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Abstract

We prove some cool theorems on the border of Ramsey theory
(finite partition calculus) and model theory. Also a begining of clas-
sification theory for classes of finite models is attempted.

Introduction

Frank Ramsey in his fundamental paper (see [21] and page 18-27 of [10] ) was
interested in “a problem of formal logic” (- the title of [21]). The theorem
known as “finite Ramsey’s theorem”: ∀r, c < ω, ∀k < ω ∃n < ω such that
n → (k)rc. Let n(k, r, c) be the first such n. The theorem was used by him
to construct finite models for finite universal theory such that the universe is
canonical with respect to the relations in the language (model theorists call
canonical sets ∆-indiscernibles (see Definition 1.1 )).

Much is known about the order of magnitude of the function n(k, r, c)
and some of its generalizations (see [8], and TODORCEVIC 1993/4 ??). An
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upper bound is an (r − 1) - times iterated exponential of a polynomial in k
and c. Many feel that the upper bound is tight. However especially for r ≥ 3
the gap between the lower and upper bounds is huge.

In 1956 A. Ehernfeucht and A. Mostowski [7] rediscovered the usefull-
ness of Ramsey’s theorem in logic, and introduced the notion we now call
indiscernibles. Several people continued exploiting the connections between
partition theorems and logic (i.e. Model Theory), among them M. Morley
(see [18] and [19]), and S. Shelah who has published virtually uncountable
number of papers related to indiscernibles (see e.g. “The Bible” [27]). Morley
[19] used indiscernibles to construct models of very large cardinality (rela-
tively to the cardinality of the reals), namely he proved that the Hanf number
of Lω1,ω is iω1 .

One of the most important developments in mathematical logic (certainly
the most important in model theory) in the last 30 years is what is known as
“classification theory” or also as “stability theory”. There are several books
dedicated entirely to some aspects of the subject, among them are books by:
J. Baldwin [2], D. Lascar [16], S. Shelah [27], and A. Pillay [20].

Lately Shelah and others have done extensive work in extending classi-
fication theory from the context of first order logic, to classifying arbitrary
classes of models usually for infinitary logics extending first order logic (for
example see [3], [4], [5], [12], [14], [17] , [23] , [28] , [24]). [24] contains several
philosophical and personal comments about why this research is interesting;
[25] is video tape from the Shelah’s planery talk at the International Congress
of Mathematics at Berkeley in 1986.

This raises a question of fundamental importance: Is there a classification
theory for finite structures? One of the basic problems in doing finite model
theory for finite structures is in choosing an approperiate “sub model” rela-
tion, or in category-theoretic terminology introducing a natural morphism. In
classification theory for elementary classes (- models of a first order (usually
complete) theory) the right notion of morphism is “elementary embedding”
which is defined using the relation M ≺ N , which is a strenghtening of the
notion of being submodel (denoted by M ⊆ N). Unfortunately for finite
structures always M ≺ N implies M = N . Moreover, in many cases even
M ⊆ N implies M = N (e.g. when N is a group of prime order). We need a
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substitute. One of the basic observations to make is that when we limit our
attention to structures in a relational language only (no function symbols)
then M ⊆ N does not imply M = N . In general this seems to be insuf-
ficient (to force that the substructure will inherit some of the properties of
the bigger structure (e.g. satisfying the same first order sentences)). It was
observed already by Ramsey (in [21] ) that if M ⊆ N then for every universal
sentence φ, N |= φ implies M |= φ. So when studying the class of models of
a universal first order theory the relation M ⊆ N is reasonable (but not for
more complicated theories, e.g. not every subfield of an algebraically closed
field is algerbraically closed). Such a concept for classes of finite strucutres
is introduced below (see Definition 4.9).

This paper has several goals:

1. Study Ramsey numbers for definable coloring inside models for a stable
theory.

This can be viewed as a direct extension of Ramsey’s work, namely
by taking into account the first order properties of the structures. A
typical example is the field of complex numbers 〈C,+, ·〉. It is well
known that its first order theory Th(C) has many nice properties: It is
ℵ1 - categorical, ℵ0 - stable, and does not have the finite cover property.
We will be interested in the following general situation: Given a first
order (complete) theory T, and (an infinte) model M |= T . Let k, r,
and c be natural numbers, and let F be a definable (by a first order
formula in the language L(T ) maybe with parameters from M) coloring
of a set of r- tuples from M by c colors. Let n := nF (k, r, c) be the
minimal natural number such that for every S ⊆ |M | of cardinbality
n, if F : [S]r → c then there exists S∗ ⊆ S of cardinality k such that
F is constant on [S∗]r. It turns out that for stable theories, (or even
for theories without the independence property) we get better upper
bounds than for the general Ramsey numbers. This indicates that one
can not improve the lower bounds by looking at stable structures.

2. Introduce stability-like properties ( e.g. n-order property, k-independence
property, d-cover property), as well as averages of finite sequences of
indiscernibles. Some of the interconnections, and the effect on existence
of indiscernibles are presented.
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3. Develope classification theory for classes of finite structures, in partic-
ular introduce a notion that correspond to stable amalgamation, show
that it is symmetric for many models.

See Example 4.8 below.

4. Bringing down uncountable techniques into finite context.

We believe that much of the machinery developed (mainly by Shelah)
to deal with problems concerning categoricity of infinitary logics, and
the behaviour of the spectrum function at cardinalities ≥ iω1 depends
on some very powerfull combinatorial ideas. We try here to extract
some of these ideas and present them in a finite context.

Shelah [27] proved that instability is equivalent to the presence of either
the strict order property or the independence property. In a combinatorial
setting, stability means that for arbitrarily large sets, the number of types
over a set is polynomial in the cardinality of the set. We address the finite case
here in which we restrict our attention to when the number of φ- types over
a finite set is bounded by a polynomial in the size of the set of parameters.

First we find precisely the degree of the polynomial bound on the number
of these types given to us by the absence of the strict order or independence
properties. This is an example of something relevant in the finite case which
is of no concern in the usual classification theory framework.

Once we have these sharper bounds we can find sequences of indiscernibles
in the spirit of [27]. It should be noted here that everything we do is “local”,
involving just a single formula (or equivalently a finite set of formulas). We
then work through the calculations for uniform hypergraphs as a case study.
This raises questions about “stable” graphs and hypergraphs which we begin
to answer.

In the second half of the paper, we examine classes of finite structures in
the framework of Shelah’s classification for non-elementary classes (see [26]).
In particular, we make an analogy to Shelah’s “abstract elementary classes”
and prove results similar to his.

Notation: Everything is standard . Often x, y, and z will denote free
variables, or finite sequences of variables, when x is a sequence l(x) denote
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its length. It should be clear from the context whether we deal with variables
of sequences of variables. L will denote a similarity type (aka - language or
signature), ∆ will stand for (usually a finite) set of L formulas. M and N
will stand for L - structures, |M | the universe of the structure M , ‖M‖ the
cardinality of the universe of M . Given a fixed structure M , subsets of its
universe will be denoted by A, B, C, and D. So when we write A ⊆ M we
really mean that A ⊆ |M |, while N ⊆ M stands for “N is a submodel of
M”. Let M be a structure. By a ∈ M we mean a ∈ |M |, when a is a finite
sequence of elemets then a ∈M stands for “all the elements of the sequence
a are elements of |M |”.

