
Finding a Maximum Matching in a Sparse Random Graph in O(n)

Expected Time

Prasad Chebolu, Alan Frieze∗, Páll Melsted

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh PA15213

U.S.A.

today

Abstract

We present a linear expected time algorithm for finding maximum cardinality matchings in
sparse random graphs. This is optimal and improves on previous results by a logarithmic factor.

1 Introduction

A matching M in a graph G = (V,E) is a set of vertex disjoint edges. The problem of computing
a matching of maximum size is central to the theory of algorithms and has been subject to intense
study. Edmond’s landmark paper [3] gave the first polynomial time algorithm for the problem.
Micali and Vazirani [6] reduced the running time to O(mn1/2) where n = |V | and m = |E|. These
are worst-case results. In terms of average case results we have Motwani [7] and Bast, Mehlhorn,
Schäfer and Tamaki [2] who have algorithms that run in O(m log n) expected time on the random
graph Gn,m, in which each graph with vertex set [n] and m edges is equally likely.

One natural approach to finding a maximum matching is to use a simple algorithm to find
an initial matching and then augment it. This will not work in the worst-case, but as we will
show, it can be used to obtain an O(n) expected time algorithm for graphs with constant average
degree (O(m) in general). For a simple algorithm we go to the seminal paper of Karp and Sipser
[5]. They describe a simple greedy algorithm and show that whp it will in linear time produce a
matching that is within o(n) of the maximum. Aronson, Frieze and Pittel [1] proved that whp the
Karp-Sipser algorithm is off from the maximum by at most Õ(n1/5). In this paper we show that
whp we can take the output of the Karp-Sipser algorithm and augment it in o(n) time to find a
truly maximum matching. Our failure probability will be much smaller than o(1/ log n) and so we
get a linear expected time algorithm if we back it up with the algorithm from [2]. We will define
an algorithm Match and prove

Theorem 1 Let m = 2cn where c is a sufficiently large constant. Let G = Gn,m. Then the
algorithm Match finds a maximum matching in G in O(n) expected time.

∗Supported in part by NSF Grant CCF-0502793

1

1.1 The Karp-Sipser algorithm

This is a simple greedy algorithm. If the current graph G has a vertex of degree one, then it chooses
one such vertex v at random and adds the unique edge (u, v) to the matching it has found so far
and deletes the vertices u, v and continues. If the current graph has minimum degree two then it
picks a random edge (u, v), adds this to the matching and deletes u, v and continues. The algorithm
stops when G has no edges. Algorithm 1 below is a formal description.

Algorithm 1 Karp-Sipser Algorithm

1: procedure KSGreedy(G)
2: M ← ∅

3: while G 6= ∅ do

4: if G has vertices of degree 1 then

5: Select a vertex v uniformly at random from the set of vertices of degree 1
6: Let (v, u) be the edge incident to v
7: else

8: Select an edge (v, u) uniformly at random
9: end if

10: M ←M ∪ (v, u)
11: G← G \ {v, u}
12: end while

13: return M
14: end procedure

We identify two phases in the execution of the Karp-Sipser algorithm. Phase one starts at the
beginning and ends when the current graph has minimum degree two. We note that if M1 is the
set of edges chosen in Phase 1 then there is some maximum cardinality matching that contains M1,
i.e. no mistakes have been made so far.

Let the current graph at the beginning of Phase 2 be denoted by G′. As shown in [5], almost
all vertices of G′ are matched by the Karp-Sipser algorithm when G is a random graph. This
result was improved in [1] to show in fact that whp all but Õ(n1/5) vertices of G′ are matched.
When G is distributed as Gn,m then G′ is distributed as Gδ≥2

ν,µ i.e. G′ has ν = Ω(n) vertices and

µ = Ω(m) edges and Gδ≥2
ν,µ is uniformly chosen from simple graphs with ν vertices, µ edges and

minimum degree ≥ 2. Here the values µ, ν are random variables which are concentrated around
their (asymptotically) known means. It was further shown in Frieze and Pittel [4] that whp G′

consists of a single giant component plus a collection of vertex disjoint cycles. The expected number
of vertices on isolated cycles is O(1). It is shown that whp, a maximum cardinality matching of G′

matches every vertex except one for each isolated odd cycle and one vertex if the giant component
of G′ is odd. (This is an existence result, non-algorithmic). So, after running the Karp-Sipser
algorithm and dealing with isolated odd cycles, our task will whp be to match together Õ(n1/5)
isolated vertices.

1.2 Outline Description of Match

We will take the output of the Karp-Sipser algorithm, remove small cyclic components and deal
with them separately. We then take the isolated vertices in pairs and try to match them together
using alternating paths. We will show that this can be done in o(n) time whp. Our augmenting
path phase will use all of the edges of the graph. The reader will be aware that the Karp-Sipser

2

algorithm has conditioned the edges of the graph. We will show however that we can find a large set
of edges A and show that they have an understandable conditional distribution. This distribution
will be simple enough that we can make use of A to show that we succeed whp. Intuitively, we can
do this because the Karp-Sipser algorithm only “looks” at a small number of edges and discards
most of the edges incident with the pair u, v chosen at each step. Dealing with conditioning is
a central problem in Probabilistic Analysis. Oft times it is achieved by the use of concentration.
Here the problem is more subtle. Note that one cannot simply run the Karp-Sipser algorithm on a
random subgraph Gn,m1

⊆ Gn,m and then use the m −m1 random edges. This is because in this
case, Phase 1 on the sub-graph will leave extra isolated vertices.

Algorithm 2 below is a formal description of Match.

Algorithm 2 Algorithm Match

1: procedure Main(G)
2: (M,G′)← KS-Greedy(G) . G′ is the graph G after Phase 1 of KS-Greedy
3: G′ ← Remove-small-components(G′)
4: M ′ ← Augment(G′,M ∩G′)
5: return M 4M ′

6: end procedure

1: procedure Remove-small-components(G)
2: Pick an arbitrary vertex u ∈ G and run a breadth first search starting from u
3: if the connected component containing u, Cu, has size less than log2 n then

4: G← G \ Cu

5: end if

6: return G
7: end procedure

The rest of the paper is structured as follows: We describe our augmenting path algorithm
in the next section. Then in Section 3 we discuss the conditioning imposed by the Karp-Sipser
algorithm. Then in Section 4 we add the final touches to the proof.

