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Abstract. We explore the average-case “Vickrey” cost of structures in a random setting: the
Vickrey cost of a shortest path in a complete graph or digraph with random edge weights; the
Vickrey cost of a minimum spanning tree (MST) in a complete graph with random edge weights;
and the Vickrey cost of a perfect matching in a complete bipartite graph with random edge weights.
In each case, in the large-size limit, the Vickrey cost is precisely 2 times the (non-Vickrey) minimum
cost, but this is the result of case-specific calculations, with no general reason found for it to be
true.

Separately, we consider the problem of sparsifying a complete graph with random edge weights
so that all-pairs shortest paths are preserved approximately. The problem of sparsifying a given
graph so that for every pair of vertices, the length of the shortest path in the sparsified graph
is within some multiplicative factor and/or additive constant of the original distance has received
substantial study in theoretical computer science. For the complete graph Kn with additive edge
weights, we show that whp Θ(n lnn) edges are necessary and sufficient for a spanning subgraph to
give good all-pairs shortest paths approximations.

1. Introduction

The motivation for this work is that a “Vickery-Clarke-Groves” (VCG) auction, while having
the benefits of being “truthful” and maximizing “social welfare”, may result in arbitrarily large
overpayments. We are interested in whether the overpayments are reasonably small in an average-
case setting. In this introduction we first recapitulate the VCG auction mechanism and introduce
a small amount of notation, then state our average-case results.

1.1. The VCG auction mechanism. Suppose that in a graph, each edge is provided by an
independent, selfish agent who incurs a cost for supplying it (or for allowing us to drive over it,
transmit data over it, or whatever). This “private” cost, the price point at which the agent is
neutral between selling the edge or not, is known only to herself. We wish to buy some structure,
for example a path between two particular points, or a spanning tree, as cheaply as possible. An
obvious “mechanism” to do this is to ask each agent the cost of her edge, find the cheapest structure,
and pay each agent accordingly. The problem with this and many other mechanisms is that agents
have an incentive to lie: by inflating her claimed cost, an agent will get more money (up to the
point where she prices herself out of competition).

A Vickrey-Clarke-Groves (VCG) auction [Vic61, Cla71, Gro73] is a cleverly designed “truthful”
mechanism: assuming that the agents act without collusion, in a VCG auction it is in each agent’s
best interest to name her true cost (if her edge is used, she will get paid at least this, but typically
more). Under the same assumption, a VCG auction also maximizes “social welfare”: the structure
selected is the one that is genuinely cheapest (and so the least possible resource is consumed in
road maintenance, data-server support, or whatever).

In a VCG auction, an “auctioneer” first finds a cheapest structure S∗, according to the edge
costs c(e) declared by the agents. (This might be a cheapest path, for example; VCG was first
explicitly applied to the shortest-path problem in [NR99, NR01].) For each edge e ∈ S∗ in this
structure, the auctioneer pays the corresponding agent not the stated cost c(e) of the edge, but a
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measure of the benefit it provided, namely the difference between what a cheapest structure would
have cost if the edge were not present or had infinite cost, call it c(S∞e ), and what the cheapest
structure would have cost if the edge were free, call it c(S0

e ). It is clear that neither of these terms
depends on c(e). An agent whose edge is not used, e /∈ S∗, is not paid anything.

We can now confirm three important properties of the auction. First, define an “incentive cost”
for edge e as

c+(e) = c(S∞e )− c(S∗).(1)

Then for any edge, used or not, c+(e) ≥ 0, and assuming for convenience of discussion that there
is a unique cheapest structure S∗, e is used iff c(S∗) < c(S∞e ), i.e., iff c+(e) > 0. If edge e is used,
the payment for it is

c(S∞e )− c(S0
e ) = [c(S∞e )− c(S∗)] + [c(S∗)− c(S0

e )]

= c+(e) + c(e),

so an edge is used precisely when the payment would exceed the agent’s stated cost.
This also shows that the auction is truthful. Since by manipulating her price c(e) an agent

cannot influence what she would be paid, but only whether or not she will, her best strategy is to
get paid iff the payment exceeds her true cost, which she can achieve by setting c(e) to be the true
cost. Setting c(e) lower may result in her being paid less than cost; setting it higher may cause her
to lose out on what would have been a profitable sale.

Finally, assuming that every agent does state her true cost, the structure selected is one that is
genuinely cheapest, and social welfare is maximized.