Since all our work will be inside a given structure M (with the ex-
ception of section 4), all the notions a relative to it. For example for
a ∈ M and A ⊆ M we denote by tp∆(a,A) the type tp∆(a,A,M) which is
{φ(x; b) : M |= φ[a; b], b ∈ A, φ(x; y) ∈ ∆} and if A ⊆ M then S∆(A,M) :=
tp∆(a,A) : a ∈M . Note that in [27] S∆(A,M) stands for the set of all com-
plete ∆ -types (with parameters fromA that are consistent with Th(〈M, ca〉a∈A).
It is important for us to limit attention to the types realized in M , in order to
avoid dependence on the compactness theorem. When ∆ = {φ} then instead
of writing tp∆(· · ·) and S∆(· · ·) will write tpφ(· · ·) and Sφ(· · ·) respectively.
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1 The effect of the order and independence

properties on the number of local types

We first fix some notation and terms and then define the first important
concepts, the first three are from [27] #4 is a generalization of a definition
of Shelah, #5 is from Grossberg and Shelah [13].

Definition 1.1 1. For a set ∆ of L - formulas and a natural number n,
a (∆, n) – type over a set A is a set of formulas of the form φ(x; a)
where φ(x; y) ∈ ∆ and a ∈ A with l(x) = n. If ∆ = L, we omit it, and
we just say “φ – type” for a ({φ(x; a)}, l(x)) – type.

2. Given a (∆, n) type p over A, define dom(p) = {a ∈ A : for some φ ∈
∆, φ(x; a) ∈ p}.

3. A type p (∆0,∆1) – splits over B ⊆ dom(p) if there is a φ(x; y) ∈ ∆0

and b, c ∈ dom(p) such that tp∆1(b, B) = tp∆1(c, B) and φ(x; b),¬φ(x; c) ∈
p. If p is a ∆ – type and ∆0 = ∆1 = ∆, then we just say p splits over B.

4. We say that (M,φ(x; y)) has the k - independence property if there are
{ai : i < k} ⊆ M , and {bw : w ⊆ k} ⊆ M , such that M |= φ[ai; bw] if
and only if i ∈ w. We will say that M has the k – independence property
when there is a formula φ such that (M,φ) does.

5. (M,φ(x; y)) has the n – order property (where l(x) = l(y) = k) if
there exists a set of k – tuples {ai : i < n} ⊆M such that i < j iff M |=
φ[ai, aj] for all i, j < n. We will say that M has the n – order property
if there is a formula φ so that (M,φ) has the n – order property.

Warning: This use of “order property” corresponds to neither the order
property nor the strict order property in [27]. The definition comes rather
from [11].

Note that the following monotonicity properties are easy to prove:

Proposition 1.2 1. let p be a complete ∆ type, suppose B ⊆ C ⊆ A, and
Domp ⊆ A If p does not split over B then p does not split over C.
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2.

Fact 1.3 ( Shelah see [27]) Let T be a complete first order theory. The
following conditions are equivalent:

1. T is unstable.

2. There are φ(x; y) ∈ L(M), M |= T , and {an : n < ω} ⊆ M such that
l(x) = l(y) = l(an), and for every n, k < ω we have
n < k ⇔M |= φ[an; ak].

Using the compactness theorem it is easy to prove the following-

Corollary 1.4 Let T be a stable theory, suppose that M |= T is an infinite
model.

1. For every φ(x, y) ∈ L(M) there exists a natural number n(φ) such that
(M,φ) does not have the n(φ) – order property.

2. For every φ(x, y) ∈ L(M) there exists a natural number k(φ) such that
(M,φ) does not have the k(φ) – independence property.

3. If T is categorical in some cardinality greater than |T | then for every
φ(x, y) ∈ L(M) there exists a natural number d(φ) such that (M,φ)
does not have the d(φ) – cover property (see Definition 1.14).

We first establish that the failure of either the independence property or
the order property for φ implies there is a polynomial bound on the number
of φ – types. The more complicated of these to deal with is the failure
of the order property. At the same time this is perhaps the more natural
property to look for in a given structure. Shelah have proved that the failure
of the independence property gives us a far better bound (i.e., smaller degree
polynomial) with less work, this will be reproduced here in Theorem 1.13.

This first lemma is the finite version of Lemma 5 from [11].
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Lemma 1.5 Let φ(x; y) be a formula in L, n a positive integer, s = l(y),
r = l(x), ψ(y;x) = φ(x; y). Suppose that {Ai ⊆ Mi : i ≤ 2n} is an
increasing chain such that for every B ⊆ Ai with |B| ≤ 3sn, every type in
Sφ(B,M) is realized in Ai+1. Then if there is a type p ∈ Sφ(A2n,M) such
that p|Ai+1 (ψ, φ) – splits over every subset of Ai of size at most 3sn, then
(M,ρ) has the n− order property, where

ρ(x0, x1, x2; y0, y1, y2)
def
= [φ(x0; y1)↔ φ(x0; y2)]

Proof: Let d realize p. Define {ai, bi, ci ∈ A2i+2 : i < n} by induction
on i. Assume for some j < n that we have defined these for all i < j.
Let Bj =

⋃
{ai, bi, ci : i < j}. Notice that |Bj| ≤ 3sj < 3sn, so by the

assumption, p|A2j+1 (ψ, φ) – splits over Bj. That is, there are aj, bj ∈ A2j+1

such that
tpψ(aj, Bj,M) = tpψ(bj, Bj,M),

and
M |= φ[d; aj] ∧ ¬φ[d; bj].

Now choose cj ∈ A2j+1 realizing tp(d,Bj ∪ aj ∪ bj,M) (which can be done
since |Bj ∪ aj ∪ bj| ≤ 3sj + 2s < 3s(j + 1) ≤ 3sn). This completes the
inductive definition.

For each i, let di = ciaibi. We will check that the sequence of di and the
formula

ρ(x0, x1, x2; y0, y1, y2)
def
= [φ(x0; y1)↔ φ(x0; y2)]

witness the n – order property for M .

If i < j < n, then ci ∈ Bj. By choice of aj and bj, tpψ(aj, Bj,M) =
tpψ(bj, Bj,M), so in particular,

M |= φ[ci; aj]↔ φ[ci; bj]

That is, M |= ρ[di; dj].

On the other hand, if i ≤ j < n, then φ(x; ai) ∈ tpφ(d,Bj ∪ aj ∪ bj,M)
and φ(x; bi) 6∈ tpφ(d,Bj ∪ aj ∪ bj,M), and so, by the choice of cj, we have
that

M |= φ[cj; ai] ∧ ¬φ[cj; bi].
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That is, M |= ¬ρ[dj; di] in this case.

In order to see the relationship between this definition of the order prop-
erty and Shelah’s, we mention Corollary 1.8.

Definition 1.6 (M,φ) has the weak m – order property if there exist {di :
i < m} ⊆M such that for each j < m,

M |= ∃x
∧
i<m

φ(x; di)
if(i≥j).

Remark: This is what Shelah calls the m – order property.

