB ⊆ Al+1 of cardinalityµ such
that tpφ(āj/Al+1, M) does not(χ, φ)-splits overB, for everyj ∈ S. By (*) we
can chooseC ⊆ Al+1 of cardinality at most2µ such thatC realizes every type in
Sχ,p(B, M). Then, since|Sφ,p(C, M)| ≤ 22µ < λ+, by the pigeonhole principle,
we may assume thattpφ(āj/C, M) is constant forj ∈ S. By Proposition .1.4, we
must havetpφ(āj/Al+1, M) = tpφ(āi/Al+1, M), for i, j ∈ S. This contradicts
the choice of̄ais and the fact thatA ⊆ Al+1.

Define{c̄l, d̄l, b̄l | l < µ+} ⊆ A2l+2 andBl =
⋃
{c̄k, d̄k, b̄k | k < l} such

that:

(1) Bl ⊆ A2l and|Bl| ≤ µ;
(2) tpχ(c̄l/Bl, M) = tpχ(d̄l/Bl, M);
(3) Bothφ(x̄, c̄l) and¬φ(x̄, d̄l) belong totpφ(āj/A2l, M);
(4) b̄l ∈ A2l+1 realizes bothφ(x̄, c̄l) and¬φ(x̄, d̄l).

This is possible: LetB0 = ∅ andBl =
⋃

k<l Bk when l is a limit ordi-
nal. Having constructedBl ⊆ A2l of cardinality at mostµ, the typetpφ(āj/A2l)
(χ, φ)-splits overBl and hence there arēcl, d̄l ∈ A2l with tpχ(c̄l/Bl, M) =
tpχ(d̄l/Bl, M) andφ(x̄, c̄l) and¬φ(x̄, d̄l) ∈ tpφ(āj/A2l, M). Then, by construc-
tion we can find̄bl ∈ A2l+1 realizing tpφ(āj/c̄ld̄l, M) so (4) is automatically
satisfied.

Now, the set{b̄l̂ c̄l̂ d̄l | l < µ+} ⊆ p(M) and the formula

ψ(x̄0, x̄1, x̄2, ȳ0, ȳ1, ȳ2) := φ(x̄0, ȳ1)↔ φ(x̄0, ȳ2)

demonstrate thatM has the(µ+, p)-order property.

The following definition generalizes the notion of relative saturation.

DEFINITION II.1.6. We say that a setC ⊆M is relatively(λ, p)-saturated
if C realizes everyq ∈ Sp(B, M) for everyB ⊆ C such that|B| < λ.

The following lemma is a version ofκ(T ) ≤ |T |+ for the notion of split-
ting.
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LEMMA II.1.7. Let µ be a cardinal such thatµ ≥ |L(M)|. Suppose that
M does not have the(µ+, p)-order property. Suppose thatB ⊆ p(M) is relatively
(µ+, p)-saturated. Then for eachq ∈ Sp(B, M) there isA ⊆ B of cardinality at
mostµ such thatq does not split overA.

PROOF. Suppose, for a contradiction, that there exist a relatively(µ+, p)-
saturated setB and a typeq ∈ Sp(B, M), such thatq splits over everyA ⊆ B
of cardinality at mostµ.

We will show thatM has the(µ+, p)-order property. Construct a sequence
of sets〈Ai | i < µ+〉 such that:

(1) A0 = ∅;
(2) Ai =

⋃
j<i Aj , wheni is a limit ordinal;

(3) Ai ⊆ B, for eachi < µ+;
(4) |Ai| ≤ µ, for eachi < µ+;
(5) There areφi ∈ L(M) and āi, b̄i ∈ Ai+1, such thattp(āi/Ai, M) =

tp(b̄i/Ai, M) andφ(x̄, āi) and¬φ(x̄, b̄i) are inq;
(6) Ai+1 contains̄ci realizingq ¹ (Ai ∪ āib̄i).

This is possible: Fori = 0 or a limit ordinal, it is obvious. Suppose that
Ai has been constructed. Since|Ai| ≤ µ andAi ⊆ B, q splits overAi. Hence,
there exist a formulaφi ∈ L(M), andāi, b̄i ∈ B demonstrating this. SinceB is
relatively(µ+, p)-saturated, andq ¹ (Ai ∪ āib̄i) ∈ Sp(Ai ∪ āib̄i, M), there exists
c̄i ∈ B realizingq ¹ (Ai ∪ āib̄i). Let Ai+1 = Ai ∪ {āi, b̄i, c̄i}. All the conditions
are satisfied.

This is enough: By the pigeonhole principle, sinceµ ≥ |L(M)|, we may
assume that there existsφ ∈ L(M) such thatφi = φ, for eachi < µ+. Now
consider{c̄î āî b̄i | i < µ+} and the formula

ψ(x̄0, x̄1, x̄2, ȳ0, ȳ1, ȳ2) := φ(x̄0, ȳ1)↔ φ(x̄0, ȳ2).

It is easy to see that they demonstrate thatM has the(µ+, p)-order property.

The following fact is Lemma I.2.5 of [Sh b].

FACT II.1.8. Let B ⊆ p(M) and let{āi | i < α} ⊆ p(M) be given.
Consider the typeqi = tp(āi/B ∪ {āj | j < i}, M) ∈ Sp(B ∪ {āj | j < i}, M)
and suppose that

(1) If i < j < α thenqi ⊆ qj ;
(2) For eachi < α the typeqi does not split overB.

Then{āi | i < α} is indiscernible overB.
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The next theorem is a generalization of two theorems. (1) Whenp is stable
for every model of a first order theory, a version of this theorem appears in [Pi].
(2) Whenp := {x̄ = x̄}, it appears in [Gr1].

THEOREM II.1.9. Let µ andλ be cardinals such thatµ ≥ |L(M)|, λµ =
λ, andλ ≥ 22µ . If M does not have the(µ+, p)-order property, then for every
I ⊆ p(M) and everyA ⊆ p(M) such that|I| > λ ≥ |A|, there existsJ ⊆ I of
cardinalityλ+ indiscernible overA.

PROOF. Let I = {āi | i < λ+}. By the pigeonhole principle, we may assume
that`(āi) = `(āj), for i, j < λ+.

Define〈Ai | i < λ+〉 ⊆ p(M) such that:

(1) A0 = A;
(2) Ai =

⋃
j<i Aj , whenj is a limit ordinal;

(3) Ai ⊆ p(M);
(4) |Ai| ≤ λ, for everyi < λ+;
(5) Ai+1 contains̄ai;
(6) Ai+1 realizes every type inSp(B, M), for eachB ⊆ Ai of cardinality at

mostµ.

This is possible: Fori = 0 it is clear. If i is a limit ordinal it is easy.
Let us concentrate on the successor stage. Assume thatAi of cardinalityλ has
been constructed. By cardinal assumption, there areλ = λµ subsetsB of Ai of
cardinalityµ, and for each suchB we have|Sp(B, M)| ≤ 2µ ≤ λ. Hence,Ai+1

satisfying (3)–(6) can be found.

Consider the following stationary subset ofλ+

S = {i < λ+ | cf(i) ≥ µ+}.
Let ri := tp(āi/Ai, M). Then clearlyri ∈ Sp(Ai, M). Now, for eachi ∈ S,
sincecf(i) ≥ µ+, the setAi is relatively (µ+, p)-saturated. Hence, by Lemma
.1.7, there existsBi ⊆ Ai of cardinality at mostµ such thatri does not split over
Bi. Furthermore, sincecf(i) = µ+, there existsj < i such thatBi ⊆ Aj .

This shows that the functionf : S → λ+ defined by

f(i) = min{j | Bi ⊆ Aj},
is regressive. Hence, by Fodor’s lemma (see Theorem 22 of [Je]), there isS′ ⊆ S
of cardinalityλ+ andi0 < λ+ such that for eachi ∈ S′ we haveBi ⊆ Ai0 . Since
there are onlyλµ = λ subsets ofAi0 of sizeµ, we may assume, by the pigeonhole
principle, that there exists a setB ⊆ Ai0 such thatBi = B for eachi ∈ S′. Now,
M does not have the(µ+, p)-order property, andλµ = λ, so Theorem .1.5 implies
that M is (λ, p)-stable. Hence,|Sp(Ai0 , M)| ≤ λ, and thus by the pigeonhole
principle, we may further assume thattp(āi/Ai0 , M) = tp(āj/Ai0 , M), for every
i, j ∈ S′.
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By re-enumerating if necessary, we may assume thatS′ \ (i0 + 1) = λ+.
Now let

qi := tp(āi/Ai0 ∪ {āj | j < i}) ∈ Sp(Ai0 ∪ {āj | j < i}).
By Proposition .1.4 we have thatqi ⊆ qj if i < j. Thus, all the assumptions of Fact
.1.8 are satisfied, soJ = {āi | i < λ+} is indiscernible overA, sinceA ⊆ Ai0 .
This finishes the proof.

In the previous theorem, we demanded thatA be a subset ofp(M). The
next remark summarizes what we can do whenA ⊆M is not necessarily contained
in p(M). It follows from the previous theorem by considering an expansion of
L(M) with constants for elements inA.

REMARK II.1.10. Letµ ≥ |L(T )| be a cardinal. LetA ⊆M be given and
suppose thatM does not have the(µ+, p)-order property even allowing parameters
from A. Let λµ = λ andλ ≥ 22µ . Then, for everyI ⊆ p(M) of cardinalityλ+,
there existsJ ⊆ I of cardinalityλ+ indiscernible overA.

The next definition defines averages without usingκ(D). In stable dia-
grams, both definitions are easily seen to be equivalent.

DEFINITION II.1.11. LetI be an infinite set of finite sequences. LetA ⊆
M . We define theaverage ofI overA in M as follows

Av(I, A, M) := {φ(x̄, ā) | ā ∈ A, φ(x̄, ȳ) ∈ L(M),

andM |= φ[c̄, ā] for |I| elements̄c ∈ I}.

We will be interested in conditions guaranteeing that averages are well-
defined. It is a known fact (see Lemma III 1.7 (1) of [Sh b]) that if M is a model of
a complete, first order, stable theoryT , then for every infinite set of indiscernibles
I and A ⊆ M , the averageAv(I, A, M) is a complete type overA. Also, if
|I| > |A| + κ(T ), then the average is realized by an element ofI (this is essen-
tially Lemma III 3.9 of [Sh b]). A corresponding local result (Theorem .4.6) in
the presence of the compactness theorem will be given in Section 4. Inside a fixed
model, the situation is more delicate. The next theorem is a localization of Con-
clusion 1.11 in [Sh300]. Notice the similarity with the assumptions of Theorem
.1.9.

THEOREM II.1.12. Letµ andλ be cardinals such thatµ ≥ |L(M)|, λµ =
λ, andλ ≥ 22µ . If M does not have the(µ+, p)-order property, then for every
I ⊆ p(M) of cardinality λ+, there existsJ ⊆ I of cardinality λ+ such that for
eachA ⊆ p(M) the averageAv(J, A, M) is a complete type overA. Moreover, if
|J | > |A|, thenAv(J, A, M) ∈ Sp(A, M).

PROOF. Let I = {āα | α < λ+}. We may assume by the pigeonhole principle
that there existsn < ω such that̀ (āα) = n, for eachα < λ+.
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We first essentially repeat the proof of Theorem .1.9 and construct a se-
quence〈Aα | α ≤ λ+〉 such that:

(1) A0 = ∅, Aδ =
⋃

α<δ Aα whenδ is limit, andAα ⊆ Aα+1.
(2) Aα ⊆ p(M).
(3) |Aα| ≤ λ, for everyα < λ+.
(4) Aα+1 contains̄aα.
(5) Aα+1 realizes all types inSp(Aα, M).

This is possible: SinceM does not have the(µ+, p)-order property, thenM is
(λ, p)-stable by Theorem .1.5. Hence,|Sp(Aα, M)| ≤ λ inductively, for each
α < λ+.

Now (5) implies that

(6) If cf(δ) ≥ µ+ thenAδ is relatively(µ+, p)-saturated.

As in the proof of Theorem .1.9, we can find a setS ⊆ {δ < λ+ | cf(δ) ≥ µ+} of
cardinalityλ+ and an ordinalα(∗) = min S such that

(7) For eachα ∈ S, the typetp(āα/Aα, M) does not split overAα(∗).
(8) If α, β ∈ S andα < β thentp(āα/Aα, M) ⊆ tp(āβ/Aβ, M).

We claim that the setJ = {āα | α ∈ S} is as desired. To show this, we
will show that

(*) For everyc̄ ∈ p(M) andφ(x̄, ȳ) ∈ L(M), either

|{α ∈ S : M |= φ[āα, c̄]}| ≤ µ or |{α ∈ S : M |= ¬φ[āα, c̄]}| ≤ µ.

This implies the conclusion of the theorem: ForA ⊆ p(M), condition (*) implies
that Av(J, A, M) is a consistent set of formulas overA, as each finite subset is
realized by all butµ many elements ofJ . SinceAv(J, A, M) is always complete,
we have thatAv(J, A, M) is a complete type over A. For the last sentence, notice
that all but|A|+ |L(M)|+ µ elements ofJ realizeAv(J, A, M). Hence, ifλ+ >
|A|, then there exists̄aα ∈ J ⊆ p(M) realizingAv(J, A, M) (asλ ≥ µ+|L(M)|).
This shows thatAv(J, A, M) ∈ Sp(A, M).

Let c̄ ∈ p(M) and φ(x̄, ȳ) ∈ L(M) be given. Thentp(c̄/Aα, M) ∈
Sp(Aα, M), sincec̄ ∈ p(M). Hence, by (5), we can find{c̄α | α ∈ S} ⊆ p(M)
satisfying

(9) c̄α ∈ Aα+2.
(10) c̄α realizestp(c̄/Aα+1, M).

We will prove (*) by finding a set of ordinalsE of cardinalityµ such that
either{α ∈ S : M |= φ[āα, c̄]} ⊆ E or {α ∈ S : M |= ¬φ[āα, c̄]} ⊆ E.
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We construct the setE, as well as a setC ⊆ Aλ+ with the following
properties:

(11) |E| ≤ µ and|C| ≤ µ.
(12) λ+ ∈ E.
(13) If α+1 ∈ E thenα ∈ E and ifδ ∈ E andcf(δ) ≤ µ thensup(E∩δ) = δ.
(14) If δ ∈ E andcf(δ) ≥ µ+, thentp(c̄/Aδ, M) does not split overC ∩ Aδ.

Moreover,C ∩Aδ ⊆ Asup(E∩δ).

This is possible: ConstructEn andCn of cardinality at mostµ by induction on
n < ω. Let E0 = {λ+} andC0 = ∅. Then, by (6) and Lemma .1.7 we can
find Cn+1 of cardinalityµ such thattp(c̄/Aδ, M) does not split overCn+1 ∩ Aδ

for eachδ ∈ En with cf(δ) ≥ µ+. Furthermore, we can add at mostµ many
ordinals toEn+1 to ensure thatCn+1 ⊆ Asup(En+1∩δ). Thus,E =

⋃
n<ω En and

C =
⋃

n<ω Cn are as desired.

This is enough to prove (*). In fact, to show that{α ∈ S : M |=
φ[āα, c̄]} ⊆ E or {α ∈ S : M |= ¬φ[āα, c̄]} ⊆ E, it clearly suffices to show

M |= φ[āα, c̄]↔ φ[āβ , c̄], for everyα, β ∈ S \ E.(**)

Notice that by construction (11)–(14) the setS \ E is partitioned into at
mostµ intervalsof the form{α ∈ S | sup(E ∩ δ) ≤ α < δ}, whereδ ∈ E with
cf(δ) ≥ µ+. If such an interval is nonempty, then it must have size at leastµ+.
We will make use of this and prove (**) in two stages. In the first part, we will
show that (**) holds, providedα andβ belong to the same interval, and then in the
second part, that (**) holds also whenα andβ belong to different intervals.

Let δ ∈ E be such thatcf(δ) ≥ µ+. Denote byδ0 = sup(E ∩ δ). Now let
α, β ∈ S such thatδ0 ≤ α < β < δ. Without loss of generality, assume thatM |=
φ[āα, c̄]. Thenφ(āα, ȳ) ∈ tp(c̄/Aδ, M). By (14) the typetp(c̄/Aδ, M) does not
split overC ∩Aδ ⊆ Aδ0 . But, by (8), we havetp(āα/Aδ0 , M) = tp(āβ/Aδ0 , M).
Hence, by nonsplittingφ(āβ, ȳ) ∈ tp(c̄/Aδ, M) and soM |= φ[āβ , c̄].

To prove the second part, we first claim that

M |= φ[āα1 , c̄β1 ]↔ φ[āα2 , c̄β2 ], for everyα1 > β1 andα2 > β2 in S.(†)
To see this, letγ = max(α1, α2). Then by (8) and (9) (recall that ordinals inS are
limit), we haveM |= φ[āα1 , c̄β1 ] ↔ φ[āγ , c̄β1 ] and alsoM |= φ[āα2 , c̄β2 ] ↔
φ[āγ , c̄β2 ]. Now by (10) we have thattp(c̄β1/Aα(∗), M) = tp(c̄γ/Aα(∗), M),
and by (9), both̄cβ1 , c̄β2 ∈ Aγ . But by (7) the typetp(āγ/Aγ , M) does not
split overAα(∗). Hence,φ(x̄, c̄β1) ∈ tp(āγ/Aγ , M) if and only if φ(x̄, c̄β2) ∈
tp(āγ/Aγ , M). Thus,M |= φ[āγ , c̄β1 ]↔ φ[āγ , c̄β2 ]. This proves (†).

Now for the second part, letδ, ξ ∈ E with cf(δ) ≥ µ+ andcf(ξ) ≥ µ+.
Denote byδ0 = sup(E ∩ δ) andξ0 = sup(E ∩ ξ). Assume thatδ0 < ξ0 and let
i ∈ S with δ0 ≤ i < δ andj ∈ S with ξ0 ≤ j < ξ. To show:M |= φ[āi, c̄] ↔
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φ[āj , c̄]. SupposeM |= ¬(φ[āi, c̄] ↔ φ[āj , c̄]). We will derive a contradiction by
showing thatM has the(µ+, p)-order property.

Assume, without loss of generality, thatM |= φ[āi, c̄] andM |= ¬φ[āj , c̄].
We distinguish two cases.

Case 1: SupposeM |= φ[āj , c̄i] (recall j > i). Then, by (†), we have
that M |= φ[āα, c̄β], for everyα, β ∈ S with α > β. On the other hand since
M |= ¬φ[āj , c̄], the first part of this argument shows thatM |= ¬φ[āα, c̄], for each
α ∈ S with ξ0 ≤ α < ξ. Hence, by (10), for eachβ ∈ S with α ≤ β we have that
M |= ¬φ[āα, c̄β]. Thus, forα, β ∈ S ∩ [ξ0, ξ), we have

M |= ¬φ[āα, c̄β] if and only if α ≤ β.

This implies easily thatM has the(µ+, p)-order property.

Case 2: SupposeM |= ¬φ[āj , c̄i]. Similarly to Case 1, we obtain the
(µ+, p)-order property by using the intervalS ∩ [δ0, δ) and the fact thatM |=
φ[āi, c̄].

II.2. Local order and stability for nonelementary classes

In this short section, we will examine the stability ofp with respect to all
the models of a given class of modelsK. Let us fix the concepts. We will work
inside the classK = PC(T1, T, Γ). Recall that forT ⊆ T1 andΓ a set ofT1-types
over the empty set, we let

PC(T1, T, Γ) = {M ¹ L(T ) : M |= T1 andM omits every type inΓ}

We will denote byµ(K) = µ(|T1|, |Γ|), the Hanf-Morley number forK. The
properties of Hanf-Morley numbers work in this more general context. Recall that
µ(λ, κ) is the least cardinalµ with the property that for everyPC(T1, T, Γ) with
|T1| ≤ λ and|Γ| ≤ κ, if PC(T1, T, Γ) contains a model of cardinalityµ, then it
contains models of arbitrarily large cardinality. It is known for example that when
κ = |Γ| = 0, thenµ(K) = ℵ0. For |Γ| ≥ 1, thenµ(K) = iδ(|T1|,|Γ|). Recall
thatδ(λ, κ) is the least ordinalδ with the property that for everyPC(T1, T, Γ) with
|T1| ≤ λ and |Γ| ≤ κ, if PC(T1, T, Γ) contains a model with a predicate whose
order type isδ, then it contains a model where this predicate is not wellordered.
Much is known about such numbers. Here are some of the known facts. First
δ(λ, 0) = ω andδ(λ, κ) is always a limit ordinal. We have monotonicity proper-
ties: if λ1 ≤ λ2 andκ1 ≤ κ2, thenδ(λ1, κ1) ≤ δ(λ2, κ2). Also, if 1 ≤ κ ≤ λ then
δ(λ, κ) = δ(λ, 1). In generalδ(λ, κ) ≤ (2λ)+. Finally, supposeκ ≤ λ andλ is a
strong limit cardinal of cofinalityℵ0, thenδ(λ, κ) = λ+. See Lemma VII.5.1 and
Theorem VII.5.5 of [Sh b] or [Gr b ]
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Choosing to carry out the theorems of this section in aPC-class is ar-
bitrary. We could have chosen to study any sufficiently general class of models
extending the first order case in which the compactness theorem fails. For exam-
ple, the class of models of an infinitary sentenceψ ∈ Lω1ω or Lλ+ω. All the results
of this section hold for such classes and the proofs can usually be used verbatim.

As in the previous section, we will fixp a set ofL(T )-formulas (with
parameters).

We expand the definitions we made in the first section for the classK.

DEFINITION II.2.1.

(1) Letλ be a cardinal. We say thatp is stable inλ, if for everyM ∈ K, M is
(λ, p)-stable.

(2) We say thatp is stableif there exists a cardinalλ such thatp is stable inλ.

DEFINITION II.2.2.

(1) We say thatp has theλ-order propertyif there existsM ∈ K such thatM
has the(λ, p)-order property.

(2) We say thatp has theorder propertyif p has theλ-order property for every
λ.

Using proof techniques similar to those used in Theorem .2.10 of Chapter
I we observe:

FACT II.2.3. The following conditions are equivalent.

(1) p has the order property;
(2) p has theλ-order property for everyλ < µ(K);
(3) p has theµ(K)-order property;
(4) There exists a modelM ∈ K, a formulaφ(x̄, ȳ), and an indiscernible

sequence{āi | i < µ(K)} ⊆ p(M), such that

M |= φ[āi, āj ] if and only if i < j < µ(K).

We now prove a version of the stability spectrum and the equivalence be-
tween local instability and local order. Nonlocal theorems of this vein appear in
[Sh16].

THEOREM II.2.4. The following conditions are equivalent.

(1) p is stable;
(2) There exists a cardinalκ(K) < µ(K) + |L(T )|+ such thatp is stable in

everyλ ≥ µ(K) satisfyingλκ(K) = λ.
(3) p does not have the order property.
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PROOF. (2)⇒ (1) trivially.

(3)⇒ (2): Sincep does not have the order property, by Fact .2.3 there
exists a cardinalκ < µ(K) such that no model ofK has the(κ+, p)-order property.
Let λ ≥ µ(K). Then, automatically, sinceκ < µ(K) andµ(K) is eitherℵ0 or
a strong limit, we haveλ ≥ 22κ . Let κ(K) = κ + |L(T )|. Hence, ifλ ≥ µ(K)
satisfiesλκ(K) = λ, andM ∈ K, then Theorem .1.5 implies thatM is (λ, p)-stable.
Thus,p is stable inλ.

(1)⇒ (3): This is again a standard application of Hanf number techniques.
We give just a sketch. Supposep is stable inλ. Let T ∗ be an expansion ofT1 with
Skolem functions, such that|T ∗| = |T1|. Letκ be smallest such that2κ > λ. Using
the order property and the methods of Morley, we can findM∗ |= T ∗ such that
M = M∗ ¹ L(T ) ∈ K, with φ(x̄, ȳ), and{āi | i < ω} ⊆ p(M) demonstrating
the p-order property. Furthermore{āi | i < ω} ⊆ p(M) is T ∗-indiscernible.
Hence, by the compactness theorem, we can find a modelN∗ |= T ∗ and a set
{āη | η ∈ κ≥2} ⊆ p(N∗) demonstrating thep-order property with respect to the
lexicographic order. Furthermore, for everyn < ω

tp(āν0 , . . . , āνn/∅, N∗) = tp(ā0, . . . , ān/∅, M∗), for everyν0 < · · · < νn.

We may assume thatN∗ is the Ehrenfeucht-Mostowski closure of{āη | η ∈ κ≥2},
sinceT ∗ has Skolem functions. LetN = N∗ ¹ L(T ). ThenN ∈ K. Consider
A =

⋃
η∈κ>2 āη ⊆ p(N). Then|A| ≤ 2<κ ≤ λ and|Sp(A, N)| = 2κ > λ. Thus,

N is not(λ, p)-stable, a contradiction.

REMARK II.2.5. In the first order case,µ(K) = ℵ0 and sop is stable if
and only ifp is stable in everyλ such thatλ|L(T )| = λ. In the first order case, most
authors definestabletypes using (3) withµ(K) = ℵ0.

II.3. Local stability and local homogeneity in finite diagrams

In this section, we examine the stability ofp for the class of models of
a finite diagramD. The framework of finite diagrams was discussed in the first
section of Chapter I. The same notation is used.

We set the necessary definitions to localize all results of the first chapter.
Note that some of them have already been established in a more general context,
like the equivalence between local stability and the failure of the local order prop-
erty.

Fix p a set ofL(T )-formulas (maybe with aD-set of parameters). All the
results of Section 1 and 2 of this chapter hold, as finite diagrams is a particular case
of aPC-class.
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We adopt the following notation. Note that there is a slight clash of nota-
tion between the subscriptp employed here and the subscriptp as it is used in the
first chapter, but this shouldn’t cause any ambiguity.

DEFINITION II.3.1. ForA aD-set, let

SD,p(A) = {tp(c/A) | A ∪ c is aD set andc realizesp}.

Although the definition makes sense for anyA ⊆ M , it will only be used
whenA ⊆ p(M). The next definition is only a restatement of what we meant by
relatively(λ, p) saturatedin the first section of this chapter, whenM = C.

DEFINITION II.3.2. A modelM is (D, λ, p)-homogeneous, if M realizes
every type inSD,p(A), for eachA ⊆ p(M) of cardinality less thatλ.

We can relax the monster model assumption to:

HYPOTHESISII.3.3. There exists a(D, κ̄, p)-homogeneousD-modelC,
for someκ̄ larger than any cardinal needed in this chapter.

We will work insidep(C). The results of Chapter I, Section 1 hold rel-
ativized to realizations ofp. Thus, C can be assumed to contain everyD-set
A ⊆ p(M), for any D-modelM . And alsoC is homogeneous with respect to
subsets ofp(C). Write SD,p(A) for SD,p(A,C).

We rephrase the definitions of local stability and local order.

DEFINITION II.3.4.

(1) D is (λ, p)-stableif |SD,p(A)| ≤ λ for everyA ⊆ p(C) of cardinalityλ.
(2) D is p-stableif D is (λ, p)-stable for some cardinalλ.

DEFINITION II.3.5.

(1) D has the(λ, p)-order propertyif there exist a formulaφ(x̄, ȳ) ∈ L(T )
and a set{āi | i < λ} ⊆ p(C), such that

|= φ[āi, āj ] if and only if i < j < λ.

(2) D has thep-order propertyif D has the(λ, p)-order property for every
cardinalλ.

Then, all the statements of Chapter I Section 2 are true provided all the sets
mentioned are taken insidep(C) and the local notionsSD,p(A), p-order property,
p-stability are used instead. Most of the proofs can be used without modification.
The only kind of changes which are occasionally required are the obvious ones, for
example: In the proof of Remark .2.4 add the requirementp(c̄i) for i < λ in the
list of conditions, as well as a requirement that{c̄i | i < λ} be indiscernible over
the parameters ofp. In the proof of Theorem .2.9, choose{āi | i < µ+} ⊆ p(C)
and so on. The main result of Section 2 is the local version of the stability/order
dichotomy. We state it for completeness
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THEOREM II.3.6. D is p-stable if and only ifD does not have thep-order
property.

We need to introduce a local version of strong splitting:

DEFINITION II.3.7. Let A ⊆ p(C) andq ∈ SD,p(A). The typeq splits
stronglyoverB ⊆ A if there exist{c̄n | n < ω} ⊆ p(C), an indiscernible sequence
overB, and a formulaφ(x̄, ȳ) such thatφ(x̄, c̄1) ∈ q, ¬φ(x̄, c̄2) ∈ q.

Define the localized version of(∗λ) as follows:

DEFINITION II.3.8. D satisfies(p ∗ λ) if there exists an increasing and
continuous chain{Ai | i ≤ λ}, with Ai ⊆ p(C), and a typeq ∈ SD,p(A) such that
q ¹ Ai+1 splits overAi.

The localized version of(B ∗λ) is defined similarly using subsets ofp(C),
call it (p, B ∗ λ). For (C ∗ λ), use subsets ofp(C) and the definition of strong
splitting above for(C ∗ λ), call it (p, C ∗ λ)

The same lemmas can be shown with very similar proofs using the homo-
geneity ofC insidep(C). We obtain:

THEOREM II.3.9. D is notp-stable if and only if(p ∗ λ) holds for every
cardinalλ if and only if(p, B ∗ λ) holds for every cardinalλ.

DEFINITION II.3.10. Let

κ(p, D) = min{κ | For all q ∈ SD,p(A), A ⊆ p(C), there isB ⊆ A, |B| < κ such that

q does not split strongly overB }.
If it is undefined, we letκ(p, D) =∞.

Then, by inspecting the proofs, the local version of the existence ofκ(D)
exists, when the diagramD is p-stable.

THEOREM II.3.11. If D is (λ, p)-stable, thenκ(p, D) ≤ λ.

This allows us to obtain a local version of the stability spectrum. The
cardinalκ in the statement below isκ(p, D) and the cardinalλ the first cardinal
such thatD is (λ, p)-stable.

THEOREM II.3.12. Either D is not p-stable orD is p-stable and there
exists cardinalsκ ≤ λ < i(2|T |)+ such that for every cardinalµ, the diagramD is
(µ, p)-stable if and only ifµ ≥ λ andµ<κ = µ.

Finally making the necessary adaptations, the local homogeneity spectrum
follows:

THEOREM II.3.13. There exists a(D, λ, p)-homogeneous model of cardi-
nality λ if and only ifλ ≥ |SD,p(∅)| andλ<λ = λ or D is (λ, p)-stable.
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II.4. Local order, independence, and strict order in the first order case

In this section, we will fix a complete, first order theoryT and obtain
results for the class of models ofT . As usual, we work inside themonster modelC,
a model which is̄κ-saturated, for a cardinalκ̄ larger than any cardinality mentioned
in this chapter. Hence, all sets will be assumed to be insideC and satisfaction is
defined with respect toC. We will write Sp(A) for Sp(A,C) andAv(I, A) for
Av(I, A,C) as is customary. As before, we fix a (nonalgebraic)T -typep. Denote
by dom(p) the set of parameters ofp.

All the results we have obtained so far hold withµ(K) = ℵ0.

We first give local versions of Saharon Shelah’s first order notion of inde-
pendence and strict order property [Sh b].

For a statementt and a formulaφ, we use the following notation:φt = ¬φ
if the statementt is false andφt = φ, if the statementt is true. We will use the
same notation whent ∈ {0, 1}, where0 stands for false and1 stands for truth.

DEFINITION II.4.1.

(1) We say thatφ(x̄, ȳ) has thep-independence propertyif for every n < ω
there exists{āi | i < n} ⊆ p(C) such that

p(x̄) ∪ {φ(x̄, āi)i∈w | i < n} is consistent, for everyw ⊆ n.

We say thatp has theindependence propertyif there exists a formula
φ(x̄, ȳ) with thep-independence property;

(2) A formula φ(x̄, ȳ) is said to have thep-strict order propertyif for every
n < ω there exists{āi | i < n} ⊆ p(C) such that

|= ∃x̄(¬φ(x̄, āi) ∧ φ(x̄, āj)) if and only if i < j < n.

We say thatp has thestrict order propertyif there exists a formulaφ(x̄, ȳ)
with thep-strict order property.

PROPOSITIONII.4.2. If p has the independence property or the strict or-
der property, thenp has the order property.

PROOF. Suppose first thatp has the independence property. Then, someφ(x̄, ȳ)
has thep-independence property. Hence, by the compactness theorem there exist
I = {āi | i < ω} ⊆ p(M) such that for everyn < ω andw ⊆ n there exists
c̄ ∈ p(C) realizing the formula

∧
i<n φ(x̄, āi)i∈w. We show thatφ has thep-order

property. For eachk < n, let c̄k ∈ p(C) realize{φ(x̄, āi) | i < k} ∪ {¬φ(x̄, āi) |
i ≥ k, i < n}. Then, we use{c̄î āi | i < n} and the compactness theorem to show
that the formulaψ(x̄0, x̄1; ȳ0, ȳ1) := φ(x̄0, ȳ1) has thep-order property.

Suppose thatp has the strict order property. Letφ(x̄, ȳ) have thep-strict
order property. Then, the formulaψ(ȳ1, ȳ2) := ∃x̄(¬φ(x̄, ȳ1) ∧ φ(x̄, ȳ2)) has the
p-order property.
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The next two results depend explicitly on the parameters ofp.

THEOREM II.4.3. Letφ(x̄, ȳ) be a formula with thep-order property. Then,
eitherφ(x̄, ȳ) has thep-independence property, or there existχ(x̄), the conjunc-
tion of finitely many formulas ofp, an integern < ω and a sequenceη ∈ n2 such
that the formulaχ(x̄) ∧

∧
l<n φ(x̄, ȳl)η[l] has thep-strict order property (maybe

with parameters fromdom(p)).

PROOF. By Fact .2.3 (4) there exists an indiscernible sequence{āi | i < ω} ⊆
p(C) such that

|= φ[āi, āj ] if and only if i < j < ω.

Further, by a standard compactness argument using Ramsey’s Theorem, we may
assume that{āi | i < ω} is indiscernible overdom(p), the set of parameters ofp.

If φ(x̄, ȳ) does not have thep-independence property, then there exists
n < ω andw ⊆ n such that

p(x̄) ∪ {φ(x̄, āl)l∈w | l < n} is not consistent.(*)

Let w∗ = {n−|w|, n−|w|+1, n−|w|+2, . . . , n−1}. Sinceφ has thep-
order property, we have that|= φ[ān−|w|−1, āl] if and only ifn−|w| ≤ l. Therefore,
by definition ofw∗, the tuplēan−|w|−1 realizesp(x̄)∪ {φ(x̄, āl)l∈w∗ | l < n}, and
so

p(x̄) ∪ {φ(x̄, āl)l∈w∗ | l < n} is consistent.(**)

Now, construct a sequence〈wi | i ≤ i∗〉 of subsets ofn of cardinality |w| such
that w0 = w, wi∗ = w∗, and for eachi < i∗, there existsk ∈ wi such that
wi+1 = wi ∪ {k + 1} \ {k}. Notice that because of (*) and (**) and the definition
of 〈wi | i ≤ i∗〉, we can findi < i∗ such thatp(x̄) ∪ {φ(x̄, āl)l∈wi+1 | l < n} is
consistent, whilep(x̄) ∪ {φ(x̄, āl)l∈wi | l < n} is not.