We will later take advantage of an observation based on the fact that the incentive cost (1) is 0
for edges not used, namely that

VCG =
∑
e∈S∗

[c(e) + (c(S∞e )− c(S∗))]

= c(S∗) +
∑
e∈S∗

(c(S∞e )− c(S∗))

= c(S∗) +
∑
e∈E

(c(S∞e )− c(S∗))

=
∑
e∈E

c(S∞e )− (|E| − 1)c(S∗).(2)

1.2. Average-case analysis. Naturally, the VCG mechanism pays more than the cost of the
cheapest structure, and unfortunately the overpayment can be arbitrarily large. For an illustrative
example, consider finding a cheapest s-to-t path in a graph consisting of two disjoint paths from
s to t, one with all edges costing 0, the other with one edge costing 1 and all others 0. The first
path is cheapest with true cost 0, but every edge in it receives a VCG incentive payment of 1 (the
cost difference between the two paths), so the total VCG cost is the path length. In [AT02, AT07]
it is shown that any truthful mechanism has bad worst-case s–t path overpayment. Additional
investigations of shortest paths in a worst-case setting appear in [MPS03, ESS04, CR04, Elk05].

A worst-case analysis of VCG costs may be overly pessimistic. One alternative is through real-
world measurements of the VCG overpayment, and such a study appears in [FPSS02]. Another
alternative, and the one we adopt here, is to compare the VCG cost with the minimum cost in
an average-case setting. This was done for shortest paths in certain graphs in [MPS03, CR04,
KN05, FGS06]. We consider the expected VCG overpayment in three settings, in each of which
the expected minimum cost is a classical result in the analysis of random structures.
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1.2.1. Shortest paths. We first consider shortest paths in the complete graph Kn, or complete
digraph ~Kn, with i.i.d. exponential(1) edge weights, where exponential(1) denotes the exponential
distribution with mean 1. (We use the terms edge weight, cost, or length interchangeably, and a
shortest path is a cheapest path.) Janson [Jan99] has shown that whp the distance between two
vertices, say 1 and n, in this model is (1 + o(1)) log n/n. We prove that the asymptotic expected
Vickrey cost is twice as large.

Theorem 1. Suppose that the edges of the complete graph Kn (respectively, digraph ~Kn) have i.i.d.
exponential mean-1 edge weights. Let E(SP) be the expected cost of a shortest path from 1 to n.
Then

E(VCG) ∼ 2E(SP).

In a small digression, we will also consider the problem of sparsifying the random edge-weighted
digraph so that whp shortest path distances are (approximately) preserved. Janson [Jan99] also
showed that the weighted diameter in this model is (3 + o(1)) log n/n. It follows that whp the
subgraph consisting of the 4n log n cheapest edges contains the shortest path between each pair of
vertices. If we only keep Dn edges (so D is the average in+out degree), with D = D(n) = O(log n),
how good an approximation can we find in the all pairs shortest path problem?

Theorem 2. In a complete digraph ~Kn with i.i.d. exponential(1) edge weights, suppose that we
keep only Dn edges to form a digraph H. Then whp there exists a pair of vertices s, t such
that dH(s, t)/d ~Kn

(s, t) ≥ logn
4D , where dH(s, t) and d ~Kn

(s, t) denote shortest distance in H and ~Kn

respectively.

1.2.2. Minimum Spanning Tree. We next consider a minimum spanning tree of Kn with uniform
[0, 1] edge weights. It was shown by Frieze [Fri85] that the expected cost E(MST) of a minimum
spanning tree on Kn satisfies limn→∞E(MST) = ζ(3). Even though there is no nice expression
for the exact expectation for finite n, we prove that the expected VCG cost is exactly (not just
asymptotically) twice as large.

Theorem 3. Suppose that the edges of the complete graph Kn have i.i.d. uniform [0, 1] edge weights.
Let E(MST) be the expected cost of a minimum spanning tree. Then

E(VCG) = 2E(MST).

1.2.3. Assignment. Finally, we consider the VCG cost of a perfect matching in a complete bipar-
tite graph with random edge weights, known as the “random assignment problem”. When the
edge weights are i.i.d. exponential(1) random variables, Mézard and Parisi [MP85, MP86, MP87]
gave a sophisticated mathematical physics argument, using the “replica method” (related to the
“cavity method”), that the minimum cost AP satisfies limn→∞E(AP) = ζ(2) = π2/6. Aldous
[Ald92, Ald01] made this mathematically rigorous through reasoning about a “Poisson weighted
infinite tree”. For finite values of n, Parisi [Par98] conjectured the expected cost to be

∑n
i=1 i

−2,
Coppersmith and Sorkin [CS99] extended the conjecture to cheapest cardinality-k assignments
in Km,n, and these results were proved simultaneously, by different methods, by Linusson and
Wästlund [LW04] and Nair, Prabhakar and Sharma [NPS05]. A beautiful short proof was later
found by Wästlund [Wäs].

As in the previous cases, we find that the expected VCG cost is twice the minimum cost asymp-
totically (but not for finite n as it is for MST).
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Theorem 4. Suppose that the edges of the complete bipartite graph Kn,n have i.i.d. exponential
mean-1 edge weights. Let E(AP) be the expected cost of a minimum weight perfect matching. Then

E(VCG) = E(AP) + n

 1
n− 1

+
n−1∑
l=1

1
l

n− l
n
−
n−1∑
l=2

1
l(l − 1)

l−1∑
i=0

n− i
n

l∏
j=i+1

(n− j)j
(n− j + 1)j − 1


∼ 2E(AP).