Definition 1.7 We write x→ (y)ab if for every partition Π of the a - element
subsets of {1, . . . , x} with b parts, there is a y - element subset of {1, . . . , x}
with all of its a - element subsets in the same part of Π.

Corollary 1.8 1. If (2n)→ (m+ 1)2
2 and the hypotheses for Lemma 1.5

hold, then φ has the weak m – order property in M .

2. If n ≥ 22m−1

πm
and the hypotheses for Lemma 1.5 hold, then φ has the

weak m – order property in M .

Proof: (This is essentially [27] I.2.10(2))

1. Let ai, bi, ci for i < n be as in the proof of Lemma 1.5. For each pair
i < j ≤ n, define

χ(i, j) :=

{
1 if M |= φ[ci; aj]
0 otherwise.

Since (2n)→ (m+1)2
2, we can find a subset I of 2n of cardinality m+1

on which χ is constant. Write I = {i0, . . . , im}.
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If χ is 1 on I, then for every k with 1 ≤ k ≤ m+ 1

{¬φ(x; bij)
if(j>k) : 1 ≤ j < m}

is realized by cik−1
. Therefore, the sequence {bi0 , . . . , bim} witnesses the

weak m – order property of φ in M .

On the other hand, if χ is 0 on I, then for every k with 1 ≤ k ≤ m+ 1

{¬φ(x; aij)
if(j>k) : 1 ≤ j < m}

is realized by cik−1
. Therefore, the sequence {ai0 , . . . , aim} witnesses the

weak m – order property of ¬φ in M . To finish, we need only remark
that it is equivalent for φ and ¬φ to have the weak m – order property
in M .

2. By Stirling’s formula, n ≥ 22m−1

πm
implies that n ≥ 1

2

(
2m
m

)
, and from

[10], n ≥ 1
2

(
2m
m

)
implies that (2n)→ (m+ 1)2

2.

We can now establish the relationship between the number of types and
the order property.

Theorem 1.9 If φ(x; y) ∈ L(M) is such that

ρ(x0, x1, x2; y0, y1, y2)
def
= φ[(x0; y1)↔ φ(x0; y2)]

does not have the n – order property in M , then for every set A ⊆ M with
|A| ≥ 2, we have that |Sφ(A,M)| ≤ 2n|A|k, where k = 2(3ns)t+1

for r = l(x)
and s = l(y) and t = max{r, s}.

Proof: Suppose that there is some A ⊆ M with |A| ≥ 2 so that
|Sφ(A,M)| > (2n)|A|k. Let ψ(y;x) = φ(x; y), m = |A|, and let {ai : i ≤
(2n)mk} ⊆ M be witnesses to the fact that |Sφ(A,M)| > (2n)mk. (That is,
each of these tuples realizes a different φ – type over A.) Define {Ai : i < 2n},
satisfying
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1. A ⊆ Ai ⊆ Ai+1,

2. |Ai| ≤ ce(i)m(3ns)i ,where c = 22+(3sn)t and e(i) := (3ns)i−1
3ns−1

, and

3. for every B ⊆ Ai with |B| ≤ 3sn, every p ∈ Sφ(B,M) ∪ Sψ(B,M) is
realized in Ai+1.

To see that this can be done, one need only check the cardinality con-
straints. There are at most |Ai|3sn subsets of Ai with cardinality at most 3sn,
and over each such subset B, there are at most 2(3sn)r and 2(3sn)s types in
Sψ(B,M) and Sφ(B,M), respectively, so there are at most 2(3sn)r + 2(3sn)s ≤
21+(3sn)t types in Sψ(B,M)∪Sφ(B,M) for each such B. Therefore, Ai+1 can
be defined so that

|Ai+1| ≤ |Ai|+ (21+(3sn)t)|Ai|3sn

≤ c|Ai|3sn

≤ c(ce(i)m(3ns)i)3sn

= c1+e(i)(3sn)m(3sn)i+1

= ce(i+1)m(3sn)i+1

.

Claim 1.10 There is a j < (2n)mk such that for every i < 2n and every
B ⊆ Ai with |B| ≤ 3sn, tp(aj, Ai+1) (ψ, φ) – splits over B.

Proof: (Of Claim 1.10) Suppose not. That is, for every j ≤ (2n)mk,
there is an i(j) < 2n and a B ⊆ Ai(j) with |B| ≤ 3sn, so that tp(aj, Ai(j)+1)
does not (ψ, φ) – split over B. Since i is a function from 1 + (2n)mk to 2n,
there must be a subset S of 1+(2n)mk with |S| > mk, and an integer i0 < 2n
such that for all j ∈ S, i(j) = i0. Now similarly, there are less than |Ai0|3sn
subsets of Ai0 , with cardinality at most 3sn, so there is a T ⊆ S with

|T | > mk

|Ai0|3sn
,

and a B0 ⊆ Ai0 , with |B0| ≤ 3sn such that for all j ∈ T , tp(aj, Ai0+1) does

not (ψ, φ) – split over B0. Since |Ai0| ≤ ce(i0)m(3ns)i0 ≤ (cm)(3sn)2n , then

|T | ≥ mk

(cm)(3sn)2n
.
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Let C ⊆ Ai0+1 be obtained by adding to B0, realizations of every type in
Sφ(B0,M) ∪ Sψ(B0,M). This can clearly be done so that |C| ≤ 3ns +
2(3ns)r + 2(3ns)s . The maximum number of φ – types over C is at most
2|C|

s ≤ 2c
s
.

Claim 1.11 mk−(3ns)2n > (2c
s
)(c(3ns)2n)

Proof: (Of Claim 1.11) Since c = 22+(3ns)t , we have cs + (3ns)2n(2 +
(3ns)t) as the exponent on the right-hand side above. Since m ≥ 2, it is
enough to show that

k > (cs + (3ns)2n(2 + (3ns)t) + (3ns)2n

= 2s(2+(3ns)t) + (3ns)2n(3 + (3ns)t).

This follows from the definition of k (recall that k = 2(3ns)t+1
), so we have

established Claim 1.11.

Therefore, |T | is greater than the number of φ – types over C, so there
must be i 6= j ∈ T such that tpφ(ai, C) = tpφ(aj, C). Since tpφ(ai, A) 6=
tpφ(aj, A), we may choose a ∈ A so that M |= φ[ai, a] ∧ ¬φ[aj, a]. Now
choose a′ ∈ C so that tpψ(a,B0) = tpψ(a′, B0) (this is how C is defined after
all). Since tpφ(ai, Ai0+1) does not (ψ, φ) – split over B0, we have that

φ(x; a) ∈ tpφ(ai, Ai0+1) iff φ(x; a′) ∈ tpφ(ai, Ai0+1),

soM |= φ[ai, a
′]∧¬φ[aj, a

′], contradicting the fact that tpφ(ai, C) = tpφ(aj, C)
and thus completing the proof of Claim 1.10. Now letting j be as in Claim
1.10 above and applying Lemma 1.5 completes the proof of Theorem 1.9.