Let k ∈ wi such thatwi+1 = wi \ {k} ∪ {k + 1} (note thatk + 1 6∈ wi).
We then have,

p(x̄) ∪ {φ(x̄, āl)l∈wi ,¬φ(x̄, āk), φ(x̄, āk+1) | l < n, l 6= k, k + 1} is consistent

(†)

and

p(x̄) ∪ {φ(x̄, āl)l∈wi ,¬φ(x̄, āk+1), φ(x̄, āk) | l < n, l 6= k, k + 1} is inconsistent.

Hence, by the finite character of consistency, we can findχ(x̄), the conjunction of
finitely many formulas ofp, such that

|= ¬∃x̄[χ(x̄) ∧ (
∧

l<n,l 6=k,l 6=k+1

φ(x̄, āl)l∈wi) ∧ ¬φ(x̄, āk+1) ∧ φ(x̄, āk)].(‡)
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Define the formulaψ(x̄, ȳ, z̄), wherez̄ = z̄0, . . . , z̄k−1, z̄k+2, . . . , z̄n−1 by

χ(x̄) ∧ (
∧

l<n,l 6=k,l 6=k+1

φ(x̄, z̄l)l∈wi) ∧ φ(x̄, ȳ).

To conclude the proof we show thatψ(x̄, ȳ, z̄) has thep-strict order property:

Let m < ω be given. For everyj < m we let

c̄j = āk+jˆ̄a0̂ ā1̂ . . .ˆ̄ak−1̂ ām+k+2̂ . . .ˆ̄am+n−1,

where āk+j is to be substituted for thēy-variable, and̄a0̂ . . .ˆ̄am+n−1 is to be
substituted for the variablēz0̂ . . .ˆz̄k−1̂ z̄k+2̂ . . .ˆz̄n−1.

It is enough to check that

|= ∃x̄(¬ψ(x̄, c̄j1) ∧ ψ(x̄, c̄j2)) if and only if j1 < j2.

For convenience, denote byc̄ the following sequencēa0 . . . āk−1āk+2 . . . ān−1. By
indiscernibility of{āi | i < ω}, we have the following equalities

tp(c̄j1 , c̄j2/ dom(p)) = tp(āk c̄, āk+1c̄/ dom(p)), if j1 < j2,(***)

= tp(āk c̄, āk c̄/ dom(p)), if j1 = j2,

= tp(āk+1c̄, āk c̄/ dom(p)), if j1 > j2.

We distinguish three cases.

If j1 < j2. By the first equality of (***), it suffices to check|= ∃x̄(¬ψ(x̄, āk, c̄)∧
ψ(x̄, āk+1, c̄))). This is true sincep(x̄) ∪ {φ(x̄, āl)l∈wi ,¬φ(x̄, āk), φ(x̄, āk+1)) |
l < n, l 6= k, l 6= k + 1} is consistent, by (†).

If j1 = j2, then by the second equality of (***)|= ∃x̄(¬ψ(x̄, c̄j1) ∧
ψ(x̄, c̄j2)) if and only if |= ∃x̄(¬ψ(x̄, āk, c̄) ∧ ψ(x̄, āk, c̄)). Therefore, we have
|= ¬[∃x̄(¬ψ(x̄, c̄j1) ∧ ψ(x̄, c̄j2))].

If j1 > j2, then use the third equality of (***), and (‡) to conclude that
|= ¬[∃x̄(¬ψ(x̄, c̄j1) ∧ ψ(x̄, c̄j2))].

The next corollary is the local version of Shelah’s Trichotomy Theorem
(see Theorem II 4.7 of [Sh b]).

COROLLARY II.4.4. Assume thatp has no parameters. The typep has the
order property if and only ifp has the independence property orp has the strict
order property.

PROOF. Supposep has the order property. Then some formulaφ has thep-
order property. Thus, by Theorem .4.3p has the independence property or the
strict order property (without parameters, sincedom(p) = ∅).

The converse is Proposition .4.2.
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The following is an improvement of Theorem II.2.20 of [Sh b].

LEMMA II.4.5. The following conditions are equivalent

(1) p does not have the independence property;
(2) For every infinite indiscernible sequenceI ⊆ p(C) and for everyφ(x̄, ȳ) ∈

L(T ) there exists an integernφ < ω such that for everȳc ∈ p(M) either

|{ā ∈ I : |= φ[ā, c̄]}| ≤ nφ or |{ā ∈ I : |= ¬φ[ā, c̄]}| ≤ nφ.

PROOF. (1)⇒ (2) Letφ(x̄, ȳ) andI be given. Suppose (2) fails. Then, by the
compactness theorem, we can findc̄ ∈ p(C) and a sequence{āi | i < ω} ⊆ p(C)
indiscernible overdom(p) such that

|{i < ω : |= φ[āi, c̄]}| = ℵ0 and |{i < ω : |= ¬φ[āi, c̄]}| = ℵ0.(*)

We are going to show thatφ(x̄, ȳ) has thep-independence property. Letn < ω and
w ⊆ n. It is enough to show that

p(ȳ) ∪ {φ(āi, ȳ)i∈w | i < n} is consistent.(**)

To see this, construct a strictly increasing sequence of integers〈im | m < n〉 such
thatC |= φ[āim , c̄] if and only if m ∈ w. This is easily done by induction using
(*). By indiscernibility of {āi | i < ω}, (**) holds if and only the set of formulas
p(ȳ)∪{φ(āim , ȳ)m∈w | m < n} is consistent, which is the case, since it is realized
by c̄.

(2)⇒ (1) Suppose thatφ(x̄, ȳ) has thep-independence property andI =
{āi | i < ω} ⊆ p(C) demonstrate this. Then, for eachn < ω, and for eachw ⊆ n
we have

p(x̄) ∪ {φ(x̄, āi)i∈w | i < n} is consistent.

Hence, by the compactness theorem, we can find an indiscernible sequenceJ =
{b̄i | i < ω} ⊆ p(C) and c̄ ∈ p(C) such that both{i < ω : |= φ[c̄, b̄i]} and
{i < ω : |= ¬φ[c̄, b̄i]} are infinite. Hence bothφ(c̄, ȳ) and¬φ(c̄, ȳ) belong to
Av(J, c̄). ThusAv(J, c̄) is not consistent, which contradicts (2).

We can now answer the question of when averages are well-defined and
characterize types without the independence property.

THEOREM II.4.6. The following conditions are equivalent:

(1) p does not have the independence property;
(2) For every infinite indiscernible sequenceI ⊆ p(C) and every subsetA ⊆

p(C) the averageAv(I, A) is a complete type. Furthermore,Av(I, A) ∈
Sp(A).

PROOF. (1)⇒ (2): Let I, A ⊆ p(C) and I be an infinite indiscernible se-
quence. By Lemma .4.5 (1)⇒ (2), we have thatAv(I, A) ∈ S(A). Furthermore,
sinceI ⊆ p(C), we haveAv(I, A) ∈ Sp(A).
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(2)⇒ (1): We prove the contrapositive. Suppose thatp has the indepen-
dence property. Then, by Lemma .4.5 (2)⇒ (1), there exists an infinite indis-
cernible sequenceI ⊆ p(C) and ā ∈ p(C) such that bothφ(x̄, ā) and¬φ(x̄, ā)
belong toAv(I, ā). This contradicts (2).

We now give an easy characterization of stable types in simple theories.
The following fact is due to Shelah and appears in [Sh93].

FACT II.4.7. If T is simple thenT does not have the strict order property.

We make use of the following observation.

PROPOSITIONII.4.8. If the formulaφ(x̄, ȳ, b̄) with parameter̄b ∈ C has
thep-strict order property, thenT has the strict order property.

PROOF. We show thatT has the strict order property, by showing thatφ(x̄, ȳ, z̄)
has the strict order property. But, for eachn < ω, there exists{āi | i < n} ⊆ p(C)
such that

|= ∃x̄(¬φ(x̄, āi, b̄) ∧ φ(x̄, āj , b̄)) if and only if i < j < n.

Thus, for eachn < ω, the set{āî b̄ | i < n} shows thatφ(x̄, ȳ, z̄) has the strict
order property.

COROLLARY II.4.9. LetT be simple. The following conditions are equiv-
alent:

(1) p is stable;
(2) For every infinite indiscernible sequenceI ⊆ p(C) and for everyA ⊆ p(C),

we haveAv(I, A) ∈ Sp(A).

PROOF. (1)⇒ (2): Letp be stable, thenp does not have the order property by
Theorem .2.4. Hencep does not have the independence property by Proposition
.4.2. Hence, (2) follows from Theorem .4.6.

(2) ⇒ (1): Supposep is not stable. Thenp has the order property by
Theorem .2.4. Thus,p has either the independence property or the strict order
property (maybe with parameters) by Theorem .4.3. SinceT is simple, by Fact .4.7,
we have thatT does not have the strict order property. But, ifp has the strict order
property with parameters, thenT has the strict order property by Proposition .4.8.
Therefore,p has the independence property, and so (2) fails by Lemma .4.6.



CHAPTER III

Ranks and pregeometries in finite diagrams

The problem of categoricity has been a driving force in model theory since
its early development in the late 1950’s. For the countable first order case, M. Mor-
ley in 1965 [Mo] introduced a rank which capturesℵ0-stability, and used it to con-
struct prime models and give a proof of Łoš conjecture. In 1971, J. Baldwin and
A. Lachlan [BaLa] gave an alternative proof using the fact that algebraic closure in-
duces a pregeometry on strongly minimal sets. Their proof generalizes ideas from
Steinitz’s famous 1910 theorem of categoricity for algebraically closed fields. Łoš
conjecture for uncountable languages was solved in 1970 by S. Shelah [Sh] intro-
ducing a rank which corresponds to the superstable case. Later, Shelah discovered
a dependence relation called forking and more general pregeometries, and since
then, these ideas have been extended to more and more general first order contexts,
each of them corresponding to a specific rank:ℵ0-stable, superstable, stable, and
simple.

The problem of categoricity for nonelementary classes is quite consid-
erably more involved. In 1971, H. J. Keisler [Ke] proved a categoricity theo-
rem for Scott sentencesψ ∈ Lω1ω, which in a sense generalizes Morley’s The-
orem. To achieve this, Keisler made the additional assumption thatψ admits
ℵ1-homogeneous models. Later, Shelah produced an example of a categorical
ψ ∈ Lω1ω that does not have anyℵ1-homogeneous model, using an example of
L. Marcus [Mr ]. So this is not the most general case. Since then, many of She-
lah’s hardest papers in model theory have been dedicated the categoricity problem
and to the development of general classification theory for nonelementary classes.
Among the landmarks, one should mention [Sh48] about sentences inLω1ω(Q)
which answers a question of Harvey Friedman’s list [Fr ]. In [Sh87a] and [Sh87b]
a version of Morley’s Theorem is proved for a special kind of formulasψ ∈ Lω1ω

which are called excellent. It is noteworthy that to deal with these nonelementary
classes, these papers introduced several crucial ideas, among them stable amalga-
mation,2-goodness and others, which are now essential parts of the proof of the
“Main Gap” for first order, countable theories. Later, R. Grossberg and B. Hart
continued the classification of excellent classes and gave a proof of the Main Gap
for those classes [GrHa ]. H. Kierstead also continued the study of sentences in
Lω1ω(Q) [Ki ]. He introduced a generalization of strongly minimal formulas by
replacing “nonalgebraic” by “there exists uncountably many” and obtained results
about countable models of these classes using [Sh48]. In [Sh300], Shelah began
the classification theory for universal classes (see also ICM 1986/videotape) and is
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currently working on a book entirely dedicated to them. He also started the clas-
sification of classes in a context somewhat more general thanPC(T1, T, Γ), see
[Sh88], [Sh576] and [Sh 600]. In a related work, Grossberg started studying the
classification of the class of models ofψ, for ψ ∈ Lλ+ω, under the assumption
that there exists a “Universal Model” forψ and studied relatively saturated sub-
structures (see [Gr1] and [Gr2]). This seems to be a natural hypothesis, as we
discussed in Chapter I.

There are several striking differences between the problem of categoricity
for first order and the nonelementary case. First, it appears that classification for
nonelementary classes is sensitive to the axioms of set theory. Second, the meth-
ods used are heavily combinatorial: there is no “forking” (though splitting and
strong splitting are sometimes well-behaved), and the presence of pregeometries
to understand systematically models of a given class is scarce. (A nice example of
pregeometries is hidden in the last section of [Sh48] and only [Ki ] has used them
to study countable models.) However, stability was not developed originally for
first order. As we saw in Chapter I, in 1970, Shelah published [Sh3], where he
introduced some of the most fundamental ideas of classification theory (stability,
splitting of types, existence of indiscernibles, several notions of prime models and
so on). Let us describe Shelah’s original definitions in this context (as opposed
to the ones we presented in Chapter I). He considered classes of models which
omit all types inD(T ) \D, for a fixeddiagramD ⊆ D(T ). This class is usually
denotedEC(T, Γ), whereΓ stands forD(T ) \ D. He made assumptions of two
kinds (explicitly in his definition of stability): (1) restriction on the cardinality of
the space of types realizable by the models, and (2) existence of models realizing
many types. In fact, the context studied by Keisler in his categoricity result for
Lω1ω, turns out to be theℵ0-stable case in the above sense.

In retrospect, it seems that what prevented the emergence of a smooth the-
ory forℵ0-stable diagrams is the absence of a rank like Morley’s rank. Considering
the success of the use of pregeometries to understand models in the first orderℵ0-
stable case, if one hopes to lift these ideas to more general contexts, it appears
thatℵ0-stable diagrams constitute a natural test case. This is the main goal of this
chapter. We try to develop what Shelah calls the structure part of the theory for the
classEC(T, Γ), under the assumption that it isℵ0-stable (in the sense of [Sh3]). In
fact, as in [Sh54], we assume thatEC(T, Γ) contains a large homogeneous model
(which follows from Shelah’s original definition of stability forEC(T, Γ), see The-
orem 3.4. in [Sh3]), so that the stability assumptions only deal with the cardinality
of the spaces of types. This hypothesis allows us to do all the work in ZFC, in
contrast to [Sh48], [Sh87a], [Sh87b] or [Ki ] for example.

The chapter is organized as follows.

In Section 1, we introduce a rank for this framework which capturesℵ0-
stability (it does not generalize Morley rank, but generalizes what Shelah calls
R[p, L, 2]). This rank differs from previously studied ranks in two ways: (1) it



III. RANKS AND PREGEOMETRIES IN FINITE DIAGRAMS 65

allows us to deal with general diagrams (as opposed to the atomic case or the first
order case) and (2) the definition is relativized to a given set (which allows us to
construct prime models). By analogy with the first order case, we callD totally
transcendental when the rank is bounded. For the rest of the chapter, we only
consider totally transcendentalD, and we make no assumption on the cardinality
of T . We study basic properties of this rank and introduce the notion of stationarity.

In Section 2, we examine the natural dependence relation that it induces
on the subsets of the models. We are then able to obtain many of the classical
properties of forking, which we summarize in Theorem .2.3. We also obtain sta-
tionary types with respect to this dependence relation, and they turn out to behave
well: they satisfy in addition the symmetry property, and can be represented by
averages.

In Section 3, we focus on pregeometries. Regular types are defined in the
usual manner (but with this dependence relation instead of forking, of course), and
the dependence relation on the set of realizations of a regular type yields a prege-
ometry. We can show that stationary types of minimal rank are regular, and this
is used to show that they exist very often. We also consider a more concrete kind
of regular types, which are called minimal. They could be defined independently
by replacing “nonalgebraic” by “realized outside any model which contains the set
of parameters” in the usual definition of strongly minimal formulas. (This can be
done for any suitable class of models, as in the last section of [Sh48].) We could
show directly that the natural closure operator induces a pregeometry on the set of
realizations in any(D,ℵ0)-homogeneous model. We choose not to do this, and
instead we consider minimal types only when the natural dependence relation co-
incides with the one given by the rank. This allows us to use the results we have
already obtained and have a picture which is conceptually similar to the first or-
der totally transcendental case (where strongly minimal types are stationary and
regular, and the unique nonforking extension is also the unique nonalgebraic one).
Another reason is that the proofs are identical to those which use the rank, and this
presentation permits us to skip them.

In Section 4, we use the rank to prove the existence of prime models for
the classK of (D,ℵ0)-homogeneous models of a totally transcendental diagram
(this improves parts of Theorems 5.3 and 5.10 of [Sh3]).

In Section 5, we first prove a version of Chang’s Conjecture for the class
K (Theorem .5.2). We then introduce unidimensionality for diagrams. We are able
to adapt techniques of Baldwin-Lachlan [BaLa] to this context for the categoricity
proof. In fact, we obtain a picture strikingly similar to the first order totally tran-
scendental case. (1) IfD is totally transcendental, thenK is categorical in some
λ > |T | + |D| if and only if K is categorical in everyλ > |T | + |D| if and only
if every model ofK is prime and minimal over the set of realizations of a minimal
type if and only if every model ofK of cardinality> |T |+ |D| is D-homogeneous.
(2) If D is totally transcendental and if there is a model ofK of cardinality above
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|T | + |D| which is notD-homogeneous, then for any|T | + |D| ≤ µ ≤ λ, there
exists maximally(D, µ)-homogeneous models inK of cardinalityλ (see the defi-
nition below). IfT is countable this implies, in particular, that for each ordinalα
the classK has at least|α| models of cardinalityℵα. (3) When|T | < 2ℵ0 , the cat-
egoricity assumption onK implies thatD is totally transcendental, ifD is the set
of isolated types ofT . As a byproduct, this gives an alternative proof to Keisler’s
theorem which works so long as|T | < 2ℵ0 (whereas Keisler’s softLω1ω methods
do not generalize to uncountable languages).

Using regular types and prime models, we will give in chapter IV a de-
composition theorem for the class of(D,ℵ0)-homogeneous models of a totally
transcendental diagramD, which follows from a more general abstract decompo-
sition theorem.

III.1. Rank and stationary types

The framework of this chapter is the class of models of a finite diagram.
The notation is as in the first chapter. We first introduce a rank for the class ofD-
models which generalizes the rank from [Sh87a]. We then prove basic properties
of it which show that it is well-behaved and is natural for this class.

DEFINITION III.1.1. For any set of formulasp(x̄, b̄) with parameters in̄b,
andA a subset ofC containinḡb, we define therank RA[p]. The rankRA[p] will
be an ordinal,−1, or∞ and we have the usual ordering−1 < α < ∞ for any
ordinalα. We define the relationRA[p] ≥ α by induction onα.

(1) RA[p] ≥ 0 if p(x̄, b̄) is realized inC;
(2) RA[p] ≥ δ, whenδ is a limit ordinal, ifRA[p] ≥ α for everyα < δ;
(3) RA[p] ≥ α + 1 if the following two conditions hold:

(a) There is̄a ∈ A and a formulaφ(x̄, ȳ) such that

RA[p ∪ φ(x̄, ā)] ≥ α and RA[p ∪ ¬φ(x̄, ā)] ≥ α;

(b) For everȳa ∈ A there isq(x̄, ȳ) ∈ D such that

RA[p ∪ q(x̄, ā)] ≥ α.

We write:

RA[p] = −1 if p is not realized inC;
RA[p] = α if RA[p] ≥ α but it is not the case thatRA[p] ≥ α + 1;
RA[p] =∞ if RA[p] ≥ α for every ordinalα.

For any set of formulasp(x̄) overA ⊆ C, we let

RA[p] = min{RA[q] | q ⊆ p ¹ B, B ⊆ dom(p), B finite }.

We writeR[p] for RC[p].
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We need several basic properties of this rank. Some of them are purely
technical and are stated here for future reference. Most of them are analogs of
the usual properties for ranks in the first order case, with the exception of (2) and
(3). The proofs vary from the first order context because of the second clause at
successor stage, but they are all routine inductions.

LEMMA III.1.2. LetA be a subset ofC.

(1) RA[{ x̄ = c̄ }] = 0.
(2) If p is over a finite set orp is complete, thenRA[p] ≥ 0 if and only if there

is B ⊆ A andq ∈ SD(B) such thatp ⊆ q.
(3) Let A be (D,ℵ0)-homogeneous and let̄a, b̄ ∈ A. If tp(ā/∅) = tp(b̄/∅)

thenRA[p(x̄, b̄)] = RA[p(x̄, ā)].
(4) (Monotonicity)If p ` q andp is over a finite set, thenRA[p] ≤ RA[q].
(5) If p is overB ⊆ A andf ∈ Aut(C) thenRA[p] = Rf(A)[f(p)].
(6) (Monotonicity)If p ⊆ q thenRA[p] ≥ RA[q].
(7) (Finite Character)There is a finiteB ⊆ dom(p) such that

RA[p] = RA[p ¹ B].

(8) If RA[p] = α andβ < α, then there isq overA such thatRA[q] = β.
(9) If RA[p] ≥ (|A|+ 2|T |)+, thenRA[p] =∞.

Moreover, whenA is (D,ℵ0)-homogeneous, the bound is(2|T |)+.

PROOF. (1) Trivial

(2) Supposep ⊆ q ∈ SD(B), andB ⊆ A. Thenq is realized inC, sinceC

is (D, χ)-homogeneous, andq ∈ SD(B). Hencep is realized inC andRA[p] ≥ 0.

For the converse, ifp is over a finite set, andRA[p] ≥ 0, then there is̄c ∈ C

realizingp. Thustp(c̄/ dom(p)) extendsp andtp(c̄/ dom(p)) ∈ SD(dom(p)).

If p is complete, then there isB ⊆ A such thatp ∈ S(B). Now let c̄
(not necessarily inC) realizep. For everȳb ∈ B, RA[p ¹ b̄] ≥ 0, and so there is
c̄′ ∈ C realizingp ¹ b̄. But tp(c̄/b̄) = p ¹ b̄ = tp(c̄′/b̄) sincep is complete. Thus
tp(c̄b̄/∅) ∈ D, sop ∈ SD(B).

(3) By symmetry, it is enough to show that for every ordinalα,

RA[p(x̄, b̄)] ≥ α implies RA[p(x̄, ā)] ≥ α.

We prove that this is true for all types by induction onα.

• Whenα = 0, we know that there is̄c ∈ C realizingp(x̄, ā). Then, since
tp(ā/∅) = tp(b̄/∅) andA is (D,ℵ0)-homogeneous, there is̄d ∈ A such
that tp(c̄ā/∅) = tp(d̄b̄/∅). But thenp(x̄, b̄) ⊆ tp(d̄/b̄). Hencep(x̄, b̄) is
realized inC, soRA[p(x̄, b̄)] ≥ 0.
• Whenα is a limit ordinal, this is true by induction.
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• SupposeRA[p(x̄, ā)] ≥ α + 1. First, there is̄c ∈ A andφ(x̄, ȳ) ∈ L(T )
such that both

RA[p(x̄, ā) ∪ φ(x̄, c̄)] ≥ α and RA[p(x̄, ā) ∪ ¬φ(x̄, c̄)] ≥ α.

SinceA is (D,ℵ0)-homogeneous, there is̄d ∈ A such thattp(c̄ā/∅) =
tp(d̄b̄/∅). Therefore by induction hypothesis, both

RA[p(x̄, b̄) ∪ φ(x̄, d̄)] ≥ α and RA[p(x̄, b̄) ∪ ¬φ(x̄, d̄)] ≥ α.

Second, for everȳd ∈ A, there isc̄ ∈ A such thattp(c̄ā/∅) = tp(d̄b̄/∅).
SinceRA[p(x̄, ā)] ≥ α + 1, there isq(x̄, ȳ) ∈ D, such thatRA[p(x̄, ā) ∪
q(x̄, c̄)] ≥ α. Therefore, by induction hypothesis,RA[p(x̄, b̄) ∪ q(x̄, d̄)] ≥
α. This shows thatRA[p(x̄, b̄)] ≥ α + 1.

(4) Supposep ` q. By definition of the rank, we may chooseq0 ⊆ q over
a finite set, such thatRA[q0] = RA[q]. Hence, sincep ` q0, it is enough to show
the lemma whenq is over a finite set also. Writep = p(x̄, b̄) ` q = q(x̄, ā). We
show by induction onα that for every such pair of types over finite sets, we have

RA[p(x̄, b̄)] ≥ α implies RA[q(x̄, b̄)] ≥ α.

• Forα = 0, this is true by definition.
• Forα a limit ordinal, this is true by induction.
• SupposeRA[p(x̄, b̄)] ≥ α + 1. On the one hand, there is̄c ∈ A and

φ(x̄, ȳ) ∈ L(T ) such that both

RA[p(x̄, b̄) ∪ φ(x̄, c̄)] ≥ α and RA[p(x̄, b̄) ∪ ¬φ(x̄, c̄)] ≥ α.

But

p(x̄, b̄) ∪ φ(x̄, c̄) ` q(x̄, ā) ∪ φ(x̄, c̄)

and similarly

p(x̄, b̄) ∪ ¬φ(x̄, c̄) ` q(x̄, ā) ∪ ¬φ(x̄, c̄),

so by induction hypothesis, both

RA[q(x̄, ā) ∪ φ(x̄, c̄)] ≥ α and RA[q(x̄, ā) ∪ ¬φ(x̄, c̄)] ≥ α.

On the other hand, given anȳc ∈ A, there isr(x̄, ȳ) ∈ D, such that
RA[p(x̄, b̄) ∪ r(x̄, c̄)] ≥ α. But

p(x̄, b̄) ∪ r(x̄, c̄) ` q(x̄, ā) ∪ r(x̄, c̄),

so by induction hypothesis,RA[q(x̄, ā)∪r(x̄, c̄)] ≥ α. HenceRA[q(x̄, ā)] ≥
α + 1.

(5) First, chooseq(x̄, ā) ⊆ p, such thatRA[q] = RA[p] (this is possible
by definition of the rank). Similarly, sincef(q) ⊆ f(p), we could have chosenq
so that in additionRf(A)[f(q)] = Rf(A)[f(p)]. Now, by symmetry, it is enough to
show that ifRA[q] ≥ α thenRf(A)[f(q)] ≥ α.

• Forα = 0 or α a limit ordinal, it is obvious by definition.
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• Supposeα = β + 1. First, there existsφ(x̄, b̄) such that

RA[q ∪ φ(x̄, b̄)] ≥ β and RA[q ∪ ¬φ(x̄, b̄)] ≥ β.

Thus, by induction hypothesis, we have

Rf(A)[f(q) ∪ φ(x̄, ¯f(b))] ≥ β and Rf(A)[f(q) ∪ ¬φ(x̄, ¯f(b))] ≥ β.

Second, notice that for everȳb ∈ f(A), there is̄c ∈ A, such thatf(c̄) = b̄.
SinceRA[q] ≥ β +1, there existsr(x̄, ȳ) ∈ D, such thatRA[q∪r(x̄, c̄)] ≥
β. Hence, by induction hypothesis,Rf(A)[f(q)∪ r(x̄, b̄)] ≥ β. This shows
thatRf(A)[f(q)] ≥ β + 1.

(6) This is immediate by definition of the rank.

(7) By definition of the rank, letB ∈ dom(p) andq ⊆ p ¹ B be such that
RA[q] = RA[p]. Now, clearlyq ⊆ p ¹ B ⊆ p, soRA[q] ≥ RA[p ¹ B] ≥ RA[p] by
Lemma 6. SoRA[p ¹ B] = R[p].

(8) Suppose there isα0 such thatRA[p] 6= α0 for everyp. We prove by
induction onα ≥ α0, that for no typep do we haveRA[p] = α.

• Forα = α0, this is the definition ofα0.
• Now suppose that there isp such thatRA[p] = α+1. By 7, we may assume

thatp is over a finite set. Then there is̄c ∈ A andφ(x̄, ȳ) ∈ L(T ) such
that both

RA[p ∪ φ(x̄, c̄)] ≥ α and RA[p ∪ ¬φ(x̄, c̄)] ≥ α.

But by induction hypothesis, neither can be equal toα, so we must have
both

RA[p ∪ φ(x̄, c̄)] ≥ α + 1 and RA[p ∪ ¬φ(x̄, c̄)] ≥ α + 1.

Similarly, given anyc̄ ∈ A, there isq(x̄, ȳ) ∈ D, such thatRA[p ∪
q(x̄, c̄)] ≥ α. But, by induction hypothesis, we cannot haveRA[p ∪
q(x̄, c̄)] = α, soRA[p∪q(x̄, c̄)] ≥ α+1. But this shows thatRA[p] ≥ α+2,
a contradiction.
• Supposeα > α0 is a limit ordinal. Thenα ≥ α0 + 1, so as in the previous

case, there is̄c ∈ A andφ(x̄, ȳ) ∈ L(T ) such that both

RA[p ∪ φ(x̄, c̄)] ≥ α0 and RA[p ∪ ¬φ(x̄, c̄)] ≥ α0.

But by induction hypothesis, for noβ such thatα > β ≥ α0 can we have
RA[p ∪ φ(x̄, c̄)] = β or RA[p ∪ ¬φ(x̄, c̄)] = β, so necessarily sinceα is a
limit ordinal, we have

RA[p ∪ φ(x̄, c̄)] ≥ α and RA[p ∪ ¬φ(x̄, c̄)] ≥ α.

Similarly, for anyc̄ ∈ A, there isq(x̄, ȳ) ∈ D, such thatRA[p∪ q(x̄, c̄)] ≥
α0 and hence by induction hypothesisRA[p ∪ q(x̄, c̄)] > β for anyα0 ≤
β < α so sinceα is a limit ordinal, we haveRA[p ∪ q(x̄, c̄)] ≥ α. But this
shows thatRA[p] ≥ α + 1, a contradiction.
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(9) By the previous lemma, it is enough to findα0 < (|A| + 2|T |)+, (re-
spectively< (2|T |)+ if A is a(D,ℵ0)-homogeneous model) such that

RA[p] 6= α0 for every type overA.(*)

We do this by counting the number of possible values for the rank. By 7 it is enough
to count the values achieved by types over finite subsets ofA. But there are at most
|A|<ℵ0 ≤ |A| + ℵ0 finite subsets ofA, and given any finite subset, there are only
2|T | distinct types over it. Hence there are at most|A|+ 2|T | many different ranks,
and so by the pigeonhole principle (*) holds for someα0 < (|A|+ 2|T |)+.

WhenA is a (D,ℵ0)-homogeneous model, the bound can be further re-
duced by a use of 3, since only the type of each of those finite subset ofA is
relevant.

The next lemma shows that the rank is especially well-behaved when the
parameterA is the universe of a(D,ℵ0)-homogeneous model. This is used in
particular to study(D,ℵ0)-homogeneous models in the last two sections. Recall
thatR[p] is an abbreviation forRC[p].

LEMMA III.1.3. (1) If p is over a subset of a(D,ℵ0)-homogeneous
modelM , thenRM [p] = R[p].

(2) If p is overM1∩M2, withMl (D,ℵ0)-homogeneous, forl = 1, 2, we have
RM1 [p] = RM2 [p].

(3) If q(x̄, ā1) andq(x̄, ā2) are sets of formulas, witha1 ∈ M1 and ā2 ∈ M2

satisfyingtp(ā1/∅) = tp(ā2/∅), thenRM1 [q(x̄, ā1)] = RM2 [q(x̄, ā2)].

PROOF. (1) First, by Finite Character, we may assume thatp is over a finite
set. Now we show by induction onα that

RM [p] ≥ α implies R[p] ≥ α.

Whenα = 0 or α is a limit, it is clear. SupposeRM [p] ≥ α + 1. Then there is
b̄ ∈M andφ(x̄, ȳ) such that both

RM [p ∪ φ(x̄, b̄)] ≥ α and RM [p ∪ ¬φ(x̄, b̄)] ≥ α.

By induction hypothesis, we have

R[p ∪ φ(x̄, b̄)] ≥ α and R[p ∪ ¬φ(x̄, b̄)] ≥ α.

Further, if b̄ ∈ C, choosēb′ ∈ M , such thattp(b̄/ā) = tp(b̄′/ā). SinceRM [p] ≥
α + 1, there isq(x̄, ȳ) ∈ D such thatRM [p ∪ q(x̄, b̄′)] ≥ α. Thus, sinceC is
(D,ℵ0)-homogeneous, by induction hypothesis we haveR[p ∪ q(x̄, b̄′)] ≥ α, and
so by Lemma .1.2 3R[p ∪ q(x̄, b̄)] ≥ α. HenceR[p] ≥ α + 1.

For the converse, similarly by induction onα we show that

R[p] ≥ α implies RM [p] ≥ α.
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Again, for α = 0 or α a limit, it is easy. SupposeR[p] ≥ α + 1. Then there is
b̄ ∈ C andφ(x̄, ȳ) such that both

R[p ∪ φ(x̄, b̄)] ≥ α and R[p ∪ ¬φ(x̄, b̄)] ≥ α.

SinceM is (D,ℵ0)-homogeneous, there existsb̄′ ∈ M , such thattp(b̄/ā) =
tp(b̄′/ā). By Lemma .1.2 3, we have

R[p ∪ φ(x̄, b̄′)] ≥ α and R[p ∪ ¬φ(x̄, b̄′)] ≥ α.

Hence, by induction hypothesis, we have (sinceb̄′ ∈M )

RM [p ∪ φ(x̄, b̄′)] ≥ α and RM [p ∪ ¬φ(x̄, b̄′)] ≥ α.

Also, for anȳb ∈M , sincēb ∈ C there isq(x̄, ȳ) ∈ D such thatR[p∪q(x̄, b̄)] ≥ α.
By induction hypothesis, we haveRM [p ∪ q(x̄, b̄)] ≥ α, which finishes to show
thatRM [p] ≥ α + 1 and completes the proof.

(2) By (1) applied twice,RM1 [p] = R[p] = RM2 [p].

(3) SinceRM1 [q(x̄, ā1)] = R[q(x̄, ā1)] = R[q(x̄, ā2)] = RM2 [q(x̄, ā2)].

We now show that the rank is bounded whenD is ℵ0-stable. WhenD =
D(T ), D has bounded rank if and only if the theoryT is totally transcendental.
Therefore, the rank may be bounded for diagrams that arenotℵ0-stable. See Theo-
rem .1.13 for a precise converse.

THEOREM III.1.4. If D is stable inλ for someℵ0 ≤ λ < 2ℵ0 then
RA[p] <∞, for every typep and every subsetA of C.

PROOF. We prove the contrapositive. Suppose there is a subsetA of C and a
typep overA such thatRA[p] = ∞. We construct setsAη ⊆ A and typespη, for
η ∈ <ω2, such that:

(1) pη ∈ SD(Aη);
(2) pη ⊆ pν whenη < ν;
(3) Aη is finite;
(4) pη 0̂ andpη 1̂ are contradictory;
(5) RA[pη] =∞;

This is possible: Letµ = (2|T |)+ if A is a (D,ℵ0)-homogeneous model,
andµ = (|A|+ 2|T |)+ otherwise. The construction is by induction onn = `(η).

• For n = 0, by Finite Character we choose firstb̄ ∈ A, such thatRA[p] =
RA[p ¹ b̄] = ∞. SinceRA[p ¹ b̄] = ∞, in particularRA[p ¹ b̄] ≥ µ + 1
so there existsq(x̄, ȳ) ∈ D, such thatRA[(p ¹ b̄) ∪ q(x̄, b̄)] ≥ µ. But then
p ¹ b̄ ⊆ q(x̄, b̄), q(x̄, b̄) ∈ SD(b̄) andRA[q(x̄, b̄)] ≥ µ, soRA[q(x̄, b̄)] =
∞ by Lemma .1.2 9. Therefore, we letA<> = b̄ andp<> = q(x̄, b̄) and
the conditions are satisfied.
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• Assumen ≥ 0 and that we have constructedpη ∈ SD(Aη) with `(η) = n.
SinceRA[pη] = ∞, in particularRA[pη] ≥ (µ + 1) + 1. Hence, there is
āη ∈ A andφ(x̄, ȳ) such that

RA[pη ∪ φ(x̄, āη)] ≥ µ + 1 and RA[pη ∪ ¬φ(x̄, āη)] ≥ µ + 1.(*)

Let Aη 0̂ = Aη 1̂ = Aη ∪ āη ⊆ A. Both Aη 0̂ andAη 1̂ are finite, so (*)
and the definition of the rank imply that there areql(x̄, ȳ) ∈ D for l = 0, 1,
such that

RA[pη ∪ φ(x̄, āη) ∪ q0(x̄, Aη 0̂)] ≥ µ

and

RA[pη ∪ ¬φ(x̄, āη) ∪ q1(x̄, Aη 1̂)] ≥ µ.