2 Augmenting Path Algorithm

A vertex is said to be unmatched if it is not incident to a matching edge. Given an unmatched
vertex u, an augmenting tree Tu will be a tree of even depth rooted at u such that an edge between
vertices at depth 2k to 2k +1 is not a matching edge and edges going from vertices at depth 2k +1
to 2k + 2 are matching edges, for k ≥ 0. We refer to the nodes at levels 2k as even nodes of the
tree and nodes at level 2k + 1 as odd notes for k ≥ 1. We refer to the leaves of Tu as the front of
the tree. Our growth procedure ensures that the leaves are always even vertices.

A blossom rooted at v is an cycle of odd length where the edges on the path starting and ending
at v alternate between matching and non-matching edges.

Given two augmenting trees Tu, Tv , rooted at u, v respectively, a hit edge is an edge (x, y) such
that x is an even node in Tu and y is an odd node in Tv. Note that given a hit edge (x, y) the
subtree of Tv rooted at y can be taken from Tv and added to Tu, by removing the edge from y to
its parent node in Tv (see figure 2).

Throughout the algorithm we will keep track of which vertices we have seen before, labeling
some vertices as exposed. This is mainly to keep track of which vertices have “no randomness” left
because we’ve seen all the vertices they are adjacent to.

3

The algorithm Augment(G,M) takes as input a graph G and a matching M . The algorithm
runs in rounds, where in each round we try to find an augmenting path between two unmatched
vertices. If such a path is found, the matching is augmented, if not the algorithm returns Failure
and we resort to an alternate algorithm. This is repeated until there is at most one unmatched
vertex left. Clearly, if the algorithm does not fail then it finds a maximum cardinality matching.

In each round of the algorithm two augmenting trees are maintained, Tu, Tv , which are rooted
at two unmatched vertices u and v. The trees are grown one at a time until we either find an
augmenting path or the trees cannot be grown further. For each of u, v we maintain a list of
blossom edges and hit edges encountered so far.

The smaller of the two trees is grown, unless one tree has ≤ n.59 unexposed vertices at the front
and the other has > n.59 unexposed vertices at the front.

Suppose Tu is to be grown. Then for each vertex x on the front and each non-matching edge
(x, y) we do one of the following:

1. If y belongs to neither of the trees and is matched, add it to Tu along with its matching edge
(y, y′)

2. If y is unmatched we have an augmenting path from u to y

3. If y is an even vertex of Tv then the path from u to x in Tu, with the edge (x, y) and the path
from y to v in Tv forms an augmenting path

4. If y is an odd vertex of Tv then (x, y) is a hit edge, append it to the list of hit edges for u.

5. If y is an even vertex of Tu then (x, y) along with the paths from x, y to their most common
ancestor in Tu form a blossom, append (x, y) to the list of blossom edges for u.

6. If y is an odd vertex of Tu we do nothing.

After examining all edges incident to x, label it as exposed.
If an augmenting path is found then the round is finished. If the tree doesn’t grow we inspect

first the list of hit edges and see if we can grow the tree using them. If there are no hit edges we
inspect the list of blossom edges. For each blossom found contract the blossom into a supernode
and add this supernode to the front of the tree and try to grow from there. If the tree still doesn’t
grow exit the round and fail. Examples of the 6 cases for the edge (x, y) are shown in Figure 1
and examples for hit edges and blossoms are shown in Figures 2 and 3.

2.1 Tree Expansion

We will show that there exist constants α1, α2 independent of c and a constant c0 such that for
c ≥ c0 and m = 2cn the following Lemmas hold. The proofs of the first three lemmas are fairly
standard and heavy on computation. We have moved them to an appendix. In the first three
lemmas we implicitly condition on the values µ, ν and assume that these values are close to their
expected values.

Lemma 2 The following will hold with probability 1−O(1
n2). For G = Gδ≥2

ν,µ and all matchings M
of G and all augmenting trees T with c−1α1 log n ≤ |T | ≤ n.99. T will expand to a new front of size
s ∈

[

9c
10 |T |, 11c

10 |T |
]

4

u

v

e1

e2

e3

e4

e5

e6

Tu

Tv

Figure 1: The trees Tu and Tv are shown with bold edges. The edges ei correspond to cases i in
the algorithm for i = 1, . . . , 6.

u
v

e4

Tu

Tv

x

y

Figure 2: The trees Tu and Tv after using the hit edge e4.

u

v

e5

Tu

Tv

B

e
′

Figure 3: The trees Tu and Tv after using the blossom edge e5. Note that the blossom B is
contracted and the edge e′ becomes a part of the new tree.

Lemma 3 Let G = Gδ≥2
ν,µ , then with probability 1−Õ

(

1
n1−α2

)

there do not exist two cycles of length
a and b, at distance d apart for any a, b, d such that a + b + d ≤ α2 logc n

Lemma 4 Let G = Gδ≥2
ν,µ , then with probability 1−O(1

n2) there does not exist a set S with log n ≤
|S| ≤ n.99 that has more than (1 + ε)|S| edges inside S for all ε > 0.

Lemma 5 Let G be a graph such that Lemmas 2, 3 and 4 hold. For all matchings M of G, if
Augment(G,M) returns Failure, then the trees grown must be of size Ω(n.8).

5

Proof of Lemma 5: Consider the two trees grown Tu and Tv where u, v are isolated vertices. If
Augment(G,M) fails then one of the trees must have an empty front, say Tu. We split the analysis
into two cases depending on the size of |Tu|.

Case 1 |Tu| ≤ 4c−1α1 logc n
Note that this implies for large enough c that |Tu| ≤ 1

10α2 logc n. All of the edges of the front of
Tu either go to within Tu or to odd vertices of Tv. If there are no hit edges then either we have
violated the conditions of Lemma 3 or Tu is an isolated odd cycle (contradicting the fact that these
are dealt with separately) or Tu is a blossom B. In the latter case, B will be shrunk to a supernode
and Tu will be replaced by TB , which will have to grow.