In the remainder of the paper we prove Theorems 1–4, in turn.

2. Shortest Paths

The cost model for this section will be that each edge e of the complete graph Kn or digraph ~Kn

is given an independent cost Xe where Xe is exponential with mean 1, i.e., Xe ∼ exponential(1)
are i.i.d. random variables. We will compute the expected Vickrey cost of a shortest path from
vertex 1 to vertex n. We start by computing the expected cost E(SP) of this path. We follow the
analysis of Dijkstra’s algorithm due to Janson [Jan99]. Janson actually considered the symmetric
(undirected) case, but there is no essential difference in the analysis of the two. We begin with the
directed (asymmetric) case in Section 2.1, treating the undirected case in Section 2.2.

2.1. Asymmetric (directed) model. In the complete digraph ~Kn, if Dk is the distance to the
kth closest vertex from vertex 1 then D1 = 0 and for k > 1 we have

(3) E(Dk+1) = E(Dk) +
1

k(n− k)
.

Explanation: Suppose that we are about to add the (k+ 1)th closest vertex to our shortest path
tree T . Let v be the jth vertex added to T and suppose that w /∈ Tk the state of T after k rounds.
The conditional distribution of the edge length c(v, w) is exponential mean-1, conditional on being
at least Dk −Dj , i.e., Dj−1 + c(v, w) = Dk + Xv,w where the Xv,w are independent exponentials
with mean 1. This condition ensures that w has not already been added to the tree. There are
k(n− k) edges and the expected value of the minimum of m mean-1 exponentials is 1/m.

It follows from (3) that

(4) E(Dk+1) =
k∑
i=1

1
i(n− i)

.

Vertex n is added to T at a random stage of this process, so

(5) E(SP) =
1

n− 1

n−1∑
k=1

k∑
i=1

1
i(n− i)

=
1

n− 1

n−1∑
i=1

n−1∑
k=i

1
i(n− i)

=
1

n− 1

n−1∑
i=1

1
i
.

Now let SPe denote the shortest path length when we are not allowed to use edge e = (r, s).
Letting D(r,s)

k denote the distance to the kth closest vertex vk from vertex 1 when (r, s) is excluded,
in place of (3) we have

(6) E(D(r,s)
k+1 ) = E(D(r,s)

k ) + E
(

1
k(n− k)− θ(r, s, k)

)
where θ(r, s, k) is the indicator for r ∈ Tk, s /∈ Tk. We will need to estimate the following under
the assumption that (r, s) is a random edge:

E(θ(r, s, i)1(vk = n)) = P(1(vk = n) | θ(r, s, i) = 1)P(θ(r, s, i) = 1)

= P(1(vk = n) | θ(r, s, i) = 1)
i(n− i)
n(n− 1)

.
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We then write

(7)
k − 1

k(n− k)
≤ P(1(vk = n) | r, s and vj 6= n, 1 ≤ j < k) ≤ k

k(n− k)− 1
.

This is because the choice of vk is always derived from the random choice of one of k(n−k)−θ(r, s, k)
edges and k − 1 or k will lead to vk = n. Thus,

P(1(vk = n) | θ(r, s, i) = 1) ≤ k

k(n− k)− 1

k−1∏
j=1

(
1− j − 1

j(n− j)

)

=
1

n− k

(
1 +

1
k(n− k)− 1

) k−1∏
j=1

n− j − 1
n− j

(
1 +

1
(j − 1)(n− j)

)

≤ 1
n− 1

exp


k∑
j=1

1
j(n− j)− 1


=

1
n− 1

(
1 +O

(
log n
n

))
.

It follows that

(8) E(θ(r, s, i)1(vk = n)) ≤ i(n− i)
n(n− 1)2

(
1 +O

(
log n
n

))
.

With inequality (8) in hand, we have

∑
e

E(SPe) =
∑
r,s

n−1∑
k=1

k∑
i=1

E
(

1(vk = n)
i(n− i)− θ(r, s, i)

)

=
n−1∑
k=1

k∑
i=1

∑
r,s

E
(

1(vk = n)
i(n− i)

)
+
n−1∑
k=1

k∑
i=1

∑
r,s

E
(

1(vk = n) θ(r, s, i)
i(n− i)(i(n− i)− θ(r, s, i))

)

= n(n− 1)E(SP) + n(n− 1)
n−1∑
k=1

k∑
i=1

E
(

1(vk = n) θ(r, s, i)
i(n− i)(i(n− i)− θ(r, s, i))

)
(9)

≤ n(n− 1)E(SP) +
1

n− 1

n−1∑
i=1

n−1∑
k=i

1
i(n− i)− 1

(
1 +O

(
log n
n

))