Definepη 0̂ := pη ∪ φ(x̄, āη) ∪ q0(x̄, Aη 0̂) andpη 1̂ := pη ∪ ¬φ(x̄, āη) ∪
q1(x̄, Aη 1̂). Thenpη l̂ ∈ SD(Aη l̂) sinceql(x̄, Aη l̂) ∈ SD(Aη l̂) andAη l̂

is finite for l = 0, 1. Moreover,pη 0̂ andpη 1̂ are contradictory by construc-
tion. Finally RA[pη l̂] = ∞, sinceRA[pη l̂] ≥ µ. Hence all the require-
ments are met.

This is enough: For eachη ∈ ω2, defineAη :=
⋃

n∈ω Aη¹n andpη :=
⋃

n∈ω pη¹n.
We claim thatpη ∈ SD(Aη). Certainlypη ∈ S(Aη), so we only need to show that
if c̄ |= pη, thenAη ∪ c̄ is aD-set (̄c is not assumed to be inC). It is enough to show
that tp(c̄d̄/∅) ∈ D for every finited̄ ∈ Aη. But, if d̄ ∈ Aη, then there isn ∈ ω
such thatd̄ ∈ Aη¹n. Sincec̄ |= pη¹n andpη¹n ∈ SD(Aη¹n), then c̄ ∪ Aη¹n is a
D-set, and thereforetp(c̄d̄/∅) ∈ D, which is what we wanted. Now that we have
established thatpη ∈ SD(Aη), sinceC is (D, χ)-homogeneous, there is̄cη ∈ C

such that̄cη |= pη. Now let C =
⋃

η∈<ω2 Aη. Then|C| = ℵ0 and if η 6= ν ∈
ω2, then tp(c̄η/C) 6= tp(c̄ν/C), sincepη andpν are contradictory. Therefore
|SD(C)| ≥ 2ℵ0 , which shows thatD is not stable inλ for anyℵ0 ≤ λ < 2ℵ0 .

REMARK III.1.5. Recall that in [Sh3], D is stable inλ if and only if there
is a(D, λ+)-homogeneous model and|SD(A)| ≤ λ for all D setsA of cardinality
at mostλ (this is Definition 2.1 of [Sh3]). The proof of the previous theorem
shows that ifD is stable inλ for someℵ0 ≤ λ < 2ℵ0 in the sense of [Sh3] then
RA[p] <∞ for all D-setA andD-typep. In other words, we do not really needC

for this proof.

By analogy with the first order case (see [Sh b] definition 3.1), we intro-
duce the following definition. It is not difficult to see that ifD = D(T ), D is
totally transcendental if and only ifT is a totally transcendental first order theory.
In general however, the underlying theory may be unstable (even if the diagram is
categorical).

DEFINITION III.1.6. We say thatD is totally transcendentalif RA[p] <
∞ for every subsetA of C and every typep overA.
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For the rest of the chapter, we will make the following hypothesis. We will
occasionally repeat thatD is totally transcendental for emphasis.

HYPOTHESISIII.1.7. D is totally transcendental.

In what follows, we shall show that whenD is totally transcendental, the
rank affords a well-behaved dependence relation on the subsets ofC. We first focus
on a special kind of types.

DEFINITION III.1.8. A typep is calledstationaryif for every B contain-
ing dom(p) there is a unique typepB ∈ SD(B), such thatpB extendsp and
R[p] = R[pB].

Note that since our rank is not an extension of Morley’s rank, one does
not necessarily get the usual stationary types when the class is first order. The
argument in the next lemma is a generalization of Theorem 1.4.(1)(b) in [Sh87a].
Recall thatp ∈ SD(A) splits overB ⊆ A if there existsφ(x̄, ȳ) andā, c̄ ∈ A with
tp(ā/B) = tp(c̄/B), such thatφ(x̄, ā) ∈ p and¬φ(x̄, c̄) ∈ p.

LEMMA III.1.9. Let M be a(D,ℵ0)-homogeneous model and letd̄ ∈ C

realizingp(x̄, b̄) such that

R[tp(d̄/M)] = R[p(x̄, b̄)] = α.(*)

Then, for anyA ⊆ C containinḡb there is a uniquepA ∈ SD(A) extendingp(x̄, b̄),
such that

R[pA] = R[p(x̄, b̄)] = α.

Moreover,pA does not split over̄b.

PROOF. We first prove uniqueness. Suppose two different typespA andqA ∈
SD(A) extendp(x̄, b̄) and

R[pA] = R[p(x̄, b̄)] = R[qA] = α.

Then there isφ(x̄, c̄) ∈ pA such that¬φ(x̄, c̄) ∈ qA. Thus, by Monotonicity,

R[p(x̄, b̄) ∪ φ(x̄, c̄)] ≥ RA[p] = α and R[p(x̄, b̄) ∪ ¬φ(x̄, c̄)] ≥ RA[p] = α.

Further, for everȳc ∈ C, there is̄c′ ∈ M such thattp(c̄/b̄) = tp(c̄′/b̄) sinceM is
(D,ℵ0)-homogeneous. Now writeq(x̄, c̄′) = tp(d̄/c̄′), and notice that

R[p(x̄, b̄) ∪ q(x̄, c̄′)] ≥ R[tp(d̄/b̄ ∪ c̄′)] ≥ R[tp(d̄/M)] = α.

But q(x̄, ȳ) ∈ D by definition and so by Lemma .1.2 (2)R[p(x̄, b̄) ∪ q(x̄, c̄)] ≥ α
since tp(c̄b̄/∅) = tp(c̄′b̄/∅). But this shows thatR[p(x̄, b̄)] ≥ α + 1, which
contradicts (*).

We now argue thatpA does not split over̄b. Suppose it does, and choose a
formulaφ(x̄, ȳ) ∈ L(T ) and sequences̄c0, c̄1 ∈ A with tp(c̄0/b̄) = tp(c̄1/b̄) such
thatφ(x̄, c̄0) and¬φ(x̄, c̄1) both belong topA. Then by Monotonicity,

R[p(x̄, b̄) ∪ φ(x̄, c̄0)] ≥ RA[p] = α and R[p(x̄, b̄) ∪ ¬φ(x̄, c̄1)] ≥ RA[p] = α.
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But tp(c̄0/b̄) = tp(c̄1/b̄) so by Lemma .1.2(3) we have

R[p(x̄, b̄) ∪ φ(x̄, c̄1)] ≥ α.

An argument similar to the uniqueness argument in the first paragraph finishes to
show thatR[p(x̄, b̄)] ≥ α + 1, which is again a contradiction to (*).

For the existence, letpA be the following set of formulas with parameters
in A:

{φ(x̄, c̄) | There exists̄c′ ∈M such thattp(c̄/b̄) = tp(c̄′/b̄) and |= φ[d̄, c̄′] }.
By the nonsplitting part, using the fact thatM is (D,ℵ0)-homogeneous, we have
that tp(d̄/M) does not split over̄b. HencepA ∈ SD(A) and does not split over
b̄. We show that this implies thatR[pA] = R[tp(d̄/M)] = α. Otherwise, since
pA extendsp(x̄, b̄), by Monotonicity we must haveR[pA] ≤ α, and therefore
R[pA] < α. Let us choosēb′ ∈ A such that̄b ⊆ b̄′ andR[pA] = R[pA ¹ b̄′]. For
convenience, we writeq(x̄, b̄′) := pA ¹ b̄′, and soR[q(x̄, b̄′)] < α. Now sinceM
is (D,ℵ0)-homogeneous, we can chooseb̄′′ ∈ M such thattp(b̄′′/b̄) = tp(b̄′/b̄).
Hence

R[q(x̄, b̄′)] = R[q(x̄, b̄′)] < α.(**)

But by definition ofpA, we must haveq(x̄, b̄′) ⊆ tp(d̄/M), so by Monotonicity
we haveR[q(x̄, b̄′)] ≥ R[tp(d̄/M)] = α, which contradicts (**).

COROLLARY III.1.10. The following conditions are equivalent:

(1) p ∈ SD(A) is stationary.
(2) There is a(D,ℵ0)-homogeneous modelM containingA and d̄ ∈ C real-

izingp such thatR[tp(d̄/M)] = R[p].

DEFINITION III.1.11. The typep ∈ SD(A) is based onB if p is stationary
andR[p] = R[p ¹ B].

REMARK III.1.12.

(1) If p is stationary, there is a finiteB ⊆ dom(p) such thatp is based onB.
(2) If p is based onB, thenp ¹ B is also stationary andp is the only extension

of p ¹ B such thatR[p] = R[p ¹ B].
(3) If p is stationary anddom(p) ⊆ A ⊆ B, thenpA = pB ¹ A.
(4) Supposetp(ā/∅) = tp(ā′/∅). Thenp(x̄, ā′) is stationary if and only if

p(x̄, ā) is stationary. (Use an automorphism ofC sendinḡa to ā′.)

Stationary types allow us to prove a converse of Theorem .1.4.

THEOREM III.1.13. If D is totally transcendental thenD is stable in every
λ ≥ |D|+ |T |. In particular κ(D) = ℵ0.

PROOF. Letλ ≥ |D|+ |T |, and letA be a subset ofC of cardinality at mostλ.
Sinceλ ≥ |D|+ |T |, by using a countable, increasing chain of models we can find
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a(D,ℵ0)-homogeneous modelM containingA of cardinalityλ. Since|SD(A)| ≤
|SD(M)|, it is enough to show that|SD(M)| ≤ λ. Suppose that|SD(M)| ≥ λ+.
SinceM is (D,ℵ0)-homogeneous, eachp ∈ SD(M) is stationary. Hence, for each
p ∈ SD(M), we can choose a finiteBp ⊆ M such thatp is based onBp. Since
there are onlyλ many finite subsets ofM , by the pigeonhole principle there is a
fixed finite subsetB of M such thatλ+ many typesp ∈ SD(M) are based on
B. Sinceλ+ > |SD(B)| = |D|, another application of the pigeonhole principle
shows that there a single stationary typeq ∈ SD(B) with λ+ many extensions in
SD(M) of the same rank. This contradicts the stationarity ofq. HenceD is stable
in λ.

For the last sentence, letλ = iω(|D|+ |T |). By Zermelo-K̈onig,λℵ0 > λ,
hence by Theorem 1..3.17κ(D) = ℵ0.

The following results show that stationary types behave nicely. Not only do
they have the uniqueness and the extension properties, but they can be represented
by averages. Surprisingly, it turns out that every type is reasonably close to a
stationary type (this is made precise in Lemma .4.9).

DEFINITION III.1.14. Letp ∈ SD(A) be stationary and letα be an infinite
ordinal. The sequenceI = { ci | i < α } is called aMorley sequence based onp if
for eachi < α we haveci realizespAi , whereAi = A ∪ {cj | j < i}.

LEMMA III.1.15. Letp ∈ SD(A) be stationary. IfI is a Morley sequence
based onp, thenI is indiscernible overA.

PROOF. By stationaritypAi ⊆ pAj wheni < j, and by the previous lemma
eachpAi does not split overA. Hence, a standard result (see for example [Sh b]
Lemma I.2.5) implies thatI is an indiscernible sequence overA.

The definition of averages is rephrased using the fact thatκ(D) = ℵ0 for
totally transcendental diagrams.

DEFINITION III.1.16. (κ(D) = ℵ0) For I an infinite set of indiscernibles
andA a set (withI ∪A ⊆ C), recall that

Av(I, A) = {φ(x̄, ā) | ā ∈ A, φ(x̄, ȳ) ∈ L(T ) and|φ(I, ā)| ≥ ℵ0 }.

LEMMA III.1.17. Supposep ∈ SD(A) is stationary andI is a Morley
sequence based onp. Then for anyB containingA we have thatpB = Av(I, B).

PROOF. Let B ⊆ C and writeI = {ci | i < α}. Chooseci ∈ C for α ≤ i <
α + ω realizingpBi , whereBi = B ∪

⋃
{aj | j < i}. SinceAv(I, B) ∈ SD(B)

extendsp, it is enough to show thatR[Av(I, B)] = R[p]. SupposeR[Av(I, B)] 6=
R[p]. Then, by Monotonicity, we must haveR[Av(I, B)] < R[p]. We can find a
finite C ⊆ B such thatp is based onC and by Finite Character, we may assume in
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addition that

R[Av(I, B)] = R[Av(I, C)] < R[p].(*)

But, sinceC is finite andκ(D) = ℵ0, by Theorem 1. .4.5 there isci ∈ I
for α ≤ i < α + ω realizing Av(I, C), and sinceC ⊆ B, we must have
tp(ci/C) = Av(I, C) = pC (sinceci realizespBi). But then, by choice ofC
we haveR[Av(I, C)] = R[pC ] = R[p] which contradicts (*).

LEMMA III.1.18. Let I be an infinite indiscernible set,A be finite and
p = Av(I, A) be stationary. Then for anyC ⊇ A we havepC = Av(I, C).

PROOF. Write I = {ci | i < α}, for α ≥ ω and letC be given. Choose
ci ∈ C for α ≤ i < α + ω realizingpCi , whereCi = C ∪

⋃
{cj | j < i}.

Let I ′ = {ci | i < α + ω} and notice that necessarilyAv(I, B) = Av(I ′, B)
for anyB. SupposepC 6= Av(I, C), then sinceAv(I, A) ⊆ Av(I, C), we must
haveR[Av(I, C)] < R[p], so R[Av(I ′, C)] < R[pC ]. ChooseC ′ finite, with
A ⊆ C ′ ⊆ C, such thatR[Av(I ′, C)] = R[Av(I ′, C ′)]. Now there isJ ⊆ I ′ finite
such thatI ′ \ J is indiscernible overC ′. Chooseci ∈ I ′ \ J with i > α. Thenci

realizesAv(I ′, C ′), soAv(I ′, C ′) = tp(ci/C ′) ⊆ pCi by choice ofci. But then

R[Av(I ′, C ′)] ≥ R[pCi ] = R[p] > R[Av(I, C)] = R[Av(I ′, C ′)],

a contradiction.

III.2. Dependence relation

By analogy with the first order case (see for example [Ba a] or [Ma]), it
is natural at this point to introduce the anchor symbol, used for nonforking in the
first order case. We do not claim that the two notions coincide even when both
are defined. First, forking may be better behaved. WhenD = D(T ), the relation
A ^

B
C we will define is very close to nonsplitting and in fact, nonsplitting satisfies

all the axioms of Theorem .2.3. At the same time, forking is defined, but it is not
clear that they coincide for general sets (the main obstacles are that the notions of
extension, stationarity and symmetry hold only over models that are, in this case,
ℵ0-saturated). Second, forking may not work at all. Typically a diagram may be
totally transcendental while the underlying theory is unstable. Thus, in addition to
the problem of failure of the compactness theorem (which is key to proving many
of the properties of forking), one could not expect forking to be so well-behaved.

DEFINITION III.2.1. SupposeA, B, C ⊆ C, with B ⊆ A. We say that

A ^
B

C if R[tp(ā/B)] = R[tp(ā/B ∪ C)], for everyā ∈ A.

As in many other contexts, the symmetry property can be obtained from
the failure of the order property.
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THEOREM III.2.2 (Symmetry). If tp(ā/B) and tp(c̄/B) are stationary,
then

ā ^
B

c̄ if and only if c̄ ^
B

ā.

PROOF. First,D is stable by Theorem .1.13, and therefore does not have the
order property by Corollary .2.12. Suppose, for a contradiction, that

R[tp(c̄/B ∪ ā)] < R[tp(c̄/B)] and R[tp(ā/B ∪ c̄)] = R[tp(ā/B)].

Let λ = i(2|T |)+ and letµ = (2λ)+. We show thatD has the∞-order property,
by constructing an order of lengthλ. Choosep(x̄, ȳ, b̄) ∈ SD(b̄) with b̄ ∈ B, such
that

R[tp(ā/B ∪ c̄)] = R[p(x̄, c̄, b̄)] = R[tp(ā/B)]

and

R[tp(c̄/B ∪ ā)] = R[p(c̄, ȳ, b̄)] < R[tp(c̄/B)].

Let āα, c̄α ∈ C for α < µ andBα =
⋃
{āβ , c̄β | β < α} be such that:

(1) B0 = B;
(2) āα realizestp(ā/B) andR[tp(āα/Bα)] = R[tp(ā/B)];
(3) c̄α realizestp(c̄, B) andR[tp(c̄α/Bα ∪ āα)] = R[tp(c̄/B)].

This is achieved by induction onα < µ. Let B0 := B, ā0 := ā and
c̄0 := c̄. At stageα, we let firstBα :=

⋃
{āβ, c̄β | β < α} which is well-

defined by induction hypothesis. We then satisfy in this order (2) by stationarity of
tp(ā/B), and (3) by stationarity oftp(c̄/B).

This is enough: First, notice thatc̄α does not realizep(ā, ȳ, b̄), otherwise

R[tp(c̄α/Bα ∪ āα)] ≤ R[p(ā, ȳ, b̄)] < R[tp(c̄/B)],

contrary to the choice of̄cα. Similarly, sincetp(āα/B) = tp(ā/B) and b̄ ∈ B,
then

R[p(āβ, ȳ, b̄)] < R[tp(c̄/B)],

so c̄α does not realizep(āβ , ȳ, b̄) whenα ≥ β.

Now supposeα < β. Thenāβ realizesp(x̄, c̄, b̄) since by stationarity, we
must havetp(āβ/A ∪ c̄) = tp(ā/B ∪ c̄). Further, sincetp(āα/Bα) does not split
overB andtp(c̄α/B) = tp(c̄/B) we must havep(x̄, c̄α, b̄) ⊆ tp(āα/Bα). Soāβ

realizesp(x̄, c̄α, b̄).

Let d̄α = c̄αāα and letq(x̄1, ȳ1, x̄2, ȳ2, b̄) := p(x̄1, ȳ2, b̄) (we may assume
thatq is closed under finite conjunction). Then, above construction shows that

d̄αd̄β |= q(x̄1, ȳ1, x̄2, ȳ2, b̄) if and only if α < β < µ,(*)

i.e. we we have an order of lengthµ witnessed by the typeq.
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We use (*) to obtain an order of lengthλ witnessed by a formula as follows.
On the one hand, (*) implies that for anyφ(x̄1, x̄2, ȳ1, ȳ2, c̄) ∈ q, the following
holds:

|= φ[d̄α, d̄β , b̄] wheneverα < β.(**)

On the other hand, ifα ≥ β, by (*) again, there isφα,β(x̄1, x̄2, ȳ1, ȳ2, b̄) ∈ q, such
that |= ¬φα,β [d̄α, d̄β, b̄]. Hence, by the Erd̈os-Rado Theorem, since|q| ≤ |T |, we
can findS ⊆ µ of cardinalityλ andφ(x̄1, x̄2, ȳ1, ȳ2, b̄) ∈ q, such that

|= ¬φ[d̄α, d̄β, b̄] wheneverα ≥ β, α, β ∈ S.(***)

Therefore, (**) and (***) together show that we can find an order of lengthλ,
which is the desired contradiction.

We close this section by gathering together the properties of the anchor
symbol. They are stated with the names of the first order forking properties to
which they correspond.

THEOREM III.2.3.

(1) (Definition)A ^
B

C if and only ifA ^
B

B ∪ C.

(2) (Existence)A ^
B

B

(3) (κ(D) = ℵ0) For all ā andC, there is a finiteB ⊆ C such that̄a ^
B

C.

(4) (Invariance under automorphisms)Letf ∈ Aut(C).

A ^
B

C if and only if f(A) ^
f(B)

f(C).

(5) (Finite Character)

A ^
B

C if and only if A′^
B

C ′,

for every finiteA′ ⊆ A, and finiteC ′ ⊆ C .
(6) (Monotonicity)SupposeA′ andC ′ containA andC respectively and that

B′ is a subset ofB. Then

A ^
B

C implies A′ ^
B′

C ′.

(7) (Transitivity)If B ⊆ C ⊆ D, then

A ^
B

C and A ^
C

D if and only if A ^
B

D.

(8) (Symmetry)LetM is a (D,ℵ0)-homogeneous model.

A ^
M

C if and only if C ^
M

A.
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(9) (Extension)LetM be a(D,ℵ0)-homogeneous model. For everyA, C there
existsA′ such that

tp(A/M) = tp(A′/M) and A′ ^
M

C.

(10) (Uniqueness)LetM be a(D,ℵ0)-homogeneous model. IfA, A′ satisfy

tp(A/M) = tp(A′/M) and both A ^
M

C and A′ ^
M

C

thentp(A/MC) = tp(A′/MC).
(11) Suppose thatA ^

M
BC andC ^

M
B. ThenC ^

M
BA.

PROOF. (1) This is just by Definition .2.1.
(2) Immediate from Definition .2.1.
(3) By Finite Character of the rank and Definition .2.1.
(4) Follows from Lemma .1.2 5.
(5) Immediate by finite definition and finite character of the rank.
(6) AssumeC /̂

M
A. By Finite Character,R[tp(c̄/M)] < R[tp(c̄/M)], for

somec̄ ∈ C. Also by Finite Character, there existsā ∈ A such that
R[tp(c̄/M ∪ ā)] = R[tp(c̄/M)]. Hencec̄ /̂

M
ā. But, by Corollary .1.10,

both tp(ā/M) andtp(c̄/M) are stationary, so by Theorem .2.2 we must
haveā /̂

M
c̄. By Finite Character, this shows thatA /̂

M
C.

(7) Let ā ∈ A. Then, ā ^
B

C and ā ^
C

D by Finite Character. By Defini-

tion .2.1R[tp(ā/C)] = R[tp(ā/B)] andR[tp(ā/D)] = R[tp(ā/C)]. So
R[tp(ā/B)] = R[tp(ā/D)], andā ^

B
D. Hence, by Finite Character, we

must haveA ^
B

D. The converse is just by Monotonicity.

(8) Immediate by Theorem .2.2 and Corollary .1.10.
(9) Follows from Corollary .1.10 and Definition .2.1.

(10) Follows from Corollary .1.10 and Definition .2.1.
(11) First, notice that by Monotonicity, we must haveA ^

M
B. By definition,

this shows that for everȳa ∈ A, we have

R[tp(ā/MB)] = R[tp(ā/M)].

Since tp(ā/M) is stationary, this implies thattp(ā/MB) is stationary.
Similarly, using the assumption thatC ^

M
B, we must have thattp(c̄/MB)

is stationary for everȳc ∈ C.
Now, by Monotonicity, we have thatA ^

MB
BC, so that by defini-

tion, we haveA ^
MB

C. By Symmetry for stationary types, using the first
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paragraph, we can derive thatC ^
MB

A. By definition, this means that

C ^
MB

AB.

Finally, we use transitivity to show thatC ^
MB

AB. HenceC ^
M

MB

impliesC ^
M

BA.

III.3. Regular and minimal types

In this section, we prove the existence of various pregeometries for totally
transcendental diagrams. First, we make the following definition (a similar defini-
tion appears in [Sh48]).

DEFINITION III.3.1.

(1) Let ā be inM andq(x̄, ā) be a type. We say thatq(x̄, ā) is big for M if
q(x̄, ā) is realized outsideM ;

(2) We say thatq(x̄, ā) is big if q(x̄, ā) is big for anyM containingā;
(3) A typeq ∈ SD(A) is big (for M) if q ¹ ā is big (forM ) for everyā ∈ A.

In presence of the compactness theorem, big types are the same as nonal-
gebraic types. Even in the general case, we have a nice characterization of bigness
when the types are stationary.

LEMMA III.3.2. Let q ∈ SD(A) be stationary. The following conditions
are equivalent:

(1) q is big for some(D,ℵ0)-homogeneousM containingA;
(2) R[q] ≥ 1;
(3) q is big.

PROOF. (1)⇒ (2): SinceM is (D,ℵ0)-homogeneous, by Lemma .1.3,R[q] =
RM [q], so it is enough to showRM [q] ≥ 1. Let ā ∈ A be such thatRM [q] =
RM [q ¹ ā]. Sinceq ¹ ā is big for M , there exists̄c 6∈ M realizingq ¹ ā. Also,
sinceM is (D,ℵ0)-homogeneous, there is̄c′ ∈M realizingq ¹ ā. Hence

RM [(q ¹ ā) ∪ {x̄ = c̄′}] ≥ 0 and RM [(q ¹ ā) ∪ {x̄ 6= c̄′}] ≥ 0.

Moreover, for everȳb ∈M , (q ¹ ā) ∪ tp(c̄/b̄) is realized bȳc, and so

RM [(q ¹ ā) ∪ tp(c̄/b̄)] ≥ 0,

andtp(c̄/b̄) ∈ SD(b̄). This shows thatRM [q ¹ ā] ≥ 1.
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(2) ⇒ (3): Supposeq is stationary,R[q] ≥ 1 andM containingā are
given. By taking a largerM if necessary, we may assume thatM is (D,ℵ0)-
homogeneous. Sinceq is stationary, there existsqM ∈ SD(M), such thatR[qM ] =
R[q] ≥ 1. Let c̄ realizeqM . If c̄ ∈M , then{x = c̄ } ∈ qM , so

0 = R[x̄ = c̄] ≥ R[qM ] ≥ 1,

which is a contradiction. Hencēc 6∈M , soq is big forM .

(3)⇒ (1): Clear by definition.

DEFINITION III.3.3. Let p ∈ SD(A) be a big, stationary type.

(1) We say thatp is regular forM if A ⊆M and for everyB ⊆M we have

ā ^
A

B andb̄ /̂
A

B imply ā ^
A

B ∪ b̄, for all ā, b̄ ∈ p(M).

(2) We say thatp is regular if p is regular forC.

LEMMA III.3.4. Letp ∈ SD(A) be a big, stationary type based onc̄ ∈ A.
If p ¹ c̄ is regular, thenp is regular.

PROOF. First notice that stationarity and bigness are preserved (bigness is the
content of Lemma .3.2). Supposep is not regular. We will show thatp ¹ c̄ is not
regular. Let̄a, b̄ |= p andB be such that

ā ^
A

B, b̄ /̂
A

B and yet ā /̂
A

B ∪ b̄.

Thereforetp(ā/A ∪ B) = pA∪B and so by choice of̄c we havetp(ā/A ∪ B) =
(p ¹ c)A∪B, i.e. ā ^

c̄
A ∪B. Now sinceR[p] = R[p ¹ c̄],

R[tp(b̄/A ∪B)] < R[tp(b̄/A)] implies R[tp(b̄A ∪B)] < R[p ¹ c̄],

i.e. b̄ /̂
c̄

A ∪ B. We show similarly that̄a /̂
c̄

A ∪ B ∪ b̄, which shows thatp ¹ c̄ is

not regular.

REMARK III.3.5. If p(x̄, ā) is regular and̄a′ ∈ M is such thattp(ā/∅) =
tp(ā′/∅), thenp(x̄, ā′) is regular.

DEFINITION III.3.6. Let p ∈ SD(B), B ⊆ M andW = p(M) \ B 6= ∅.
Define

a ∈ cl(C) if a /̂
B

C, for a ∈W andC ⊆W.

THEOREM III.3.7. Let M be (D,ℵ0)-homogeneous and letp ∈ SD(B)
such thatB ⊆M andp is realized inM . If p is regular then(W, cl) is a pregeom-
etry.

PROOF. We need to show that the four axioms of pregeometry hold (notice
W 6= ∅).
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(1) We show that for everyC ⊆W , C ⊆ cl(C).
Let c ∈ C, then{x = c} ∈ tp(c/A ∪ C), hence

R[tp(c/B ∪ C)] = 0 < R[p],

soc /̂
B

C and thusc ∈ cl(C).

(2) We show that ifc ∈ cl(C), there isC ′ ⊆ C finite, such thatc ∈ cl(C ′).
Let c ∈ cl(C). By Definition .3.6c /̂

B
C so by Theorem .2.3 5 there

existsC ′ ⊆ C finite, such thatc /̂
B

C ′, hencec ∈ cl(C ′).

(3) We show that ifa ∈ cl(C) andC ⊆ cl(E), thena ∈ cl(E).
Write C = {ci | i < α}. Thena /̂

B
{ci | i < α}. Supposea ^

B
E. We

show by induction oni < α thata ^
B

E ∪ {cj | j < i}.

• For i = 0 this is the assumption and fori a limit ordinal, this is true
by Theorem .2.3 5.
• For the successor case, suppose it is true fori. Thena ^

B
E ∪ {cl |

l < i}. SinceC ⊆ cl(E), we haveci /̂
B

E, so by Theorem .2.3

6 ci /̂
B

E ∪ {cl | l < i}. Hence, sincep is regular, we must have

a ^
B

E ∪ {cl | l < i} ∪ ci.

Thusa ^
B

E ∪ C, and sinceC ⊆ C ∪ E, we must havea ^
B

C. Hence

a 6∈ cl(C), which contradicts our assumption.
(4) We show that ifc ∈ cl(Ca) \ cl(C), thena ∈ cl(Cc).

Since symmetry has been shown only for stationary types, this state-
ment is not immediate from Theorem .2.2.

Suppose thatc /̂
B

Ca andc ^
B

C. Thenc /̂
C

a, since

R[tp(c/B ∪ Ca)] < R[tp(c/B)] = R[tp(c/B ∪ C)].

Thereforec realizespB∪C , sotp(c/B ∪C) is stationary. Ifa /̂
B

C, then by

Theorem .2.3 6 we must havea /̂
B

Cc, and we are done.

Otherwise,a ^
B

C. Hencea realizespB∪C and sotp(a/B ∪ C) is

stationary. Therefore by Theorem .2.2 we must havea /̂
C

c, a contradiction.

Hence by Theorem .2.3 6, we havea /̂
B

Cc, i.e. a ∈ cl(Cc).

We now show the connection between independent sets in the pregeome-
tries, averages and stationarity.
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LEMMA III.3.8. Let p(x̄, c̄) be regular. LetI be infinite and independent
in p(C, c̄). ThenI is indiscernible and for everyB containingc̄ we havepB =
Av(I, B).

PROOF. Write I = {āi | i < α}. Then sinceI is independent,̄ai+1 |= pAi ,
whereAi = c̄∪{āj | j < i}. ThusI is a Morley sequence based onp, so the result
follows from Lemmas .1.15 and .1.17.

Now we turn to existence. In order to do this, we need a lemma.

LEMMA III.3.9. Let M be(D,ℵ0)-homogeneous, andp(x̄, c̄) overM be
big and stationary. Thenp(x̄, c̄) is regular if and only ifp(x̄, c̄) is regular forM .

PROOF. If p(x̄, c̄) is regular, thenp(x̄, c̄) is clearly regular forM . Suppose
p(x̄, c̄) is not regular. Then there areB ⊆ C, andā, b̄ realizingp(x̄, c̄), such that

ā ^
c̄

B, b̄ /̂
c̄

B, and ā /̂
c̄

Bb̄.

First, we may assume thatB is finite: chooseB′ ⊆ B such that

R[tp(ā/B′ ∪ c̄b̄)] = R[tp(ā/B ∪ c̄b̄)]

and then chooseB′′ ⊆ B finite, such that̄b 6|= pB ¹ B′′. Hence, forB0 =
B′ ∪B′′ ⊆ B, we have

ā ^
c̄

B0, b̄ /̂
c̄

B0, and ā /̂
c̄

B0b̄.

Now, sinceM is (D,ℵ0)-homogeneous and̄c ∈ M , we can findB1, ā1 and b̄1

insideM such thattp(B0āb̄/c̄) = tp(B1ā1b̄1/c̄). Therefore, by invariance we
have:

ā ^
c̄

B1, b̄ /̂
c̄

B1, and ā /̂
c̄

B1b̄.

This shows thatp is not regular forM .

The following argument for the existence of regular types is similar to
Claim V.3.5. of [Sh b]. However, since our basic definitions are different, we
provide a proof.

THEOREM III.3.10 (Existence of regular types).LetM andN be such that
M ⊆ N andM 6= N . If M andN are (D,ℵ0)-homogeneous, then there exists
p(x, ā) regular, realized inN \M . In fact, if p(x, ā) is big and stationary, and
has minimal rank among all big, stationary types overM realized inN \M , then
p(x, ā) is regular.

PROOF. The first statement follows from the second. To prove the second
statement, we first choosec′ ∈ N \M , be such thattp(c′/M) has minimal rank
among all types overM realized inN \M , sayR[tp(c′/M)] = α. We then choose
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ā ∈ M such thatR[tp(c′/M)] = R[tp(c′/ā)] = α. Write tp(c′/ā) = p(x, ā) and
notice thatp is stationary and big forM , hence big, by Lemma .3.2.

By the previous lemma, to show thatp(x, ā) is regular, it is equivalent to
show thatp(x, ā) is regular forM . For this, leta, b ∈ p(M) andB ⊆M such that

a ^
ā

B and b /̂
ā

B.

We must show thata ^
ā

Bb. Suppose, by way of contradiction that this is not the

case. Then, by definition, we haveR[tp(a/Bāb)] < α. We now choosēc, d̄ ∈ B
such that

R[tp(a/Bāb)] = R[tp(a/c̄āb)] < α and R[tp(b/Bā)] = R[tp(b/d̄ā)] < α.

SinceN is (D,ℵ0)-homogeneous andc′, a, b, ā, c̄, d̄ ∈ N , there isb′ ∈ N such
thattp(ab/āc̄d̄) = tp(a′b′/āc̄d̄). Now, tp(b′/ād̄) = tp(b′/ād̄), so

R[tp(b′/M)] ≤ R[tp(b′/ād̄)] = R[tp(b/ād̄)] < α.

By minimality ofα, we must haveb′ ∈M . HenceR[tp(a′/M)] ≤ R[tp(a′/c̄āb′)],
soR[tp(a′/c̄āb′)] = α. Now there isf ∈ Aut(C) such thatf(a′) = a, f(b′) = b
andf ¹ c̄ā = idc̄ā, by choice ofb′. Hence, by property of the rank

α = R[tp(a′/c̄āb′)] = R[f(tp(a′/c̄āb′))] = R[tp(a/c̄āb)] < α,

which is a contradiction. Hencea ^
ā

Bb, so thatp(x, ā) is regular.

By observing what happens whenN = C in above theorem, one discovers
more concrete regular types. For this, we make the following definition. A similar
definition in the context ofLω1ω(Q) appears in the last section of [Sh48]. An
illustration of why this definition is natural can be found in the proof of Lemma
.5.11. In presence of the compactness theorem, S-minimal is the same as strongly
minimal.

DEFINITION III.3.11.

(1) A big, stationary typeq(x̄, ā) overM is said to beS-minimal forM if for
anyθ(x̄, b̄) overM not bothq(x̄, ā)∪θ(x̄, b̄) andq(x̄, ā)∪¬θ(x̄, b̄) are big
for M .

(2) A big, stationary typeq(x̄, ā) is said to beS-minimalif q(x̄, ā) is S-minimal
for for everyM containingā.