Now assume that we have at least one hit edge. Now either V (Tu) contains a small cycle or
there are at least two hit edges. But the latter case implies that V (Tu ∪ Tv) contains a small cycle.
This is because we try to grow the smaller of the two trees. But then, after we have used the first
hit edge, Tu must grow or we violate the condition of Lemma 3.

Case 2. |Tu| ≥ 4α2 logc n
We now show that Tu will grow a new front of size at least 4c

5 |Tu|. Lemma 2 already shows that
the size of the front is at most 11c

10 |Tu|. By Lemma 2 we know that the size of the front is at least
9c
10 |Tu| when Tu is grown without considering Tv. But some of these vertices might be odd vertices
of Tv. It is enough to show that the front of Tu cannot be adjacent to c

10 |Tu| odd vertices of Tv.
Suppose this is the case and call this set A. Let TA be the tree obtained by taking the union all the
paths from A to v within Tv. Now TA is contained within the tree T ′

v which is Tv minus the front.
Consider the last time T ′

v was grown and look at the rule used to decide which tree to grow.
Case a: If both or neither of the u-tree and T ′

v had ≤ n.59 unexposed vertices, then the smaller
one is grown and we have |T ′

v| ≤ |Tu|.
Case b: If exactly one of the u-tree and T ′

v had ≤ n.59 vertices we know that it had to be T ′
v

since that was the tree grown. Then the u-tree contains a sub-tree that had ≤ n.59 unexposed
vertices and was larger than T ′

v. But then the previous level of T ′
v, call it T ′′

v was smaller than the
u-subtree and thus |T ′′

v | ≤ |Tu|.
Now consider the set S = Tu ∪A ∪ TA, it has |S|+ |A| edges. In Case a we have |TA| ≤ |T ′

v| ≤
|Tu| ≤ |A|+ |Tu|. In Case b we have |TA| ≤ |A|+ |T ′′

v | ≤ |A|+ |Tu|. This implies

|S| = |Tu|+ |A|+ |TA| ≤ 2(|Tu|+ |A|) ≤ 2

(

1 +
10

c

)

|A|

so S is a set with |A|
|S| ≥ 1

2+ 20

c

≥ 1
3 fraction of extra edges, but this contradicts the result of Lemma

4.

3 Karp-Sipser conditioning

We now view G as an ordered set of edges and look at an equivalent version of the Karp-Sipser
algorithm. In the analysis of Karp-Sipser on random graphs we have two sources of randomness.
One is the random graph itself and the other one is the random choices made by the algorithm. In
order to simplify the analysis we change the choices into deterministic ones and simply randomize
the order in which the edges are stored and take them in this (random) order. This is equivalent
to original algorithm. We now state the modified Karp-Sipser algorithm. We assume the graph G′

at the start of Phase 2 is given as G = (e1, . . . , eµ) an ordered set of µ edges.
We say that edge e ∈ G has index i if it is the i-th edge in the list, i.e. e = ei. Note that every

graph in the support of Gδ≥2
ν,µ will yield µ! ordered sets of edges, so from now on we will think of

6

Gδ≥2
ν,µ as a family of ordered sets of edges. Furthermore, if c is large then µ/ν will be close to c,

whp.

1: procedure KS
∗(G)

2: M ← ∅

3: while G 6= ∅ do

4: if G has vertices of degree 1 then

5: Of all edges incident to vertices of degree 1, let e have the lowest index
6: Let e = (v, u) where v has degree 1.
7: else

8: Select an edge e = (v, u) of lowest index in G
9: end if

10: M ←M ∪ (v, u)
11: G← G \ {e}
12: end while

13: return M
14: end procedure

3.1 Witness edges

In addition to the edges of the matching we define edges based on the run of the algorithm. We
split the vertices of the graph into three classes, regular, pendant and unmatched. A vertex is
regular if when it was removed from the graph, it had degree 2 or more. A vertex is said to be a
pendant vertex if when it was removed it had degree exactly 1 and is the endpoint of a matching
edge in M . Unmatched vertices are those vertices that are not incident to matching edges. We say
that an edge e is regular if both of its endpoints are regular, i.e. it was removed from the graph in
line 8. For each of these vertices we define witness edges.

• For a regular vertex v, it is removed from the graph when the edge e is picked as a matching
edge. Since it has degree at least 2, there are other edges incident to it at the time it is
removed. Pick the one with the lowest index and define it to be the regular witness edge for
v.

• For a pendant vertex or an unmatched v. Find the last point of time when v has degree at
least 2, an edge e = (x, y) is removed from the graph and v is incident to at least one of them
(perhaps both), say x. We then define (v, x) to be the pendant witness edge for v.

• For an unmatched vertex v, it has a pendant witness edge, and since it is never picked for
a matching its last edge is incident to some matching edge e = (x, y), say x, we then define
(v, x) to be the removal witness edge for v.

• In case of any ambiguities, define pendant witness edges first and then removal witness edges.
Use the lowest index of edges to break all ties. This can happen if a vertex goes from having
degree 3 to pendant or from having degree 2 to degree 0 if it is incident to both endpoints of
a matched edge.

• Note that an edge e can be a regular witness edge for one vertex and a pendant or removal
witness edge for another vertex.

Let W be the set of witness edges. Regular and pendant vertices are incident to matching edges
and their witness edges. Unmatched vertices are incident to two witness edges. Hence the graph
defined by M and W has minimum degree 2 and size at most 2ν.

7

We think of the graph as an ordered set of µ boxes filled with edges. Suppose we know the
output of KS∗, M , W and also the order in which the matching and witness edges were added to M
and W , but the underlying graph is unknown to us. This corresponds to µ ordered boxes, of which
the ones corresponding to M and W have been opened. We wish to figure out what the unopened
boxes could possibly contain. The following lemma provides necessary and sufficient conditions for
a graph G to yield M and W as the output of KS∗.

Lemma 6 Let G be a graph such that the algorithm KS∗ will produce the matching set M and
witness set W . Let e′ = (u, v) be an edge not in G that satisfies conditions 1,2,3 below. Then KS∗

will produce the same matching and witness set M and W when run on G′ = G∪{e′}. Furthermore
if e is an edge of G that belongs neither to M nor W then KS∗ will produce the same matching and
witness set when run on G′′ = G \ {e}.

1. If both u and v are regular vertices and say u was removed from the graph before v then (u, v)
can appear in any box that comes after the regular witness edge for u.