Theorem 1.13 below gives us a better result under different assumptions.
The next lemma is II, 4.10, (4) in [27]. It is a question due to Erdős about the
so-called “trace” of a set system which was answered by Shelah and Perles
(see [22]) in 1972. Purely combinatorial proofs (i.e., proofs in the language
of combinatorics) can also be found in most books on extremal set systems
(e.g., Bollobas [6]).
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Lemma 1.12 If S is any family of subsets of the finite set I with

|S| >
∑
i<k

(
|I|
i

)
,

then there exist αi ∈ I for i < k such that for every w ⊆ k there is an Aw ∈ S
so that i ∈ w ⇔ αi ∈ Aw. (The conclusion here is equivalent to trace(I) ≥ k
in the language of [6].)

Proof: See Theorem 1 in Section 17 of [6] or Ap.1.7(2) in [27].

Theorem 1.13 If φ(x; y) ∈ L(M) (r = l(x), s = l(y)) does not have the k
– independence property in M , then for every set A ⊆ M , if |A| ≥ 2, then
|Sφ(A,M)| ≤ |A|s(k−1).

Proof: (Essentially [Sh], II.4.10(4)) Let F be the set of φ – formulas
over A. Then

|F | < |A|s.
So if |Sφ(A,M)| > |A|s(k−1), then certainly

|Sφ(A,M)| >
∑
i<k

(
|F |
i

)
,

in which case Lemma 1.12 can be applied to F and Sφ(A,M) to get witnesses
to the k – independence property in M , a contradiction.

The “moral” of Theorem 1.9 and Theorem 1.13 is that there is a bound
on the number of φ – types over a set A which is polynomial in |A| in case φ
has some nice properties. Note that the difference between the two properties
is that the degree of the polynomial in the absence of the k – independence
property is linear in k while in the absence of the n – order property the
degree is exponential in n.

Another property discovered by Keisler (in order to study saturation of
ultrapowers, see [15]), and studied extensively by Shelah is the “finite cover
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property” (see [27]) whose failure essentially provides us with a streghtening
of the compactness theorem.

Definition 1.14 We say that (M,φ) does not have the d - cover property
if for every n ≥ d and {bi : i < n} ⊆M such that(

∀w ⊆ n)[|w| < d⇒M |= ∃x
∧
i∈w

φ(x; bi)]

)
⇒M |= ¬∃x

∧
i<n

φ(x; bi).

Example 1.15 If M = (M,R) is the countable random graph, then (M,R)
fails to have the 2 – cover property. If M is the countable universal homoge-
neous triangle - free graph, then (M,R) fails to have the 3 – cover property.

The following is obvious:

Proposition 1.16 Let d1 ≤ d2. If (M,φ) fail to have the d1 – cover property
then (M,φ) does not have the d2 – cover property.

Before proceeding, we point out what happens in the “unstable” cases.
In [27] II.4.10 (3) we find the following

Fact 1.17 If for arbitrarily large k, (M,φ(x; y)) (r = l(x), s = l(y)) has the
k – independence property, then there are arbitrarily large A ⊆ M such that
|Sφ(A,M)| ≥ 2|A|/s.
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2 Indiscernible sequences in large finite sets

Note: The next defintion is an interpolant of Shelah’s [27], I.2.3, and Ram-
sey’s notion of canonical sequence.

Definition 2.1 1. A sequence I = 〈ai : i < n〉 ⊆M is called an
(∆,m) – indiscernible sequence over A ⊆M (where ∆ is a set of L(M)

– formulas) if for every i0 < . . . < im−1 ∈ I, j0 < . . . < jm−1 ∈ I we
have that tp∆(ai0 · · · aim−1 , A,M) = tp∆(aj0 · · · ajm−1 , A,M)

2. A sequence I = 〈ai : i < n〉 ⊆M is called an
(∆,m) – indiscernible set over A ⊆M iff

for every {i0, . . . , im−1}, {j0, . . . , jm−1} ⊆ I we have

tp∆(ai0 · · · aim−1 , A,M) = tp∆(aj0 · · · ajm−1 , A,M).

Example 2.2 1. In the model Mn = 〈m, 0, 1, χ〉 (n ≤ m < ω) where χ
is function from the increasing n – tuples of m to {0, 1}, any increas-
ing enumeration of a monochromatic set is an example of a (∆, n) –
indiscernible sequence over with ∆ = {χ(x) = 0, χ(x) = 1}.

2. In a graph (G,R), cliques and independent sets are examples of (R, 2)
– indiscernible sets over ∅.

It turns out that similarly to the situation for first order theories (under
the assumption that T is stable, every sequence of indiscernibles is a set of
indiscernibles) also in our case this is true, however the failure of the n -
order property is sufficient. Our argument follows closely that of Shelah [27].

Theorem 2.3 If M does not have the n – order property, then any sequence
I = 〈ai : i < n + r − 1〉 ⊆ M which is φ(x; y) – indiscernible over B ⊆ M
is a set of φ – indiscernibles over B (where r = l(x)).

Proof: Since any permutation of {1, . . . , n} is a product of transposi-
tions (k, k + 1), and since I is an indiscernible sequence over B, it is enough
to show that for each b ∈ B and k < r,

M |= φ[a0 · · · ak−1ak+1ak · · · ar−1; b]↔ φ[a0 · · · ak−1akak+1 · · · ar−1; b].
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Suppose not. Then we may choose b ∈ B and k < r so that

M |= ¬φ[a0 · · · ak−1ak+1ak · · · ar−1; b] ∧ φ[a0 · · · ak−1akak+1 · · · ar−1; b].

Let c = a0 · · · ak−1 and d = an+k+1 · · · an+r−2 making l(c) = k and l(d) =
r − k − 2). By the indiscernibility of I,

M |= ¬φ[cak+1akd; b] ∧ φ[cakak+1d; b].

For each i and j with k ≤ i < j < n+k, we have (again by the indiscernibility
of the sequence I) that

M |= ¬φ[cajaid; b] ∧ φ[caiajd; b].

Thus the formula ψ(x, y; cdb)
def
= φ(c, x, y, d; b) defines an order on 〈ai : k ≤

i < n+ k〉 in M , a contradiction.

The following definition is an generalization of the notion of end homoge-
nous sets in combinatorics (see section 15 of [8]) to the context of ∆ -
indiscernible sequences.

Definition 2.4 1. A sequence I = 〈ai : i < n〉 ⊆ M is called an
end - (∆,m) – indiscernible sequence over A ⊆M (where ∆ is a set

of L(M) – formulas) if for every {i0, . . . , im−2} (distinct) and j0, j1 < n
both larger than max{i0, . . . , im−2} , we have

tp∆(ai0 · · · aim−2aj0 , A,M) = tp∆(ai0 · · · aim−2aj1 , A,M)

2. If every formula φ(x; y) ∈ ∆ has l(x) = m, then we will write just ∆
instead of (∆,m) above.

Definition 2.5 For the following lemma, let F : ω → ω be given, and fix
the parameters, α, r, and s. We define the function F ∗ for each k ≥ r as
follows:

• F ∗(0) = 1,
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• F ∗(j + 1) = [1 + F ∗(j)]F (α + j) for j < k − 2− r, and

• F ∗(j + 1) = 1 + F ∗(j) for k − 2− r ≤ j < k − 2.

We will not need j ≥ k − 2.

Lemma 2.6 Let ψ(x; y) = φ(x1, . . . , xr−1, x0; y). If for every B ⊆ M ,
|Sψ(B,M)| < F (|B|), and I = {ai : i ≤ F ∗(k − 2)} ⊆ M (where l(x) = r,
l(y) = s, α = |A|), then there is a J ⊆ I such that |J | ≥ k and J is a φ –
end - indiscernible sequence over A.