(3) If q ∈ SD(A) is big and stationary, we say thatq is S-minimalif q ¹ ā is
S-minimal for somēa.

REMARK III.3.12.

(1) Let M be(D,ℵ0)-homogeneous model. Letq(x̄, c̄) be S-minimal forM .
Let W = q(M, c̄) and fora ∈W andB ⊆W define

a ∈ cl(B) if tp(a/B ∪ c̄) is not big (forM ).
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Then it can be shown directly from the assumption thatD is totally tran-
scendental, that(W, cl) is a pregeometry.

(2) Let M be (D,ℵ0)-homogeneous. Ifq(x, c̄) has minimal rank among all
big, stationaryq(x, c̄) overM , then the previous theorem shows thatq is
regular. Butq is also S-minimal forM . As a matter of fact, ifa ^

c̄
B,

then R[tp(a/B ∪ c̄)] = R[q(x̄, c̄)] ≥ 1 and tp(a/B ∪ c̄) is station-
ary, sotp(a/b ∪ c̄) is big, soa 6∈ cl(B). Conversely, ifa /̂

c̄
B, then

R[tp(a/Bc̄)] < R[q(x, c̄]. But if tp(a/B ∪ c̄) was big, then we could
find a′ 6∈M such thattp(a′/B ∪ c̄) = tp(a/B ∪ c̄), so

R[tp(a′/M)] ≤ R[tp(a′/B ∪ c̄)] = R[tp(a/B ∪ c̄)] < R[q(x, c̄)],

contradicting the minimality ofR[q(x, c̄)]. Hencetp(a/B ∪ c̄) is not big,
and soa ∈ cl(B). In other words, both pregeometries coincide.

(3) Using the results that we have proven so far, it is not difficult to show that
if M, N are(D,ℵ0)-homogeneous, andq(x, c̄) has minimal rank among
all big, stationary types overM andc̄′ ∈ N such thattp(c̄/∅) = tp(c̄′/∅),
then q(x, c̄′) has minimal rank among all big, stationary types overN ,
hence ifq(x, c̄′) is S-minimal forN .

In the light of these remarks, we will make the following definition.

DEFINITION III.3.13. LetM be(D,ℵ0)-homogeneous. A stationary type
q(x̄, c̄) with c̄ ∈M is calledminimal if q(x̄, c̄) is big and has minimal rank among
all big, stationary types overM .

We close this section by summarizing above remark in the following theo-
rem.

THEOREM III.3.14. (1) For any (D,ℵ0)-homogeneous model, there
exists a minimalq(x, c̄) with c̄ ∈M .

(2) Minimal types are regular and moreover for everyA containingc̄, every
setB anda |= qA we have

tp(a/A ∪B) is big if and only if a ^
A

B.

PROOF. The first item is clear by definition. The second follows by Theorem
.3.10, and Remark .3.12 2 and 3.

III.4. Prime models

In this section, we consider the question of prime models. The rank is
especially useful to study the class of(D,ℵ0)-homogeneous models of a totally
transcendentalD.

We give definitions from [Sh3] in more modern terminology.
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DEFINITION III.4.1.

(1) We say thatp ∈ SD(A) is Ds
λ-isolated overB ⊆ A, |B| < λ, if for any

q ∈ SD(A) extendingp ¹ B, we haveq = p.
(2) We say thatp ∈ SD(A) is Ds

λ-isolatedif there isB ⊆ A, |B| < λ, such
thatp is Ds

λ-isolated overB.

We next verify Axioms X.1 and XI.1 from Chapter IV of [Sh b].

THEOREM III.4.2 (X.1). Let A ⊆ C andµ ≥ ℵ0. Everyφ(x̄, ā) overA
realized inC can be extended to aDs

µ-isolated typep ∈ SD(A).

PROOF. It is enough to show the result forµ = ℵ0.

SinceC |= ∃x̄φ[x̄, ā], there exists̄c ∈ C such thatC |= φ[c̄, ā]. Thus
there exists isp ∈ SD(A), namelytp(c̄/A), containingφ(x̄, ā). SinceD is totally
transcendental andA ⊆ C we must haveRA[p] <∞. Among all thosep ∈ SD(A)
containingφ(x̄, ā) choose one with minimal rank. SayRA[p] = α ≥ 0.

We claim thatp is Ds
ℵ0

-isolated. First, there is̄b ∈ A such thatRA[p] =
RA[p ¹ b̄]. We may assume thatp ¹ b̄ containsφ(x̄, ā) by Lemma .1.2 6. Suppose
that there isq ∈ SD(A), q 6= p, such thatq extendsp ¹ b̄. ThenRA[q] ≥ α by
choice ofp (sinceq containsφ(x̄, ā)). Now, chooseψ(x̄, c̄) with c̄ ∈ A such that
ψ(x̄, c̄) ∈ p and¬ψ(x̄, c̄) ∈ q. Then since(p ¹ b̄) ∪ ψ(x̄, c̄) ⊆ p, by Lemma .1.2 6
we have

RA[(p ¹ b̄) ∪ ψ(x̄, c̄)] ≥ RA[p] ≥ α.

Similarly

RA[(p ¹ b̄) ∪ ¬ψ(x̄, c̄)] ≥ RA[q] ≥ α.

Now, given anyd̄ ∈ A, RA[p ¹ b̄ ∪ d̄] ≥ α (again by Lemma .1.2 6). Since
p ∈ SD(A), necessarily if we writep ¹ d̄ = p(x̄, d̄), then we havep(x̄, ȳ) ∈ D
(sincep(x̄, d̄) ∈ SD(d̄)). Hence sincep ¹ b̄ ∪ d̄ ` p ¹ b ∪ p(x̄, d̄)) we have

RA[(p ¹ b) ∪ p(x̄, d̄)] ≥ RA[p ¹ b̄ ∪ d̄] ≥ α.

But this shows thatRA[p ¹ b̄] ≥ α + 1, a contradiction.

Hencep is the only extension ofp ¹ b, sop is Ds
ℵ0

-isolated.

THEOREM III.4.3 (XI.1). Let µ be infinite andB, A beD-sets such that
B ⊆ A. EveryDs

µ-isolatedr ∈ SD(B) can be extended to aDs
µ-isolated type

p ∈ SD(A).

PROOF. SinceC is (D, χ)-homogeneous, there existsc̄ ∈ C realizingr. Hence
there isp ∈ SD(A) extendingr, namelytp(c̄/A). SinceD is totally transcendental
andA ⊆ C we must haveRA[p] < ∞. Among all thosep ∈ SD(A) extendingr
choose one with minimal rank. SayRA[p] = α ≥ 0.
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We claim thatp is Ds
µ-isolated. First, there is̄b ∈ A such thatRA[p] =

RA[p ¹ b̄]. Also, sincer is Ds
µ-isolated, there isC ⊆ B, |C| < µ such thatr ¹ C

isolatesr. We may assume thatRA[r] = RA[r ¹ C], by Lemma .1.2 7. We claim
that(r ¹ C)∪ (p ¹ b̄) isolatesp. By contradiction, suppose that there isq ∈ SD(A)
extending(r ¹ C)∪ (p ¹ b̄) such thatq 6= p. Notice thatr ⊆ q, sincer was isolated
by r ¹ C, and henceRA[q] ≥ RA[p] = α by choice ofp. Now, chooseψ(x̄, ā)
with ā ∈ A such thatψ(x̄, ā) ∈ p and¬ψ(x̄, ā) ∈ q. By Lemma .1.2 6 (since
(p ¹ b̄) ∪ ψ(x̄, c̄) ⊆ p), we must have

RA[(p ¹ b̄) ∪ ψ(x̄, c̄)] ≥ RA[p] = α.

Similarly

RA[(p ¹ b̄) ∪ ¬ψ(x̄, c̄)] ≥ RA[q] ≥ α.

Now, given anyd̄ ∈ A we have thatRA[p ¹ b̄ ∪ d̄] ≥ α (again by Lemma .1.2
6). Sincep ∈ SD(A), necessarily if we writep ¹ d̄ = p(x̄, d̄), then we have
p(x̄, ȳ) ∈ D (sincep(x̄, d̄) ∈ SD(d̄)). Hence

RA[(p ¹ b) ∪ p(x̄, d̄)] ≥ RA[p ¹ b̄ ∪ d̄] ≥ α,

sincep ¹ b̄ ∪ d̄ ` (p ¹ b) ∪ p(x̄, d̄). But this shows thatRA[p ¹ b̄] ≥ α + 1, a
contradiction.

Hencep is the only extension of(r ¹ C)∪ (p ¹ b), sop is Ds
µ-isolated.

Following Chapter IV of [Sh b], we set:

DEFINITION III.4.4.

(1) We say thatC = {〈ai, Ai, Bi〉 | i < α} is a(D, λ)-construction ofC over
A if

(a) C = A ∪
⋃
{ai | i < α};

(b) Bi ⊆ Ai, |Bi| < λ, whereAi = A ∪
⋃
{aj | j < i};

(c) tp(ai/Ai) ∈ SD(Ai) is Ds
λ-isolated overBi.

(2) We say thatM is Ds
λ-constructible overA if there is a(D, λ)-construction

for M overA.
(3) We say thatM is Ds

λ-primary overA, if M is Ds
λ-constructible overA and

M is (D, λ)-homogeneous.
(4) We say thatM is Ds

λ-prime overA if
(a) M is (D, λ)-homogeneous and
(b) if N is (D, λ)-homogeneous andA ⊆ N , then there isf : N → M

elementary such thatf ¹ A = idA.
(5) We say thatM is Ds

λ-minimal overA, if M is Ds
λ-prime overA and for

every(D, λ)-homogeneous modelN , if A ⊆ N ⊆M , thenM = N .

REMARK III.4.5. We use the same notation as in [Sh b], except that we
replaceF by D to make it explicit that we deal exclusively withD-types (or equiv-
alently, types realized inC). In particular, for example ifM is Ds

ℵ0
-primary over

A, thenM is Ds
ℵ0

-prime overA.
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THEOREM III.4.6 (Existence of prime models).Letµ be an infinite cardi-
nal andA be aD-set. Then, there is aDs

µ-primary modelM overA of cardinality
|A|+ |T |+ |D|+ µ. Moreover,M is Ds

µ-prime overA.

PROOF. See page 175 of [Sh b] and notice that we just establishedX.1 and
XI.1. Observe that in the construction, each new element realizes aD-type, so
that the resulting model is indeed aD-model. The optimal bound on the cardinality
follows from Theorem .1.13. The second sentence follows automatically.

REMARK III.4.7. A similar theorem, with a stronger assumption (D isℵ0-
stable) and without the bound on the cardinality appears in [Sh3]. Note thatDs

µ-
primary, is called(D, µ, 1)-prime there.

It is natural to make the following conjecture.

CONJECTUREIII.4.8. LetD be totally transcendental. Then for anyA the
Ds
ℵ0

-prime model overA is unique up to isomorphism fixingA.

Notice that this allows us to show how any type can be decomposed into
stationary and isolated types. A similar result appears in [Sh87a].

LEMMA III.4.9. Let p ∈ SD(A) and supposēa realizesp. Then there is
b̄ ∈ C such that

(1) tp(b̄/A) is Ds
ℵ0

-isolated;
(2) tp(ā/Ab̄) is stationary;
(3) R[tp(ā/Ab̄)] = R[tp(ā/b̄)].

Furthermore,p does not split over a finite set.

PROOF. Let ā |= p. Let M be Ds
ℵ0

-primary model overA. Thentp(ā/M)
is stationary sinceM is (D,ℵ0)-homogeneous, and there isb̄ ∈ M finite, such
that R[tp(ā/M)] = R[tp(ā/b̄)]. HenceR[tp(ā/Ab̄)] = R[tp(ā/b̄)] by Lemma
.1.2 6, and sotp(ā/Ab̄) is stationary. Also,tp(b̄/A) is Ds

ℵ0
-isolated, sinceM is

Ds
ℵ0

-primary overA.

Finally, to see thatp does not split over a finite set, assumeā |= p, tp(b̄/A)
is Ds

ℵ0
-isolated,tp(ā/Ab̄) is stationary, andR[tp(ā/Ab̄)] = R[tp(ā/b̄)]. Then

there isC ⊆ A finite, such thattp(b̄/A) is Ds
ℵ0

-isolated overC. Also, since
tp(ā/Ab̄) is stationary, it does not split overb̄. Now it is easy to see thatp does
not split overC: otherwise there arēcl ∈ A, andφ(x̄, ȳ) such thattp(c̄1/C) =
tp(c̄2/C), c̄l ∈ A for l = 1, 2, and|= φ[ā, c̄1] and|= ¬φ[ā, c̄2]. But tp(b̄/A) does
not split overC, and sotp(c̄1/b̄) = tp(c̄2/b̄). However, this contradicts the fact
thattp(ā/Ab̄) does not split over̄b. All the conditions are satisfied.
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This gives us an alternative and short proof that averages are well-defined,
and in fact, allows us to give short proofs of all the facts in Theorem 1..4.5.

LEMMA III.4.10. Let I be infinite andA ⊆ C. ThenAv(I, A) ∈ SD(A)

PROOF. Completeness is clear. To see thatAv(I, A) is consistent, suppose
that bothφ(x, ā) and¬φ(x, ā) are realized by infinitely many elements ofI. But
tp(ā/I) does not split over a finite setB ⊆ I by the previous lemma. Hence, by
choice ofφ(x, ā), we can findb, c ∈ I \ B such that|= φ[b, ā] and |= ¬φ[c, ā].
This however, shows thattp(ā/I) splits overB, sincetp(b/B) = tp(c/B) by
indiscernibility of I and bothφ(b, ȳ), ¬φ(c, ȳ) ∈ tp(ā/I). Now Av(I, A) ∈
SD(A) since we can extendI to aD-set of indiscernibleJ of cardinality|A|+, and
then some element ofJ realizesAv(I, A).

The following is a particular case of a theorem of Shelah in [Sh54]. We
include it here not just for completeness, but because the proof is different from
Shelah’s original proof in finite diagrams and very similar in the conceptual frame-
work to the first order case.

THEOREM III.4.11. Let D be totally transcendental. If〈Mi | i < α〉
is an increasing chain of(D, µ)-homogeneous models, then

⋃
i<α Mi is (D, µ)-

homogeneous (µ infinite).

PROOF. Let M =
⋃

i<α Mi and notice thatM is (D,ℵ0)-homogeneous. Let
p ∈ SD(A), A ⊆ M , |A| < µ and chooseq ∈ SD(M) extendingp. Then, by
Corollary .1.10,q is stationary and there isB ⊆ M , finite such thatq is based on
B. Let i < α, be such thatB ⊆ Mi. SinceMi is (D, µ)-homogeneous, there
is I = {aj | j < µ} ⊆ Mi a Morley sequence forqB. Then, by Lemma .1.17,
qAB = Av(I, A ∪ B). But |I| > |A ∪ B|, so by Theorem 1. .4.5 there isaj ∈ I
realizingAv(I, A∪B). But qAB ⊇ p, sop is realized inM . This shows thatM is
(D, µ)-homogeneous.

III.5. Chang’s conjecture and categoricity

We now focus on the class of(D,ℵ0)-homogeneous models of a totally
transcendental diagramD. As we said in the introduction, there are several key
examples. WhenD is the set of isolated types over the empty set, the class of
(D,ℵ0)-homogeneous models coincides with the class ofD-models, that is we are
studying the class of atomic models of a given first order theory. Recall that this
class is especially important from the point of view of classification for nonelemen-
tary classes. A result due to S. Shelah [Sh48] shows that, for example, given any
ℵ1-categorical Scott sentenceψ ∈ Lω1ω, there exists a first order theoryT (pos-
sibly unstable) with the property that for every cardinalλ, there is a one-to-one
correspondence between the models ofψ of cardinalityλ and the atomic models
of T of cardinalityλ. Another example is whenD = D(T ). As we mentioned,
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whenD = D(T ), thenK is the class ofℵ0-saturated models of a totally transcen-
dental theory. This case is important, since it demonstrates, in particular, that all
our estimates on the number of models are sharp.

DEFINITION III.5.1. Define

K = {M |M is (D,ℵ0)-homogeneous}.

We first prove Chang’s Conjecture forK, whenD is a totally transcenden-
tal diagram.

Chang’s Conjecture for the class of models of countable first order theo-
ries is the following statement. IfT is a theory in a language containing a unary
predicateP (x) and if there exists a modelM |= T such that‖M‖ = λ+ and
|P (M)| = λ, for some infiniteλ, then there existsN ≺ M of cardinalityℵ1 such
that|P (N)| = ℵ0. It is known that this statement is, in fact, a large cardinal axiom.
However, Chang’s Conjecture holds for the class of models ofT , whenT satisfies
additional assumptions. The next theorem implies Chang’s Conjecture for the class
K, whenD is a countable totally transcendental diagram andT a countable first
order theory. Note the similarity with Theorem .5.8.

THEOREM III.5.2. Let T be a first order theory in a language containing
a unary predicateP (x). LetD ⊆ D(T ) be a totally transcendental diagram. Let
λ, µ, χ be cardinals such that|D|+ |T | ≤ µ < χ ≤ λ+. If there existsM ∈ K of
cardinalityλ+ with P (M) of cardinalityλ, then there existsN ∈ K with N ≺M
of cardinalityχ such thatP (N) has cardinalityµ.

PROOF. Let M ∈ K of cardinalityλ+ with P (M) of cardinalityλ. Since
D is totally transcendental, thenD is stable inλ by Theorem .1.13. Hence, by
Theorem 1..3.13, there exists{ai | i < λ+} ⊆ M \ P (M) indiscernible over
P (M). Let A ⊆ P (M) of cardinalityµ. Now chooseN∗ ≺ M of cardinality
µ, with N∗ ∈ K, containingA ∪ {ai | i < ℵ0}. Let B = P (N∗). ThenB
has cardinalityµ andB ⊆ P (M). By Theorem .4.6, there exists aDs

ℵ0
-primary

modelN overB∪{ai | i < χ} of cardinalityχ. By using an automorphism fixing
B ∪ {ai | i < χ} if necessary, we may assume thatN ⊆M . Thus,N ≺M .

We claim thatP (N) has cardinalityµ. It is enough to show thatP (N) =
B. Suppose this is not the case and letc ∈ P (N) \ B. Consider the types
tp(c/B) ⊆ tp(c/B ∪ {ai | i < χ}). Note that the formulaP (x) belongs
to tp(c/B) and thattp(c/B) is not realized insideB. Now sinceN is Ds

ℵ0
-

primary overB ∪ {ai | i < χ}, there exists a typeq(x, b̄, ai1 , . . . , ain) ∈ SD(b̄ ∪
{ai1 , . . . , ain}) with b̄ ∈ B andi1 < . . . in < χ satisfying

q(x, b̄, ai1 , . . . , ain) ` tp(c, B),

sincetp(c/B ∪ {ai | i < χ}) ` tp(c/B). By indiscernibility of{ai | i < χ} over
B, we may assume thati1 < . . . in < ℵ0. Hencēb ∪ {ai1 , . . . , ain} ⊆ N∗. Since
N∗ is (D,ℵ0)-homogeneous, there existsc∗ ∈ N∗ realizingq(x, b̄, ai1 , . . . , ain).
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Thus,c∗ realizestp(c/B). But P (x) ∈ tp(c/B) soc∗ ∈ P (N∗) = B, a contra-
diction.

We now turn to Categoricity.

REMARK III.5.3. We will say thatM ∈ K is prime overA or minimal
overA, whenM is Ds

ℵ0
-prime overA or Ds

ℵ0
-minimal overA respectively.

By analogy with the first order case, we set the following definition.

DEFINITION III.5.4. Let D be totally transcendental. We say thatD is
unidimensionalif for every pair of modelsM ⊆ N in K and minimal typeq(x, ā)
minimal overM ,

q(M, ā) = q(N, ā) implies M = N.

Unidimensionality for a totally transcendental diagramD turns out to be a
meaningful dividing line. When it fails, we can construct non-isomorphic models,
like in the next theorem (this justifies the name), and when it holds we get a strong
structural theorem (see Theorem .5.10, which implies categoricity). In fact, the
conclusion of our next theorem is similar to (but stronger than) the conclusion of
Theorem 6.9 of [Sh3] (we prove it for everyµ, not just regularµ, and can obtain
these models of cardinality exactlyλ, not arbitrarily large). The assumptions of
Theorem 6.9 of [Sh3] are weaker and the proof considerably longer. Actually,
Corollary .5.16 makes the connection with Theorem 6.9 of [Sh3] clearer.

We first prove two technical lemmas which are similar to Lemma 3.4 and
fact 3.2.1 from [GrHa ] respectively. The proofs are straightforward generaliza-
tions and are presented here for the sake of completeness.

LEMMA III.5.5. Let p, q ∈ SD(M) and M ⊆ N be inK. If a ^
M

b for

everya |= q andb |= p, thena ^
N

b for everya |= qN andb |= pN .

PROOF. Suppose not. Then there area |= pN andb |= qN such thata /̂
N

b.

ChooseE ⊆ N finite such thata /̂
ME

b and tp(ab/N) is based onE. This is

possible by Theorem .2.3 5 and by the fact thattp(ab/N) is stationary. Sim-
ilarly, we can findC ⊆ M finite, such thatpM and qM are based onC and
a /̂

CE
b. SinceC ⊆ M finite andM ∈ K, there existsa∗, b∗, E∗ ⊆ M , such

that tp(abE/C) = tp(a∗b∗E∗/C), and soa∗ /̂
CE∗

b∗. Sincetp(ab/N) is based

on E, thentp(ab/CE) is stationary based onE, so tp(a∗b∗/CE∗) is stationary
based onE∗. Therefore, we can choosea′b′ |= tp(a∗b∗/CE∗)M , and by choice of
C, necessarilya′ |= pM andb′ |= qM .
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Hence, by assumption onpM , qM , we havea′ ^
M

b′, so alsoa′ ^
CE∗

b′. But

this impliesa∗ ^
CE∗

b∗, by choice ofa′b′, a contradiction.

LEMMA III.5.6. Let N be (D, µ)-homogeneous. Ifa ^
N

b and tp(a/Nb)

is Ds
µ-isolated, thena ∈ N .

PROOF. Sincep = tp(a/Nb) is Ds
µ-isolated, there isC ⊆ N , |C| < µ

such thattp(a/Cb) isolatesp. Sincetp(b/N) is stationary, we may assume that
tp(b/N) does not split overC. Since, by Theorem .2.3 8 alsob ^

N
a, so we may

assume thattp(b/Na) does not split overC.

SinceN is (D, µ)-homogeneous, there isa′ ∈ N , such thattp(a/C) =
tp(a′/C). But sincetp(b/Na) does not split overC, thentp(ab/C) = tp(a′b/C).
Hencetp(a/N) = tp(a′/N), so thata ∈ N .

Recall a definition from [Sh3].

DEFINITION III.5.7. Let M be aD-model. M is said to bemaximally
(D, µ)-homogeneousif M is (D, µ)-homogeneous, but not(D, µ+)-homogeneous.

THEOREM III.5.8. SupposeD is not unidimensional. Then there is a max-
imally (D, µ)-homogeneous modelM of cardinalityλ, for everyλ ≥ µ ≥ |T | +
|D|.

PROOF. SupposeD is totally transcendental and not unidimensional. Then
there existsM, N in K and a minimal typeq(x, ā) overM with the property that

q(M, ā) = q(N, ā) and M ⊆ N, M 6= N.(*)

Using the Downward L̈owenheim Skolem Theorem and prime models, we
may assume that|q(M, ā)| ≤ |T | + |D|. Let λ ≥ µ ≥ |T | + |D| be given.
We first show that we can findM , N ∈ K satisfying (*) such that in addition
‖M‖ = |q(M, ā)| = µ.

SinceM 6= N ∈ K, there isb ∈ N \M , sop = tp(b/M) ∈ SD(M)
is big and stationary. This implies thata′ ^

M
b′ for anya′ |= qM andb′ |= p (by

an automorphism sendingb′ to b, it is enough to seea′ ^
M

b, but this is obvious,

otherwisetp(a′/Mb) is not big, thus cannot be big forN by Lemma .3.2, hence
it has to be realized inN \ M , which implies thata′ ∈ N \ M , contradicting
q(M, ā) = q(N, ā)).

Construct〈Mi | i ≤ µ〉 increasing andI = {ai | i < µ}, ai 6∈ Mi

realizingqMi , such that:
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(1) Mi+1 ∈ K is Ds
ℵ0

-primary overMi ∪ ai;
(2) M0 = M ;
(3) Mi =

⋃
j<i Mj whenj is a limit ordinal;

(4) If b′ realizespMi , andN∗ is Ds
ℵ0

-primary overMi ∪ b′, thenq(Mi, ā) =
q(N∗, ā).

This is enough: ConsiderN Ds
ℵ0

-primary overMµ ∪ b′, whereb′ |= pMµ .
Then b′ ∈ N \ Mµ and yetq(Mµ, ā) = q(N, ā), so (*) holds. Furthermore,
‖Mµ‖ = |q(Mµ, ā)| = µ.

This is possible:

• For i = 0, this follows from the definition ofq (sendb′ to b by an automor-
phism, fixingM , to obtain a realization ofqM in N \M ).
• If i is a limit ordinal, andb′ |= pMi , then this implies thatb′ |= pMj , for

any j < i. Also, if N∗ is prime overMi ∪ b′, andc ∈ N∗ \Mi realizes
q(x, ā), thentp(c/Mib

′) is Ds
ℵ0

-isolated over somēmb, andm̄b ∈ Mj for
somej < i, hencec ∈Mj by induction hypothesis, a contradiction.
• For i = j + 1. Let b′ |= pMj andN∗ be prime overMj ∪ b′. Suppose

that c ∈ N∗ \Mj realizesq(x, ā). Then, sincec 6∈ Mj , we must have
tp(c/Mj) is big, soc |= qMj . Hence, by Lemma .5.5 we havec ^

Mj

b′. But

tp(c/Mjb
′) is Ds

ℵ0
-isolated, so by Lemma .5.6, we must havec ∈ Mj , a

contradiction. Henceq(Mi) = q(N∗) and we are done.

Let M∗ = Mµ, and fixb |= pM∗ . We now show that we can find a(D, µ)-
homogeneous modelN ∈ K of cardinalityλ such thatM∗ andN satisfy (*). This
implies the conclusion of the theorem:N is (D, µ)-homogeneous of cardinalityλ;
N is not (D, µ+)-homogeneous, sinceN omitsqM∗ ∈ SD(M∗), and‖M∗‖ = µ.

We construct〈Ni | i ≤ λ〉 increasing, andbi 6∈ Ni realizingpNi such that:

(1) b0 = b andN0 is Ds
µ-primary overM∗ ∪ b;

(2) Ni+1 is Ds
µ-primary overNi ∪ bi;

(3) Ni =
⋃

j<i Ni, wheni is a limit ordinal;
(4) ‖Ni‖ ≤ λ;
(5) Ni is (D, µ)-homogeneous;
(6) q(Ni, ā) = q(M∗, ā).

This is clearly enough:Nλ is as required.

This is possible: We constructNi by induction oni ≤ λ.

• For i = 0, let N∗ ⊆ N0 be Ds
ℵ0

-primary overM∗ ∪ b. By construc-
tion of M∗, we haveq(N∗, ā) = q(M∗, ā), so it is enough to show that
q(N∗, ā) = q(N0, ā). Suppose not and letc ∈ N0 \ N∗ realizeq(x, ā).



94 III. RANKS AND PREGEOMETRIES IN FINITE DIAGRAMS

Then,c realizesqN∗ sincetp(c/N∗) is big, and further there isA ⊆ M∗,
|A| < µ such thattp(c/Ab) isolatestp(c/M∗b). By Lemma .1.17 since
I is based onq, we haveAv(I, N∗) = qN∗ , whereI = {ai | i <
µ} ⊆ M∗ defined above. But since bothtp(c/Ab) and tp(c/M∗) are
big, we must havetp(c/Ab) = Av(I, Ab) andtp(c/M∗) = Av(I, M∗).
HenceAv(I, Ab) ` Av(I, M∗). Now, by Theorem 1..4.5, we can find
I ′ ⊆ I, |I ′| < µ such thatI \ I ′ is indiscernible overAb. Since|I| = µ,
thenI \ I ′ 6= ∅ and all elements ofI \ I ′ realizeAv(I, Ab), hence also
Av(I, M∗) = qM∗ . But this is impossible sinceI ⊆ M∗. Therefore
q(N0, ā) = q(N∗, ā) = q(M∗, ā).
• For i a limit ordinal, the only condition to check is thatNi is (D, µ)-

homogeneous, but this follows from Theorem .4.11.
• For i = j + 1, by induction hypothesis, we haveq(Nj , ā) = q(M∗, ā),

so it is enough to show thatq(Nj+1, ā) = q(Nj , ā). Supposec ∈ Nj+1

realizesq. SinceNj+1 is Ds
µ-primary overNj ∪ bj , we havetp(c/Nj ∪ bj)

is Ds
µ-isolated. Butc ^

Nj

bj , by Lemma .5.5. Therefore, by Lemma .5.6,

we have thatc ∈ Nj . This shows thatq(Nj+1, ā) = q(M∗, ā).

This completes the proof.

COROLLARY III.5.9. Let D be totally transcendental. IfK is categorical
in someλ > |T |+ |D| thenD is unidimensional.

PROOF. Otherwise, there is aD-homogeneous model of cardinalityλ and a
maximally (D, |T | + |D|)-homogeneous model of cardinalityλ. HenceK is not
categorical inλ, since these models cannot be isomorphic.

We now obtain strong structural results whenD is unidimensional.

THEOREM III.5.10. Let D be unidimensional. Then everyM ∈ K is
prime and minimal overq(M, ā), for any minimal typeq(x, ā) overM .

PROOF. Let M ∈ K be given. SinceD is totally transcendental, there exists
a minimal typeq(x, ā) over M . ConsiderA = q(M, ā). To check minimality,
suppose there wasN ∈ K, such thatA ⊆ N ⊆M . Sinceq(N, ā) = A = q(M, ā),
we must haveN = M , by unidimensionality ofD. We now show thatM is prime
overA. SinceD is totally transcendental, there isM∗ ∈ K prime overA. Hence,
we may assume thatA ⊆ M∗ ⊆ M . Now the minimality ofM implies that
M = M∗, soM is prime overA. Clearly, any other minimal type would have the
same property.

We next establish two lemmas, which are key results to carry out the geo-
metric argument for the categoricity theorem.
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LEMMA III.5.11. Let M ∈ K and suppose thatq(x, ā) is minimal over
M . If W = q(M, ā) has dimensionλ infinite, thenW realizes every extension
p ∈ SD(A) of typeq, providedA is a subset ofW of cardinality less than the
dimensionλ.

PROOF. Let p ∈ SD(A) be given extendingq. Let c ∈ C realizep. If p is
not big forM , thenp is not realized outsideM so c ∈ M . Hencec ∈ W since
p extendsq. If howeverp is big for M , thenp is big and then by Lemma .3.8
and Theorem .3.14 we have thatp = Av(I, A), whereI is any basis ofW of
cardinalityλ. But |I| = λ ≥ |A|+ + ℵ0, so by Theorem 1..4.5 and definition of
averages,Av(I, A) is realized by some element ofI ⊆ W . Hencep is realized in
W .

LEMMA III.5.12. Let D be unidimensional and letM be inK of cardi-
nality λ > |T | + |D|. Supposeq(x, ā) is minimal overM . Thenq(M, ā) has
dimensionλ.

PROOF. Let M ∈ K be given andq(x, ā) be minimal. Construct〈Mα | α <
λ〉 strictly increasing and continuous such thatā ∈ M0, Mα ⊆ M and‖Mα‖ =
|α|+ |T |+ |D|.

This is possible by Theorem .4.6: Forα = 0, just chooseM0 ⊆ M prime
over ā. For α a limit ordinal, letMα =

⋃
β<α Mβ . At successor stage, since

‖Mα‖ ≤ |α| + |T | + |D| < λ, there existsaα ∈ M \ Mα, so we can choose
Mα+1 ⊆M prime overMα ∪ aα.

This is enough: SinceD is unidimensional, we can findcα ∈Mα+1 \Mα

realizingq. By definition,tp(cα/
⋃
{cβ | β < α}) is big, sincecα 6∈ Mα. Hence

cα 6∈ cl(
⋃
{cβ | β < α}). Therefore{cα | α < λ} is independent and soq(M, ā)

has dimension at leastλ. Hence since‖M‖ = λ, thenq(M, ā) has dimension
λ.

THEOREM III.5.13. Let D be unidimensional. ThenK is categorical in
everyλ > |T |+ |D|.

PROOF. Let Ml ∈ K for l = 1, 2 be of cardinalityλ > |T | + |D|. SinceD
is totally transcendental, we can choose,q(x, ā1) minimal, with ā1 ∈ M1. Now,
sinceM2 is (D,ℵ0)-homogeneous, we can find̄a2 ∈ M2 such thattp(ā1/∅) =
tp(ā2/∅). Thenq(x, ā1) is minimal also. LetWl = q(Ml, āl) for l = 1, 2. Since
D is unidimensional, by Lemma .5.12, we havedim(Wl) = λ > |T |+|D|. Hence,
by Lemma .5.11 every type extendingq(x, āl) over a subset ofWl of cardinality
less thanλ is realized inWl, for l = 1, 2. This allows us to construct by induction
an elementary mappingg from W1 ontoW2 extending〈ā1, ā2〉. By Theorem .5.10,
Ml is prime and minimal overWl, for l = 1, 2. Hence, in particularM1 is prime
overW1, so there isf : M1 → M2 elementary extendingg. But nowran(f) is a
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(D,ℵ0)-homogeneous model containingW2, so by minimality ofM2 overW2 we
haveran(f) = M2. Hencef is also onto, and soM1 andM2 are isomorphic.

We can now summarize our results.

COROLLARY III.5.14. Let D be totally transcendental. The following
conditions are equivalent:

(1) K is categorical in everyλ > |T |+ |D|;
(2) K is categorical in someλ > |T |+ |D|;
(3) D is unidimensional;
(4) EveryM ∈ K is prime and minimal overq(M, ā), whereq(x, ā) is any

minimal type overM ;
(5) Every modelM ∈ K of cardinalityλ > |T |+ |D| is D-homogeneous.

PROOF. (1) implies (2) is trivial.
(2) implies (3) is Theorem .5.9.
(3) implies (1) is Theorem .5.13.
(3) implies (4) is Theorem .5.10.
(4) implies (3) is clear since prime models exist by Theorem .4.6.
(5) implies (1) is by back and forth construction, similarly to the corresponding
proof with saturated models.
(1) implies (5) since for eachλ > |D|+ |T | there exist a(D, λ)-homogeneous
model of cardinalityλ (e.g. by Theorem .4.6).

COROLLARY III.5.15. Let D be totally transcendental. IfK is not cate-
gorical in someλ1 > |T |+ |D|, then

(1) If T is countable, then there are at least|α|models of cardinalityℵα in K;
(2) For everyλ ≥ µ ≥ |T |+ |D| there is a maximally(D, µ)-homogeneous of

cardinalityλ.

PROOF. (1) follows from (2). For (2), notice thatD is not unidimensional by
above Corollary, so the result follows from Theorem .5.8.

COROLLARY III.5.16. Let D be totally transcendental. Suppose there is
a maximally(D, µ)-homogeneous model of cardinalityλ > |T | + |D| for some
λ > µ ≥ ℵ0. Then for everyλ ≥ µ ≥ |T | + |D| there is a maximally(D, µ)-
homogeneous of cardinalityλ.