2. If u is a regular vertex and v is either a pendant or unmatched vertex . We need v to have
degree at least 2 at the time when u is removed. Thus we need (u, v) to appear in a box
that comes after the regular witness edge for u. Additionally if the pendant witness for v is
incident to the matching edge of u we need (u, v) to appear in a box that comes after the
pendant witness for v.

3. If neither u nor v are regular vertices, then edge (u, v) cannot appear in the graph.

Proof of Lemma 6: To keep track of the algorithm KS∗ we let Gt denote the graph after the
t-th iteration, so G0 = G and GT = ∅ where T is the number of iterations. At timestep t let Dt

be the set of edges incident with pendant vertices of Gt. Let Mt denote the set of matching edges
and Wt denote the set of witness edges at time t. For G′ and G′′ we define G′

t,G
′′
t etc. in the same

manner.
We first deal with the case where the edge e = (u, v) is added to G. Assume u is removed

first from G at timestep tu + 1, i.e. u ∈ Gtu and u /∈ Gtu+1. We first show that Mt = M ′
t for

t = 1, . . . , tu. If this holds for all t up to tu then after that we will have Gt = G′
t for t > tu since u

has been removed and so e is gone from the graph. This is proved by induction. The base case is
easy since M0 = M ′

0 = ∅. Assume that Mt = M ′
t so G′

t = Gt∪{e}, we now show that Mt+1 = M ′
t+1

Case 1: Both u and v are regular. Since e is not incident to a pendant vertex we have Dt = D′
t.

If Dt 6= ∅ then we select the edge from Dt with minimum index, and add it to Mt, since Dt = D′
t

we have Mt+1 = M ′
t+1. If Dt = ∅ we select the edge in Gt of minimum index, which cannot be e

since it comes after the regular witness edge for u. Hence the same edge is chosen in both Gt and
G′

t and Mt+1 = M ′
t+1.

Case 2: u is a regular vertex and v is either a pendant vertex or an unmatched vertex. Now
u is removed from G before v and degGtu

(v) ≥ 2. Neither u nor v are pendant vertices for t ≤ tu
so e is not incident with a pendant vertex, hence Dt = D′

t. Thus if Dt 6= ∅ we have Mt+1 = M ′
t+1

as before. If Dt = ∅ we have that e appears after the witness edge of u so it cannot be the edge of
minimum index and thus we have Mt+1 = M ′

t+1 as before.
We have now shown that if e satisfies the given conditions then the same matching set M will

be generated for both G and G′. We will now show that the same witness set is generated for both
graphs. An edge can become a witness edge only when either one of its endpoints is removed, or
when its degree drops below 2. Since G and G′ differ only in the edge e, and e can only become

8

a witness edge for u or v it is enough to show that e cannot become a witness edge given the
conditions stated. We show this by looking at the same two cases.

Case 1: If u and v are regular and u is removed first then e = (u, v) cannot be a witness
edge for v. Now in Gtu an edge (u,w) has the lowest index and becomes a matching edge, and the
regular witness edge for u is taken to be the edge from NGtu

(u) \ {w} of minimum index. In G′
tu−1

we have NG′

tu

(u) = NGtu
(u) ∪ {e}, but since e comes after the regular witness edge for u in G, e

cannot be of minimum index in NG′

tu

(u) \ {w}. Hence G and G′ will have the same set of witness
edges.

Case 2: If u is regular and v is either a pendant vertex or unmatched then as before e cannot
be a regular witness for v, and since degGtu

(v) ≥ 2 the only way for e to be a witness edge for v is
if degGtu+1

(v) = 1, i.e. the edge (u,w) was chosen as a matching edge and (w, v) is in G. But then
(w, v) is a pendant witness edge for v and in this particular case we have the extra restriction that
e must come after (w, v) and so e cannot be chosen as the pendant witness edge of v.

Thus we have shown that e will not be a witness edge if it satisfies the conditions. Hence the
graphs G and G′ will generate the same witness and matching sets (in the same order, and for the
same reasons). If e violates any of the conditions it will either not give the same set of matching
edges or produce a different witness set.

Case 3: If u, v are both pendant vertices and u is matched before v then u has degree at least
two at the time it is matched, contradiction. If u is pendant and v is unmatched then we draw the
same conclusion.

Note that it is possible to add an edge to the graph that will produce the same set of matching
edges, but a different witness set. Since we want to condition on both sets, and the exact order in
which they were produced we are not interested in such cases.

3.2 Probability Space

We describe the probability space after we sample a random graph from Gδ≥2
ν,µ and run KS∗ on the

graph and condition on the output matching edges M , as well as the witness edges W . Given the
output M and W and Rules 1-3 we can find all graphs that would give M and W as the output of
KS∗ and generate one uniformly at random.

First note that for each box i that is not in M or W we can create a list of edges Ei that
could go into that box, from Rules 1-3 we see that this list depends only on M and W and is
independent of the contents of other boxes. Also note that all the rules state that an edge can go
into any box that comes after some specified box, thus we have Ei ⊆ Ej when i < j. This leads
us to the following algorithm for generating a random graph from the distribution Gδ≥2

ν,µ |M,W , i.e.
conditioned on the output of KS∗.

1: procedure Generate-Random(M ,W)
2: for unfilled boxes i do

3: Ei ← { all edges e that can go into box i}
4: end for

5: G←M ∪W
6: for unfilled boxes i in increasing order do

7: Select e uniformly at random from Ei

8: G← G ∪ {e}
9: Remove e from Ej for all j > i

10: end for

11: return G
12: end procedure

9

Each G that outputs M and W can be generated with Generate-Random in exactly one way
and that any graph G produced by Generate-Random will produce M and G when we run KS∗ on
G. This shows that Generate-Random will gives a uniformly random graph from Gδ≥2

ν,µ |M,W .

4 Final Proof

In Section 3.2 we gave a complete description of the probability space. However this is not enough
to finish the proof of Theorem 1, we must dig deeper into the analysis of KSGreedy. We begin by
listing some definitions and lemmas from the paper that we will need.