= n(n− 1)E(SP) +
1

n− 1

n−1∑
i=1

1
i

(
1 +O

(
log n
n

))

where from (9) onwards we treat (r, s) as a random edge.
Going back to (2) and (5) we see that

E(VCG) ≤ 2E(SP) +O

(
log2 n

n2

)
.(10)



6 PRASAD CHEBOLU, ALAN FRIEZE, PÁLL MELSTED, AND GREGORY B. SORKIN

For a lower bound we go back to (7) and write

P(1(vk = n) | θ(r, s, i) = 1) ≥ k − 1
k(n− k)

k−1∏
j=1

(
1− j

j(n− j)− 1

)

=
(

1− 1
k

)
1

n− k

k−1∏
j=1

n− j − 1
n− j

(
1− 1

j(n− j)− 1

)

=
(

1− 1
k

)
1

n− 1

(
1−O

(
log n
n

))
.

It follows that

(11) E(θ(r, s, i)1(vk = n)) ≥
(

1− 1
k

)
i(n− i)
n(n− 1)2

(
1 +O

(
log n
n

))
.

Going back to (9)∑
e

E(SPe) ≥ n(n− 1)E(SP) +
1

n− 1

n−1∑
i=1

1
i(n− i)

n−1∑
k=i

(
1− 1

k

)(
1−O

(
log n
n

))

≥ n(n− 1)E(SP) +
1

n− 1

n−1∑
i=1

n− i− log n
i(n− i)

(
1−O

(
log n
n

))
and it follows that

E(VCG) ≥ 2E(SP)−O
(

log2 n

n2

)
.

With the upper bound from (10), this lower bound proves the asymmetric case of Theorem 1.

2.2. Symmetric (undirected) model. Our analysis extends easily to the case where we have a
complete graph Kn, as opposed to a complete digraph, still using i.i.d. exponential(1) edge weights.
Firstly, Janson’s result (originally proved in this model, in fact) is unchanged, i.e., (5) still holds.
We then observe that P(θ(r, s, i) = 1) is now 2i(n−i)

n(n−1) , leading to a doubling of the expression (8).
On the other hand, the factor n(n − 1) in (9) becomes

(
n
2

)
. The factor two loss in the first sum

halves |E| as it should, and the factor two loss in the second sum compensates for the doubling
described in (8). We end up with the same expression as before.

3. All pairs shortest paths

We give an outline proof of Theorem 2, which is somewhat peripheral to the main theme of the
paper. Let an edge e = (s, t) be bad if (i) it is “short”, with cost c(e) ≤ 2D/n, and (ii) d ~Kn\e(s, t) ≤
logn
2n . For a random edge e, P(e is bad) = P(i)P(ii) because these events are independent, depending

respectively on the length of e and the lengths of the other edges. The theorem’s conclusion is null
unless D = O(log n), thus D = o(n), in which case P(i) = 1− exp(−2D/n) ∼ 2D

n . For (ii) we use
that dH(s, t) ≥ d ~Kn

(s, t); we have seen in (5) that E(d ~Kn
(s, t)) ∼ logn

n and Janson [Jan99] has shown
that Var(d ~Kn

(s, t)) = O(n−2). (These results are shown for undirected graphs but follow similarly
for directed graphs.) By Cheychev’s inequality, then, P(ii) = O(1/ log2 n). Multiplying P(i) and
P(ii), the number of bad edges Z satisfies E(Z) = O(Dn/ log2 n), and by Markov’s inequality,
Z ≤ Dn/ log n whp. From P(i) ∼ 2D/n it is immediate that the (binomially distributed) number
of such short edges is at least 3

2Dn whp. Assuming that all the above high-probability events hold,
for any way of selecting Dn edges, there will be at least Dn/2 short edges not selected, and since
Z ≤ Dn/ log n, at least Dn/3 of these are not bad. These edges are short yet are not bad, thus
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must violate (ii), so that d ~Kn
(s, t) ≤ c(e) ≤ 2D

n while dH(s, t) ≥ d ~Kn\e(s, t) >
logn
2n . This completes

the proof of Theorem 2, since for these edges dH(s, t)/d ~Kn
(s, t) ≥

1
2

logn/n

2D/n = logn
4D .

In fact it shows more: for a large number of edges (Θ(n) of them), not only is the approximation
ratio poor, but the additive gap is large as well: of order Ω(log n/n), the same order as a typical
distance.

4. Minimum Spanning Tree

The cost model for this section will be that each edge of the complete graph Kn is given an
independent cost Xe where Xe is uniform [0, 1] for all e ∈ E(Kn). We use the integral formula of
Avram and Bertsimas [AB92]: For a connected graph G = (V,E) with uniform [0, 1] edge weights
Xe, e ∈ E, let MSTG = MST(G,X) denote the length of the minimum spanning tree with these
edge weights. Then

(12) E(MSTG) =
∫ 1

p=0
E(κ(Gp))dp− 1

where Gp is the random subgraph of G obtained by including each edge independently with prob-
ability p and κ(Gp) is the number of connected components of Gp.