PROOF. Notice thatM ∈ K, and soK is not categorical inλ. Hence, by the
previous corollary,D is not unidimensional, so the result follows from Theorem
.5.8.
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As a last Corollary, we obtain a generalization of Keisler’s Theorem (no-
tice thatK is the class of atomic models in this case). Wedo notassume thatD is
totally transcendental.

COROLLARY III.5.17. Let |T | < 2ℵ0 , and supposeD is the set of isolated
types ofT . The following conditions are equivalent.

(1) K is categorical in everyλ > |T |;
(2) K is categorical in someλ > |T |;
(3) D is totally transcendental and unidimensional;
(4) D is totally transcendental and every model ofK is prime and minimal

overq(M, ā), whereq(x, ā) is any minimal type overM ;
(5) Every modelM ∈ K of cardinalityλ > |T |+ |D| is D-homogeneous.

PROOF. (5) implies (1) and (2) by back and forth construction. The rest of
the proof follows from .5.14, since conditions (1), (2), (3) and (4) imply thatD is
totally transcendental. More precisely (1) and (2) imply thatD is stable in|T | <
2ℵ0 and hence totally transcendental: this is a standard fact using Ehrenfeucht-
Mostowski models. For (3) and (4) it is a hypothesis.
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CHAPTER IV

Main gap and an abstract decomposition theorem

In [Sh 131], one of his most celebrated papers, Saharon Shelah proved
what he called themain gapfor the class ofℵε-saturated models of a complete first
order theoryT .

The result consists of showing that if there are less than the maximum num-
ber of nonisomorphic models of cardinalityλ, for some cardinalλ greater than the
cardinality ofT , then the theory is superstable and satisfies NDOP. Using super-
stability and NDOP, Shelah shows that every model has a decomposition in terms
of an independent tree of small models. Furthermore, under the same assumption
as above, the tree must always be well-founded. This implies that the number of
nonisomorphic models in each cardinal is bounded by a slow growing function.
This exponential/slow growing dichotomy in the number of nonisomophic models
is what is refered to as the main gap.

About six years later, Rami Grossberg and Bradd Hart [GrHa ] realized
that the main gap phenomenon is not limited to the elementary case. They proved
the main gap for the class of models of an excellent Scott sentence (see [Sh87b]
for the definition of excellence). The crucial property allowing a decomposition is
also NDOP.

In this chapter, we introduce an axiomatic framework to prove decomposi-
tion theorems for a general class of models under NDOP. This framework is general
enough to include in the same proof [Sh 131] and [GrHa ], and includes the case
of (D, µ)-homogeneous models of a totally transcendental diagramD introduced
in Chapter IV. For nonstructure results using DOP (the failure of NDOP), the ax-
iomatization needs several levels of saturation (or homogeneity, or fullness). We
give a proof of the nonstructure parts of the theorem in the context of Chapter IV.
This gives the main gap for the classK of (D, µ)-homogeneous models of a to-
tally transcendental diagramD (for any infiniteµ). Note that, since finite diagrams
generalize the first order case, it is easy to see that the failure of a finite diagram
to be totally transcendental does not imply the existence of many models. All the
basic tools in place, we can also show, using the methods of [Sh b] or [Ha] that
λ 7→ I(λ,K) is weakly monotonic (Morley’s Conjecture) for sufficiently largeλ.

This result was presented as an abstract in the European Meeting of the
ASL in Leeds in June 1997. In January 1998, Shelah informed us that in a joint
paper with Hyttinen [HySh2] includes a similar result to the one we present here
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for superstablediagrams. The paper is not yet available, however, we suspect that
their decomposition falls within the axiomatic framework presented in Section 1.

This chapter is organized as follows.

In Section 1, we present the axiomatic framework. The aim of the frame-
work is to capture the essential features of the various contexts where decompo-
sition theorems using NDOP are known. A proof of a decomposition theorem is
given under the parallel of NDOP (Theorem I.1.29).

In Section 2, we present the necessary orthogonality calculus to show that
the class of(D,ℵ0)-homogeneous models of a totally transcendental diagramD
satisfies the axioms of Section 1. This implies that under NDOP, every(D,ℵ0)-
homogeneous model is prime and minimal over an independent tree of small mod-
els. We also prove several additional lemmas that will allow us to complete the
main gap for this class.

In Section 3, we introduce DOP (the negation of NDOP) for the class of
(D,ℵ0)-homogeneous models of a totally transcendental diagramD. We show
that DOP implies the existence of many nonisomorphic models (Theorem .3.1).

In Section 4, we work under the assumption that the class has NDOP. We
introduce depth for the class of(D,ℵ0)-homogeneous models of a totally transcen-
dental diagramD. We prove that if a class is deep then it has many nonisomor-
phic models (Theorem .4.23). Finally, we derive the main gap (Theorem .4.25).
Using the same methods, we can also derive the main gap for the class of(D, µ)-
homogeneous models of a totally transcendental diagramD.

IV.1. The axiomatic framework and decomposition theorem

LetK be a class of models in a fixed similarity typeL. Let N∗, N∗∗ ∈ K
be such thatN∗ ⊆ N∗∗. This section will study conditions on the subsets ofN∗

which guarantee that it can be decomposed.

All models will be inK. All models, sets, and elements will be subsets of
N∗. For a setA ⊆ N∗, denote byS(A) the set of complete types overA realized
in N∗∗.

At the end of this section, we included a short subsection describing some
of the known cases that this axiomatic framework covers. The reader may want to
consult it, in order to have a more concrete framework in mind.

We begin with a list of axioms.

We postulate the existence of adependence relationon subsets ofN∗, i.e.
a relation on triples of sets, writtenA ^

B
C, satisfying the following axioms. Note

that (5) is not used in the decomposition.
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AXIOM IV.1.1 (Independence).Let A, B, C and D be sets. LetM be a
model.

(1) (Definition)A ^
B

C if and only ifA ^
B

B ∪ C;

(2) (Triviality) A /̂
B

A;

(3) (Finite Character)A ^
B

C if and only if A′^
B

C ′, for all finite A′ ⊆ A,

C ′ ⊆ C;
(4) (Monotonicity) IfA ^

B
C andB ⊆ B1 ⊆M1 andC ′ ⊆ C, thenA ^

C1

B′;

(5) (ℵ0-Local Character) For everȳa andM , there exists a finiteB ⊆M such
that ā ^

B
M ;

(6) (Transitivity) IfB ⊆ C ⊆ D, thenA ^
C

D andA ^
B

C if and only ifA ^
B

D;

(7) (Symmetry over models)A ^
M

C if and only ifC ^
M

A.

(8) (Invariance) Letf be a partial elementary mapping ofN∗ withA∪B∪C ⊆
dom(f). ThenA ^

B
C if and only iff(A) ^

f(B)
f(C).

(9) (Concatenation) IfA ^
M

BC andC ^
M

B thenC ^
M

BA.

We first examine independent families.

DEFINITION IV.1.2. We say that{Bi | i < α} is independent overM if

Bi ^
M

⋃
{Bj | j 6= i, j < α},

for everyi < α.

LEMMA IV.1.3. Let{Bi | i < α} be a family of sets and assume that

Bi+1 ^
M

⋃
{Bj | j < i}, for everyi < α.(*)

Then〈Bi | i < α〉 is independent overM .

PROOF. By finite character of independence, it is enough to prove this state-
ment forα finite. We do this by induction onα, an integer.

For α = 1, (*) implies thatB1 ^
M

B0, so by symmetry over models we

haveB0 ^
M

B1, which shows that{B0, B1} is independent overM .

Assume by induction that the statement is true forα < ω. Let i ≤ α + 1
be given. We must show that

Bi ^
M

⋃
{Bj | j ≤ α + 1, j 6= i}.(**)
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If i = α + 1, then this is (*), so we may assume thati 6= α + 1 and therefore (**)
can be rewritten as

Bi ^
M

⋃
{Bj | j ≤ α, j 6= i} ∪Bα+1.

Notice that by induction hypothesis

Bi ^
M

⋃
{Bj | j ≤ α, j 6= i}

Further, by (*), we have

Bα+1 ^
M

⋃
{Bj | j ≤ α, j 6= i} ∪Bi.

Therefore (**) follows from the previous two lines by concatenation of indepen-
dence.

We will say that a set of sequencesI is a tree if it is closed under initial
segment. We will use the notationη ≺ ν to mean thatη is an initial segment ofν.

DEFINITION IV.1.4. LetI be a tree, we say that〈Mη | η ∈ I〉 ⊆ M1 is a
systemif Mη ∈ K for eachη ∈ I andMη ⊆Mν whenη ≺ ν ∈ I.

The concept in the next definition is called system in stable amalgamation
by Shelah.

DEFINITION IV.1.5. We say that〈Mη | η ∈ I〉 ⊆ M1 is an independent
systemif it is a system satisfying in addition:

Mη ^
Mη−

⋃
η 6≺ν

Mν , for everyη ∈ I.

Under our axioms, independent systems are quite independent. ForJ a
subtree ofI, denote byMJ :=

⋃
{Mη | η ∈ J}. The following is an abstract

version of Shelah’s generalized Symmetry Lemma. It appears in a similar way in
[Ma].

LEMMA IV.1.6. Let 〈Mη | η ∈ I〉 be an independent system. Then, for
anyI1, I2 subtrees ofI, we have:

MI1 ^
MI1∩I2

MI2(*)

PROOF. By the finite character of independence, it is enough to prove (*) for
finite treesI. We prove this by induction on|I1 ∪ I2|.

First, if I2 ⊆ I1, then it is obvious. Thus, assume that there isη ∈ I2 \ I1,
and chooseη of maximal length. LetJ2 := I2 \ {η}. Notice that by choice ofη,
we haveMI1∩J2 = MI1∩I2 . By induction hypothesis, we have that

MI1 ^
MI1∩I2

MJ2 .(*)
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SinceMη− ⊆MJ2 , by monotonicity (*) implies that

MI1 ^
Mη−

MJ2 .(**)

By definition of independent system and monotonicity we have

Mη ^
Mη−

MI1 ∪MJ2 .(***)

Therefore, by concatenation applied to (**) and (***), we can conclude that

MI1 ^
Mη−

MI2 .(†)

Now, using (*) and monotonicity we have

MI1 ^
MI1∩I2

Mη− .(‡)

Thus, the transitivity property applied to (†) and (‡), implies that

MI1 ^
MI1∩I2

MI2 .

This finishes the proof.

We now introduce the dependence relation on types; the invariance of the
dependence relation makes it natural. We set a few standard definitions in this
context.

DEFINITION IV.1.7. (1) We say thatp ∈ S(A) is freeoverB ⊆ A if
for everyM ⊇ A andā ∈M realizingp, we havēa ^

B
A;

(2) We say thatp ∈ S(A) is stationaryif for everyM containingA, there is a
unique extensionpM ∈ S(M) of p such thatpM is free overA.

(3) We say that the stationary typep ∈ S(A) is based onB if p is free overB.

AXIOM IV.1.8 (Existence of Stationary types).LetM ∈ K. Then anyp ∈
S(M) is stationary.

Note that by the local character of the dependence relation, any stationary
type is based on a finite set.

We now introduce a strong independence between stationary types: or-
thogonality.

DEFINITION IV.1.9. Let p ∈ S(B) andq ∈ S(A) be stationary. We say
thatp is orthogonalto q, writtenp ⊥ q, if for everyM ∈ K containingA ∪B and
for everya |= pM andb |= qM , we havea ^

M
b.
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By symmetry of independence,p ⊥ q if and only if q ⊥ p. Also, if
p ∈ S(A) andq ∈ S(B) are stationary withA ⊆ B, then by definitionp ⊥ q if
and only ifpB ⊥ q.

We now expand this definition to orthogonality against models.

DEFINITION IV.1.10.

(1) Let p ∈ S(A) be stationary. We say thatp is orthogonal toM , written
p ⊥M , if p is orthogonal to eachq ∈ S(M).

(2) If M0 ⊆ M1 ∩M2, we write thatM1/M0 ⊥ M2 if and only if p ⊥ M2,
for everyp ∈ S(M0) realized inM1.

We now concentrate on a special kind of types: regular types. It follows
from the definition of that over the set of elements realizing a regular type, the
dependence relation satisfies the axioms of a pregeometry.

DEFINITION IV.1.11. A stationary typep ∈ S(A) is calledregular if there
exist a finiteB and a set of formulasp(x, b̄) ⊆ p ¹ B, such thatp is based onB and
for everyM containingA and everyq ∈ S(M) extendingp(x, b̄) eitherq = pM

or q ⊥ p.

AXIOM IV.1.12 (Parallelism).Let p, q ∈ S(M), be regular types. LetN
containM . Thenp ⊥ q if and only ifpN ⊥ qN .

LEMMA IV.1.13. Let M ⊆ M1. If p ∈ S(M) is regular, thenpM1 ∈
S(M1) is regular.

PROOF. Let p ∈ S(M) be regular. LetB ⊆ M and p(x, b̄) be as in the
definition. Then,pM1 is stationary based inB. Let q ∈ S(N) extendp(x, b̄). Then
eitherq = pN = (pM1)N or q ⊥ p. Hence by definition of⊥ we haveq ⊥ pM1 .
This shows thatq is regular.

AXIOM IV.1.14 (Existence of Regular types).If M ⊆ N and M 6= N ,
then there exists a regular typep ∈ S(M) realized inN \M .

The next three axioms guarantees that it is enough to focus on regular
types.

AXIOM IV.1.15 (Perp I). Let M, N ∈ K such thatM ⊆ N . Let p ∈
S(N) be regular. Thenp ⊥ M if and only if p ⊥ q, for every regular typeq ∈
S(M).

DEFINITION IV.1.16. We say that a modelM(A) is primeoverA ⊆M1,
if for every N containingA, there exists an elementary embeddingf : M(A) →
N , which is the identity onA.

The next few axioms assert that prime models exist under some circum-
stances.
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AXIOM IV.1.17 (Prime models).

(1) LetM1 ∈ K. There exists a prime modelM∅ ⊆M1 over∅;
(2) If ā ∈M1 \M (whereā is finite) then there is a prime modelM(ā) ⊆M1

overM ∪ ā;
(3) If 〈Mη | η ∈ I〉 ⊆ M1 is an independent system, then there exists a prime

modelM(AI) ⊆M1 over
⋃

η∈I Mη.

This is to establish connections with the dependence relation and orthogo-
nality.

AXIOM IV.1.18 (Equivalence).LetM ∈ K and letp, q ∈ S(M) be regu-
lar and let b̄ 6∈M realizep. Thenq is realized inM(b̄) \M if and only ifp 6⊥ q.

Note that by Equivalence, the relation6⊥ among regular types (over the
same base set) is an equivalence relation.

LEMMA IV.1.19. Let M0 ⊆ M ⊆ M ′ ⊆ N . Let p ∈ S(M ′) be regular
realized inN \M ′ andq ∈ S(M) such thatp 6⊥ q. Letr ∈ S(M0) be regular. If
p ⊥ r thenq ⊥ r.

PROOF. By Lemma I.1.13, the typesrM ′ andqM ′ are regular. By definition,
p 6⊥ qM ′ . If q 6⊥ r, thenqM ′ 6⊥ rM ′ . By the axiom of parallelism,p ⊥ r if and
only if p ⊥ rM ′ andq ⊥ r if and only if qM ′ ⊥ rM ′ . The conclusion follows from
the equivalence axiom.

AXIOM IV.1.20 (Prime base).If M ′ is a prime model over
⋃

η∈I Mη, where
〈Mη | η ∈ I〉 is an independent system and letp ∈ S(M ′) is regular. Then there
exists a finite subtreeJ ⊆ I and a modelM∗ prime over

⋃
η∈J Mη such thatp is

based onM∗.

AXIOM IV.1.21 (Dominance).

(1) Leta be such thattp(a/M) is regular. For eachC, if a ^
M

C thenM(a) ^
M

C;

(2) Let 〈Mη | η ∈ I〉 be an independent system and letM(AI) be prime over
it. Then, for eachC, if

⋃
{Mη | η ∈ I}^

M
C thenM(AI) ^

M
C.

LEMMA IV.1.22. Letp = tp(a/M) be regular and suppose thatp ⊥M1,
with M1 ⊆M . ThenM(a)/M ⊥M1.

PROOF. By axiom (Perp I) it is enough to show that any regular typeq ∈
S(M) realized inM(a) \M is orthogonal to any regular typer over M1. But,
if q is regular realized inM(a) \M , then by Equivalence we must haveq 6⊥ p.
Sincep ⊥M1 by assumption, thenp ⊥ r. Then, by definition,q ⊥ r if and only if
q ⊥ rM . Hence, we conclude by Equivalence.
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LEMMA IV.1.23. LetM0 ⊆M and letā1, ā2 such that̄a1 ^
M

ā2. Suppose

that tp(āi/M) ⊥M0, for i = 1, 2. LetB be such thatB ^
M

M0, thenā1ā2 ^
M

B.

PROOF. By finite character of independence, it is enough to prove this for
finite B. Let b̄ be finite such that

b̄ ^
M

M0,(*)

First, sincetp(ā2/M) ⊥M0, (*) implies that

ā2 ^
M

b̄.(**)

Thus, by symmetry, we must haveb̄ ^
M

ā2, which shows that̄b |= tp(b̄/M) ¹Mā2.

By assumption, we have that

ā1 ^
M

ā2,(***)

and thusā1 |= tp(ā1/M) ¹ Mā2. But, tp(ā1/M) ⊥ tp(b̄/M), so by defini-
tion, we must havēa1 ^

Mā2

b̄. By the first axiom of the dependence relation, we

haveā1 ^
Mā2

b̄ā2. By transitivity using (***), we obtain̄a1 ^
M

b̄ā2. Hence, by the

concatenation property of independence and (†) again, we can derive

ā1ā2 ^
M0

b̄,

which is what we wanted.

COROLLARY IV.1.24. LetM ⊆ N . Let〈Ai | i < α〉 be independent over
N , such thatAi/N ⊥ M , for eachi < α. Let B be such thatB ^

M
N . Then⋃

{Ai | i < α}^
M

B.

PROOF. By finite character of independence and monotonicity, we may as-
sume thatα < ω. We prove the statement by induction onα and use the previous
lemma at the successor step.

COROLLARY IV.1.25. Let 〈Mη | η ∈ I〉 be a system satisfying:

(1) 〈Mη | η− = ν, η ∈ I〉 is independent overMν , for everyν ∈ I;
(2) The typetp(Mη/Mη−) ⊥Mη−− , for everyη ∈ I.

Then〈Mη | η ∈ I〉 is an independent system.
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PROOF. By the finite character of independence, we may assume thatI is
finite. We prove this statement by induction on|I|. First, notice that if there is no
η ∈ I such thatη−− exists, then the result follows from (1). We must show that

Mη ^
Mη−

⋃
{Mν | η 6≺ ν, ν ∈ I}.

Chooseν ∈ I of maximal length such thatη 6≺ ν. Let

I1 := {ρ | η 6≺ ρ, ν− ≺ ρ andρ 6= ν}.
Then, by (1), the system

〈Mρ, Mν | ρ ∈ I1〉, is independent overMν− .(*)

Let

I2 := {ρ | η 6≺ ρ, ν− 6≺ ρ}.
By induction hypothesis

Mν− ^
Mν−−

MI2Mη.(**)

Hence, by the previous corollary, using (*), symmetry on (**) and the fact that
Mρ/Mν− ⊥Mν−− , for ρ ∈ I1 or ρ = ν, we conclude that

MνMI1 ^
Mν−

MI2Mη.(***)

Now, by induction hypothesis, we must haveMI2 ^
Mν−

Mη, so by concatenation,

we must have

Mη ^
Mν−

MI1MI2Mν .(†)

Now, Mη ^
Mη−

Mν− by monotonicity and induction hypothesis. Therefore, using

(†), transitivity and the definition ofI1 andI2, we conclude that

Mη ^
Mη−

⋃
{Mν | η 6≺ ν, ν ∈ I}.

DEFINITION IV.1.26. N∗ has NDOP if for everyM0, M1, M2 ⊆ N∗ such
thatM1 ^

M0

M2, for everyM ′ ⊆ N∗ prime overM1 ∪M2 and for every regular

typep ∈ S(M ′). If p is realized inN∗ \M ′, then eitherp 6⊥M1 or p 6⊥M2.

THEOREM IV.1.27. SupposeN∗ has NDOP. LetM, Mη ⊆ N∗, for η ∈ I
be such that〈Mη | η ∈ I〉 is an independent system andM is prime over it.
Let a ∈ N∗ \ M be such thattp(a/M) is regular. Then there isη such that
tp(a/M) 6⊥Mη.



108 IV. MAIN GAP AND AN ABSTRACT DECOMPOSITION THEOREM

PROOF. Let p = tp(a/M). Suppose thatp ⊥ Mη for everyη ∈ I. By the
prime base axiom and parallelism we may assume thatI is finite. We will obtain a
contradiction to NDOP by induction on|I|.

If I = {η ¹ k : k < n}, it is obvious because
⋃

ν∈I Mν = Mη, so by
definition of prime, we haveM ′ = Mη. But p 6⊥ p by triviality of independence.
Therefore,p 6⊥Mη by definition.

Otherwise, there existsν ∈ I such that both subtreesI1 := {η : η ∈ I ν ≺
η} andI2 := {η : η ∈ I ν 6≺ η} are nonempty. By the third axiom on prime
models, we can chooseMk prime over

⋃
η∈Ik

Mη for k = 1, 2. By induction
hypothesis, we have

p ⊥M1 and p ⊥M2.

Furthermore, since〈Mη | η ∈ I〉 is an independent system, we have⋃
η∈I1

Mη ^
Mν

⋃
η∈I2

Mη.

Therefore, by the symmetry of independence and dominance, we must have

M1 ^
Mν

M2.

But, M ′ is prime overM1 ∪M2. This contradicts the fact thatN∗ has NDOP.

An ω-tree is simply a tree of height at mostω.

DEFINITION IV.1.28. We say that〈Mη, aη | η ∈ I〉 is adecomposition of
N∗ overM if it satisfies the following conditions:

(1) I is anω-tree;
(2) 〈Mη | η ∈ I〉 is a system withMη ⊆ N∗ for eachη ∈ I;
(3) If η−− exists forη ∈ I, thenMη/Mη− ⊥Mη−− ;
(4) For everyν ∈ I the system〈Mη | η− = ν, η ∈ I〉 is independent overMν .
(5) M〈〉 = M andMη is prime overMη− ∪ aη;
(6) For everyη ∈ I, the typetp(aη/Mη−) is regular.

We say that〈Mη, aη | η ∈ I〉 is adecomposition ofN∗ if it is a decomposition of
N∗ overM〈〉 the prime model over the empty set.

We can introduce an ordering between decompositions ofN∗ overM as
follows: We say that

〈Mη, aη | η ∈ I〉 ≺ 〈Nη, bη | η ∈ J〉
if I ⊆ J and for everyη ∈ I we have

Mη = Nη, and aη = bη.
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It is now easy to show that the set of decompositions ofN∗ is inductive:
Let 〈Si | i < α〉 be a chain of decompositionsSi = 〈M i

η, a
i
η | η ∈ Ii〉. First,

let I :=
⋃

i<α Ii. ThenI is anω-tree. Hence, we can define the systemS :=
〈Mη, aη | η ∈ I〉, by Mη := M i

η if η ∈ Ii andaη := ai
η, if η ∈ Ii. This is well-

defined since〈Si | i < α〉 is chain. We need to check thatS is a decomposition of
N∗. The only nontrivial fact is to check that for everyν ∈ I the system

〈Mη | η− = ν, η ∈ I〉
is independent overMν . If it failed, then by finite character, there would be a finite
setF ⊆ I such that

〈Mη | η− = ν, η ∈ F 〉
is not independent. By then, there existsi < α such thatF ⊆ Ii, contradicting the
fact thatSi is a decomposition ofN∗.

Recall that we say that a modelN is minimal over A if prime models
exist overA and if M(A) ⊆ N is prime overA, thenN = M(A). Note that a
decomposition as in the next theorem is calledcomplete.

THEOREM IV.1.29. SupposeN∗ has NDOP. Then for everyM ⊆ N∗,
there exists〈Mη, aη | η ∈ I〉 a decomposition ofN∗ overM such thatN∗ is prime
and minimal over

⋃
η∈I Mη.

PROOF. First, notice that the set of decompositions ofN∗ overM is not empty.
Therefore, by Zorn’s Lemma, since the set of decompositions ofN∗ over M is
inductive, there exists a maximal decomposition

〈Mη, aη | η ∈ I〉.(*)

By Lemma I.1.25, we know that〈Mη | η ∈ I〉 is an independent system. There-
fore, by the third axiom for prime models, there existsM ′ ⊆ N∗ prime over⋃

η∈I Mη. We will show thatM ′ = N∗. This will show thatN∗ is prime and
minimal over

⋃
η∈I Mη.

Suppose thatM ′ 6= N∗. Then, by the axiom of existence of regular types,
there exists a regular typep ∈ S(M ′) realized inN∗ \ M ′. We are going to
contradict the maximality of〈Mη, aη | η ∈ I〉. SinceN∗ has NDOP, by Theo-
rem I.1.27, there existsη ∈ I such thatp 6⊥Mη. Chooseη of smallest length such
thatp 6⊥ Mη. By axiom (Perp I), there exists a regular typeq ∈ S(Mη) such that
p 6⊥ q. Sinceq is stationary, we can chooseqM ′ the unique free extension ofq to
the prime modelM ′. Then, by Lemma I.1.13, the typeqM ′ is regular. Sincep 6⊥ q
andp ∈ S(M ′), by definitionp 6⊥ qM ′ . By Equivalence, sincep is realized in
N \M ′, there existsa ∈ N \M ′ realizingq ¹ M ′. Hencetp(a/M ′) = qM ′ and
by choice ofqM ′ , this implies that

a ^
Mη

M ′.(**)
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Sincetp(a/Mη) is regular anda ∈ N \Mη, by the second axiom on prime models,
there exists a prime modelM(a) ⊆ N∗ overMη ∪ a. By dominance and (**) we
must have

M(a) ^
Mη

M ′.

Thus, by monotonicity of independence and choice ofM ′, we conclude that

M(a) ^
Mη

⋃
{Mν | ν− = η, ν ∈ I}.(***)

But {Mν | ν− = η} is independent by definition of decomposition. Thus, (***)
and Lemma I.1.3 implies that

{Mν , M(a) | ν− = η, ν ∈ I}
is independent overMη. Suppose now thatη− exists. By choice ofη we must have
p ⊥Mη− . Sincep 6⊥ tp(a/Mη), we must have by Lemma I.1.19 and axiom (Perp
I) that tp(a/Mη) ⊥ Mη− . Hence, by Lemma I.1.22, we must haveM(a)/Mη ⊥
Mη− . This shows that we can addtp(a/Mη) andM(a) to (*) and still have a
decomposition ofN∗. This contradicts the maximality of (*). ThusN∗ is prime
and minimal over

⋃
η∈I Mη.

COROLLARY IV.1.30. If N∗ has NDOP, there exists a complete decompo-
sition ofN∗.

PROOF. By the previous theorem since by axiom on prime models there exists
a prime model over the empty set.

The same proof shows:

COROLLARY IV.1.31. If N∗ has NDOP andN∗ is prime over a decompo-
sition〈Mη | η ∈ I〉 of N∗ overM , then〈Mη | η ∈ I〉 is a complete decomposition
of N∗ overM .

IV.1.0.1. Examples.The abstract decomposition given in the section above
generalizes the known NDOP cases.

There are several classical first order cases. The first one is forℵ0-saturated
models of a totally transcendental theoryT . A second one is forℵε-saturated
models of a superstable theoryT . And finally, for the class of models of a totally
transcendental theoryT . In each case,N∗∗ can be taken to be the monster model
for T . The independence relation is forking. Regular types in the first two cases
are just the regular types in the sense of first order. In the last case, they correspond
to strongly regular types. The prime models are theF s

ℵ0
-primary models, theℵε-

primary models for the second case, and theF t
ℵ0

-primary models in the third case.
All the results needed to apply the theorem can be found in [Sh b].



IV.2. ORTHOGONALITY CALCULUS IN FINITE DIAGRAMS 111

In the nonelementary case, there is one published example: the models of
an excellent Scott sentence inLω1,ω [GrHa ]. The modelN∗∗ can be taken to be
any sufficiently large full model overN∗. The dependence relation is that afforded
by the rank. Regular types are the SR types. The existence of prime models follows
from excellence (see [Sh87a], [Sh87b], and [GrHa ]).

The aim of the next section is to prove that the axiomatic framework de-
veloped in this section holds for the classK of (D,ℵ0)-homogeneous models of a
totally transcendentalD. Let N∗ be aD-model andN∗∗ = C.

Thedependence relationis given by the rank; the axioms for independence
were verified in Theorem .2.3. Thestationary typescorrespond to the ones in
Chapter III, and the axiom postulating their existence follows from Corollary .1.10.
As for regular types, they are defined slightly differently in the previous section, but
by inspecting the proof, one sees easily that their existence follows from Theorem
.3.10. Finally, the prime models are theDs

ℵ0
-models of Chapter III. Then their

existence follows from Theorem .4.6. By definition of isolation, Axiom (Prime
base) also holds immediately, since stationary types are based on a finite set.

This leaves us with the proof of Parallelism, Equivalence, and Dominance.
These results are part of what is called Orthogonality Calculus.

Note also that in each of the known cases, the failure of NDOP implies the
existence of many nonisomorphic models. This will be the object of section 3 for
totally transcendental diagrams.

IV.2. Orthogonality calculus in finite diagrams

In this section, the context is that of totally transcendental diagrams. We
already establised in Chapter III that many of the axioms of the previous section
hold for totally transcendental diagrams. We will now develop what is refered to
asorthogonality calculusfor this context and show that the remaining axioms used
to obtain an abstract decomposition theorem also hold for the class of(D,ℵ0)-
homogenous models of a totally transcendental diagramD.

Note that some results falling under orthogonality calculus were already
proved in the last section of Chapter III.

The next few lemmas show Dominance.

First, for D-setsA andB, we say thatA ⊆TV B, if every D-type over
finitely many parameters inA realized inB is realized inA. The subscript TV
stands for Tarski-Vaught.

LEMMA IV.2.1. Let M be (D,ℵ0)-homogeneous. Supposeā ^
M

b̄. Then,

for everym̄ ∈M the typetp(b̄/m̄ā) is realized inM .
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PROOF. By symmetry,̄b ^
M

ā. Hence, by taking a larger̄m if necessary, we

may assume thattp(b̄/Mā) does not split over̄m. By (D,ℵ0)-homogeneity ofM ,
we can find̄b′ ∈ M , such thattp(b̄/m̄) = tp(b̄′/m̄). We claim thattp(b̄/m̄ā) =
tp(b̄′/m̄ā). If not, there exists a formulaφ(x̄, m̄, ā) such that|= φ[b̄, m̄, ā] and
|= ¬φ[b̄′, m̄, ā]. But, tp(b̄/m̄) = tp(b̄′/m̄), sotp(ā/Mb̄) splits overm̄, a contra-
diction.

The next lemma is standard.

LEMMA IV.2.2. Let A, B be D-sets such thatA ⊆TV B. If tp(c̄/A) is
Ds
ℵ0

-isolated, thentp(c̄/A) ` tp(c̄/B).

PROOF. Letq(x̄, ā) ` tp(c̄/A), with ā ∈ A. Suppose thattp(c̄/A) 6` tp(c̄/B).
Then, there exists̄b ∈ B and a formulaφ(x̄, ȳ) such thatq(x̄, ā) ∪ φ(x̄, b̄) and
q(x̄, ā) ∪ ¬φ(x̄, b̄) are both realized inC. By assumption, there exists̄b′ ∈ A re-
alizing be such thattp(b̄/ā) = tp(c̄/c̄). Hence, by an automorphism fixinḡa and
sendinḡb to b̄′, bothq(x̄, ā) ∪ φ(x̄, b̄′) andq(x̄, ā) ∪ ¬φ(x̄, b̄′) are realized inC.
This contradicts the choice ofq(x̄, ā).

Recall that we denote byM(A) theDs
ℵ0

-primary model overM ∪A.

THEOREM IV.2.3 (Dominance).Let M be (D,ℵ0)-homogeneous andA
be aD-set. For eachB, if A ^

M
B, thenM(A) ^

M
B.

PROOF. By finite character of independence, it is enough to show that ifā ^
M

b̄,

thenc̄ ^
M

b̄, for each finitēc ∈ M(ā). Let c̄ ∈ M(ā) be given. Thentp(c̄/Mā) is

Ds
ℵ0

-isolated. Hence, by assumption and Lemma .2.1,tp(c̄/Mā) ` tp(c̄/Māb̄).
Therefore,̄c ^

M
b̄.

Recall the definitions of orthogonality.

DEFINITION IV.2.4. Let p ∈ SD(B) andq ∈ SD(A) be stationary. We
say thatp is orthogonalto q, written p ⊥ q, if for every D-modelM containing
A ∪B and for everya |= pM andb |= qM , we havea ^

M
b;

Then, by Lemma .5.5 of Chapter III, we can immediately simplify the
definition: forp, q ∈ SD(M), we havep ⊥ q if and only if ā ^

M
b̄ for everyā |= p

andb̄ |= q.

The following lemma is a particular case of Lemma .5.6 of Chapter III.
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LEMMA IV.2.5. LetM be(D,ℵ0)-homogeneous. If̄a ^
M

b̄ andtp(ā/Mb̄)

is Ds
ℵ0

-isolated, then̄a ∈M .

LEMMA IV.2.6. Lettp(ā/Mb̄) be isolated, andtp(b̄/M) be regular. Sup-
pose that̄a /̂

M
b̄. Then, for anȳc if ā ^

M
c̄, thenb̄ ^

M
c̄.

PROOF. Suppose that̄b /̂
M

c̄. By symmetry, we have thatc̄ /̂
M

b̄. Letq(x̄, m̄, b̄) ⊆

tp(c̄/Mb̄) be such that

R[q(z̄, m̄, b̄)] = R[tp(c̄/Mb̄)] < R[tp(c̄/M)].

Without loss of generality, sincēa /̂
M

b̄, we can choosep(x̄, m̄, b̄) ⊆ tp(ā/Mb̄) be

such that

R[p(ȳ, m̄, ā)] = R[tp(b̄/Mā)] < R[tp(b̄/M)]

and also

R[p(b̄, m̄, x̄)] = R[tp(ā/Mb̄)] < R[tp(ā/M)].

Choosēc′ ∈M such thattp(c̄/m̄) = tp(c̄′/m̄). Sinceā ^
M

c̄, we have in particular

that tp(ā/Mc̄) does not split over̄m so thattp(c̄/m̄ā) = tp(c̄′/m̄ā). Thus, b̄
realizes the following type

p(ȳ, m̄, ā) ∪ q(ā, m̄, ȳ) ∪ tp(b̄/m̄).(*)

Sincetp(ā/Mb̄) is isolated, we may assume thatM(ā) ⊆ M(b̄). Now choose
b̄′ ∈ M(ā) realizing (*). If b̄′ ∈ M , then R[tp(ā/M)] ≤ R[tp(ā/m̄b̄′)] =
R[p(b̄′, m̄, x̄)], a contradiction. Hencēb′ 6∈ M and sob̄′ /̂

M
b̄, by the previous

lemma. Thustp(b̄′/M) extendstp(b̄/m̄) and is not orthogonal to it, thus since
tp(b̄/M) is regular based on̄m, we must havetp(b̄′/M) = tp(b̄/M). This is a
contradiction, since then,b̄′ realizesq(c̄′, m̄, ȳ).