Proof: We will construct Aj = {ai : i ≤ j} and Sj by induction on
j < k − 1 so that

1. aj = minSj,

2. Sj+1 ⊆ Sj,

3. |Sj| > F ∗(k − 2− j), and

4. whenever {i1, . . . , ir−1} ⊆ j, b ∈ Sj, and 1 ≤ m ≤ r

tpφ(ai1 · · · air−1aj, A,M) = tpφ(ai1 · · · air−1b, A,M).

The construction is completed by taking an arbitrary ak−1 ∈ Sk−2 −
{ak−2}. (which is possible by (3) since F ∗(0) = 1), and letting J = 〈ai : i <
k〉. We claim that J will be the desired φ – end - indiscernible sequence over
A.

To see this, let {i0, . . . , ir−1, j0, j1} ⊆ k with max{i0, . . . , ir−1} < j0 <
j1 < k be given. Certainly then {i0, . . . , ir−1} ⊆ j0 and aj1 ∈ Sj0 , so by (4)
we have that

tpφ(ai0 · · · air−1aj0 , A,M) = tpφ(ai0 · · · air−1aj1 , A,M).

To carry out the construction, first set aj = j and Sj = {i : j ≤ i ≤
F ∗(k− 2)} for 0 ≤ j ≤ r− 1. Clearly, we have satisfied all conditions in this.
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Now assume for some j ≥ r that Aj−1 and Sj−1 have been defined satisfying
the conditions.

Define the equivalence relation ∼ on Sj−1 − {aj−1} by c ∼ d iff for all
{i0, . . . , ir−1},

tpφ(ai1 · · · air−1c, A,M) = tpφ(ai1 · · · air−1d,A,M)

The number of ∼ - classes then is at most |Sψ(A,Aj)| < F (α+j). Therefore,

at least one class Sj has cardinality at least
|Sj−1|−1

F (α+j)
. Let aj = minSj. By

definition of F ∗, F ∗(k−2−j+1)
F (α+j)

> F ∗(k− 2− j), so we have that |Sj| > F ∗(k−
2− j). It is easy to see that condiiton (4) is satisfied.

For the following lemma, we once again need a function defined in terms
of the parameters of the problem. We will need the parameter r and the
function F ∗ defined for Lemma 2.6 (which depends on r, α, and s). Let fi
be the F ∗ that we get when r = i (and α and s fixed) in Lemma 2.6.

For the following lemma define

gi :=

{
id if i = 0
fi−1 ◦ (gi−1 − 2) otherwise.

Lemma 2.7 If J = {ai : i ≤ gr−1(m−1)} ⊆M is a φ – end - indiscernible
sequence over A ⊆M , then there is a J ′ ⊆ J such that |J ′| ≥ m and J ′ is a
φ – indiscernible sequence over A.

Proof: (By induction on r.) Note that if r = 1, there is nothing to do
since end - indiscernible is indiscernible in this case. Assume that the above
result is true for all formulas with l(x) < r (r > 1), and consider φ as given
above. Let c be the last element in J . Define ψ so that

M |= ψ[a1, . . . , ar−1; b] iff M |= φ[a1 · · · ar−1c; b]

for all a0, . . . , ar−1 ∈ J , b ∈ M . Note then that |Sψ(B) ≤ |Sφ(B)| for
all B ⊆ M , so we can use the same F1 for ψ as for φ. (This result can
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be improved by using a sharper bound on the number of ψ – types.) By
the definition of gr−1, there must be a subset J ′′ of J with cardinality at
least gr−2(m − 1) which is ψ – end - indiscernible over A. By the inductive
hypothesis, there is a subsequence of J ′′ with cardinality at least m−1 which
is ψ – indiscernible over A. Form J ′ by adding c to the end of this sequence.
It follows from the φ – end - indiscernibility of J and the ψ – indiscernibility
of J ′′ that J ′ is φ – indiscernible over A.

Theorem 2.8 For any A ⊆ M and any sequence I from M with |I| ≥
gr(m− 1), there is a subsequence J of I with cardinality at least m which is
φ – indiscernible over A.

Proof: By Lemmas 2.6 and 2.7.

Our goal now is to apply this to theories with different properties to
see how these properties affect the size of a sequence one must look in to
be assured of finding an indiscernible sequence. First we will do a basic
comparison between the cases when we do and do not have a polynomial
bound on the number of types over a set. In each of these cases, we will give
the bound to find a sequence indiscernible over ∅. We will use the notation
log(i) for

log2 ◦ log2 ◦ · · · ◦ log2 (i times).

Corollary 2.9 1. IfF (i) = 2i
r

(which is the worst possible case), then
log(r) gr(m− 1) ≤ 4m.

2. IfF (i) = ip, then log(r) gr(m− 1) ≤ 2m+ log2m+ log2 p.

We now combine part (2) above with the results from the previous section
to see what happens in the specific cases of structures without the n – order
property and structures without the k – independence property. We define
by induction on i the function i(i, x) by i(0, x) = x and i(i+1, x) = 2i(i,x),
for all x. Recall that for the formula φ(x; y) we have defined the parameters
r = l(x), s = l(y), and t = max{r, s}.
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Corollary 2.9 3. If (M,φ) fails to have the k - independence property
and I = {ai : i < i(r, 2m+ log2m+ log2 k+ log2 r)} ⊆M , then there
is a J ⊆ I so that |J | ≥ m and J is a φ – indiscernible sequence over
∅.

4. If (M,φ) fails to have the n – order property and I = {ai : i <
i(r, 2m + log2m + (3ns)t+1)} ⊆ M , then there is a J ⊆ I so that
|J | ≥ m and J is a φ – indiscernible sequence over ∅.

Finally, note that with the additional assumption of failure of the d –
cover property, if d is smaller than k or n, then from the assumptions in (3)
and (4) above, we could infer a failure of the d – independence propery or
the d – order property improving the bounds even further.
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3 Applications to Graph Theory

To illustrate some applications, we look to graph theory. The reader should
be warned that the word “independent” has a graph - theoretic meaning, so
care must be taken when reading “independent set” versus “independence
property”. A first question is “How much independence can one expect a
random graph to have?” We will approach the answer to this question along
the lines of Albert & Frieze [1]. There an analogy is made to the Coupon
Collector Problem, and we will continue this here.

The Coupon Collector Problem (see Feller [9]) is essentially that if n dis-
tinct balls are independently and randomly distributed among m labelled
boxes (so each distribution has the same probability m−n of occurring), then
what is the probability that no box is empty? Letting q(n,m) be this prob-
ability, it is easy to compute that

q(n,m) =
m∑
i=0

(−1)i
(
m
i

)(
1− i

m

)n
=
m!Sm,n
mn

where Sn,m is the Stirling number of the second kind.

It is well - known that, for λ = me−n/m, q(n,m) − e−λ tends to 0 as n
and m get large with λ bounded.