For 1 ≤ s ≤ n let Cs,m denote the number of connected graphs of order s and size m. Using

κ(G) =
n∑
s=1

(
n

s

)
1(the s vertices induce a connected subgraph of G)

=
n∑
s=1

(
n

s

) (s
2)∑

m=s−1

Cs,m∑
i=1

1(the ith s,m graph is a component of G) ,(13)

E(MSTKn) =
n∑
s=1

(s
2)∑

m=s−1

(
n

s

)
Cs,m

∫ 1

p=0
pm(1− p)(

s
2)−m+s(n−s)dp− 1

=
n∑
s=1

(s
2)∑

m=s−1

C ′s,m − 1(14)

where, by
∫ 1
p=0 p

m(1− p)kdp = m!k!
(m+k+1)! ,

C ′s,m =
(
n

s

)
Cs,m

m!
((
s
2

)
−m+ s(n− s)

)
!((

s
2

)
+ s(n− s) + 1

)
!
.(15)

Going back to (12) and reasoning similarly as for (13),

∑
e∈Kn

E(MSTKn\e) =
∑
e∈Kn

 n∑
s=1

(s
2)−1(s=n)∑
m=s−1

∫ 1

0
E (#(s-vertex m-edge components of (Kn \ e)p)) dp− 1


=

n∑
s=1

(s
2)−1(s=n)∑
m=s−1

(A0
s,m +A2

s,m +A1
s,m)−

(
n

2

)
(16)

where A0
s,m is the integral over p of the sum over e of the expected number of s-vertex m-edge

components of a random probability-p subgraph of Kn \ e containing neither endpoint of e, A2
s,m

is the like sum for components containing both endpoints, and A1
s,m that for exactly one endpoint.
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For an edge e of Ks, let Ĉs,m denote the number of m-edge spanning connected subgraphs of Ks

containing e. We have

(17)
(
s

2

)
Ĉs,m = mCs,m

since both sides of this equation count the number of pairs (f,H) where H is an m-edge spanning
subgraph of [s] and f is an edge of H. (Throughout, we take

(
n
k

)
= 0 if n < k. Above, if s = 1

the left side is 0, and so is the right, since s = 1 implies m = 0.) To calculate A0
s,m we select s

vertices, whereupon edge e must have both endpoints outside these s, while on these s vertices any
subgraph Cs,m is acceptable, and we integrate the probability that the chosen subgraph is induced
and isolated in G = Kn \ e:

A0
s,m =

(
n

s

)(
n− s

2

)
Cs,m

∫ 1

p=0
pm(1− p)(

s
2)−m+s(n−s)dp

=
(
n− s

2

)(
n

s

)
Cs,m

m!
((
s
2

)
−m+ s(n− s)

)
!((

s
2

)
+ s(n− s) + 1

)
!

=
(
n− s

2

)
C ′s,m,

where the last line uses (15). The formula correctly evaluates to 0 for s > n − 2, and thus can
safely be applied for all pairs s,m in the sum (16).

In calculating A2
s,m, both endpoints of e are within the s vertices selected, but then the graph

under consideration is G = Kn \ e and a subgraph of G cannot use e, so that by (15) the number
of valid subgraphs is Cs,m − Ĉs,m, and the probability that a subgraph is induced is adjusted to
reflect that the size of G is

(
s
2

)
− 1:

A2
s,m =

(
n

s

)(
s

2

)
(Cs,m − Ĉs,m)

∫ 1

p=0
pm(1− p)(

s
2)−1−m+s(n−s)dp

=
(
n

s

)((
s

2

)
Cs,m −mCs,m

)
m!
((
s
2

)
−m− 1 + s(n− s)

)
!((

s
2

)
+ s(n− s)

)
!

(from (17))

=
((

s

2

)
−m

) (
s
2

)
+ s(n− s) + 1(

s
2

)
−m+ s(n− s)

C ′s,m.

The formula properly evaluates to 0 for s = 1 (where m = 0) and for m =
(
s
2

)
. It cannot be applied

when s = n, m =
(
n
2

)
, where it is 0/0, but anyway this pair is excluded from the sum (16).

Calculating A1
s,m is similar but now the missing edge is among the s(n − s) cross edges, any of

the Cs,m subgraphs on the s vertices is acceptable, and the probability that a subgraph is isolated
is adjusted to reflect that the number of cross edges is s(n− s)− 1:

A1
s,m =

(
n

s

)
s(n− s)Cs,m

∫ 1

p=0
pm(1− p)(

s
2)−m+s(n−s)−1dp

= s(n− s)
(
n

s

)
Cs,m

m!
((
s
2

)
−m− 1 + s(n− s)

)
!((

s
2

)
+ s(n− s)

)
!