The next corollary is Equivalence.

COROLLARY IV.2.7 (Equivalence).Let M ∈ K, let p, q ∈ SD(M) be
regular, and let̄b 6∈ M realizep. Thenq is realized inM(b̄) \M if and only if
p 6⊥ q.

PROOF. Let b̄ ∈M realizep. Let M(b̄) beDs
ℵ0

-primary overM ∪ b̄.

Let ā ∈M(b̄)\M . Thentp(ā/Mb̄) is Ds
ℵ0

-isolated. Ifp ⊥ q, thenb̄ ^
M

ā.

Hence, by symmetrȳa ^
M

b̄, and sōa ∈M , by Lemma .2.5, a contradiction.
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For the converse, suppose thatp 6⊥ q. This implies that there is̄a |= q such
that

ā /̂
M

b̄.

Let q(x̄, m̄, b̄) ⊆ tp(ā/Mb̄) be such that

R[q(x̄, m̄, b̄)] = R[tp(ā/Mb̄)] < R[q].

Sinceq is regular, we may further assume thatq is based on̄m. Thus, the element
ā realizes the type

q(x̄, m̄, b̄) ∪ q ¹ m̄.(*)

SinceM(b̄) is in particular(D,ℵ0)-homogeneous, there is̄a′ ∈M(b̄) realizing the
type (*). SinceM(b̄) is (D,ℵ0)-primary, we must have thattp(ā′/Mb̄) is isolated.
Thus, sincēb /̂

M
ā, we must have by the Lemma .2.6 thatā′ /̂

M
ā. This implies that

tp(ā′/M) is an extension of the regular typeq ¹ m̄ which is not orthogonal to
q. Hence, sinceq is regular, we must haveq = tp(ā′/M). This shows thatq is
realized (bȳa′) in M(b̄).

We prove the axiom of Parallelism.

THEOREM IV.2.8 (Parallelism).Letp, q ∈ S(M) be regular types. LetN
containM . Thenp ⊥ q if and only ifpN ⊥ qN .

PROOF. Certainly, ifp ⊥ q, thenpN ⊥ qN . Now suppose thatpN ⊥ qN . Let
b̄ |= pN . Then b̄ |= p and by Equivalence,p ⊥ r if and only if r is realized in
M(b̄), the prime model overM ∪ b̄. Suppose that there is̄a ∈M(b̄) \M realizing
r. Let N(b̄) be the prime model overN ∪ b̄. Then ā ∈ N(b̄). But, notice that
tp(ā/Mb̄) is Ds

ℵ0
-isolated, andMb̄ ⊆TV Nb̄. Hence,tp(ā/Mb̄) ` tp(ā/Nb̄).

This impliesā ^
N

b̄ andā 6∈ N . But, by stationarity,̄a |= qN . Hence,qN is realized

in N(b̄) \N , soqN 6⊥ pN , a contradiction.

We encountered Morley sequences when we talked about stationary types
in the previous chapter. The definition can be made for any type.

DEFINITION IV.2.9. Letp ∈ SD(A). We say that〈āi | i < ω〉 is aMorley
sequencefor p if

(1) The sequence〈āi | i < ω〉 is indiscernible overA;
(2) For everyi < ω we havēai ^

A
A ∪ {āj | j < i}.

The next fact was established in the previous chapter.

FACT IV.2.10. If p ∈ SD(A) is stationary, then there is a Morley sequence
for p.
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The next theorem is Axiom (Perp I).

THEOREM IV.2.11 (Perp I). Let p ∈ SD(N) be regular,M ⊆ N . Then
p ⊥M if and only ifp ⊥ q, for every regularq ∈ S(M).

PROOF. One direction is obvious. Suppose thatp 6⊥M . We will find a regular
typeq ∈ SD(M) such thatp 6⊥ q.

Sincep is regular, there exists a finite setf̄ ⊆ N such thatp is regular over
f̄ . Write p(x̄, f̄) for the stationary typepf̄ . Also, there exists a finite set̄e ⊆ M

such thattp(f̄/M) is based on̄e. Sincep 6⊥ M , there exists a stationary type
r ∈ S(M) such thatp 6⊥ r. By monotonicity, we can find̄a |= p, b̄ |= rN such that
ā /̂

ē
f̄ b̄.

SinceM is (D,ℵ0)-homogeneous, there exists〈f̄i | i < ω〉 ⊆ M , a
Morley sequence fortp(f̄/ē). Let pi := p(x̄, f̄i)M . This is well-defined since
p(x̄, f̄) is stationary andtp(f̄/ē) = tp(f̄i/ē), sop(x̄, f̄i) is stationary.

For eachi < ω, we can chooseMi ⊆ N such that there is an automor-
phismgi with gi(f̄) = f̄i, gi(c̄) = c̄ andgi(M) = Mi. SincepMi is regular and
pi = g−1(pMi), then

pi is regular, for eachi < ω.(*)

A similar reasoning using an automorphisms sendingf̄ f̄0 to f̄if̄j shows that

p ⊥ p0 impliespi ⊥ pj , for everyi 6= j < ω.(**)

Finally, using the fact thatp 6⊥ r, we can derive

pi 6⊥ r, for everyi < ω.(***)

If we show thatp 6⊥ p0, then (*) implies the conclusion of the lemma. Suppose, for
a contradiction, thatp ⊥ p0. By (***) we can find b̄′ |= r andāi |= pi, such that
b̄′ /̂

M
āi andāi 6∈ M , for eachi < ω. Now (**) implies thatāj+1 ^

M
{āi | i ≤ j},

for everyj < ω. Hence, by (*) and Lemma .2.5, we haveāi+1 6∈ Mi, whereMi

is Ds
ℵ0

-primary overM ∪ {āj | j < i}. Let N beDs
ℵ0

-primary overM ∪ {āj |
j < ω}. Sinceκ(D) = ℵ0, there existsn < ω such that̄b′ ^

Mn

N . Hence, by

monotonicity,̄b′ ^
Mn

ān. By symmetry over models,̄an ^
Mn

b̄′. But ān ^
M
{āi | i <

n}, and sōan ^
M

Mn, by dominance and symmetry. Hence, by transitivity of the

independence relation, we haveān ^
M

b̄′, sob̄′ ^
M

ān, a contradiction.

We now prove two additional lemmas that will be used in the next section.
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LEMMA IV.2.12. If p ∈ S(M1) is regular,p ⊥M0, andM1 ^
M0

M2, then

p ⊥M2.

PROOF. Suppose thatp 6⊥ M2. Then, by definition, there existsq ∈ S(M2)
such thatp 6⊥ q. By definition, there isN ⊇M1 ∪M2 such that

pN 6⊥ qN .(*)

We are going to find a typeq′ ∈ S(M0) such thatp 6⊥ q′.

Sincep and q are stationary, there exist finite setsc̄ ⊆ M1, d̄ ⊆ M2,
and ē ⊆ M0 such thatp is based on̄c, q is based on̄d, and bothtp(c̄/M0) and
tp(d̄/M0) are based on̄e.

By (*) and finite character, there exist a setF ⊆ N , andā, b̄ such that

ā |= pM1M2F , b̄ |= qM1M2F , but ā /̂
M1M2F

b̄.(**)

By monotonicity, we may assume thatc̄d̄ē ⊆ F . Sincetp(āb̄/N) is stationary, we
may also assume thattp(āb̄/M1M2F ) is stationary based onF . Finally, we may
further assume thatR[tp(ā/c̄)] < R[tp(ā/c̄F )].

SinceM0 is (D,ℵ0)-homogeneous, we can choosed̄′ ∈ M0 such that
tp(d̄′/ē) = tp(d̄/ē). By stationarity, we havetp(c̄d̄ē/∅) = tp(c̄d̄ē/∅). Now
chooseF ′ ⊆ M1 such thattp(c̄d̄ēF/∅) = tp(c̄d̄′ēF/∅). Finally, let ā′b̄′ ∈ C such
thattp(āb̄c̄d̄ēF/∅) = tp(ā′b̄′c̄d̄′ēF ′/∅).

By invariance under automorphism, we obtain:R[tp(ā′/c̄)] = R[tp(ā′/F ′)]
andR[tp(b̄′/d̄′)] = R[tp(b̄′/F ′)], since these statements are true without the′.

Now let q′ := tp(b̄′/d̄′)M0 ∈ S(M0). Such a type exists sincetp(b̄′/d̄′)
is stationary. We claim thatp 6⊥ q′. Otherwise, by the previous remark, we have
p ⊥ q′M1

. Now, let ā′′b̄′′ |= tp(ā′b̄′/F ′). We haveā′′ |= p, b̄′′ |= q′M1
and so

ā′′ |= pM1b̄′′ . But thenR[tp(ā′′/c̄)] = R[tp(ā′′/b̄′′F ′)] This contradicts the fact
thattp(ā′b̄′/F ′) = tp(ā′′b̄′′/F ′).

LEMMA IV.2.13. Let p, q ∈ SD(M) be regular. Let̄a 6∈ M realizep. If
p 6⊥ q, then there exists̄b ∈M(ā) \M realizingq such thatM(ā) = M(b̄).

PROOF. By equivalence, there existsb̄ ∈M(ā) \M realizingq. By definition
of prime, it is enough to show thattp(ā/Mb̄) is Ds

ℵ0
-isolated.

Let c̄ ∈ M be finite such thatp is regular over̄c, and writep(x̄, c̄) = p ¹
c̄. Now, sincetp(b̄/Mā) is Ds

ℵ0
-isolated, there existsr1(ȳ, ā) over M isolating

tp(b̄/Mā). By a previous lemma, we know thatā /̂
M

b̄, so letr2(x̄, b̄) witness this.
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We claim that the following type isolatestp(ā/Mb̄):

p(x̄, c̄) ∪ r1(b̄, x̄) ∪ r2(x̄, b̄).(*)

Let ā′ ∈ M(ā) realize (*). Then,̄a′ 6∈ M by choice ofr1. Hence,̄a /̂
M

ā′ so by

choice ofp(x̄, c̄), we havetp(ā′/M) = tp(ā/M). Thus,tp(ā/Mb̄) = tp(ā′/Mb̄)
usingr2(ā′, ȳ).

We can now show using the language of Section 1.

THEOREM IV.2.14. Let K be the class of(D,ℵ0)-homogeneous models
of a totally transcendental diagramD. Let N ∈ K have NDOP. ThenN has a
complete decomposition.

PROOF. All the axioms of Section 1 have been checked forK.

REMARK IV.2.15. Similary to the methods developed in this section for
the class of(D,ℵ0)-homogeneous models of a totally transcendental diagramD,
we can check all the axioms for the class of(D, µ)-homogeneous models of a
totally transcendental diagramD, for any infiniteµ. This implies that ifK is the
class of(D, µ)-homogeneous models of a totally transcendental diagramD and if
N ∈ K has NDOP, thenN has a complete decomposition (in terms of models of
K).

IV.3. DOP in finite diagrams

LetK be the class of(D,ℵ0)-homogeneous models of a totally transcen-
dental diagram. In the language of the axiomatic framework, we takeN∗∗ = C.
We say thatK satisfies DOP if there existsN∗ ∈ K which does not have NDOP.
Recall thatλ(D) = |D|+ |T |.

CLAIM . Suppose thatK has DOP. Then there existsM, Mi, M
′ ∈ K for

i = 1, 2 such that

(1) M1 ^
M

M2;

(2) M ′ is prime overM1 ∪M2;
(3) ‖M ′‖ = λ(D);
(4) Mi = M(āi), for i = 1, 2;
(5) There exists a regular typep ∈ S(M ′) such thatp ⊥Mi, for i = 1, 2;
(6) The typep is based on̄b andtp(b̄/M1 ∪M2) is isolated over̄a1ā2.

PROOF. By assumption, there existsN∗ ∈ K which fails to have NDOP. Then,
there existMi ∈ K insideN∗, for i ≤ 2 with M1 ^

M0

M2, there existsM ′′ ⊆ N∗

which isDs
ℵ0

-primary overM1 ∪M2 and there exists a regular typep ∈ S(M ′′)
such thatp ⊥Mi, for i = 1, 2.
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Let b̄ ∈ M ′′ be a finite set such thatp is based on̄b. Let āi ∈ Mi, for
i = 1, 2 be such thattp(b̄/M1 ∪ M2) is Ds

ℵ0
-isolated over̄a1ā2. Let M ∈ K,

M ⊆ M0 of cardinalityλ(D) be such that̄a1 ^
M

M0. Such a model exists using

local character and prime models. LetM(āi) be prime overM ∪ āi, for i = 1, 2.
Then, by Dominance, Transitivity, and Monotonicity, we haveM(ā1) ^

M
M(ā2).

By axiom on prime there existsM ′ ⊆ M ′′ prime overM(ā1) ∪M(ā2). We may
assume thatB ⊆ M ′. Let p′ = p ¹ M ′. Thenp′ ∈ S(M ′) is regular based on̄b
andp′M ′′ = p. It remains to show thatp′ ⊥M(āi), for i = 1, 2. Let r ∈ S(M(āi)
be regular. ThenrMi is regular by our axiom. Furthermore, by definition,p′ ⊥ r if
and only ifp′ ⊥ rM ′ . By Parallelism, sinceM ′ ⊆M ′′, it is equivalent to show that
p ⊥ rM ′′ . But, rMi ∈ S(Mi) is regular,p ⊥Mi, andrM ′′ = (rMi)M ′′ . Therefore,
by choice ofp we havep ⊥ rM ′′ , which finishes the proof.

Let µ > λ(D) be a cardinal (for the following construction, we may have
µ ≥ λ(D), but the strict inequality is used in the last claim). Let〈Mi | i < µ〉 be
independent over a modelM ⊆ Mi. Suppose that‖Mi‖ = λ(D). Let R ⊆ [µ]2

and suppose thatMs = M(Mi ∪Mj), for s = (i, j). Such a model exist for each
s ∈ [µ]2 by the axioms on prime. Then, by Dominance and the axiom on primes,
the following system is independent:

〈Mi | i < µ〉 ∪ {M} ∪ 〈Ms | s ∈ R〉.(*)

Hence, there exists a modelMR prime over
⋃

i<µ Mi ∪
⋃

s∈R Ms.

Let s = (i, j) and suppose that there exists a regular typeps ∈ S(Ms)
such thatps ⊥ Mi, ps ⊥ Mj . Let Is be a Morley sequence forps of lengthµ.
(Such a sequence exists sinceC is (D, µ+)-homogeneous. Then, by Dominance,
definition of a Morley sequence, and axiom on prime, there existsNs = Ms(Is).

The next claim will allows us to choose prime models over complicated
independent systems with some additional properties.

CLAIM . The systemSR = 〈Mi | i < µ〉 ∪ {M} ∪ 〈Ns | s ∈ R〉 is an
independent system.

PROOF. By definition, it is enough to show thatNs ^
Mi

D, whenD =
⋃

t∈R,t 6=s Nt.

By finite character, it is enough to show this forR finite. We prove this by induc-
tion on the cardinality ofR. WhenR is empty or has at most one element, there
is nothing to do. Suppose thatR = {si | i ≤ n} ∪ {s}. We show that we can
replaceMsi by Nsi andMs by Ns and still have an independent system. By (*), it
is enough to show that ifMs ^

Ms−

D, thenNs ^
Ms−

D, for D =
⋃

i≤n Nsi . Using

the axioms of the dependence relation, it is enough to show thatNs ^
Ms

D. By
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induction hypothesis, we have

Ns ^
Ms

⋃
i<n

Nsi and Nsn ^
Msn

⋃
i<n

Nsi .(**)

Now, eithers∩sn is empty soMs ^
M

Msn by (*) or they extendj and soMs ^
Mj

Msn ,

by (*) again. SinceM ⊆ Mj , in either case,ps ⊥ Mj , by choice ofpj . Hence
ps ⊥ Msn using Lemma .2.12. By induction hypothesis, there existsN ′ a prime
model over

⋃
i<n Nsi . Hence, by (**) and DominanceNs ^

Ms

N ′ andNsn ^
Msn

N ′.

Hence, using again by Lemma .2.12, we haveps ⊥ N ′. Thus,Is ^
Msn

N ′ and

Is ^
N ′

Nsn . ThereforeIs ^
Ms

N ′ ∪ Nsn . By DominanceNs ^
Ms

N ′ ∪ Nsn . We are

done by monotonicity.

We will now use DOP to construct systems as in the claim.

Let the situation be as in the first claim. Writep(x̄, b̄) = p ¹ b̄. Let
〈āα

1 āα
2 α < µ〉 be a Morley sequence fortp(ā1ā2/M). Such a Morley sequence

exists by assumption onC and stationarity over models. LetMα
i be prime over

M ∪ āα
i , for i = 1, 2. Such a prime model exists by the axioms. ThenMα

1 ^
M

Mβ
2

for everyα < β, by Dominance. By axiom on prime there existsMαβ prime
overMα

1 ∪Mβ
2 . Let b̄αβ be the image of̄b in Mαβ . Let pαβ = p(x̄, b̄αβ)Mαβ ∈

S(Mαβ), which exists and is regular sincep is based on̄b. Thus,pαβ ⊥ Mα
1 and

pαβ ⊥Mβ
2 . Let Iαβ be a Morley sequence of lengthµ for pαβ . Let Nαβ be prime

overMαβ ∪ Iαβ . Then, for the claim, for eachR ⊆ [µ]2, the system

SR = {M} ∪ 〈Mα
i : α < µ, i = 1, 2〉 ∪ 〈Nαβ : 〈α, β〉 ∈ R〉 is an independent system.

Hence, there existsMR prime over it.

The final claim explains the name of Dimensional Order Property: It is
possible to code the relationR (in particular an order in the following theorem)
by looking at dimensions of indiscernibles in a modelMR. Note that the converse
holds also, namely that the following property characterizes DOP (we do not prove
this fact as it is not necessary to obtain the main gap). Recallµ > λ(D).

CLAIM . The pair〈α, β〉 ∈ R if and only if there exists̄c ∈ MR with the
property thattp(ā1ā2b̄/∅) = tp(āα

1 āβ
2 c̄/∅) and for every primeM∗ ⊆ MR over

M ∪ āα
1 āβ

2 containingc̄ there exists a Morley sequence forp(x̄, c̄)M∗ of lengthµ.

PROOF. If the pair〈α, β〉 ∈ R, thenpαβ is based on̄bαβ . Furthermore,Iαβ

is a Morley sequence of lengthµ for pαβ in MR. Let M ′ be prime overM ∪
āα

1 āβ
2 containinḡbαβ , thenp(x̄, b̄αβ)M ′ is realized by every element ofIαβ except
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possiblyλ(D) many. Hence, there exists a Morley sequence of lengthµ, since
µ > λ(D).

For the converse, letα < β < µ be given such that(α, β) 6∈ R. Let
t = (α, β). Let c̄ ⊆MR finite as in the claim. By using an automorphism, we have
that tp(c̄/āα

1 āβ
2 ) isolatestp(c̄/Mα

1 Mβ
2 ) and hence there existsMt ⊆ MR prime

over Mα
1 Mβ

2 containingc̄. By assumption on̄c, there existsI ⊆ MR a Morley
sequence forp(x̄, c̄)Mt of lengthµ. Let Nt be prime overMt(I), which exists by
assumption on prime. By the previous claim, the following system is independent

{M} ∪ 〈Mα
i | α < µ, i = 1, 2〉 ∪ 〈Nαβ | 〈α, β〉 ∈ R〉 ∪ {Nt}.

Thus, in particularNt ^
Mt

⋃
i<µ Mi∪

⋃
s∈R Ns. Hence,̄a ^

Mt

⋃
i<µ Mi∪

⋃
s∈R Ns,

for eachā ∈ I. By Dominancēa ^
Mt

MR and sōa ∈ Mt. This is a contradiction.

All the technology is now in place to apply the methods of [Sh b] or
[GrHa ] with the previous claim and to derive:

THEOREM IV.3.1. Suppose thatK has DOP. Then,K contains2λ noniso-
morphic models of cardinalityλ, for eachλ > |D|+ |T |.

THEOREM IV.3.2. Suppose that the class of(D, µ)-homogeneous models
of a totally transcendental diagramD has DOP. Then, for eachλ > |D|+ |T |+ µ
there are2λ nonisomorphic(D, µ)-homogeneous models of cardinalityλ.

IV.4. Depth and the main gap

We have now showed that if every model(D,ℵ0)-homogeneous model
of a totally transcendental diagramD has NDOP, then every such model admits a
decomposition. We will introduce an equivalence between decompositions, as well
as the notion of depth, in order to compute the spectrum function forK. Most of
the treatment will be done under the assumption thatK has NDOP.

DEFINITION IV.4.1. We say thatK has NDOP if everyN ∈ K has NDOP.

We introduce thedepthof a regular type.

DEFINITION IV.4.2. Let p ∈ SD(M) be regular. We define thedepthof
p, writtenDep(p). The depthDep(p) will be an ordinal,−1, or∞ and we have the
usual ordering−1 < α <∞ for any ordinalα. We define the relationDep(p) ≥ α
by induction onα.

(1) Dep(p) ≥ 0 if p is regular;
(2) Dep(p) ≥ δ, whenδ is a limit ordinal, ifDep(p) > α for everyα < δ;
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(3) Dep(p) ≥ α + 1 if there existsā realizing p and a regular typer ∈
SD(M(ā)) such thatr ⊥M andDep(r) ≥ α.

We write:

Dep(p) = −1 if p is not regular;
Dep(p) = α if Dep(p) ≥ α but it is not the case thatDep(p) ≥ α + 1;
Dep(p) =∞ if Dep(p) ≥ α for every ordinalα.

We letDep(K) = sup{Dep(p)+1 |M ∈ K, p ∈ SD(M)}. This is called
thedepthof K.

LEMMA IV.4.3. Letp ∈ SD(M) be regular withDep(p) <∞. Letā |= p
with r ∈ SD(M(ā)) regular withr ⊥M . ThenDep(r) < Dep(p).

PROOF. This is obvious, by definition of depth, ifDep(r) = Dep(p) is as
above, thenDep(p) ≥ Dep(p) + 1, contradictingDep(p) <∞.

LEMMA IV.4.4. Let p ∈ SD(M) be regular. IfDep(p) < ∞ and α ≤
Dep(p), then there existsq regular such thatDep(q) = α.

PROOF. By induction onDep(p). For Dep(p) = 0 it is clear. Assume that
Dep(p) = β + 1. Let ā |= p and letr ∈ SD(M(ā)) be such thatr ⊥ M and
Dep(r) ≥ β. Then, by the previous lemma,Dep(r) = β. Hence, we are done by
induction. Assume thatDep(p) = δ, whereδ is a limit ordinal. Letα < δ. Then,
Dep(p) > α by definition, so there exist̄a |= p andr ∈ SD(M(ā)) regular such
thatr ⊥ M andDep(r) ≥ α. By the previous lemmaDep(r) < Dep(p), so we
are done by induction.

We first show that the depth respects the equivalence relation6⊥.

LEMMA IV.4.5. Let p, q ∈ SD(M) be regular such thatp 6⊥ q. Then
Dep(p) = Dep(q).

PROOF. By symmetry, it is enough to show thatDep(p) ≤ Dep(q). We show
by induction onα that Dep(p) ≥ α implies Dep(q) ≥ α. For α = 0 or α a
limit ordinal, it is obvious. Suppose thatDep(p) ≥ α + 1, and letā realizep
and r ∈ SD(M(ā)) be such thatDep(r) ≥ α and r ⊥ M . Sincep 6⊥ q, by
Lemma .2.13, there exists̄b realizingq such thatM(ā) = M(b̄). This implies that
Dep(q) ≥ α + 1.

LEMMA IV.4.6. SupposeK has NDOP. LetM ⊆ N , withM, N ∈ K. Let
p ∈ SD(M) be regular. ThenDep(p) = Dep(pN ).

PROOF. We first show thatDep(p) ≥ Dep(pN ). By induction onα, we show
thatDep(p) ≥ α impliesDep(pN ) ≥ α.
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Forα = 0 it follows from the fact thatpN is regular. Forα a limit ordinal it
follows by induction. SupposeDep(p) ≥ α+1. Let ā realizep andr ∈ SD(M(ā))
regular be such thatDep(r) ≥ α andr ⊥ M . Without loss of generality, we may
assume that̄a ^

M
N . Hence, by DominanceM(ā) ^

M
N . Sincer ⊥ M , then

Lemma .2.12 implies thatr ⊥ N . By induction hypothesisDep(rN(ā)) ≥ α.
HenceDep(pN ) ≥ α + 1.

The converse uses NDOP. We show by induction onα thatDep(pN ) ≥ α
implies Dep(p) ≥ α. For α = 0 or α a limit ordinal, this is clear. Suppose
Dep(pN ) ≥ α + 1. Let ā realizepN . Thenā ^

M
N , so by DominanceM(ā) ^

M
N .

ConsiderN ′ Ds
ℵ0

-primary overM(ā) ∪ N . We may assume thatN ′ = N(ā).
Hence, there isr ∈ SD(N ′) regular such thatDep(r) ≥ α andr ⊥ N . Hence,
by NDOP, we must haver 6⊥ M(ā). Therefore, by (Perp I) there exists a regular
typeq ∈ SD(M(ā) such thatr 6⊥ q. But, sincer ⊥ M , alsoq ⊥ M . Moreover,
by Parallelism,r 6⊥ qN ′ and sinceqN ′ is regular, the previous lemma shows that
Dep(qN ′) = Dep(r) ≥ α. Hence, by induction hypothesis,Dep(q) ≥ α. This
implies thatDep(p) ≥ α + 1.

Let λ(D) = |D|+ |T |. As we saw in Chapter III, ifD is totally transcen-
dental, thenD is stable inλ(D).

LEMMA IV.4.7. LetK have NDOP. IfDep(K) ≥ λ(D)+ thenDep(K) =
∞.

PROOF. Let p be regular based onB. Let M beDs
ℵ0

-primary over the empty
set. Then‖M‖ ≤ λ(D). By an automorphism, we may assume thatB ⊆ M .
Then, by Lemma .4.6, we haveDep(p) = Dep(p ¹ M). Thus, since|SD(M)| ≤
λ(D), there are at mostλ(D) possible depths. By Lemma .4.4, they form an initial
segment of the ordinals. This proves the lemma.

DEFINITION IV.4.8. The classK is calleddeepif Dep(K) =∞.

The next theorem is the main characterization of deepK. A classK is deep
if and only if a natural partial order onK is not well-founded. This will be used to
construct nonisomorphic models in Theorem .4.23.

THEOREM IV.4.9. K is deep if and only if there exists a sequence〈Mi, āi |
i < ω〉 such that

(1) M0 has cardinalityλ(D);
(2) tp(āi/Mi) is regular;
(3) Mi+1 is prime overMi ∪ āi;
(4) Mi+1/Mi ⊥Mi−1, if i > 0.
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PROOF. Suppose thatK is deep. Prove by induction oni < ω that a sequence
satisfying (1)–(4) exists and that in addition

(5) Dep(tp(āi/Mi)) =∞.

This is possible. Fori = 0, let M ∈ K andp ∈ SD(M) be regular such that
Dep(p) ≥ λ(D)+ + 1. Such a type exists sinceK is deep. Now, letB be finite
such thatp is regular overB. Let M0 ∈ K containB be of cardinalityλ(D).
Then, sincep = (p ¹M0)M , we haveDep(p ¹M0) by Lemma .4.6. Let̄a0 realize
p ¹ M0. By the previous fact,Dep(tp(ā0/M0)) = ∞. Now assume that̄ai, Mi

have been constructed. LetMi+1 be prime overMi ∪ āi. By (5), we must have
Dep(tp(āi/Mi)) ≥ λ(D)+ + 1, so there exists̄ai+1 realizingtp(āi/Mi) and a
regular typepi ∈ SD(Mi+1) such thatDep(pi) ≥ λ(D)+ andpi ⊥ Mi. Let āi+1

realizepi, then (1)–(5) hold.

For the converse, suppose there exists〈Mi, āi | i < ω〉 satisfying (1)–
(4). We show by induction onα that Dep(tp(āi/Mi)) ≥ α, for eachi < ω.
This is clearly enough since thenDep(tp(ā0/M0)) = ∞. For α = 0, this
is given by (2), and forα a limit ordinal, this is by induction hypothesis. For
the successor case, assume thatDep(tp(āi/Mi)) ≥ α, for eachi < ω. Fix
i. Then by (4)tp(āi+1/Mi+1) ⊥ Mi. By (2) tp(āi+1/Mi+1) is regular and by
(3) Mi+1 = Mi(āi). By induction hypothesisDep(tp(āi+1/Mi+1)) ≥ α, hence
Dep(tp(āi/Mi) ≥ α + 1 by definition of depth.

We will find it convenient to introduce dominance.

DEFINITION IV.4.10. We say thatA dominatesB overM if for every set
C, if A ^

M
C thenB ^

M
C.

We rephrase some of the results we have obtained in the following remark.

REMARK IV.4.11. For any setA, A dominatesM(A) overM . Thus, if
M ⊆ N , andā ∈ N \M there always is a modelM ′ such that̄a ∈ M ′ ⊆ N and
M ′ is maximally dominated bȳa overM , i.e. M ′ is dominated bȳa overM and
every model contained inN strictly containingM ′ is not dominated bȳa overM .

We introduce triviality. The name comes from the fact that the pregeometry
on the set of realizations of a trivial type is trivial.

DEFINITION IV.4.12. A typep ∈ SD(M) is trivial if for every M ′, N ∈
K such thatM ⊆M ′ ⊆ N and for every setI ⊆ pM ′(N) of pairwise independent
sequences overM ′, thenI is a Morley sequence forpM ′ .

If p is trivial, ā |= p andā dominates byB overM , then we say thatB/M
is trivial .

REMARK IV.4.13. If tp(ā/M) is trivial, thenM(ā)/M is trivial.
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The next lemma says essentially that all the regular types of interest are
trivial.

LEMMA IV.4.14. If K has NDOP, then ifp ∈ SD(M) is regular with
Dep(p) > 0, thenp is trivial.

PROOF. Supposep ∈ SD(M) is not trivial. Without loss of generalitȳai for
i ≤ 2 be pairwise independent overM such that{āi | i ≤ 2} is not. Since
Dep(p) > 0, by using an automorphism, we can findr ∈ SD(M(ā0)) regular such
thatr ⊥M .

Let N = M(ā0, ā1, ā2). Let M ′ ⊆ N be maximal such that̄a1ā2 ^
M

M ′.

Thus, we may assume thatN = M ′(ā0, ā1, ā2). Sinceā0 realizesp, andM ′/M ⊥
p, we haveā0 ^

M
M ′. Hence, by Lemma .2.12, we must haver ⊥ M ′. By the

previous remark, chooseMi ⊆ N maximally dominated bȳai overM ′. By choice
of Mi we haveM1 ^

M
M2. Thus, by definition ofMi and NDOP, necessarilyN is

Ds
ℵ0

-primary overM1 ∪M2.

Now, sinceM ′/M ⊥ p, we havēa0āi ^
M

M ′. HenceM(ā0) ^
M ′

Mi, for

i = 1, 2. By Lemma .2.12, we haverN ⊥ Mi for i = 1, 2, contradicting NDOP.

The next lemmas are used to calculate the spectrum function.

LEMMA IV.4.15. AssumeK has NDOP. Let〈Mη | η ∈ J〉 be a complete
decomposition ofN∗ overM . LetI be a subtree ofJ . Then there existsNI ⊆ N∗

andNη ⊆ N∗ for eachη ∈ J \ I such that{NI}∪ {Nη | η ∈ J \ I} is a complete
decomposition ofN∗ overNI .

PROOF. DefineNI ⊆ N∗ andNη ⊆ N∗ for η ∈ J \ I as follows

(1) NI is Ds
ℵ0

-primary over
⋃
{Mη | η ∈ I};

(2) NI ^
MI

MJ ;

(3) Nη = Nη−(Mη) for η ∈ J \ I and whenη− ∈ I thenNη = NI(Mη);
(4) Nη ^

Mη

⋃
η≺ν Mν .

This is easily done and one checks immediately that it satisfies the conclusion of
the lemma.

We now define an equivalence relation on decompositions.
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DEFINITION IV.4.16. Let〈Mη | η ∈ I〉 be a complete decomposition of
N∗. Define an equivalence relation∼ on I \ {〈〉} by

η ∼ ν if and only if Mη/Mη− 6⊥Mν/Mν− .

By Equivalence, this is indeed an equivalence relation. By the following
lemma, any two sequences in the same∼-equivalence class have a common prede-
cessor.

LEMMA IV.4.17. If 〈Mη | η ∈ I〉 is a decomposition ofN∗, then for
η, ν ∈ I \ {〈〉} such thatη− 6= ν− we haveMη/Mη− ⊥Mν/Mν− .

PROOF. Let η, ν ∈ I \ {〈〉} such thatη− 6= ν−. Let u be the largest com-
mon sequence ofη− andν−. We haveMη− ^

Mu

Mν− , by independence of the

decomposition. By definitionMη/Mη− ⊥ Mη−− . Hence, by Lemma .2.12,
we haveMη/Mη− ⊥ Mu and alsoMη/Mη− ⊥ Mν− . ThereforeMη/Mη− ⊥
Mν/Mν− .

The next lemma will be used inductively.

LEMMA IV.4.18. Let 〈Mη | η ∈ I〉 and 〈Nν | ν ∈ J〉 be a complete
decompositions ofN∗ overM . Let I ′ = {η ∈ I | η− = 〈〉} andJ ′ = {ν ∈ J |
ν− = 〈〉}. Then there exists a bijectionf : I ′ → J ′ such that

(1) f preserves∼-classes;
(2) If η ∈ I ′ andMη/M is trivial thenMη /̂

M
Nf(η).

PROOF. Choose a representative for each6⊥-class among the regular types of
SD(M). Build the bijection by pieces. For each regularp ∈ SD(M), the cardi-
nalities of{η ∈ I | Mη/M 6⊥ p} and{ν ∈ J | Nν/N 6⊥ p} are equal and both
equal to the dimension ofp(N∗) by construction. Ifp is not trivial, then choose any
bijection between the two sets. Ifp is trivial, for eachη ∈ I such thatMη/M 6⊥ p
there exists exactly oneν ∈ J ′ such thatMη /̂

M
Nν . Let f send each suchη to

their correspondingν. Since there is no relation betweenp’s belonging to different
equivalence classes, this is enough.

The following quasi-isomorphism will be relevant for the isomorphism
type of models.

DEFINITION IV.4.19. Twoω-treesI, J are said to bequasi-isomorphic, if
there exists a partial functionf from I to J such that

(1) f is order-preserving;
(2) For eachη ∈ I all but at mostλ(D) many successors ofη are indom(f);
(3) For eachν ∈ J all but atλ(D) many successors ofν are in theran(f).
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A functionf as above is called aquasi-isomorphism.

THEOREM IV.4.20. Let 〈Mη | η ∈ I〉 and 〈M ′
ν | ν ∈ J〉 be complete

decompositions ofN∗. Then there exists a∼-class preserving quasi-isomorphism
from I to J .

PROOF. For eachη ∈ I, let I+
η = {ν ∈ I | ν− = η}. We define a partial

class preserving functionfη from I+
η into J as follows. ThenMη has cardinality

λ(D), so we can findI0 andJ0 of cardinality at mostλ(D) such that there exists
N ⊆ N∗ containingMη, such thatM is Ds

ℵ0
-primary over both

⋃
{Mν | ν ∈ I0}

and
⋃
{M ′

ν | ν ∈ J0}. By Lemma .4.15 and Lemma .4.18, there exists a partial
functionfη from I+

η \ I0 into J satisfying conditions (1) and (2) in Lemma .4.18.