In [1] it is shown that G(t) is distributed uniformly at random from the set of all graphs with
v0(t) vertices of degree 0, v1(t) vertices of degree 1, v(t) vertices of degree at least 2 and m(t)
edges, we denote this sequence by ~v(t) = (v0(t), v1(t), v(t),m(t)). Furthermore, the sequence ~v(t)
is a Markov chain. Thus the analysis of the algorithm is done by tracking the sequence ~v(t).
Additionally we define z(t) by

2m(t)− v1(t)

v(t)
=

z(t)(ez(t) − 1)

f(z(t))

where f(z) = ez−z−1. Conditional on ~v(t), the degrees of vertices of degree at least 2 is distributed
as independent copies of a truncated Poisson random variable Z, where

P(Z = k) =
zk

k!f(z)
k = 2, 3, . . .

conditional on
∑

v:deg(v)≥2 Zv = 2m(t)− v1(t).

As our input is taken from Gδ≥2
ν,µ we start in the state ~v(0) = (0, 0, ν, µ), i.e. with v1(0) = 0.

For t1 < t2 such that v1(t1) = v1(t2) = 0 and v1(t) > 0 for t1 < t < t2 we look at the edges and
vertices removed from t1 to t2, i.e. the graph G(t1)\G(t2) and call it a batch. Note that each batch
contains the regular matching edge removed at time t1 and hence a batch is a connected set.

4.1 Good Matching edges

Let τ0 be the last time such that the number of vertices removed from the graph is at most n.99.
We refer to vertices removed before τ0 as early vertices and those removed after as late. We say
that a matching edge e is a good matching edge if it is early, both of its endpoints are regular and
the regular witness edges for both of its endpoints have index less than µ/2.

Note that for t = 0, . . . , τ0 we have only removed n.99 vertices and O(n.99) edges, thus

2m(t)− v1(t)

v(t)
= (1 + o(1))

2m(0) − v1(0)

v(0)
= (1 + o(1))c

and z(t) = (1 + o(1))z(0) and z(t) is bounded away from 0 by a constant. Corollary 3 of [1] then
gives that E[v1(t + 1) − v(t)] ≤ −α for some positive constant α. Using this α in Lemmas 13 and
14 in [1] gives the following lemma

Lemma 7

P

(

∃t ≤ τ0 : v1(t) >
4 log3 n

α

)

= O(n−4)

and
P
(

∃t ≤ τ0 − T : v1(t) = 0, v1(t
′) > 0 for t < t′ ≤ t + T

)

= O(n−4)

for T = 16 log3 n
α3 .

10

This shows that for t ≤ τ0 each batch corresponds to an interval of time of length at most
O(log3 n) and vertices of degree 1 (at the time of removal) and the total number of vertices is
O(log4 n). This also shows that during the first τ0 time steps there will be many times when
v1(t) = 0 and thus regular edges are added to the matching set.

Lemma 8 There are Ω
(

n.99

log4 n

)

good matching edges in G.

Proof of Lemma 8: First note that Lemma 7 shows that there are
Ω
(

n.99

log4 n

)

times t ≤ τ0 when v1(t) = 0. Now consider exposing the ordering of the edges of the

graph as we remove edges from the graph. Thus at time t all edges in G \G(t) have been revealed.
When v1(t) = 0 an edge is picked as a matching edge and must be in the first available box of
lowest index. Then for both endpoints we reveal the indices of edges incident to the endpoints.
The edges of lowest index for each vertex become the witness edges. Note that at this point in time
there are no restrictions on where the edges can go and at most O(n.99) boxes have been revealed.
Thus the edges are distributed uniformly at random over the available boxes. Since each endpoint
has at least one edge incident to it the index of the witness edge is less than µ/2 with probability
at least 1

2 − o(1). This shows that the regular edge created at this time is a good matching edge
with probability at least 1

4 − o(1). Thus the actual number of good matching edges dominates a

binomial with expectation Ω
(

n.99

log4 n

)

.

4.2 The Batch Graph

We split the edges removed up to time τ0 into batches B1, . . . , Bl and create a Batch Graph GB ,
with vertices B1, . . . , Bl and we put an edge between Bi and Bj if dist(Bi, Bj) ≤ 20 logc(log n).

Lemma 9 The probability that there exists a connected component in GB of size at least 1000 is
O(n−4).

Proof of Lemma 9: We claim that if k

P(GB contains a component of size ≥ k) ≤
(

l

k

)

kk−2

(

1

n1−o(1)

)k−1

≤ n1−.01k+o(1). (1)

The lemma follows on taking k = 1000.
Explanation of (1): We choose a tree T which spans a component in

(l
k

)

kk−2 ways. Order
the vertices of T as B1, B2, . . . , Bk so that for each i, B1, B2, . . . , Bi spans a subtree Ti of T and Bi

is of degree one in this tree. Then n−1−o(1) is the probability that random start vertex of batch Bi

is close enough to the batch Bj where (Bi, Bj) is an edge of Ti.

Lemma 10 Let T be an augmenting tree with a front T of size |T | = Ω(n.02). Then, whp, at there

are at least |T |
log n late vertices on the front of the tree.

Proof of Lemma 10: Given T , an augmenting tree with a front of size |T | = t = Ω(n.02) assume
it has at most t

log n late vertices on the front. Let T ′ be the subtree of T , 10 logc(log n) levels back,

and let s be the size of the front of T ′. From Lemma 2 we know that s = ω(log n), otherwise the
tree could not expand to a size of Ω(n.02) in only O(log log n) steps. Thus we have

t ≥ s

(

4c

5

)5 logc(log n)

≥ s log4 n

11

for large enough c and similarly

t ≤ s

(

11c

10

)5 log
c
(log n)

≤ s log6 n

so s ∈ [t
log6 n

, t
log4 n

]

For any vertex v at the front of T ′ consider the subtree of T rooted at v. Whp, it cannot
contain early vertices from more than 1000 distinct batches since this would violate Lemma 9,
and each batch is of size O(log3 n). Thus each such subtree can contain only O(log3 n) early
vertices, there are s such subtrees and ≤ t

log n early vertices which makes for a total of less than

O(s log3 n) + t
log n = O

(

t
log n

)

< t vertices at the front of T , a contradiction.

Lemma 11 Let T be an augmenting tree with a front T of which s = Ω̃(n.03) are unexposed. Then
there are Ω̃(s

n.02) good matching edges at the unexposed front, assuming the number of exposed
vertices is o(n.8).