= s(n− s)
(
s
2

)
+ s(n− s) + 1(

s
2

)
−m+ s(n− s)

C ′s,m.

This formula properly evaluates to 0 for s = n, except that like the formula for A2 it is invalid for
the pair s = n, m =

(
n
2

)
excluded from (16).
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Now observe that

A2
s,m +A1

s,m =
((

s

2

)
−m+ s(n− s)

) (
s
2

)
+ s(n− s) + 1(

s
2

)
−m+ s(n− s)

C ′s,m

=
((

s

2

)
+ s(n− s) + 1

)
C ′s,m.

The terms being canceled are 0 only in the case m =
(
s
2

)
and s = n excluded from (16). Thus

A0
s,m +A2

s,m +A1
s,m =

((
n− s

2

)
+
(
s

2

)
+ s(n− s) + 1

)
C ′s,m =

((
n

2

)
+ 1
)
C ′s,m.

Substituting this into (16), and writing N =
(
n
2

)
and E = E(MSTKn), we have

∑
e∈Kn

E(MSTKn\e) =
n∑
s=1

(s
2)−1(s=n)∑
m=s−1

(N + 1)C ′s,m −N.

For s = n we extend the sum to include
(
n
2

)
= N , subtracting out (N + 1)C ′n,N to correct:

= (N + 1)

 n∑
s=1

(s
2)∑

m=s−1

C ′s,m − C ′n,N

−N.
From (14) the double sum is E + 1, while Cn,N = 1 and thus C ′n,N = 1/(N + 1), so this is

= (N + 1)
(
E + 1− 1

N + 1

)
−N

= (N + 1)E.

Going back to (2) we see that

E(VCG) = (N + 1)E − (N − 1)E = 2E

and this completes the proof of Theorem 3.

5. Assignment Problem

Let the weight of edge (i, j) be denoted xi,j . Let X be the n × n matrix with entries xi,j . Let
Yj , j = 1, . . . , n, be the (n− 1)× (n− 1) matrices obtained from X by deleting row n and column
j. Let Tk, k = 0, 1, . . . , n − 1, denote the minimum assignment costs of Yj , j = 1, . . . , n, sorted
into increasing order. Nair, Prabhakar and Sharma [NPS05] proved that, for a matrix of i.i.d.
exponential(1) variables, the increments Tk − Tk−1 are independent, and

(18) Tk − Tk−1 ∼ exp(k(n− k)).

A minimum assignment of a (random) n× n matrix is given by a value in the “missing” n’th row
and the minimum assignment in the complementary submatrix. If xn,π(n) belongs to the minimum
assignment, its Vickrey bonus is the cost difference between this assignment and the smallest
assignment using a different element in row n. We are thus interested in gap between the smallest
and second-smallest values of

xn,σ(j) + Tj ,(19)

where
xn,j ∼ exponential(1)

are independent random variables and σ(j) is a random permutation. This is the incentive cost of
the nth row; the total Vickrey incentive cost is the sum of similar values for all rows, and thus the
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total expected Vickrey incentive cost is n times the expectation of the difference of the minimum
and second-minimum values of (19).

Going back to (18) and (19) we now fix the values of Ti = ti for i = 0, . . . , n − 1 and define
tn = ∞. Let Yj = xn,σ(j) + tj and Y(1) < Y(2) be the two smallest values of the Yj . We want to
evaluate the following integral ∫ ∞

0
xP(Y(2) = x)dx.(20)

Assume Y(1) = Yi and Y(2) = Yj = x. Then we must have Yi < x, Yj = x and Yk > x for
k ∈ {0, . . . , n− 1} \ {i, j}. Since x > Yi ≥ ti and x = Yj ≥ tj we must have x ≥ tmax{i,j}. We break
up the integral (20) into integrals over [tl, tl+1] where max {i, j} ≤ l ≤ n − 1. The integral (20) is
then obtained by summing over all possible pairs i, j where i 6= j giving

(20) =
∑
i 6=j

n∑
l=max{i,j}

∫ tl+1

tl

xP(Yi < x, Yj = x, Yk ≥ x, k ∈ {0, . . . , n− 1} \ {i, j})dx

=
∑
i 6=j

n∑
l=max{i,j}

∫ tl+1

tl

x(1− e−(x−ti))e−(x−tj)
∏

k∈{0,...,n−1}\{i,j}

P(Yk ≥ x)dx

=
∑
i 6=j

n∑
l=max{i,j}

∫ tl+1

tl

x(1− e−(x−ti))e−(x−tj)
∏

k∈0,...,l\{i,j}

e−(x−tk)dx

=
∑
i 6=j

n∑
l=max{i,j}

∫ tl+1

tl

x
(
e−(lx−t0−...−ti−1−ti+1−...tl − e−((l+1)x−t0−...tl)

)
dx.(21)

Now set sl = t0 + . . .+ tl and then the innermost integral in (21) can be evaluated as∫ tl+1

tl

x
(
e−(lx−sl+ti) − e−((l+1)x−sl)

)
dx

=
[
−x
l
e−(lx−sl+ti) − 1

l2
e−(lx−sl+ti) +

x

l + 1
e−((l+1)x−sl) +

1
(l + 1)2

e−((l+1)x−sl

]tl+1

tl

.