Now let f =
⋃

η∈I fη (we letf〈〉 map〈〉 to 〈〉). Clearlyf is well-defined,
since the domains of all thefη ’s are disjoint. Further, by construction, the condition
involving λ(D) is satisfied.

It remains to show thatf is one-to-one and order preserving. We check
order preserving and leave one-to-one to the reader. Letη ≺ ν ∈ I be given. We
may assume thatη 6= 〈〉. Then, by Lemma .4.14, we haveMη/Mη− is trivial. We
are going to computef(η) andf(ν). Recall thatf(η) = fη−(η). In the notation
of Lemma .4.15 and of the first paragraph, we have

〈Nζ : ζ ∈ I \ I0〉 ∪ {N} and 〈N ′ζ : ζ ∈ J \ J0〉 ∪ {N},
two complete decompositions ofN∗ overN . By Lemma .4.18, we have

Nη− /̂
N

N ′f(η−).

Then, necessarilyMν/Mν− 6⊥ M ′
f(ν)/M

′
f(ν−) and any sequence∼-related toν is

≺-aboveη. Consider the following independent tree

〈N ′ζ : ζ ∈ I \ I0, f
−
η (η) 6≺ ζ〉 ∪ 〈Nζ : η ∈ I, η ≺ ζ〉 ∪ {N}.

By triviality of Mη/Mη− , it is a decomposition ofN∗ overN . Hence, by Lemma
.4.17 we haveMν/Mν− ⊥ Nζ/Nζ− , for eachζ ∈ I \ I0, f

−
η (η) 6≺ ζ. This implies

that the∼-class offη−(ν) is abovefν(η−). Thus,f is order preserving.

In order to construct many nonisomorphic models, we will need a special
kind of trees. For anω-treeI andη ∈ I, denote byIη = {ν ∈ I | η ≺ ν}. We
write Iη

∼= Iν if both trees are isomorphic as trees.

DEFINITION IV.4.21. Anω-treeI is calledampleif for everyη ∈ I, with
η− ∈ I, we have

|{ν ∈ I : ν− = η− andIν
∼= Iη}| > λ(D).

We now state a fact about ampleω-trees. IfI is a tree, by definition every
η ∈ I is well-founded in the order ofI. Therank of η in I will be the natural rank
associated with the well-foundedness relation onη in I.
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FACT IV.4.22. Let I, J be ample trees. Letf be a quasi-isomorphism
from I to J . Then for eachη ∈ dom(f), the rank ofη in I is equal to the rank of
f(η) in J .

In the next proof, writè (η) for the level ofη.

THEOREM IV.4.23. If K is deep, for eachµ > λ(D), there are2µ noniso-
morphic models of cardinalityµ.

PROOF. Letµ > λ(D). SinceK is deep by Theorem .4.9, there exists〈Mi, āi |
i < ω〉 such that

(1) M0 has cardinalityλ(D);
(2) tp(āi/Mi) is regular;
(3) Mi+1 is prime overMi ∪ āi;
(4) Mi+1/Mi ⊥Mi−1, if i > 0.

Let p = tp(ā0/M0). Thenp is regular based on a finite setB. We will find 2µ

non-isomorphic models of sizeµ with B fixed. This implies the conclusion of the
theorem sinceµ<ℵ0 = µ.

For eachX ⊆ µ of sizeµ, let IX be an ampleω-tree with the property that
the set of ranks of elements of the first level ofIX is exactlyX. Such a tree clearly
exists (µ > λ(D)). Define the following system〈MX

η | η ∈ IX〉:

(1) MX
〈〉 = M0;

(2) If η0 ≺ · · · ≺ ηn ∈ IX , we havetp(MX
η0

. . . MX
ηn/∅) = tp(M`(η0) . . . M`(ηn)/∅).

This is easy to do and by choice of〈Mi, āi | i < ω〉 this is a decomposition.
Let MX be aDs

ℵ0
-primary model over

⋃
{MX

η | η ∈ IX}. ThenMX ∈ K has
cardinalityµ. By NDOP,〈Mi, āi | i < ω〉 is a complete decomposition ofMX

overM0.

We claim that forX 6= Y as above,MX 6∼=B MY . Let X, Y ⊆ µ of
cardinalityµ be such thatX 6= Y . SupposeMX

∼=B MY . Then, by Theorem
.4.20, there exists a class-preserving quasi-isomorphism betweenIX andIY . Since
B is fixed, the first level ofIX is mapped to the first level ofIY . By the previous
fact, we conclude thatX = Y , a contradiction.

We have shown that deep diagrams have many models. The usual methods
(see [Sh b] for example) can be used to compute the spectrum ofK whenK is not
deep. Recall that whenK has NDOP but is not deep thenDep(K) < λ(D)+, by
Lemma .4.7.

THEOREM IV.4.24. If K has NDOP but is not deep, then for each ordinal
α with ℵα ≥ λ(D), we haveI(ℵα,K) ≤ iDep(K)(|α|2

|T |
) < iλ(D)+(|α|).
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This proves themain gapfor the classK of (D,ℵ0)-homogeneous models
of a totally transcendental diagramD.

THEOREM IV.4.25 (Main Gap).LetK be the class of(D,ℵ0)-homogeneous
models of a totally transcendental diagramD. Then, eitherI(ℵα,K) = 2ℵα , for
each ordinalα such thatℵα > |T |+ |D|, or I(ℵα,K) < i(|T |+|D|)+(|α|), for each
α such thatℵα > |T |+ |D|.

PROOF. If K has DOP (Theorem .3.1) or has NDOP but is deep (Theorem
.4.23), thenK has the maximum number of models. Otherwise,K has NDOP and
is not deep and the bound follows from Theorem .4.24.

Similar methods using the existence ofDs
µ-prime models for totally tran-

scendental diagrams allow us to prove the main gap for(D, µ)-homogeneous mod-
els of a totally transcendental diagramD.

THEOREM IV.4.26. LetK be the class of(D, µ)-homogeneous models of
a totally transcendental diagramD. Then, eitherI(ℵα,K) = 2ℵα , for each ordinal
α such thatℵα > |T |+ |D|+ µ, or I(ℵα,K) < i(|T |+|D|)+(|α|), for eachα such
thatℵα > |T |+ |D|+ µ.

Finally, similarly to [GrHa ] or [Ha], it is possible to show that forα large
enough, the functionα 7→ I(ℵα,K) is non-decreasing, for the classK of (D, µ)-
homogeneous models of a totally transcendental diagramD.



CHAPTER V

Forking in pregeometries

At the center of classification theory for the first order case is the notion of
forking. Forking is a dependence relation discovered by S. Shelah. It satisfies the
following properties in the first order stable case, see [Sh b].

(1) (Finite character) The typep does not fork overB if and only if every finite
subtypeq ⊆ p does not fork overB.

(2) (Extension) Letp be a type which does not fork overB. Let C be given
containing the domain ofp. Then there existsq ∈ S(C) extendingp such
thatq does not fork overB;

(3) (Invariance) Letf ∈ Aut(C) andp be a type which does not fork overB.
Thenf(p) does not fork overf(B).

(4) (Existence) The typep does not fork over its domain;
(5) (Existence ofκ(T )) For every typep, there exists a setB ⊆ dom(p) such

thatp does not forkB;
(6) (Symmetry) Letp = tp(ā/Bc̄). Suppose thatp does not fork overB. Then

tp(c̄/Bā) does not fork overB;
(7) (Transitivity) LetB ⊆ C ⊆ A. Let p ∈ S(A). Thenp does not fork over

B if and only if p does not fork overC andp ¹ C does not fork overB.

Already in the introduction of Chapter III of [Sh b], S. Shelah states what
is important about the forking relation is that it satisfies properties (1)–(7). S.
Shelah stated another property named by S. Buechler [Bu1] the Pairs Lemma (see
Proposition I.1.16 for the statement) as one of the basic properties of forking, which
he proved in [Sh b] using the Finite Equivalence Relation Theorem. Later Bald-
win in his book [Ba a] presented an axiomatic treatment of forking in stable the-
ories. This allowed Baldwin to derive abstractly Shelah’s Pairs Lemma from the
other properties of forking. Following these ideas, it has now become common to
characterize various stability conditions in terms of the axiomatic properties that
forking satisfies.

A major problem in the classification theory for nonelementary classes is
to find a dependence relation which is as well-behaved as forking for first order
theories. See for example [Sh48], [Sh87a], [Sh87b], [GrHa ], [Ki ], or [HySh1].
See also Chapter III. The situation in nonelementary classes is very different from
the first order case. In the first order case, the Extension property for forking comes
for free; it holds for any theory and is a consequence of the compactness theorem.

129
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This is in striking contrast with the nonelementary cases; the Extension property is
usually among the most problematic and does not hold over sets in general for any
of the dependence relations introduced thus far.

A general dependence relation satisfying all the formal properties of fork-
ing has thus not been found yet for nonelementary classes. There are, however,
several cases where pregeometries appear; that is sets with a closure operation
satisfying the properties of linear dependence in a vector space. In the first or-
der case, the pregeometries are the sets of realizations of aregular type, and the
dependence is the one induced by forking and thus satisfies automatically many
additional properties. In nonelementary classes the situation is different.

Let us describe several nonelementary examples. The first three examples
have in common that there exists a rank, giving rise to a reasonable dependence
relation. However theExtensionproperty and theSymmetryproperty fail in general
(they hold over sufficiently “rich” sets). The rank introduced for these classes are
generalizations of what S. Shelah callsR[·, L, 2]. Intuitively, a formula has rank
α+1 if it can be partitioned intwopieces of rankα with some additional properties
that are tailored to each context (see Chapter III, for example). It is noteworthy that
extensions of Morley rank are inadequate, as partitioning a formula in countably
many pieces makes sense only when the compactness theorem holds. In the last
example, no rank is known, but pregeometries exist.

Categorical sentences inLω1ω(Q): Shelah started working on this context
[Sh48] to answer a question of J.T.Baldwin: Can a sentence inL(Q) have
exactly one uncountable model? Shelah answers this question negatively
usingV=L (and later using different methods within ZFC) while devel-
oping very powerful concepts. One of the main tools is the introduction
of a rank. This rank is bounded under the parallel toℵ0-stability. It gives
rise to a dependence relation and pregeometries. Later, H. Kierstead [Ki ]
uses these pregeometries to obtain some results on the countable models of
these sentences.

Excellent Scott sentences:In [Sh87a] and [Sh87b] S.Shelah introduces a
simplification of the rank of [Sh48]. S. Shelah identifies the concept ofex-
cellent Scott sentencesand proves (among many other things) the parallel
to Morley’s Theorem for them. Again, this rank induces a dependence rela-
tion on the subsets of the models. Later, R. Grossberg and B. Hart [GrHa ]
proved the existence of pregeometries (regular types) for this dependence
relation and used it to prove the Main Gap for excellent Scott sentences.

Totally transcendental diagrams: In Chapter III, we introduced a rank for
ℵ0-stable diagrams. Diagrams for which the rank is bounded are called
totally transcendental. Recall that the rank gives rise to a dependence re-
lation on the subsets of the models and pregeometries exist often. This
is used to give a proof of categoricity generalizing the Baldwin-Lachlan
Theorem.
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Superstable diagrams: In [HySh1], Hyttinen and Shelah study stable finite
diagrams under the additional assumption thatκ(D) = ℵ0. Such diagrams
are calledsuperstable. They introduce a relation between setsA, B and an
elementa, written a ↓B A. The main result is that the parallel of regular
types exist. More precisely, for every pair of “sufficiently saturated” mod-
elsM ⊆ N , M 6= N , there exists a typep realized inN \M such that the
relationa ↓M C (standing fora 6∈ cl(C)) induces a pregeometry among
the realizations ofp in N .

Thus, pregeometries seem to appear naturally in nonelementary classes,
while general well-behaved dependence relations are hard to find. The goal of
the first section of this chapter is to recover fromany pregeometry a dependence
relation over the subsets of the pregeometry that satisfies all the formal properties
of forking. This is, of course, particularly useful when the pregeometry itself was
not induced by forking.

A similar endeavor was attempted by John Baldwin in the early eighties.
In [Ba], J.Baldwin examined some pregeometries and several dependence relations
in the first order case. From a pregeometry, he defines the relationa ^

B
C, by

a ∈ cl(B ∪ C) − cl(B). He did not however introduceA ^
B

C, whereA is a

tupleor asetas opposed to an element, which we do (see Definition I.1.7). This
is a crucial step; it is built-in in the model theory of first order, since forking is
naturally defined for types of any arity. To make this more precise, fixT a first
order stable theory. Let us write

ā
∗
^
B

C for tp(ā/B ∪ C) does not fork overB.

Inside a regular typep(x) ∈ S(B), the relationa ∈ cl(C) given bya
∗
/̂
B

C gives

rise to a pregeometry. But, the relationā
∗
^
B

C is defined in general whether or not

ā andC consist of elements realizingp. Inside the pregeometry, the relationā
∗
^
B

C

holds (defined with forking) if and only if the relation̄a ^
B

C holds (defined for-

mally from our definition using the closure operator of the pregeometry). This is a
consequence of the Pairs Lemma, which holds for first order simple theories. When
we start from an abstract pregeometry (or an abstract dependence relation), we do
not have the formalism of types or the Pairs Lemma. Therefore the relationā ^

B
C

has to be introduced for tuples, using the relationa ^
B

C for elements. As a conse-

quence, suppose we are given the corresponding notion of a regular typep ∈ S(B)
in a nonelementary context. Suppose there is some ambient dependence relation,
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written A
∗
^
B

C such that over realizations ofp the relationa ∈ cl(C), given by

a
∗
/̂
B

C, induces a pregeometry. Then, the truth value of the relationā
∗
^
B

C (given

from the ambient dependence relation) andā ^
B

C (defined from the closure oper-

ation in the pregeometry) may not coincide. They will coincide only if the Pairs
Lemma holds for the dependence relation (and this fact is not known in general
for nonelementary cases). Therefore, this abstract formalism allows us to intro-
duce for nonelementary classes a (possibly)betterdependence relation, inside the
pregeometry.

In Section 2, we present S. Buechler’s characterization of local modularity
with parallel lines [Bu1] in this general context. This also has esthetic value as it
allows one carry out this work in the general context of combinatorial geometry,
without logic.

In Section 3, we supplement this work with some observations of a set-
theoretic nature, as well as a discussion of stable systems.

In Section 4, an abstract framework is presented where, using the depen-
dence relation defined is this chapter, a generalization of Zilber-Hrushovski group
configuration theorem can be derived. A rather lengthy introduction was added.

V.1. Forking in pregeometries

Recall a few well-known facts about pregeometries.

DEFINITION V.1.1. A pregeometryis a pair(W, cl), whereW is a set and
cl is a functioncl : P(W )→ P(W ) satisfying the following four properties

(1) (Monotonicity) For every setX ∈ P(W ) we haveX ⊆ cl(X);
(2) (Finite Character) Ifa ∈ cl(X) then there is a finite setY ⊆ X, such that

a ∈ cl(Y );
(3) (Transitivity) LetX, Y ∈ P(W ). If a ∈ cl(X) andX ⊆ cl(Y ) then

a ∈ cl(Y );
(4) (Exchange Property) ForX ∈ P(W ) anda, b ∈ W , if a ∈ cl(Xb) but

a 6∈ cl(X), thenb ∈ cl(Xa).

We always assumecl(∅) 6= W .

The next two basic properties are standard and easy.

FACT V.1.2. If (W, cl) is a pregeometry andB ⊆ C ⊆ W , thencl(B) ⊆
cl(C).

FACT V.1.3. If (W, cl) is a pregeometry andB ⊆ W , thencl(cl(B)) =
cl(B).
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DEFINITION V.1.4. Let(W, cl) be a pregeometry.

(1) ForX ⊆W , we say thatX is closedif X = cl(X);
(2) I ⊆W is independentif for everya ∈ I, we havea 6∈ cl(I \ {a});
(3) We say thatI ⊆ A generatesA, if cl(I) = cl(A);
(4) A basisfor a setA ⊂W is an independent setI generatingcl(A);
(5) ForX ⊆ W , thedimension of X, written dim(X), is the cardinality of a

basis forcl(X).

FACT V.1.5. Using the axioms of pregeometry, one can show that for every
set, bases exist and that the dimension is well-defined see for example Appendix in
[Gr a]

DEFINITION V.1.6. LetG = (W, cl) be a pregeometry.

(1) A bijectionf : W → W is anautomorphism ofG if for everya ∈ W and
A ⊆W we have

a ∈ cl(A) if and only if f(a) ∈ cl(f(A)).

We denoteAutA(G) the set of automorphisms ofG fixing A pointwise.
(2) We say thatG is homogeneousif for every a, b ∈ W andA ⊆ W , such

that a 6∈ cl(A) andb 6∈ cl(A) there is an automorphism ofG, fixing A
pointwise and takinga to b.

The next definition is the main concept of this chapter.

DEFINITION V.1.7. Let(W, cl) be a pregeometry. LetA, B andC be sub-
sets ofW . We say thatA depends onC overB, if there exista ∈ A and a finite
A′ ⊆ A (possibly empty) such that

a ∈ cl(B ∪ C ∪A′) \ cl(B ∪A′).

If A depends onC overB, we writeA /̂
B

C;

If A does not depend onC overB, we writeA ^
B

C.

REMARK V.1.8. An alternative definition withA′ = ∅ does not permit a
smooth extension to setsA ^

B
C whenA is not a singleton.

REMARK V.1.9. A ^
B

C if and only if A ∪ B ^
B

C ∪ B. Hence, we will

often assume thatB ⊆ A ∩ C.

We now prove that the properties of forking in simple theories hold with
this formalism, directly from the axioms of a pregeometry.

PROPOSITIONV.1.10 (Finite Character).Let(W, cl) be a pregeometry. Let
A, B andC be subsets ofW . Then

A ^
B

C if and only if A′^
B

C ′,
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for every finiteA′ ⊆ A and finiteC ′ ⊆ C.

PROOF. If A /̂
B

C, then there exista ∈ A, and a finiteA′ ⊆ A such that

a ∈ cl(B ∪ C ∪A′) \ cl(B ∪A′).

By Finite Character, there exist a finiteC ′ ⊆ C such thata ∈ cl(B ∪ C ′ ∪ A′).
HenceA′ /̂

B
C ′, by definition.

For the converse, if there exist a finiteA′ ⊆ A and a finiteC ′ ⊆ C such
thatA′ /̂

B
C ′, then we can finda ∈ A′ andA′′ ⊆ A′ such that

a ∈ cl(B ∪ C ′ ∪A′′) \ cl(B ∪A′′).

SinceC ′ ⊆ C, we havea ∈ cl(B ∪ C ∪ A′′), by Fact I.1.2. Hence,A /̂
B

C, by

definition.

PROPOSITIONV.1.11 (Continuity). Let(W, cl) be a pregeometry. Let〈Ci |
i < α〉 be a continuous increasing sequence of sets inW , andA, B ⊆W .

(1) If A ^
B

Ci for everyi < α, thenA ^
B

⋃
i<α Ci.

(2) If Ci ^
B

A for everyi < α, then
⋃

i<α Ci ^
B

A.

PROOF. By Finite Character.

PROPOSITIONV.1.12 (Invariance).Let G = (W, cl) be a pregeometry.
LetA, B andC be subsets ofW and letf ∈ Aut(G). Then

A ^
B

C if and only if f(A) ^
f(B)

f(C).

PROOF. Note that since the inverse of an automorphism is an automorphism,
it is enough to show one direction. Assume thatA /̂

B
C and leta ∈ A andA′ ⊆ A

finite be such that

a ∈ cl(B ∪ C ∪A′) \ cl(B ∪A′).

Thenf(a) ∈ cl(f(B ∪ C ∪A′)) \ cl(f(B ∪A′)), by definition of automorphism.
But sincef is a bijection

f(a) ∈ cl(f(B) ∪ f(C) ∪ f(A′)) \ cl(f(B) ∪ f(A′)).

Therefore,f(A) /̂
f(B)

f(C) by definition.

PROPOSITIONV.1.13 (Monotonicity). Let (W, cl) be a pregeometry. Let
A, B andC be subsets ofW . SupposeA ^

B
C.
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(1) If A′ ⊆ A andC ′ ⊆ C, thenA′^
B

C ′;

(2) If B′ ⊆ C, thenA ^
B ∪B′

C.

PROOF. (1) Suppose thatA′ /̂
B

C ′. Let a ∈ A′ andA∗ ⊆ A′ finite such that

a ∈ cl(B ∪ C ′ ∪A∗) \ cl(B ∪A∗).

Then, by Fact I.1.2, we havea ∈ cl(B ∪ C ∪ A∗) \ cl(B ∪ A∗). But a ∈ A and
A∗ ⊆ A, soA /̂

B
C.

(2) SupposeA /̂
B ∪B′

C. Let a ∈ A andA′ ⊆ A finite such that

a ∈ cl(B ∪B′ ∪ C ∪A′) \ cl(B ∪B′ ∪A′).

SinceB′ ⊆ C, we havecl(B∪B′∪C∪A′) = cl(B∪C∪A′). Also,cl(B∪A′) ⊆
cl(B ∪B′ ∪A′). Hencea ∈ cl(B ∪C ∪A′) \ cl(B ∪A′). ThereforeA /̂

B
C.

PROPOSITIONV.1.14 (Symmetry).Let(W, cl) be a pregeometry. LetA, B
andC be subsets ofW . Then

A ^
B

C if and only if C ^
B

A.

PROOF. Suppose thatA /̂
B

C. Choosea ∈ A and a finiteA′ ⊆ A such that

a ∈ cl(B ∪ C ∪A′) \ cl(B ∪A′).(*)

By Finite Character and (*), there existc ∈ C and a finite (and possibly empty)
C ′ ⊆ C such that

a ∈ cl(B ∪ C ′ ∪ c ∪A′) and a 6∈ cl(B ∪ C ′ ∪A′).(**)

Therefore, by the Exchange Property, we have

c ∈ cl(B ∪ C ′ ∪A′ ∪ a).

But c 6∈ cl(B ∪ C ′ ∪A′), (**). Hence,

c ∈ cl(B ∪ C ′ ∪A′ ∪ a) \ cl(B ∪ C ′ ∪A′).

Therefore,C /̂
B

A′, for some finite subsetA′ of A. Hence,C /̂
B

A, by Finite Char-

acter.

PROPOSITIONV.1.15 (Transitivity). Let (W, cl) be a pregeometry. Let
A, B, C andD be subsets ofW such thatB ⊆ C ⊆ D. Then,

A ^
C

D and A ^
B

C if and only if A ^
B

D.
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PROOF. Suppose first thatA /̂
B

D. Choosea ∈ A and a finiteA′ ⊆ A such

that

a ∈ cl(D ∪A′) \ cl(B ∪A′).

Eithera ∈ cl(C ∪A′), and so

a ∈ cl(C ∪A′) \ cl(B ∪A′),

which implies thatA /̂
B

C. Or a 6∈ cl(C ∪A′), and therefore

a ∈ cl(D ∪A′) \ cl(C ∪A′),

which implies thatA /̂
C

D.

The converse follows by Monotonicity sinceB ⊆ C ⊆ D.

The following is proved in [Sh b] directly using the finite equivalence re-
lation theorem. The proof that it follows from the other axioms of forking is due to
J. Baldwin. We present it here for completeness.

PROPOSITIONV.1.16 (Pairs Lemma).LetG = (W, cl) be a pregeometry.
LetA, B, C andD be subsets ofW such thatC ⊆ B ∩D. Then

A ∪B ^
C

D if and only if A ^
C ∪B

D ∪B and B ^
C

D.

PROOF. Notice first, that by definition

A ^
C ∪B

D ∪B if and only if A ^
C ∪B

D.(*)

Therefore, by Symmetry and (*), it is equivalent to show that

D ^
C

A ∪B if and only if D ^
C ∪B

A and D ^
C

B,

which is true by Transitivity.

REMARK V.1.17. Let (W, cl) is a pregeometry. LetA, B, C and D be
subsets ofW . Then

AD ^
B

C if and only if A ^
B

CD.

PROOF. SupposeA ^
B

CD. Then, by Monotonicity we haveA ^
B

D. There-

fore, by Symmetry, we haveD ^
B

D. By Transitivity, we haveA ^
BD

CD. Hence,

AD ^
B

C by Concatenation.
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For the converse, suppose thatA ^
B

CD. Then by Symmetry we must have

CD ^
B

A. Hence, by the first paragraph, we know thatC ^
B

AD, so by Symmetry,

alsoAD ^
B

C.

This finishes the list of usual properties of forking. We now prove a few
propositions relating closure and̂.

PROPOSITIONV.1.18 (Closed Set Theorem).Let (W, cl) be a pregeome-
try. LetA, B andC be subsets ofW . Then

A ^
B

C if and only if A′ ^
B′

C ′,

provided thatcl(A ∪B) = cl(A′ ∪B′), cl(B) = cl(B′) andcl(C ∪B) = cl(C ′ ∪
B′).

PROOF. It is clearly enough to prove one direction. Furthermore, by Symme-
try, it is enough to show thatA ^

B
C impliesA ^

B′
C ′. Suppose thatA /̂

B′
C ′. Let

a ∈ A andA∗ ⊆ A be such that

a ∈ cl(B′ ∪ C ′ ∪A∗) \ cl(B′ ∪A∗).

But, it follows from the assumption thatcl(B′ ∪ C ′ ∪ A∗) = cl(B ∪ C ∪ A∗) and
cl(B′ ∪A∗) = cl(B ∪A∗). Therefore

a ∈ cl(B ∪ C ∪A∗) \ cl(B ∪A∗),

which implies thatA /̂
B

C.

REMARK V.1.19. In view of the previous result, whenA ^
B

C, we can first

choose a basisB′ of B, and chooseA′ ⊆ A andC ′ ⊆ C, independent overB (or
equivalentlyB′), such thatcl(A ∪B) = cl(A′ ∪B) andcl(C ∪B) = cl(C ′ ∪B),
and thusA′^

B
C ′ and alsoA′ ^

B′
C ′.

PROPOSITIONV.1.20. Let (W, cl) be a pregeometry. LetA, B andC be
subsets ofW .

A ^
B

C implies cl(A ∪B) ∩ cl(C ∪B) = cl(B).

PROOF. Certainlycl(B) ⊆ cl(A ∪ B) ∩ cl(C ∪ B). Suppose that the reverse
inclusion does not hold, and leta ∈ cl(A ∪ B) ∩ cl(C ∪ B) such thata 6∈ cl(B).
Thena ∈ cl(C ∪ B) \ cl(B), so cl(A ∪ B) /̂

B
C. But the previous proposition

implies thatA /̂
B

C, which is a contradiction.
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REMARK V.1.21. In view of the definition and symmetry, when we look
at A ^

B
C, we will generally assume thatB ⊆ A andB ⊆ C. Further, because

of the closed set theorem, we may assume thatA, B andC are closed, and finally,
thatB = A ∩ C.

V.2. Buechler’s theorem

We list a few more definitions.

DEFINITION V.2.1. Let(W, cl) be a pregeometry.

(1) (W, cl) is calledmodular if for every closed subsetsS1 andS2 of W we
have

dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2);

(2) (W, cl) is calledlocally modularif for every closed subsetsS1 andS2 of
W we have

dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2),

provided thatS1 ∩ S2 6= ∅;
(3) (W, cl) is calledprojectiveif for everya, b ∈W andC ⊆W such that

a ∈ cl(C ∪ {b}),
there existsc ∈ C such thata ∈ cl({c, b}).
REMARK V.2.2. It is not too difficult to see that a pregeometry is projec-

tive if and only if it is modular.

DEFINITION V.2.3. Let(W, cl) be a pregeometry.

(1) A closed setL ⊆W is a line if dim(L) = 2;
(2) Two disjoint linesL1 andL2 areparallel if dim(L1 ∪ L2) = 3.

DEFINITION V.2.4. LetG = (W, cl) be a pregeometry andA ⊆ W . De-
fine thelocalization of G at A, writtenGA = (WA, clA), by

WA = W \A and clA(X) = cl(X ∪A) \A, for X ⊆WA.

REMARK V.2.5. It is easy to see that ifG is a pregeometry, thenGA is a
pregeometry. InGA, we denote the dimension ofX by dim(X/A).

REMARK V.2.6. If G = (W, cl) is locally modular, thenGA is modular
for any finite subsetA of W \ cl(∅).

PROPOSITIONV.2.7. Let (W, cl) be a pregeometry. LetS1, S2 be finite
dimensional closed sets satisfyingS0 = S1 ∩ S2. Then,

S1 ^
S0

S2 if and only if dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2).
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PROOF. Suppose first thatS1 ^
S0

S2. LetI be a basis forS0, and letIi ⊇ I be a

basis forSi for i = 1, 2. Clearly,cl(S1 ∪ S2) = cl(I1 ∪ I2). We claim, in addition,
that I1 ∪ I2 is independent. Otherwise there isa ∈ cl(I1 ∪ I2 \ {a }). Without
loss of generality, we may assume thata ∈ I1. Now, sinceI1 is independent,
a 6∈ cl(I1 \ {a }), thus

a ∈ cl(I1 ∪ I2 \ {a }) \ cl(Ii \ {a }), for i = 1, 2.

We may also assume thata 6∈ I. To see this, assume thata ∈ I. ChooseI ′i ⊆ Ii\I,
minimal with respect to inclusion, such thata ∈ cl(I ′1 ∪ I ′2 ∪ I \ {a }), I ′i 6= ∅, for
i = 1, 2. By the Exchange Property, there isb 6∈ I, such that

b ∈ cl(I ′1 ∪ I ′2 ∪ I ∪ {b }) ⊆ cl(I1 ∪ I2 \ {b }).
But, if a 6∈ I, thencl(I1 \ {a }) = cl(I ∪ I1 \ {a }) so

a ∈ cl(I2 ∪ (I2 \ {a})) \ cl(I ∪ (I2 \ {a })),
which means thatS1 /̂

S0

S2, a contradiction. HenceI1 ∪ I2 is independent. There-

foredim(S1 ∪ S2) = |I1 ∪ I2|. But |I1 ∪ I2|+ |I| = |I1|+ |I2|, so

dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2).

For the converse, supposeS1 /̂
S0

S2. Let a ∈ S1 andA1 ⊆ S1 such that

a ∈ cl(S2 ∪A1) \ cl(S0 ∪A1).(*)

Choosea such thatA1 has minimal cardinality. This implies thatA1 ∪ {a} is
independent overS0, andA1 is independent overS2. Thus, we can pick a basisI0

for S0, and extendI0 ∪A1 ∪ {a} to a basisI1 of S1. Now chooseI ′2 disjoint from
I0, such thatI0 ∪ I ′2 is a basis ofS2. But,I0 ∪A1 ∪{a}∪ I ′2 is not independent by
(*). Hence

dim(S1 ∪ S2) + dim(S1 ∩ S2) < dim(S1) + dim(S2),

which finishes the proof.

In the previous section, we showed that in any pregeometry, there is a
relation that satisfies all the properties that forking satisfies in the context of simple
theories. This allows us to show a theorem of Buechler [Bu1], originally proved
for stable theories, when the pregeometry comes from forking.

THEOREM V.2.8 (Buechler).Let G = (W, cl) be a pregeometry. ThenG
is locally modular if and only ifGA has no parallel lines for every finiteA ⊆ W ,
such thatA 6⊆ cl(∅).

PROOF. Suppose first that there is a finiteA ⊆ W , such thatA 6⊆ cl(∅) and
GA contain parallel lines. Thus, letL1 andL2 be disjoint lines inGA such that
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dim(L1 ∪ L2/A) = 3. Let L′i = cl(Li ∪ A) for i = 1, 2. ThenA ⊆ L′1 ∩ L′2, so
L′1 ∩ L′2 6⊆ cl(∅), L′i is closed fori = 1, 2, and

dim(L′1 ∪ L′2) + dim(L′1 ∩ L′2) 6= dim(L′1) + dim(L′2).

This shows thatG is not locally modular.

For the converse, suppose thatG is not locally modular. Then there are
closedS1 andS2 subsets ofW such thatS1 ∩ S2 6⊆ cl(∅) and

dim(S1 ∪ S2) + dim(S1 ∩ S2) 6= dim(S1) + dim(S2).

We may assume thatS1 andS2 are finite dimensional. LetS0 = S1 ∩ S2. By
Proposition I.2.7, this implies thatS1 /̂

S0

S2.

LetD be the set of pairs of integers〈d1, d2〉 such that there are closed sets
S1 andS2 such that

• S0 = S1 ∩ S2 andS0 6⊆ cl(∅);
• d1 = dim(S1/S0) andd2 = dim(S2/S0);
• S1 /̂

S0

S2.

By assumptionD 6= ∅. Choose〈d1, d2〉 minimal with respect to the lexicographic
order. We claim that〈d1, d2〉 = 〈2, 2〉. Note that this is enough to prove the
theorem sinceclS0(S1 \ S0) andclS0(S2 \ S0) are parallel lines inGS0 .

Certainly,d1 > 1. Otherwise,dim(S1/S0) = 1 and sinceS1 /̂
S0

S1 there

must exista ∈ S1 \ S0 such thata ∈ cl(S2) \ cl(S0). SinceS2 andS0 are closed,
we havea ∈ S1 ∩ S2 \ S0, a contradiction, sinceS1 ∩ S2 = S0.

We now show thatd1 < 3. Supposed1 = dim(S1/S0) ≥ 3. We will show
that this contradicts the minimality ofd1. We first show that

S1 ∩ cl(S2a) = cl(S0a), for anya ∈ S1 \ S0.(*)

First, notice thatS0a ⊆ S1 andS0a ⊆ cl(S2a), so

S1 ∩ cl(S2a) ⊇ cl(S0a), for anya ∈ S1 \ S0.

Hence, if (*) does not hold, it is because for somea ∈ S1 \ S0, there exists

b ∈ (S1 ∩ cl(S2a)) \ cl(S0a).

By definition, this implies that{ a, b } /̂
S0

S2.

Let S′1 = cl(S0ab). ThenS′1 ∩ S2 = S0 andS0 6⊆ cl(∅). Furthermore
S′1 /̂

S0

S2. But dim(S2/S0) = d2 anddim(S′1/S0) = 2 < 3 ≤ d1, which contra-

dicts the minimality ofd1. Therefore, (*) holds.
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Now, sinceS1 /̂
S0

S2, there exista ∈ S1 and a finiteA ⊆ S1 such that

a ∈ cl(S2 ∪A) \ cl(S0 ∪A).(**)

But A 6⊆ S0. Otherwise, by (**) we havea ∈ cl(S2) \ cl(S0). This shows that
a ∈ S2 \ S1 sinceS2 andS0 are closed. Buta ∈ S1, soa ∈ (S1 ∩ S2) \ S0 = ∅,
which is impossible. Hence, there isb ∈ A \ S0. Then, sinceAb = A, we have

a ∈ cl(S2 ∪A) \ cl(S0b ∪A).

HenceS1 /̂
S0 ∪ b

S2.

Now considerS′2 := cl(S2b). Then,S1 /̂
S0 ∪ b

S2 implies thatS1 /̂
S0 ∪ b

S′2.

By (*) we haveS1 ∩ S′2 = cl(S0b). Finally, dim(S1/(S0b)) < dim(S1/S0) = d1

andd2 = dim(S2/S0) = dim(S′2/S0b). This contradicts the minimality ofd1. We
prove similarly thatd2 = 2, which finishes the proof.