The way that this will be applied in our context is as follows. We will say
that a certain set {v1, . . . , vk} of vertices witnesses the k - independence prop-
erty in G if (G,R) has the k – independence property with ai = vi (see Defini-
tion 4). Notice that any k vertices {v1, . . . , vk} determine 2k “boxes” defined
by all possible Boolean combinations of formulas {R(x, v1), . . . , R(x, vk)} (a
vertex being “in a box” meaning it witnesses the corresponding formula in
G). The remaining n− k vertices are then equally likely to fill each of the 2k

boxes, so the probability that these k vertices witness the k – independence
property in G is just q(n− k, 2k). So for λ = λ(n, k) = 2k exp(−(n− k)/2k)
bounded (as n, k → ∞) we will have the probability that k particular ver-
tices witness the k - independence property in a graph on n vertices tends to
e−λ, and the probability that a graph on n vertices has the k – independence
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property is at most (
r
k

)
e−λ ≤ nke−λ as n, k →∞.

If n = k+k2k, then q(n−k, 2k)→ 1, so the particular vertices {1, . . . , k}
witness k – independence in a graph on k + k2k vertices almost surely. On
the other hand,

Theorem 3.1 A random graph on n = k + 2k(log k) vertices has the failure
of the k – independence property almost surely.

Proof: For n = k + 2k log k, the λ from above is 2k

k
, and log(nke−λ) =

k log(k + 2k log k)− 2k/k which clearly goes to −∞ as k →∞, so the prob-
ability that a graph on n vertices has the k – independence property goes to
0.

3.1 Triangle - Free Graphs

We look at an example of how the independence property (and hence sta-
bility) can affect well - known problems in finite mathematics. We look at
Ramsey numbers for hypergraphs and triangle - free graphs. Note that here
bxc refers to the greatest integer less than or equal to the real number x.

Lemma 3.2 Suppose G is a triangle - free graph on k vertices without the
2 – independence property. Then G has an independent set of size k/2.

Proof: Choose a vertex v of G, and let G0 = G − {v}. We claim that
G is bipartite. Suppose this is not the case. Then there is an odd cycle C in
G0 which we may assume is as small as possible. As G is triangle - free, we
know that C is at least a 5 - cycle, and since C is of minimal size, we know
that it has no chords. Therefore, we can read off from C the vertices x0, x1,
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x2, x3, and x4 such that xi and xi+1 are adjacent for i < 5, and these are
the only adjacencies among these five vertices, except possibly for x1 and x5.
We may also choose these vertices so that x2 and x4 are non-neighbors of v
(because no two consecutive vertices in a path my be neighbors of v in the
triangle - free G). Letting a0 = x2, a1 = x4, b∅ = v, b{0} = x1, b{1} = x5, and
b{1,2} = x3, we see that we have contradicted the assumption on the absence
of the 2 – independence property, so G0 must be bipartite. Therefore, G0

has an independent set of cardinality at least bk/2c, and this same set is an
independent set in G.

Question: What is the correct extension of this for k – independence?

3.2 Ramsey’s theorem for finite hypergraphs

We can improve (for the case of hypergraphs without n - independence) the
best known upper bounds for the Ramsey number Rr(n,m). First we should
say what this means.

Definition 3.3 1. An r – graph is a set of vertices V along with a set of
r – element subsets of V called edges. The edge set will be identified in
the language by the r – ary predicate R.

2. A complete r – graph is one in which all r – element subsets of the
vertices are edges. An empty r – graph is one in which none of the r
– element subsets of the vertices are edges.

3. Rr(n,m) denotes the smallest positive integer N so that in any r –
hypergraph on N vertices there will be an induced subgraph which is
either a complete r – graph on n vertices or an empty r - graph on m
vertices.

4. We say that an r – graph G has the k – independence property if
(G,R(x)) does (where l(x) = r).

Note that the first suggested improvement of Lemma 2.6 applies in this
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situation – namely, the edge relation is symmetric. We can immediately
make the following computations.

Lemma 3.4 1. In an r – graph G, F is given by F (i) = 2q where q =(
i

r − 1

)
. Consequently, F ∗(m) ≤ 2m

r
in this case.

2. In an r – graph G which does not have the k – independence property,
F is defined by

F (i) :=

{
1 for i < r
i(r−1)(k−1) otherwise.

Consequently F ∗(m) ≤ m(r−1)(k−1)m in this case.

For a fixed natural number p, define the functions E(j) by

• E(1) = E = (α 7→ (α + 1)p(α+1)), and

• E(i+1) = E ◦ E(i) for i ≥ 1.

Theorem 3.5 If an r – graph G on at least E(r−1)(m− 1) vertices does not
have the k – independence property, then G has an induced subgraph on m
vertices which is either complete or empty.

Proof: (By induction on r)

For r = 2, the graph has at least (m + 1)p(m+1) ≥ (m + 1)m+1 ≥ 22m

vertices, and it is well-known (see e.g. [10]) that 22m → (m)2
2.

Assume r ≥ 3, and let G = (V,R) be an r – graph as described and
set L = E(r−2)(m). Using F (i) = i(r−1)(k−1) for i ≥ 3, (F (0) = F (1) = 1)
and computing F ∗ in Lemma 2.6, we first see that any r – graph on at least
(L+1)p(L+1) vertices (where p = (r−1)(k−1)) will have an end - indiscernible
sequence J over ∅ of cardinality L. Let v be the last vertex in J and define
the relation R on the (r − 1) – sets from (the range of) J by “R′(X) iff
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R(X ∪ {v})”. Now (J,R) is an (r − 1) – graph of cardinality L, so by the
inductive hypothesis there is an R′ – indiscernible subsequence J0 of J with
cardinality m. Clearly I = {av : a ∈ J0} is an R – indiscernible sequence
over ∅ of cardinality m.

Remark: No “cover property” is used, but could be.

3.3 Comparing upper bounds for r = 3

Note that for r = 3 we have p = 2(k − 1), and so we get (22m + 1)p(2
2m+1)

which is roughly 2km(22m+2). The bound for r = 3 in [8] is roughly 224m . So
log2 log2 (their bound) = 4m and

log2 log2 (our bound) = log2(km(22m+2)) = log2 p+ log2m+ (2m+ 2)

which is smaller than 4m as long as 2m − 2 − log2m > log2 k. This is true
as long as k < 22m−2/m.

For example, for m = 10 our bound is about 2c(k−1) where c is roughly
4× 107 and theirs is about 2240 . Since 240 is roughly 1012, this is a significant
improvement.

3.4 Comparing upper bounds in general

Let ar be the upper bound given in [8] and br be the upper bound as computed
above (both as a function of m, the size of the desired indiscernible set). Since

we have br+1 ≤ b
(p)(br)
r , we get the relationship

log(r) br+1 ≤ log(r−1)[p br(log br)]

= log(r−2)(log(r − 1) + log(k − 1) + log br + log log br)

for r ≥ 3, log log b3 = 2m + log2m + log2 k + log2 r, and log b2 = 2m. It
follows that log(r) br+1 is less than (roughly) 2m+ log2m+ log2 k for every r.

25



In [8], the bounds ar satisfy log a2 = 2m, log log a3 = 4m, and for r ≥ 3,

log(r) ar+1 = log(r−1)(arr) =

log(r−2)(r log ar) = log(r−3)[log r + log log ar].

We can then show that log(r−1) ar < 4m+ 2 for all r.