Proof of Lemma 11: We will assume that the algorithm runs for Õ(n.2) rounds and prove that
the condition holds with probability 1− exp−Ω(n.01) for every round.

In the first round, no vertices have been exposed. Given a set of s = Ω(n.02) unexposed vertices,
we know that the previous level had at least s

11c/10 vertices, call that set of vertices S′. By Lemma

10, at least |S′|
log n vertices on the front are late vertices, call this set S′′.

Consider any vertex u ∈ S′′ and any good matching edge (x, y), such that x is unexposed. Since
x is an early vertex and u is late the edge (u, x) is a potential edge for all currently open boxes
that come after the regular witness edge for x. Except for at most |S′′| cases where a pendant
witness for u is adjacent to y, we have |S′′|Ω̃(n.99) potential edges going from S′′ to unexposed
good matching edges. We count the number of such edges that are between S′′ and good matching
edges and go into boxes with indices greater than µ/2. Clearly for each such open box there are
at most

(ν
2

)

potential edges, so as we pick edges according to Algorithm 0 we choose one we’re

interested in with probability |S′′|Ω̃(n.99)

(ν

2)
. Therefore the number of such edges is lower bounded by

a random variable X ∼ Bin
(

Ω(n), Õ
(

|S′′|
n1.01

))

, since the number of filled boxes is ≤ 2ν + o(n.8).

The binomial X is at least Ω̃
(

|S′′|
n.02

)

with probability 1 − exp−Ω(n.01) by standard large deviation

bounds.
For later rounds, some unexposed vertices on the front might have exposed vertices as parents

in the augmenting tree. Let S1 be the unexposed vertices at the previous level (i.e. unexposed at
the beginning of this round) and S2 be the exposed vertices at the previous level. From Lemma 2

we know that |S| ≤ 11c
10 (|S1|+ |S2|). If |S1| = Ω̃(n.03) the above analysis show that we have Ω̃(|S1|

n.02)

good matching edges at the front. Suppose on the other hand that |S2| = Ω̃(n.03). Since S2 is at

the front of the augmenting tree (one level back) we know that there must be at least |S2|
log n late

vertices in S2, call this set S′
2.

Now each exposed vertex in S′
2 was at some previous round an unexposed vertex at the front

of it’s augmenting tree, as shown before the number of edges going from late vertices in S′
2 to

good matching edges is Ω̃(
|S′

2|
n.02) whp (the contribution from each round can be lower bounded by

independent binomial random variables whose mean is Ω̃
(

|S′

2
|

n.01

)

). Thus we have Ω̃
(

|S2|
n.02

)

good

matching edges on the front.

12

Since |S1| + |S2| = Ω(|S|) and |S| = Ω̃(n.03) we have shown that there are Ω̃
(

|S1|+|S2|
n.02

)

=

Ω̃
(

|S|
n.02

)

good matching edges on the front. Since we only run for Ω̃(n.2) rounds the result holds

for with probability 1− n−a for any constant a > 0.

4.3 Putting it all together

Proof of Theorem 1: We show that in each round the algorithm will always find an augmenting
path and will find one by exposing at most Õ(n.59) new vertices. This implies that the amount
of work done in the i-th round is Õ(i · n.59), since we could in the worst case visit all previously
exposed vertices. So the total work would be Õ(l2n.59) = Õ(n.99) = o(n), where l is the total
number of rounds and l = Õ(n.2) since the number of unmatched vertices is Õ(n.2).

Consider the i-th round and assume we’ve only exposed Õ(i ·n.59) = o(n.8) vertices. By Lemma
5 we know that whp the algorithm will be able to grow the trees and that we can assume that
the trees Tu and Tv both have at least n.59 unexposed vertices at the front. If the algorithm found
an augmenting path before the first time this happened then we’ve exposed only Õ(n.59) vertices,
since there are at most O(log n) levels of the tree and each level has ≤ n.59 unexposed vertices.
Assume therefore that we have two sets of unexposed vertices at the fronts Su and Sv such that
|Su|, |Sv | ≥ n.59.

Since only o(n.8) vertices have been exposed so far, Lemma 11 applies and there are at least

Ω̃
(

|Su|
n.02

)

vertices in Su that are endpoints of good matching edges, call this set S′
u. S′

v is defined

similarly. Thus we have that there are at least |S′
u| |S′

v| = Ω̃(n1.14) potential edges that could
go in any of the µ/2 − 2ν − o(n.8) currently open boxes with index ≥ µ/2. This follows from
Lemma 6. (The endpoints of a good matching edge are regular and they and their witnesses ap-
pear before µ/2.) The number of such edges dominates a binomially distributed random variable

X ∼ Bin(

(

Ω(n), Ω̃

(

n1.14

(n

2)

))

, which has a mean of Ω̃(n.14) and thus is positive with probability

1 − exp−Ω(n.13). This edge going between the fronts will guarantee that an augmenting path is
found by inspecting either one of the augmenting trees. Thus the probability that we fail in the
ith round is at most exp−Ω(n.13).

Since we repeat this for Õ(n.2) rounds the probability of failure is O(n−a) for any constant
a > 0.

5 Conclusion

We have shown that a maximum matching can be found in O(n) expected time if the average
degree is a sufficiently large constant. It is easy to extend this to the case where the average degree
grows with n. It is much more challenging to try to extend the result to any constant c. Karp and
Sipser showed that if c < e then whp Phase 1 leaves o(n) vertices for Phase 2. In the paper [1],
it was shown that for c < e, only a few vertex disjoint cycles are left, whp. So the problematical
range is e ≤ c < c0.

13

References

[1] J. Aronson, A. M. Frieze and B. Pittel, Maximum matchings in sparse random graphs: Karp-
Sipser revisited, Random Structures and Algorithms 12 (1998) 111-177.

[2] H. Bast, K. Mehlhorn, G. Schäfer and H. Tamaki, Matching Algorithms are Fast in Sparse
Random Graphs, Theory of Computing Systems 39 (2006) 3-14.

[3] J. Edmonds, Paths, Trees and Flowers, Canadian Journal of Mathematics 17 (1965) 449-467.