V.3. Some “set theory”

In this section, we gather several observations with a set-theoretic flavor.
The next theorem is a generalization of a lemma from J. Baumgartner, M. Foreman
and O. Spinas [BFS]. Although the proof is easy, it does not follow from the fact
that two resolutions of the same model coincide on a club, as we do not have control
over the cardinality of the closures. The value of this theorem is that it makes it
possible to attach a club as an invariant of the pregeometry.

THEOREM V.3.1. LetG = (W, cl) be a pregeometry. Supposedim(W ) =
λ is regular and uncountable. LetI = { ai | i < λ } andJ = { bi | i < λ } be
bases ofW . Then

C = { i < λ : cl({ aj | j < i }) = cl({ bj | j < i }) }
is a closed and unbounded subset ofλ.

PROOF. We first show thatC is closed. Letδ = sup(δ ∩ C). Then, for any
i < δ there isi1 ∈ C such thati < i1 < δ. Hence, by definition ofC

cl({ aj | j < i1 }) = cl({ bj | j < i1 }).(*)

Lemma 4 and (*) implies thatai ∈ cl({ bj | j < δ }). Hence,

{ aj | j < δ } ⊆ cl({ bj | j < δ }),
and therefore

cl({ aj | j < δ }) ⊆ cl({ bj | j < δ }),
by Fact I.1.2 again. The other inclusion is similar and so

cl({ aj | j < δ }) ⊇ cl({ bj | j < δ }).
This shows thatδ ∈ C, by definition ofC.
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We now show thatC is unbounded inλ. Let i < λ be given. We construct
in < λ for n ∈ ω increasing withi0 = i such that

(1) cl({ aj | j < in }) ⊆ cl({ bj | j < in+1 }) if n is even;
(2) cl({ bj | j < in }) ⊆ cl({ aj | j < in+1 }) if n is odd.

This is enough: Leti(∗) = sup{ in | n ∈ ω }. Theni(∗) < λ sinceλ is
regular uncountable. Furthercl({ aj | j < i(∗) }) = cl({ bj | j < i(∗) }), since if
i < i(∗), then there isin with n even such thati < in, so

ai ∈ cl({ aj | j < in }) ⊆ cl({ bj | j < in+1 }) ⊆ cl({ bj | j < i(∗) }),
hence

cl({ aj | j < i(∗) }) ⊆ cl({ bj | j < i(∗) }).
The other inclusion is proved similarly. Thusi < i(∗) ∈ C, which shows thatC is
unbounded.

This is possible: Giveni < λ, we leti0 = i. Assume thatin < λ has been
constructed. Supposen is even. For eachj < in, we have thataj ∈W = cl({ bj |
j < λ }) sinceJ is a basis. By Finite Character, there is a finiteSj ⊆ λ such that
aj ∈ cl({ bk | k ∈ Sj }). Let kj = sup Sj < λ, soaj ∈ cl({ bl | l ≤ kj }), and by
increasingkj if necessary, we may assume thatkj ≥ in. Setin+1 = sup{ kj + 1 |
j < in }. Thenin+1 < λ sinceλ is regular and satisfies our requirement. The case
whenn is odd is handled similarly.

PROPOSITIONV.3.2 (Downward Theorem).Let G = (W, cl) be a prege-
ometry. LetA, B andC be subsets ofW . SupposeA ^

B
C andA′ is a subset of

A, of cardinality at mostλ, for λ an infinite cardinal. Then there isB′ ⊆ B of
cardinality at mostλ such thatA′ ^

B′
C.

PROOF. Let A′ ⊆ A of cardinalityλ be given. Let{ 〈ai, Ai〉 | i < λ } be
an enumeration of all the pairs such thatai ∈ A′ andAi ⊆ A′ is finite. Such an
enumeration is possible sinceλ is infinite. SinceA ^

C
B, necessarily

ai 6∈ cl(B ∪ C ∪Ai) \ cl(B ∪Ai), for everyi < λ.(*)

Hence, eitherai 6∈ cl(B∪C ∪Ai), orai ∈ cl(B∪Ai). If the latter holds, by Finite
Character, we can find a finiteBi ⊆ B such thatai ∈ cl(Bi ∪Ai). We letBi = ∅,
if ai 6∈ cl(B ∪Ai). Let B′ =

⋃
Bi. ThenB′ ⊆ B, and|B′| ≤ λ.

We claim thatA′ ^
B′

C. Otherwise, there exista ∈ A′ and a finiteA∗ ⊆ A′,

such that

a ∈ cl(B′ ∪ C ∪A∗) \ cl(B′ ∪A∗).(**)

Choosei < λ such thata = ai andA∗ = Ai. Thus,ai ∈ cl(B′ ∪ C ∪ Ai), and
so by Fact I.1.2 we haveai ∈ cl(B ∪ C ∪ Ai). Therefore, by (*) we have that
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ai ∈ cl(B ∪ Ai). Henceai ∈ cl(Bi ∪ Ai) by construction. ButBi ⊆ B′, and so
ai ∈ cl(B′ ∪Ai) by Fact I.1.2. This contradicts (**) sinceA∗ = Ai.

COROLLARY V.3.3. Let G = (W, cl) be a pregeometry. LetA, B andC
be subsets ofW . Suppose thatA, B andC have cardinality at leastλ for someλ
infinite. If A ^

C
B, then we can findA′ ⊆ A, B′ ⊆ B andC ′ ⊆ C of cardinalityλ,

such thatA′ ^
C ′

B′.

PROOF. By the previous theorem using monotonicity.

PROPOSITIONV.3.4 (Ultraproducts of Pregeometries).Let I be a set and
D anℵ1-complete ultrafilter onI. Suppose that(Wi, cli) is a pregeometry for each
i ∈ I. ConsiderW = Πi∈IWi and fora ∈W andB ⊆W , define

a ∈ cl(B) if { i ∈ I | a(i) ∈ cli(B(i)) } ∈ D.

Then(W, cl) is a pregeometry.

PROOF. We only show Finite Character, since all the other axioms of a prege-
ometry are routine. Supposea ∈ cl(B). ThenJ = { i ∈ I | a(i) ∈ cli(B(i)) } ∈
D, and by Finite Character ofcli, for eachi ∈ J , there is a finiteB′(i) ⊆ B(i),
such thata(i) ∈ cli(B′(i)). Let Jn = { i ∈ J | B′(i) hasn elements}. Then

{ i ∈ J | a(i) ∈ cli(B′(i)) } =
⋃
n<ω

Jn.

Hence, byℵ1-completeness, there existn < ω such thatJn ∈ D. We now write
B′(i) = { bi

1, . . . , bi
n } for i ∈ Jn. Let A = { f1, . . . , fn } ⊆ B be given by

fk(i) = bi
k wheni ∈ Jn andfk(i) ∈ B(i) arbitrary wheni 6∈ Jn. Then

{ i ∈ I | a(i) ∈ cli(A(i)) } ⊇ Jn ∈ D,

by construction. Hence{ i ∈ I | a(i) ∈ cli(A(i)) } ∈ D. Thus,a ∈ cl(A) andA
is a finite subset ofB, which is what we needed.

We now introduce stable systems, a notion originally developed in model
theory. They are used for example in [Sh87a], [Sh87b] and later in the proof of the
main gap [Sh b]. See also [Ma].

DEFINITION V.3.5. LetG = (W, cl) be a pregeometry.

(1) We callS = 〈As | s ∈ I〉 asystem, if As ⊆W , I is a subset of
⋃

I closed
under subsets ands ⊆ t impliesAs ⊆ At. We denote bys− the immediate
predecessor ofs in I if one exists;

(2) We callS = 〈As | s ∈ I〉 a stable system, if S is a system which satisfies
in addition

As ^
As−

⋃
{At | t 6⊇ s, t ∈ I}, for everys, t ∈ I.
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PROPOSITIONV.3.6 (Generalized Symmetry Lemma).Let G = (W, cl)
be a pregeometry. LetS = 〈As | s ∈ I〉 be a system. Suppose there is an
enumerationI = 〈s(i) | i < α〉 such that

(1) s(i) ⊆ s(j) impliesi ≤ j, for everyi, j < α;
(2) As(i) ^

As(i)−

⋃
{As(j) | j < i}.

ThenS is a stable system.

PROOF. By Finite Character, we may assume thatI is finite. We prove this by
induction on|I|. The base case is obvious. Suppose it is true for|I| = n < ω.
SupposeI = 〈s(i) | i ≤ n〉 is an enumeration satisfying (1) and (2). Assume for a
contradiction thatS is not a stable system. By induction hypothesis, we have either

As(n) /̂
As(n)−

⋃
{As(j) | s(j) 6⊆ s(n)},(*)

or there existsi < n with s(i) 6⊆ s(n) such that

As(i) /̂
As(i)−

⋃
{As(j) | s(j) 6⊆ s(i), s(j) 6= s(n)} ∪As(n).(**)

By assumption, we know that

As(n) ^
As(n)−

⋃
{As(j) | j < n}.(†)

By (1), we have that⋃
{As(j) | s(j) 6⊆ s(n)} ⊆

⋃
{As(j) | j < n}.

Hence (*) is impossible, by Monotonicity and (†).

Now if s(i) ⊆ s(n), thens(i)− ⊆ s(n)−. Hence,As(i)− ⊆ As(n)− since
S is a system. By Monotonicity used twice, (†) implies that

As(n) ^
As(i)−

⋃
{As(j) | s(j) 6⊆ s(i), s(j) 6= s(n)} ∪As(i).

But this and Remark I.1.17 contradicts (**). Hences(i) 6⊆ s(n).

V.4. Abstract group configuration

A central result in Geometric Stability Theory is the presence in very gen-
eral circumstances of a definable group among the definable (maybe infinitely de-
finable) sets of a model. This is referred to by W. Hodges [Ho] as the Zilber Group
Configuration Theorem, and by others as the Hrushovski Group Configuration The-
orem. We will call it the Hrushovski-Zilber Group Configuration Theorem. It has
an ancient flavor; it is in a line of work which dates back to Veblen and Young
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around 1910. The general template is the emergence of algebraic structures from
certain geometric configurations.

The Hrushovski-Zilber Group configuration Theorem for the first order,
countableℵ1-categorical case is due to Boris Zilber [Zi ]. It builds on the meth-
ods of Baldwin-Lachlan [BaLa]). It was extended to stable theories by Ehud
Hrushovski [Hr1 ] (see also the exposition of Elizabeth Bouscaren [Bo]). This
generalization was done using S. Shelah’s notions of forking, regular types and
p-simple technology.

These methods have since developed into a field of its own. See for exam-
ple the recent books of Steve Buechler [Bu a] and Anand Pillay [Pi b]. They have
been used to answer classical logical questions, for example B. Zilber’s solution to
the finitely axiomatization problem [Zi ]; to general classification theory questions,
for example E. Hrushovski’s proof that unidimensional stable theories are super-
stable [Hr2 ], S. Buechler’s work on Vaught’s Conjecture [Bu2], and have found
several applications outside of model theory [ChHr ], [HrPi1 ], [HrPi2 ], [EvHr1 ],
[EvHr2 ], [Hr3 ].

Our aim in this section is to separate the model-theoretic aspects from the
combinatorial geometry in the Hrushovski-Zilber Group Configuration Theorem
to enable us to transfer this tool to non first order contexts.

The setting of the Hrushovski-Zilber Group Configuration Theorem is the
following. We have a pregeometry where the closure operation comes from fork-
ing. Technically speaking, the pregeometry is the set of realization of a stationary
typep with the additional property that the closure operation given by

a ∈ cl(B) if and only if tp(a/B ∪ dom(p)) forks overdom(p).

Here are several of the key ingredients in the first order case that are used. (1) The
notion of types (2) The fact that the pregeometry comes from forking guarantees
that the ambient dependence relation is well-behaved. (3) (T stable) Every type is
definable. (4) Work inT eq, which allows one to use the Canonical Basis Theorem.
All these results rely on the compactness theorem.

As described in the introduction of this chapter, there are several nonele-
mentary contexts, where pregeometries arise and where one may hope to apply
these ideas. In each of the contexts we described (categorical sentences inLω1ω(Q),
Excellent Scott sentences, totally transcendental or superstable finite diagrams)
some facts allow us to circumvent the difficulties posed by the absence of the com-
pactness theorem. In each of them, we have (1) a good notion of types. (2) In spite
of the fact that the dependence relation is not necessarily as well-behaved as fork-
ing, there exists pregeometries. By work started in Chapter IV, this implies that we
can define another dependence relation which satisfies all the formal properties of
forking for first order theories. (3) In many of them, there is a notion of stationary
types and those are definable. (4) There are several ways (as yet unpublished, some
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due to myself, some to Saharon Shelah) of introducing substitutes toT eq and get
the Canonical Basis Theorem.

The aim of this section is to take into account the technology available (or
being developed in nonelementary classes) to find some natural axioms (behind
which the logical framework is hidden) under which group configurations may
yield a group. Let us make this more precise. The Hrushovski-Zilber Group Con-
figuration Theorem states in essence that if in adefinablepregeometry we have a
certain dependence configuration (called group configuration, see the figure next
to Hypothesis I.4.16), then there exists adefinablegroup.

There are two steps in the Hrushovski-Zilber Group Configuration Theo-
rems.

Step 1: Starting from the group configuration, where the dependence relation
is forking, to obtain a similar group configuration, where in addition, some
points areuniquely determinedby others. This is often called the unique
definability condition.

Step 2: From this special configuration, one derives a definable group.

Both steps rely on the general properties of forking and the canonical basis
theorem for stable theories.

Step 1 seems decidedly model-theoretic and there is little hope for general
conditions for the existence of an abstract theorem generalizing it. However, Step
2 is amenable.

There are two aspects of definability: Bysyntactic definability, we mean
some model theoretic notion; we live in an ambient modelM satisfying some
axioms (not necessarily first order) and have a notion of formula. A setA is said to
be syntactically definable overB if there exists a set of formulasp overB such that
a ∈ A if and only if a realizes all the formulas inp. Now given an automorphism
group Γ, there is also a notion ofsemantic definability. We say that a setA is
semantically definable overB if for every f ∈ Γ fixing B pointwise,f fixes A
setwise.

Now, syntactic definability implies semantic definability in case the auto-
morphism group is (a subgroup) of the automorphism group of the modelM . The
converse is more delicate.

In this section, we work inside a pregeometry(W, cl), given with an auto-
morphism groupΓ. We require that the pregeometry be homogeneous with respect
to this automorphism group, which in our context means that the automorphism
group is rich. We then have a notion of semantic definable sets (henceforth just
called definable). We also consider a subcollectionD of definable sets (which in
the applications are going to be the syntactically definable sets). We assume that
D satisfies an axiom parallel to (i) the definability of (stationary) types and another



V.4. ABSTRACT GROUP CONFIGURATION 147

axiom parallel to (ii) the canonical basis theorem. If we assume in addition that in
the unique definability condition of Step 2, the definable sets are inD, then this im-
plies the existence of a group, which is equal to a (potentially infinite) intersection
of sets inD.

If one is interested in applications to model theory for nonelementary
classes and in particular issues of definability, we will be given a natural notion
of syntactical definable sets and this theorem will give a definable group in this
language (provided this notion satisfies the condition ofD). All the first order
notions for definability used so far belong to this set and the axioms hold in the
well-known first order cases.

We can also look at this without a notion of syntactically definable sets.
This allows us to ignoreD, that is to assume thatD is the set of all semantically
definable sets. Then, we do not need an axiom on definability of stationary types
and just consider the canonical basis theorem for semantically definable sets. This
gives a very smooth theorem in the context of combinatorial geometry.

The presentation owes much to [Ho], [Bo] and [EvHr1 ]. In fact, the set-
ting of [EvHr1 ] is a particular case of our setting: LetK ⊆ L be algebraically
closed fields. The pregeometry(W, cl) is given byW = L \ K anda ∈ cl(C)
if and only if a is in the algebraic closure (inL) of the field generated byK ∪ C.
The automorphism groupΓ is aut(L/K). All the axioms are satisfied. Using the
fact that they work in algebraically closed fields, they managed to obtain additional
information on the definable groups.

V.4.1. The context. Let (W, cl) be a pregeometry andΓ be a group of auto-
morphisms of(W, cl).

We always assumecl(∅) 6= W , in fact we will make the following assump-
tion:

HYPOTHESISV.4.1. We assume that(W, cl) is infinite dimensional.

NOTATION V.4.2. (1) We denoteΓX the group of automorphisms of
(W, cl) fixingX pointwise.

(2) Given a sequenceA of elements ofW . We denote byΓX(A) the orbit ofA
underΓX , namely

ΓX(A) = {f(A) | f ∈ ΓX}.
For a sequenceA = 〈ai | i < α〉, we writef(A) for 〈f(ai) | i < α〉.

In the previous chapter we introduced the following relation between sub-
sets of a pregeometry. For convenience and readability, we use the usual notation
^

DEFINITION V.4.3. Let(W, cl) be a pregeometry. LetA, B andC be sub-
sets ofW . We say thatA depends onC overB, if there exista ∈ A and a finite
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A′ ⊆ A (possibly empty) such that

a ∈ cl(B ∪ C ∪A′) \ cl(B ∪A′).

If A depends onC overB, we writeA /̂
B

C;

If A does not depend onC overB, we writeA ^
B

C.

We proved in the first section of this chapter that this dependence relation
satisfies the familiar axioms of forking, as introduced by Shelah.

FACT V.4.4 (Forking Relations).

(1) (Definition)A ^
B

C if and only ifA ^
B

B ∪ C;

(2) (Existence)A ^
C

C.

(3) (Finite Character)A ^
C

B if and only if A′^
C

B′ for every finiteA′ ⊆ A

and finiteB′ ⊆ B;
(4) (Invariance)If f ∈ Γ, thenA ^

B
C if and only iff(A) ^

f(B)
f(C);

(5) (Monotonicity)LetB ⊆ B1 ⊆ C ′ ⊆ C. ThenA ^
B

C impliesA ^
B1

C ′;

(6) (Symmetry)A ^
B

C if and only ifC ^
B

A;

(7) (Transitivity) If B ⊆ C ⊆ D, then A ^
B

D if and only if A ^
B

C and

A ^
C

D;

(8) (κ(T ) = ℵ0) For everyā andC there existsB ⊆ C, |B| < ℵ0, i.e. finite,
such that̄a ^

B
C;

(9) (Closed Set)A ^
B

C if and only ifcl(A) ^
cl(B)

cl(C).

REMARK V.4.5. Definition, Existence, Finite Character, Invariance, Mono-
tonicity, κ(T ) = ℵ0 and Closed Set are obvious. The difficulty is to obtain (6) and
(7).

The first axiom corresponds to the extension property of forking as well as
some saturation.

AXIOM V.4.6 (Extension).Let ā be given andX be finite dimensional.
Then, there exists̄a′ ∈ Γ(ā) such that̄a′^ X.

The next axioms correspond the uniqueness of the nonforking extension. I
call it Homogeneity because a pregeometry satisfying H1 is called homogeneous.
The axioms H2 and H3 have a similar flavor and in first order model theoretic cases
follow from the same facts: stationarity and saturation.
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AXIOM V.4.7 (Homogeneity).

H1 If a, b 6∈ cl(X) then there isf ∈ Γcl(X) such thatf(a) = b;
H2 If ā1 ∈ ΓX(ā2), b̄1 ∈ ΓX(b̄2) andāi ^

X
b̄i for i = 1, 2, then there isg ∈ ΓX

such thatg(ā1) = ā2 andg(b̄1) = b̄2;
H3 If ā ^

X
b̄, ā′^

X
b̄ and ā ∈ ΓX(ā′), thenā ∈ Γcl(Xb̄)(ā

′).

FACT V.4.8. If dim(X) < dim(W ) and|ΓX(a)| < ℵ0, thena ∈ cl(X).

PROOF. SinceW is infinite dimensional, there exists an infinite set{an | n <
ω} ⊆ W \ cl(X). By Homogeneity, ifa 6∈ cl(X), then {an | n < ω} ⊆
Γcl(X)(a) ⊆ ΓX(a), a contradiction.

The next definition is a substitute for the logical notions of algebraic or
definable closure.

DEFINITION V.4.9.

(1) We say thata is in thedefinable closureof X, if |ΓX(a)| = 1, i.e. ΓX(a) =
{a}. We writea ∈ dcl(X), if a is in the definable closure ofX;

(2) We say thata is in thealgebraic closureof X, if |ΓX(a)| < ℵ0. We write
a ∈ acl(X), if a is in the algebraic closure ofX.

REMARK V.4.10. For small dimensional setsX ⊆ W and elementsa ∈
W , Fact I.4.8 implies that ifa ∈ acl(X) or a ∈ dcl(X), thena ∈ cl(X).

Finally, we introduce the notions that can be used to bypass the general
Ceq technology, in particular Shelah’s Canonical Basis Theorem.

DEFINITION V.4.11.

(1) We say that a setA ⊆ Wn is definable overX ⊆ W , if every f ∈ ΓX

fixesA setwise;
(2) We say thatX ⊆ W is thesupportof a setA ⊆ Wn if for everyf ∈ Γ, f

fixesA setwise if and only iff fixesX pointwise.

FACT V.4.12.

(1) Any automorphismf fixesX pointwise if and only iff fixesdcl(X) point-
wise, so by definition of support, we haveX = dcl(X).

(2) The support ofA is unique if it exists. LetX andY be supports ofA, Let
f ∈ Γ fixing X pointwise. Thenf fixesA setwise sinceX is a support
and sof fixesY pointwise sinceY is a support also. ThusΓX(Y ) = Y so
dcl(Y ) = Y ⊆ dcl(X). We are done by symmetry.
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REMARK V.4.13. By the previous fact, ifA has supportX, we define
dim(A) := dim(X) andA ^

B
C if and only if supp(A) ^

supp(B)
supp(C). All

these notions are well-defined and satisfy all the facts we have already proved.
There will be no ambiguity since we will not deal withA ⊆W .

We consider a collectionD of definable sets (without) parameters. We
require thatD be closed under union and intersection, projections, product and
permutation. We donot require closure under complementation. For clarity, we
use the usual first order notation with formulas. For example, byφ(x̄) ∈ D we
mean a definable subset ofW `(x̄). We write |= φ[a, b̄] to say that(a, b̄) is in the
definable setφ(x̄).

We require that ifa ∈ dcl(b̄), then there isφ(x, ȳ) ∈ D such that|= φ[a, b̄]
and for everya′ such that|= φ[a′, b̄], we havea = a′. We also require that the
sets of ifD are compatible withΓ, i.e. if |= φ[a, b̄], then also|= φ[f(a), f(b̄)] for
f ∈ Γ.

Now on to the last axioms.

AXIOM V.4.14 (Definability of types).Let ā, b̄ ∈ W and R ∈ D be a
relation on the orbits of̄a and b̄. Then there isdR ∈ D such that for all̄a′ ∈ Γ(ā)
we havēa′ ∈ dR ∈ D if and only if for everȳb′ ∈ Γ(b̄) if ā′^ b̄′, then(ā′, b̄′) ∈ R.

AXIOM V.4.15 (Canonical Basis).If E(x̄, ȳ) ∈ D is an equivalence rela-
tion over orbits ofW , then each equivalence classb̄/E has a support.

V.4.2. The group configuration. We show that if a pregeometry, its automor-
phism group and the collection of definable sets satisfy our list of axioms, then the
special group configuration gives rise to a definable group.

HYPOTHESISV.4.16. There existbi, ai for i = 1, 2, 3, sequences of di-
mension1, such that

(1) All sequences are pairwise independent;
(2) dim(b1b2b3) = 2, dim(biajak) = 2, for all i 6= j 6= k, and

dim(b1b2b3a1a2a3) = 3;

(3) a2 ∈ dcl(b1a3), a1 ∈ dcl(b2a3), anda3 ∈ dcl(b1a2) ∩ dcl(b2a1).

Given sets of sequencesA, B, we will denoteA + B, the set

A + B = {(ā, b̄) | ā ∈ A, b̄ ∈ B, andā ^ b̄}.

Given (b′1, b
′
2) ∈ Γ(b1) + Γ(b1) and a ∈ Γ(a2) \ cl(b′1b

′
2), we define

h(b′1,b′2)(a) as follows. Choosef ∈ Γ such thatf(b1) = b′1, f(b2) = b′2 and
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f(a2) = a. To do this, choose firstσ ∈ Γ such thatσ(b1) = b′1, σ(b2) = b′2.
Clearlyσ exists by Axiom H2, sinceb′i ∈ Γ(bi) for i = 1, 2. Then, chooseτ ∈ Γ
suchτ(σ(a2)) = a andτ ¹ b1b2 = id. This is possible by Axiom H1 since by as-
sumption on the configurationa2 6∈ cl(b1b2), soσ(a2) 6∈ cl(b′1b

′
2) anda 6∈ cl(b′1b

′
2)

by choice ofa.

We now make a few observations. First,f(a3) is uniquely determined
sincea3 ∈ dcl(b1a2). Indeed, supposeg(b1) = b′1 andg(a2) = a. Theng−1f ∈
Γb1a2 so g−1f(a3) = a3. Thereforeg(a3) = f(a3). Second, notice thatf(a1)
is uniquely determined, sincea1 ∈ dcl(b2a3). Indeed, supposeg(b2) = b′2 and
g(a3) = f(a3). Theng−1f ∈ Γb2a3 , sog−1f(a1) = a1, andg(a1) = f(a1).

We defineh(b′1,b′2)(a) = f(a1). In view of the previous considerations, this
is well-defined and furthermoref(a1) ∈ Γ(a2). Notice also that〈b̄′1, b̄′2, a, a′〉 ∈
D, for all h(b′1,b′2)(a) = a′, using projections and intersection.

We wish to extend the action ofΓ(b1) + Γ(b1) on all elements ofΓ(a2).
To do this, we define the following relation onΓ(b1) + Γ(b1):

(b′1, b
′
2) ∼ (b′′1, b

′′
2) if h(b′1,b′2)(a) = h(b′′1 ,b′′2 )(a), for all a ∈ Γ(a2) \ cl(b′1b

′
2b
′′
1b
′′
2).

CLAIM . ∼ is an equivalence relation onΓ(b1) + Γ(b1).

PROOF. Reflexivity and Symmetry are obvious. To see that Transitivity holds,
we first show that we can replace “for all” by “there exists” in the definition ofa.
Indeed, suppose thata, a′ ∈ Γ(a2)\cl(b′1b

′
2b
′′
1b
′′
2) and thath(b′1,b′2)(a) = h(b′′1 ,b′′2 )(a).

By Axiom H1, there existsσ ∈ Γcl(b′1b′2b′′1 b′′2 ) such thatσ(a) = a′. Notice that
h(b′1,b′2)(σ(a)) = σ(h(b′1,b′2)(a) and similarly,h(b′′1 ,b′′2 )(σ(a)) = σ(h(b′′1 ,b′′2 )(a), and
henceh(b′1,b′2)(a′) = h(b′′1 ,b′′2 )(a′). Transitivity now follows easily.

We denote by[b′1, b
′
2] the equivalence class of(b′1, b

′
2) under∼. It now

follows from Axiom I.4.14 that∼∈ D. Hence, each[b′1, b
′
2] ∈ D and by Axiom

I.4.15 must have a support. Clearly,supp[b′1, b
′
2] cl(b′1, b

′
2) ⊆W .

Let H = {[b′1, b′2] | (b′1, b′2) ∈ Γ(b1) + Γ(b1)}.

Notice thatΓ acts transitively on the elements ofH in the following sense:
if [b1, b2], [c1, c2] are elements ofH, there isf ∈ Γ such thatf([b1, b2]) = [c1, c2].
To see this, recall thatci ∈ Γ(bi) for i = 1, 2 and that by definition ofH we
have that each sequence is independent andb1 ^ b2 andc1 ^ c2. Hence, by Axiom

H2 there existsf ∈ Γ such thatf(bi) = ci for i = 1, 2. Thenf([b1, b2]) =
[f(b1), f(b1)] = [c1, c2] as required.

Notice also that by Axiom I.4.15, every elementα ∈ H has a supportXα,
so that we can extend forking and dimensions on elements ofH. Elements ofH
are calledgermsand they each act onΓ(a2). We will want to compose germs,
but we will want to make sure that the composition is also an element ofH. For
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this, some more work is needed. We can expressH by an infinite intersection of
elements ofD by Axiom I.4.14.

LEMMA V.4.17. [b1, b2] ⊆ cl(b3) and therefore[b1, b2] ^ bi for i = 1, 2.

PROOF. First, observe that

[b1, b2](a2) = a1 ∈ cl(a2b3),(*)

by definition and the configuration. We want to show that

X := supp([b1, b2]) ⊆ cl(b3).

By definition of support, it is enough to show that for allf ∈ Γcl(b3), we have

f([b1, b2]) = [b1, b2],

i.e. [b1, b2] is fixed setwise byf .

For this, fixf ∈ Γcl(b3) and leta ∈ Γ(a2) \ cl(Xf(X)b1b2b3).

We claim that[b1, b2](a) ∈ cl(ab3). To see this, it is enough to find an
automorphismσ ∈ Γcl(b1b2b3) such thatσ(a2) = a and then applyingσ to (*).
But the existence ofσ follows from H1 if we can show thata2 6∈ cl(b1b2b3). This
follows from the configuration. Supposea2 ∈ cl(b1b2b3). Thena1 ∈ cl(b1b2b3),
sincea1 ∈ cl(a2b3) and alsoa3 ∈ cl(b1b2b3) sincea3 ∈ cl(a1b2). This is a
contradiction since

dim(a1a2a3b1b2b3) = 3 6= 2 = dim(b1b2b3).

Now chooseg ∈ Γcl(b3a) such thatg ¹ X = f ¹ X.

Then, we have the following equalities:

[b1, b2](a) = g([b1, b2](a)) (since[b1, b2](a) ∈ cl(b3a))

= g([b1, b2])(g(a)) (g is an automorphism)

= g([b1, b2])(a) (g(a) = a)

= f([b1, b2])(a) (f ¹ X = g ¹ X)

Thus, by definition of the germs,[b1, b2] = f([b1, b2]). This finishes the proof.

The elements ofH act onΓ(a2). It makes sense to compose them. Letα,
β ∈ H. We writeα∗β for an elementγ ∈ H, such that for alla ∈ Γ(a2) such that
a ^ αβγ, we haveγ(a) = α(β(a)). Suchγ’s do not necessarily exist. We will

show that, in fact,α ∗ β exists ifα ^ β.

Suppose[c1, c2] and[c2, c3] are inH. Then in this case, it is easy to see that
[c1, c2] ∗ [c2, c3] = [c1, c3]. We will show that, in fact, this is the typical situation
whenα ^ β. This is done by the following lemmas.
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LEMMA V.4.18. If c1, c2 andc3 ∈ Γ(b1) are such thatdim(c1c2c3) = 3,
then[c1c2] ^[c2, c3]

PROOF. LetX = supp([c1, c2]) andY = supp([c2, c3]). Suppose[c1c2] /̂ [c2, c3].

Then, by definition,X /̂ Y , and soX ⊆ Y since they are both closed, and fur-

thermoreX = Y since they have dimension 1. By the dimension,c1 ^ c2c3, so

sinceY ⊆ cl(c2c3), we must havec1 ^ c2Y . But, sinceX = Y , we now have

alsoc1 ^ c2X. Sincec2 ^ X, we thus havedim(c1c2X) = 3. But cl(c1c2X) =

cl(c1c2), so that’s impossible.

LEMMA V.4.19. Let α, β ∈ H. If α ^ β, then there existc1, c2 and c3

such thatα = [c1, c2], β = [c2, c3] anddim(c1, c2, c3) = 3.

PROOF. Notice thatΓ acts transitively overH + H, via the supports: let
α1 ^ β1 andα2 ^ β2. Denote byXαi , (respectivelyXβi) the supports ofαi (re-

spectivelyβi). Then, by definitionXαi ^ Xβi , for i = 1, 2 and further,Xα1 ∈
Γ(Xα2), andXβ1 ∈ Γ(Xβ2) by a homogeneous axiom. The result follows by
Stationarity. Now, by the previous lemma, ifc1, c2 andc3 ∈ Γ(a) are such that
dim(c1c2c3) = 3, then[c1c2] ^[c2, c3]. Thus, by transitivity, we can findf ∈ Γ

such thatf([c1, c2]) = α and f([c2, c3]) = β. Thus,α = [f(c1), f(c2)] and
β = [f(c2), f(c3)]. Clearly,dim(f(c1), f(c2), f(c3)) = 3. We are done.

LEMMA V.4.20. If α, β ∈ H with α ^ β, thenα ∗ β is a well-defined

element ofH. Moreover,α ∗ β ^ α andα ∗ β ^ β.

PROOF. Choosec1, c2 andc3 with dim(c1, c2, c3) = 3, such thatα = [c1, c2]
andβ = [c2, c3]. Check thatγ = [c1, c3]. The rest is now immediate.

Define an equivalence relation onH + H,

(α1, β1) ≈ (α2, β2) if α1 ∗ β1(e) = α2 ∗ β2(e),

for everye ∈ Γ(j) such thatα1 ∗ β1(e) andα2 ∗ β2(e) are both defined. LetG
be the set of equivalence classes. Let us call[α, β] the equivalence class of(α, β)
under≈. We define

[α1, α2] ∗ [β1, β2] = [γ, δ],

whereα1 ∗α2 ∗β1 ∗β2 ≈ γ ∗ δ, and(γ, δ) ∈ H + H. By considerations similar to
H, G can be expressed by an infinite intersection of sets inD, and also its product
by Axiom I.4.15.

The next claim shows thatG is closed under composition.
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CLAIM . (G, ∗) is closed under composition.

PROOF. Let [α1, α2], [β1, β2] ∈ G be given. Thenα1 ^ α2 andα1 ∗ α2 ^ αi,

for i = 1, 2 by a previous lemma. Similarly,β1 ^ β2 andβ1 ∗β2 ^ βi, for i = 1, 2.

We distinguish two cases. Letα := α1 ∗ α2. If α ^ β1 ∗ β2, then both

[α, (β1 ∗ β2)] and[β1, β2] ∈ G, and obviouslyα1 ∗ α2 ∗ β1 ∗ β2 ≈ α ∗ (β1 ∗ β2).

If α /̂ β1∗β2, thenα ∈ cl(β1∗β2) and so sinceβ1∗β2 ^ β1, alsoα ^ β1.

Thus,α ^ β1 andβ1 ^ β2.

First, chooseδ ∈ H such thatδ ^ αβ1β2. In particular,β1 ^ δ. Now

chooseδ1 ∈ H suchδ1 ^ δ. Thenδ1 ∗ δ is well-defined, andδ1 ∗ δ ^ δ. SinceΓ

acts transitively onH+H, we can findg ∈ Γ such thatg(δ) = δ andg(δ∗δ1) = β1.
Thus,β1 = g(δ1) ∗ δ. Call g(δ1) = δ′ ∈ H. Thenα ∗ β1 ∗ β2 = (α ∗ δ) ∗ (δ′ ∗ β2).
We are done in we can show thatα ^ δ andδ′^ β2. Certainlyα ^ δ by choice of

δ. Now if δ′ /̂ β2, thenβ2 ∈ cl(δ′). But β1 ∈ cl(δ, δ′) so δ′ ∈ cl(β1δ). Hence,

dim(δ, β1, β2) = 2, contradicting the choice ofδ.

This finishes the proof.

LEMMA V.4.21. (G, ∗) is a group.

PROOF. G is nonempty. SinceH is closed under inverse, it is easy to see
that the inverse of[α, β] is [β−1, α−1], soG is closed under inverse. The previous
claim shows thatG is closed under composition. Finally,(G, ∗) acts onΓ(a2) as
described.
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