Clearly for each r ≥ 3, br
ar
→ 0 as m gets large.

Final Remark: On a final note, the above comparison is only given
for r - graphs with r ≥ 3 because the technique enlisted does not give an
improvement in the case of graphs. We have briefly mentioned what is known
about the case of triangle free graphs, but certainly there is something to say
in general (not to mention in the triangle - free case where so little is known.)
This has not been pursued in this paper because it seems to be of no interest
in the general study. However, the techniques may be of interest to the
specialist.
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4 Abstract properties

We begin to look at some of the abstract properties of a class K of finite
L - structures with an appropriate partial ordering denoted by ≺K . These
properties come from Shelah’s list of axioms in §1 of [26].

Definition 4.1 1. Let L be a given similarity type, let ∆ be a set of L -
formulas, and let n < ω, by ∆∗n we denote the the minimal set of L -
formulas containing the following set and all its subformulas:

{∃x[
∧
i∈w

φ(x; yi)∧
∧

i∈n−w

¬φ(x; yi)] : φ(x; y) ∈ ∆, w ⊆ n, l(y1) = · · · = l(yn) = l(y)}.

2. When ∆ = {φ} then {φ}∗n will stand for ∆∗n.

We will now look into natural values of k for the previous section.

Theorem 4.2 If the formula φ fails to have the weak n – order property
(and hence fails to have the n - independence property in K), then for every
∆∗ ⊇ {φ}∗n – indiscernible sequence I of length at least 2n (which is in fact
an indiscernible set by Theorem 2.3), either |{φ[c; a] : a ∈ I}| < n or
|{¬φ[c; a] : a ∈ I}| < n.

Proof: Suppose not. Then there is a ∆∗ – indiscernible set I = {ai :
i < b} ⊆M with b ≥ 2n and a c ∈M such that both |{φ[c; a] : a ∈ I}| ≥ n
and |{¬φ[c; a] : a ∈ I}| ≥ n. Let {a0, . . . , a2n−1} ⊆ I be such that

M |=
∧
i<n

φ[c, ai] ∧
i=2n−1∧
i=n

¬φ[c, ai].

We complete the proof by showing that {a0, . . . , an−1} exemplify the inde-
pendence property: Let w ⊆ n be given. Consider the formula

ψw(y0, . . . , yn−1) := (∃x)[
∧
i∈w

φ(x; yi) ∧
∧
i/∈w

¬φ(x; yi)].
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Let {i0, . . . , ik−1}, be an increasing enumeration of w. Clearly the following
holds

M |= ψw[ai0 , . . . , aik−1
, an, . . . , a2n−1−k].

Since ψw ∈ ∆∗ by indiscerniblity of I we have that also M |= ψw[a0, . . . , an−1].
For every w ⊆ n, let bw ∈M be such that

M |=
∧
i∈w

φ[bw, ai] ∧
∧

i∈n−w

¬φ[bw, ai].

We are done since {a0, . . . , an−1} and {bw : w ⊆ n} demonstrate that the
pair (M,φ) has the n – independence property.

The following definition is inspired by κ(T ), see Chapter III of [27].

Definition 4.3 Let n < ω and let ∆ be a finite set of formulas. κ∆,n(K)
is the least positive integer so that for every M ∈ K, every sequence of ∆∗n
– indiscernibles I = 〈ai : i < α < ω〉 ∈ M has either M |= φ[c; ai]
or M |= ¬φ[c; ai] for less than κ∆(K) elements of I for every φ ∈ ∆ and
c ∈M .

So the previous theorem states that if the formula φ fails to have the n –
independence property in K, then κφ,n(K) ≤ n. When φ does not have the
n – independence property κφ will stand for κφ,n. In this case, the following
definition makes sense.

Definition 4.4 Let ∆ and n be as above. Suppose I is a sequence of ∆∗n-
indiscernibles over ∅, define

Av∆(I, A,M) = {φ(x; a) : a ∈ A, φ(x; y) ∈ ∆ and |{c ∈ I : M |= φ[c; a]}| ≥ κ∆(K)}.

If M is understood, it will typically be omitted.

Theorem 4.5 If φ has neither the m - independence property nor the n -
cover property, let ∆ ⊇ {φ}∗m be finite and I is a set of ∆ – indiscernibles over
∅ of length greater than max{nκφ(K), 2m}, then Avφ(I, A,M) is a complete
φ – type over A.
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Proof: That Avφ(I, A) is complete follows from the previous theorem.
To see that it is consistent, we need only establish that every n formulas from
it are consistent (by failure of n – cover property), and this follows from the
size of I and the pigeonhole principle.

Theorem 4.6 Suppose that φ fail to have the m- independence property. If
I ⊆ M is a sequence of {φ}∗m – indiscernibles over ∅ and A ⊆finite M , then
there exists J ⊆ I with |J | ≤ κφ(K)|A|r−1 such that I−J is φ – indiscernible
over A. (Here r = l(x).)

Proof: I being φ – indiscernible over ∅ means simply that for every
i1 < . . . < ir and j1 < . . . < jr ∈ I,

M |= φ[ai1 · · · air ]↔ φ[aj1 · · · ajr ].

By the definition, at most κφ(K) elements of I can give different truth values
for each sequence of r− 1 parameters c ∈ A (in place of x2 · · ·xr in φ), so by
deleting at most

κφ(K)× (the number of (r − 1) – sequences from A) ≤ κφ(K)|A|r−1

we must get a sequence indiscernible over A.

So we will use the following term to denote when we are in a model in
which this notion of average type exists.

Definition 4.7 We will say that M is (φ,m, n) – good if (M,φ) has neither
the m – independence property nor the n – cover property. In this case, we
will define λφ(M) = max{nκ{φ∗m}(K), 2m}.

Example 4.8 1. Let T be an ℵ1 – categorical theory in a relational lan-
guage (no function symbols), and let M |= T be an uncountable model
(e.g. M is an uncountable algebraically closed field of positive charac-
teristic). Let φ ∈ L(T ). By ℵ1 – categoricity there exist integers n,m
such that M is (φ, n,m) – good. (see Corollary 1.4).
Let K := {N ⊆M : ‖N‖ < ℵ0}.
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2. ??????.

Definition 4.9 For a fixed (finite) relational language L and an L – formula
φ, let K be a class of finite (φ,m, n) – good L – structures. Fix a positive
integer k and an L – formula ψ(x; y) and define ≺K,ψ, as follows: N ≺K,ψ M
if

1. N ⊆M ,

2. for every a0, . . . , ak−1 ∈ N with l(y) = l(ai), if M |= ∃x
∧
i<k ψ(x; ai),

then M |=
∧
i<k ψ[b; ai] for some b ∈ N .

3. for every a ∈ M , there is a sequence of indiscernibles I ⊆ N of length
at least λφ(K) so that tpφ(a,N,M) = Avφ(I,N,M).

We define the same relation for a set ∆ of formulas simply by requiring
that the above holds for each φ ∈ ∆. When K and ψ are understood we will
just write ≺ for ≺K,ψ.

Condition (2) is like ({ψ},≤ k) – relative saturation (i.e. every {ψ} –
type with ≤ k parameters that is realized in M is realized in N).