Notice that our double summation in (21) can be split into four parts each of the form

∑
i 6=j

n∑
l=max{i,j}

blai =
n−1∑
l=1

bl

 ∑
i 6=j,i,j≤l

ai

 =
n−1∑
l=1

bl

(
l∑

i=0

lai

)

=
n−1∑
l=1

lbl

(
l∑

i=0

ai

)
(22)

where ai = e−ti for the first two terms of (21) and ai = 1 for the last two. We now evaluate each
part of (21) separately, call them I1, . . . , I4.

I1 =
∑
i 6=j

n∑
l=max{i,j}

[
−x
l
e−(lx−sl+ti)

]tl+1

tl

=
n−1∑
l=1

[
tle
−(ltl−sl) − tl+1e

−(ltl+1−sl)
]( l∑

i=0

e−ti

)

=
n−1∑
l=1

[
tle
−((l−1)tl−sl−1) − tl+1e

−(ltl+1−sl)
]( l∑

i=0

e−ti

)
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= t1 +
n−1∑
l=1

tle
−(ltl−sl−1)

where by abuse of notation we have used the fact that tne−((n−1)tn−sn−1) = 0. We have also used
the identity, under the assumption un = 0,

n−1∑
l=1

(ul − ul+1)
l∑

i=0

vi = u1v0 +
n−1∑
l=1

ulvl.

The second part of (21) is

I2 =
∑
i 6=j

n−1∑
l=max{i,j}

[
− 1
l2
e−(lx−sl+ti)

]tl+1

tl

=
n−1∑
l=1

[
1
l
e−(ltl−sl) − 1

l
e−(ltl+1−sl)

]( l∑
i=0

e−ti

)

=
n−1∑
l=1

[
1
l
e−((l−1)tl−sl−1) − 1

l
e−(ltl+1−sl)

]( l∑
i=0

e−ti

)

= 1 +
n−1∑
l=1

1
l
e−(ltl−sl−1) −

n−1∑
l=1

1
l(l + 1)

e−(ltl+1−sl)

(
l∑

i=0

e−ti

)

= 1 +
n−1∑
l=1

1
l
e−(ltl−sl−1) −

n−1∑
l=2

1
l(l − 1)

e−(ltl−sl)

(
l−1∑
i=0

etl−ti

)
.

Note that in the final double summation we have replaced the index l by l − 1.
The third part of (21) is

I3 =
∑
i 6=j

n−1∑
l=max{i,j}

[
x

l + 1
e−((l+1)x−sl)

]tl+1

tl

=
n−1∑
l=1

l
[
tl+1e

−((l+1)tl+1−sl) − tle−((l+1)tl−sl)
]

=
n−1∑
l=1

l
[
tl+1e

−((l+1)tl+1−sl) − tle−(ltl−sl−1)
]

= −
n−1∑
l=1

tle
−(ltl−sl−1).

The final part of (21) is

I4 =
∑
i 6=j

n−1∑
l=max{i,j}

[
1

(l + 1)2
e−((l+1)x−sl)

]tl+1

tl

=
n−1∑
l=1

l

l + 1

[
e−((l+1)tl+1−sl − e−((l+1)tl−sl)

]
=

n−1∑
l=1

l

l + 1

[
e−((l+1)tl+1−sl − e−ltl−sl−1)

]
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= −
n−1∑
l=1

1
l(l + 1)

e−(ltl−sl−1).

Notice that

I1 + I3 = t1

I2 + I4 = 1 +
n−1∑
l=1

1
l + 1

e−(ltl−sl−1) −
n−1∑
l=2

1
l(l − 1)

e−(ltl−sl)

(
l−1∑
i=0

etl−ti

)
.

In [NPS05] it is shown that the minimum Yj has expected value

t0 + 1−
n−1∑
l=1

1
l(l + 1)

e−(ltl−sl−1).

So the expected difference Dn = I1 + I3 + I2 + I4 −minYj is given by

(23) Dn = (t1 − t0) +
n−1∑
l=1

1
l
e−(ltl−sl−1) −

n−1∑
l=2

1
l(l − 1)

e−(ltl−sl)

(
l−1∑
i=0

etl−ti

)
.

Taking the expectation over the Ti’s we get from [NPS05] and (18) that

E[e−(lTl−Sl−1)] = E[e−
∑l

j=1 j(Tj−Tj−1)] =
l∏

j=1

E[e−j(Tj−Tj−1)]

=
l∏

j=1

n− j
n− j + 1

=
n− l
n

.