[4] A. M. Frieze and B. Pittel, Perfect matchings in random graphs with prescribed minimal
degree, Trends in Mathematics, Birkhauser Verlag, Basel (2004) 95-132.

[5] R.M. Karp and M. Sipser, Maximum Matchings in Sparse Random Graphs, Proceedings of
the 22nd Annual IEEE Symposium on Foundations of Computer Science (1981) 364-375.

[6] S. Micali and V.V. Vazirani, An O(
√

V E) Algorithm for Finding Maximum Matching in Gen-
eral Graphs. Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer
Science (1980) 17-27.

[7] R. Motwani, Average-case Analysis of Algorithms for Matchings and Related Problems, Jour-
nal of the ACM 41 (1994) 1329-1356.

Appendix

Proof of Lemma 2: We show that matching trees of size l, where 1
α1c log n ≤ l ≤ n0.9, expand

at a steady rate close to c. In a matching tree, we denote by Odd(T) and Even(T) the set of
vertices at odd and non-zero even depth, respectively. Every vertex in Odd(T) has exactly one
child in Even(T), in particular |Odd(T)| = |Even(T)|. We denote the neighborhood set of Even(T)
by Γ(Even(T)) ⊃ Odd(T). We also note that the matching tree can be represented using only
Even(T) by contracting the matching edges.

We will first show that the event of a tree having |Even(T)| = l and
|Γ(Even(T))| = r, where 1

α1c log n ≤ l ≤ n0.9 and l ≤ r ≤ 0.91cl, is polynomially small.
If the above event occurs, then the following configuration appears (i) 2l edges of the tree

connect Even(T) to Odd(T) (ii) r− l edges connect Even(T) to Γ(Even(T))\Odd(T) and (iii) none
of the (l + 1)(n − r − l − 1) edges between Even(T) ∪ {root vertex} and V \ Γ are present. The
probability of the above event occurring in Gδ≥2

n,m is bounded above by

√
ν

(

1

2µ− 2(l + r) + 1

)l+r

×

∑

di≥2, i∈[r+l+1]
∑

l+1

i=1
di=r+l

(

l+1
∏

i=1

λdidi!

di!(eλ − 1− λ)

2l+1
∏

i=l+2

λdi(di)2
di!(eλ − 1− λ)

r+l+1
∏

i=2l+2

λdi(di)1
di!(eλ − 1− λ)

)

Explanation: In Gδ≥2
ν,µ , the degrees of the vertices are distributed as truncated Poisson random

variables with parameter λ where

λ(eλ − 1)

eλ − 1− λ
= c̃ =

2µ

ν
∈ [.999c, c].

14

(If c is large then Phase 1 removes relatively few edges).
The variables are truncated below two and are conditioned on the sum of the degrees of the

vertices adding up to 2µ, see [1]. We will have to pay a factor of
√

ν for removing the conditioning.
Given the degree sequence we make our computations in the configuration model. The probability
that an edge exists between vertices u and v of degrees du and dv, given the existence of other
edges in the tree, is at most dudv

2µ−2(l+r)+1 . Hence, given the degree sequence, the probability that
the matching tree exists is at most

(

1

2µ− 2(l + r) + 1

)l+r l+1
∏

i=1

di!
2l+1
∏

i=l+2

(di)2

r+l+1
∏

i=2l+2

(di)1

where (di)k = di(di−1)...(di−k+1). We now simplify the expression obtained for the probability.

√
ν

(

1

2µ− 2(l + r) + 1

)l+r

×

∑

di≥2, i∈[r+l+1]
∑

l+1

i=1
di=r+l

(

l+1
∏

i=1

λdidi!

di!(eλ − 1− λ)

2l+1
∏

i=l+2

λdi(di)2
di!(eλ − 1− λ)

r+l+1
∏

i=2l+2

λdi(di)1
di!(eλ − 1− λ)

)

=
√

ν

(

1

2µ− 2(l + r) + 1

)l+r

×

∑

di≥2, i∈[r+l+1]
∑

l+1

i=1
di=r+l

(

λr+l

(eλ − 1− λ)l+1

2l+1
∏

i=l+2

λdi(di)2
di!(eλ − 1− λ)

r+l+1
∏

i=2l+2

λdi(di)1
di!(eλ − 1− λ)

)

=
√

ν

(

1

2µ− 2(l + r) + 1

)l+r

×

∑

di≥2, i∈[r+l+1]
∑

l+1

i=1
di=r+l

(

λ2r+2l

(eλ − 1− λ)r+l+1

2l+1
∏

i=l+2

λdi−2

(di − 2)!

r+l+1
∏

i=2l+2

λdi−1

(di − 1)!

)

≤ √ν

(

1

2µ− 2(l + r) + 1

)l+r (r − 2

l

)

λ2r+2l

(eλ − 1− λ)r+l+1
eλl (eλ − 1)r−l

≤ √ν

(

1

2µ− 2(l + r) + 1

)l+r
(er

l

)l λ2r+2l

(eλ − 1− λ)r+l
eλl(eλ − 1)r−l

=
√

ν

(

1

2µ− 2(l + r) + 1

)l+r
(er

l

)l
(c̃λ)r

(

c̃λeλ

eλ − λ− 1

)l(
1

eλ − 1

)l

using
λ(eλ − 1)

eλ − 1− λ
= c̃

≤ √ν

(

1

2µ− 2(l + r) + 1

)l+r

(c̃λ)r
(

0.92ec̃2λeλ

eλ − λ− 1

)l(
1

eλ − 1

)l

using
r

l
≤ 0.91c

15

≤ √ν

(

1

2µ− 2(l + r) + 1

)l+r

(c̃λ)r
(

0.92ec̃2λ

eλ − λ− 1

)l

using
eλ

eλ − 1
< 1.01

≤ √ν

(

1

c̃ν

)l+r

e4(l+r)2/c̃ν(c̃λ)r
(

0.92ec̃2λ

eλ − λ− 1

)l

using 2µ = c̃ν

=
√

ν

(

1

ν

)l+r

e4(l+r)2/c̃ν λr

(

0.92ec̃λ

eλ − λ− 1

)l

(2)

We now count the number of such configurations. We begin by choosing Even(T) and the root
vertex of the tree in