Before proceeding, let’s see that this notion of substructure corresponds
to a weak notion of elementary substructure from first order logic.

Lemma 4.10 N ≺K,ψ M if and only if for every ψ(z) ∈ ∆ and every a ∈ N
with l(a) = l(z) < l(x)κφ(K) we have M |= ψ[a] if and only if N |= ψ[a],
where ∆ is a suitable set of combinations of instances of φ.

4.1 Properties of K

We list the following as facts. The Roman numerals in parentheses indi-
cate the corresponding Axioms in [26]. Again recall that k and ∆ are fixed
throughout.
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A. (I) If N ≺K M , then N ⊆M , and M ≺K M .

B. (V) If N0 ⊆ N1 ≺K M and N0 ≺K M , then N0 ≺K N1.

C. (VI) There is a function F : ω → ω such that if M0 ⊆ A ⊆ N and
M0 ≺K N , then there is an M1 with M0 ≺K M1 ≺K N , A ⊆ M1, and
||M1|| < F (|A|).

Remark: The first two are just as in the case of elementary substructures
in first order theories given the previous lemma above, so there is nothing
surprising about them. The last property is the finite analog to the Down-
ward Lowenheim – Skolem Theorem. Using the results of section 1 one can
improve the obvious upper bounds on F under stability – like assumptions.
It is not clear yet what to do with this.

The following definition is due to Shelah ([23], p. 290).

Definition 4.11 Given (φ,m, n) – good models M , M0, M1, and M2 with
Ml ≺K M , M0 ≺K M1, and M0 ≺K M2, we say that
(M0,M1,M2) is in φ(x; y) – stable amalgamation inside M if for every c ∈
M2 with l(c) = l(x) there is a {φ}∗m – indiscernible sequence I ⊆ M0, of
length at least λφ(K) such that Avφ(I,M1,M) = tpφ(c,M1,M).

To prove symmetry of stable amalgamation (with the assumption of non-
order), we must first establish the following lemma (corresponding to I.3.1
in [23]):

Lemma 4.12 Assume M is (φ(x; y; z),m, n) – good, and Il is a {φl}∗m – in-
discernible sequences in M each of length greater than max{λφl(M), κφl(M)+
κφ0(M)κφ1(M)} for each l < 2 (where Il = {alk : k < ml} for l < 2, φ0 = φ,
and φ1(y;x; z) = φ(x; y; z).) Then for each b ∈ M , the following are equiva-
lent.

i. There exists ik < m0 for k < m0 − κφ0(M) such that for each k,

φ(a0
ik
, y, b) ∈ Avφ1(I1, |M |,M).
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ii. There exists jl < m1 for l < m1 − κφ1(M) such that for each l,

φ(x, a1
jl
, b) ∈ Avφ1(I0, |M |,M).

Proof: Assume (i) holds. Choose ik < m0 for k < m0 − κφ0(M)
and jk,l < m1 for l < m1 − κφ1(M) witnessing (i). Since m0 > κφl(M) +
κφ0(M)κφ1(M), we can find κφ1 – many of the jk,l each of which occurs for at
least κφ(M) different ik. Thus for each of these, φ(x; a1

jk,l
; b) ∈ Avφ(I0, |M |,M).

Now assume (ii) does not hold. That is, there are jl < m1 for each
l < m1 − κφ1(M) such that ¬φ(x; a1

jl
; b) ∈ Avφ(I0, |M |,M). Clearly one of

these jl must correspond to one of the jk,l from before that occurs at least
κφ1(M) times. But as we noted above φ(x; a1

jk,l
; b) ∈ Avφ(I0, |M |,M), a

contradiction.

Note that (ii) implies (i) by the symmetric argument.

Theorem 4.13 (Symmetry) Suppose M0, M1, M2 ≺K M , M0 ≺K M1,
and M0 ≺K M2, each ≺K with respect to ∆ = {φ, ψ} where ψ(y;x) = φ(x; y).
Then (M0,M1,M2) is in φ – stable amalgamation inside M if and only if
(M0,M2,M1) is in ψ – stable amalgamation inside M.

Proof: Assume that (M0,M1,M2) is in φ – stable amalgamation in M .
Let c ∈ M with l(c) = l(x) be given. (We need to find a ψ – indiscernible
sequence I ⊆ M , with Avψ(I,M2,M) = tpψ(c,M2,M).) By the definition
of M0 ≺K M1, we may choose a ψ – indiscernible I ⊆ M0 of length at least
λψ(K) so that tpψ(c,M0,M1) = Avψ(I,M0,M1) (and so tpψ(c,M0,M) =
Avψ(I,M0,M)).

We claim that Avψ(I,M2,M) = tpψ(c,M2M2,M). (Note that the first
type is defined since I is long enough.) To see this, let b ∈M2 be given such
that M |= ψ[c; b], and we will show that ψ(x; b) ∈ Avψ(I,M2,M).

Since (M0,M1,M2) is in φ – stable amalgamation in M , we can choose a
φ – indiscernible set J ⊆M of length at least λφ(K) so that tpφ(b,M0,M2) =
Avφ(J,M0,M2), and so tpφ(b,M0,M) = Avφ(J,M0,M). Since M |= φ[b; c],
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we have φ(x; c) ∈ Avφ(J,M0,M), so a large number of bi from J satisfy
M |= φ[bi; c], or rather ψ(y; bi) ∈ tpψ(c,M0,M) = Avψ(I,M0,M) for each i.
So ψ(y; bi) ∈ Avψ(I,M0,M) for each i.

But then by the previous Lemma, we may choose a large number of cj
from I so that φ(x; cj) ∈ Av(J,M,M) for each j. That is, M |= φ[b; cj] for
each j, and so ψ(y; b) ∈ Avψ(I,M2,M) as desired.
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5 n - saturated graphs

We will say that a graph G is n - saturated if every sentence of the form

φw
def
= ∃x ∧i<n R(x, ai)

if [i ∈ w]

(where w ⊆ n and {ai : i < n} ⊆ VG) is realized in G. The first question to
answer is, “Do these graphs exist and if so how large are they?” The answer
to this question can be given using a simple probabilistic argument. It turns
out that for a fixed k, almost all graphs are k – saturated.

The probability that for a fixed set A of k vertices, a particular sentence
ψw (w 6∈ A) is not realized in a graph on n vertices is (1 − 1/2k)n−k, so the
probability that some set w ⊆ A yields a sentence ψw which is not realized
is at most 2k(1 − 1/2k)n−k, and thus the probability that some set of k

vertices yields a subset w for which ψw is not realized is at most

(
n
k

)
2k(1−

1/2k)n−k. As this is bounded above by (2n)k(1−1/2k)n which clearly goes to
0 as n gets large, the probability that a random graph on n vertices fails to
be k – saturated goes to 0. This does not however tell us how large a graph
we might need to have n−saturation in the first place.

To answer this question, one approach is to find n so that the expression
(most loosely, (2n)k(1 − 1/2k)n) above is less than 1. From this we can
conclude that the complementary event (i.e., being k – saturated) occurs
with positive probability. Taking n = 2kk3 accomplishes this, in fact for all
k ≥ 2.

So we have proved

Theorem 5.1 For each positive integer n ≥ 2, there exists an n - saturated
graph G with less than n32n vertices.
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