(n
l+1

)

ways. We make the following observation about augmenting path trees
with |Even(T)| = l. The removal of Odd(T) vertices from the tree, as illustrated in the diagram,
would correspond to a unique combination of a tree on l + 1 vertices and a sequence of l distinct
vertices. We note, by Cayley’s formula, that the number of trees that could be formed using (l +1)
vertices is (l+1)l−1. We now choose the sequence of l vertices, Odd(T), that connect up vertices in
Even(T) in (ν − l− 1)(ν − l− 1)...(ν − 2l) = (ν − l− 1)l ways. We pick the remaining r− l vertices
from the remaining ν − 2l− 1 vertices in

(ν−2l−1
r−l

)

ways. These r− l vertices can connect to any of

Even(T) in lr−l ways. Hence, the total number of configurations is at most

(

ν

l + 1

)

(l + 1)l−1(ν − l − 1)l

(

ν − 2l − 1

r − l

)

lr−l ≤ νr+l+1 · e−(l+r)2/4νer+1 ·
(

l

r − l

)r−l

.

Combining the bounds for probability and configurations, we get

νr+l+1 · e−(l+r)2/4ν er+1 ·
(

l

r − l

)r−l√
ν

(

1

ν

)l+r

e4(l+r)2/c̃ν λr

(

0.92ec̃λ

eλ − λ− 1

)l

= eν3/2 · e−(l+r)2/4ν er ·
(

l

r − l

)r−l

e4(l+r)2/c̃ν λr

(

0.92ec̃λ

eλ − λ− 1

)l

= eν3/2 · e−(1

4
− 4

c̃
)(l+r)2/ν er ·

(

l

r − l

)r−l

λr

(

0.92ec̃λ

eλ − λ− 1

)l

≤ eν3/2 ·
(

l

r − l

)r−l

(eλ)r
(

0.92ec̃λ

eλ − λ− 1

)l

= eν3/2 ·
(

eλl

r − l

)r−l(0.92e2c̃λ2

eλ − λ− 1

)l

The expression
(

eλl
x

)x
is maximized at x = λl > 0.9999c̃l. But r− l ≤ 0.91cl < λl. Hence, we have

the bound

eν3/2 ·
(

eλl

0.91cl

)0.91cl(0.92e2c̃λ2

eλ − λ− 1

)l

≤ eν3/2 ·
(e

0.91

)0.91cl
(

0.92e2 c̃λ2

eλ − λ− 1

)l

using λ < c

≤ eν3/2 ·
(e

0.91

)0.91cl
(

0.92e2c̃λ2

e0.999c

)l

using eλ − λ− 1 > e0.999c

≤ eν3/2 ·
(

0.92e2c̃λ2

e0.002c

)l

using
e0.999

(

e
0.91

)0.91 > e0.002

16

= eν3/2ql where q =
0.92e2c̃λ2

e0.002c
≤ e−.001c.

We sum the above expression over all r and l with α1

c log n ≤ l ≤ n0.9 and l ≤ r ≤ 0.91cl and
we get the probability to be at most

2en5/2q
α1
c

log n ≤ 2en5/2−α1/1000 = o(1)

for α1 ≥ 2501.
We will now show that the event of a tree having |Even(T)| = l and

|Γ(Even(T))| = r, where α1

c log n ≤ l ≤ n0.9 and r ≥ 1.07cl, is polynomially small.
It is enough to show that the probability that there exists a tree with |Even(T)| = l and

|Γ(Even(T))| = r, where α1

c log n ≤ l ≤ n0.9 and r = 1.07cl, is polynomially small since a tree with
|Γ(Even(T))| > 1.09cl also contains a tree with |Γ(Even(T))| = 1.07cl.

The probability expression (2) remains the same with the 0.92 getting replaced by 1.08 and we
get a bound of

eν3/2 ·
(

eλl

1.07cl

)1.07cl(1.08e2c̃λ2

eλ − λ− 1

)l

≤ eν3/2 ·
(e

1.07

)1.07cl
(

1.08e2 c̃λ2

eλ − λ− 1

)l

using λ < c

≤ eν3/2 ·
(e

1.07

)1.07cl
(

1.08e2c̃λ2

e0.999c

)l

using eλ − λ− 1 > e0.999c

≤ eν3/2 ·
(

1.08e2c̃λ2

e0.002c

)l

using
e0.999

(

e
1.07

)1.07 > e0.002

= eν3/2ql where q =
1.08e2cλ2

e0.002c
≤ e−.001c.

We sum the above expression over all l with α1

c log n ≤ l ≤ n0.9 and we get the probability to
be at most

2en3/2q
α1
c

log n = 2en3/2−α1/1000 = o(1).

Hence, the probability that there exists a tree with |Even(T)| = l and |Γ(Even(T))| = r, where
α1

c log n ≤ l ≤ n0.9 and r /∈ [0.9cl, 1.1cl], is polynomially small.
Proof of Lemma 3: We show that this holds in Gn,m and note that Gδ≥2

ν,µ is a vertex induced
subgraph of Gn,m. Since the property is closed under edge deletion this will imply the Lemma. To
upperbound the probability of failure in Gn,m we switch to Gn,p where p = c

n .
If there are two small cycles close together then there will be a path P of length at most

k = a + b + d plus two extra edges joining the endpoints of P to internal vertices of P . The
probability of this can be bounded by

nkk2pk+1 ≤ k2ck+1

n
= Õ

(

1

n1−α2

)

.

The event in question is monotone and so we only have to inflate the probability by a constant to
translate to Gn,m.

17

Proof of Lemma 4: We can work in Gn,p, as we did for Lemma 3.
We get the bound

(

n

k

)(
(

k
2

)

(1 + ε)k

)

(c

n

)(1+ε)k
≤
(en

k

)k
(

ek2/2

(1 + ε)k

)(1+ε)k
(c

n

)(1+ε)k
≤
(

e3+ε(c)1+εkε

nε

)k

and since k = O(n.99) the summand can be upper bounded by 2−k for k ≥ √n and by n−εk/200 for
k ≤ √n. The union bound then gives an upper bound of

√
n

∑

k=log n

n−εk/200 +

n.99

∑

k=
√

n

2−k = o(n−3)

The event in question is monotone and so we only have to inflate the probability by a constant to
translate to Gn,m.

18