Similarly we get for i = 0, . . . , l − 1

E[e(Tl−Ti)e−(lTl−Sl−1)] = E[e((Tl−Tl−1)+...+(Ti+1−Ti))−
∑l

j=1 j(Tj−Tj−1)]

= E[e−
∑i

j=1 j(Tj−Tj−1)−
∑l

j=i+1(j−1)(Tj−Tj−1 ]

=
i∏

j=1

E[e−j(Tj−Tj−1)]
l∏

j=i+1

E[e−(j−1)(Tj−Tj−1)]

=
n− i
n

l∏
j=i+1

(n− j)j
(n− j + 1)j − 1

.

Plugging this into (23) we get

Dn =
1

n− 1
+
n−1∑
l=1

1
l

n− l
n
−
n−1∑
l=2

1
l(l − 1)

l−1∑
i=0

n− i
n

l∏
j=i+1

(n− j)j
(n− j + 1)j − 1

.
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We now show that Dn ∼ π2

6n . First note that we can write

n− i
n

l∏
j=i+1

(n− j)j
(n− j + 1)j − 1

=
n− i
n

l∏
j=i+1

(n− j)j
(n− j + 1)j

· 1
1− 1

(n−j+1)j

=
n− l
n

l∏
j=i+1

1
1− 1

(n−j+1)j

=
n− l
n

exp


 l∑
j=i+1

1
(n− j + 1)j

+O

(
1

j2(n− j + 1)2

)
= (1 +O(n−2))

n− l
n

exp


l∑

j=i+1

1
(n− j + 1)j


=
(

1 +O

(
log2 n

n2

))
n− l
n

1 +
l∑

j=i+1

1
(n− j + 1)j


=
n− l
n

1 +
l∑

j=i+1

1
(n− j + 1)j

+O

(
log2 n

n2

) .

Using this approximation we can write the expected difference Dn as

1
n− 1

+
n−1∑
l=1

1
l

n− l
n
−
n−1∑
l=2

1
l(l − 1)

l−1∑
i=0

n− l
n

1 +
l∑

j=i+1

1
(n− j + 1)j

+O

(
log2 n

n2

)
= O

(
log3 n

n2

)
+

1
n− 1

+
n−1∑
l=2

1
(l − 1)n

−
n−1∑
l=2

n− l
l(l − 1)n(n+ 1)

l−1∑
i=0

l∑
j=i+1

(
1
j

+
1

n− j + 1

)
.

Now reversing the order of summation we can re-write the last summation as
n−1∑
l=2

n− l
l(l − 1)n

l∑
j=1

j−1∑
i=0

1
n+ 1

(
1

n− j + 1
+

1
j

)

=
n−1∑
l=2

n− l
l(l − 1)n

l∑
j=1

1
n+ 1

(
j

n− j + 1
+ 1
)

=
n−1∑
l=2

n− l
l(l − 1)n

l∑
j=1

1
n− j + 1

=
n−1∑
l=2

n− l
l(l − 1)n2

+
n−1∑
l=2

n− l
l(l − 1)n

l∑
j=2

1
n− j + 1

.

The second summation can be re-written
n−1∑
l=2

n− l
l(l − 1)n

l∑
j=2

1
n− j + 1

=
n−1∑
j=2

1
n− j + 1

n−1∑
l=j

n− l
l(l − 1)n



14 PRASAD CHEBOLU, ALAN FRIEZE, PÁLL MELSTED, AND GREGORY B. SORKIN

=
n−1∑
j=2

1
n− j + 1

n−1∑
l=j

((
1

l − 1
− 1
l

)
− 1

(l − 1)n

)

=
n−1∑
j=2

1
n− j + 1

 1
j − 1

− 1
n− 1

−
n−1∑
l=j

1
(l − 1)n


=

n−1∑
j=2

1
n

(
1

n− j + 1
+

1
j − 1

)
−
n−1∑
j=2

1
(n− j + 1)(n− 1)

−
n−1∑
j=2

1
n− j + 1

n−1∑
l=j

1
(l − 1)n

=
(

1
n
− 1
n− 1

) n−1∑
j=2

1
n− j + 1

+
1
n

n−1∑
j=2

1
j − 1

−
n−1∑
j=2

1
n− j + 1

n−1∑
l=j

1
(l − 1)n

= O

(
log3 n

n2

)
+
n−1∑
j=2

1
(j − 1)n

−
n−1∑
j=2

1
n− j + 1

n−1∑
l=j

1
(l − 1)n

.

Finally this gives the following expression for Dn:

O

(
log3 n

n2

)
+

1
n− 1

+
n−1∑
l=2

1
(l − 1)n

−
n−1∑
l=2

n− l
l(l − 1)n2

−
n−1∑
j=2

1
(j − 1)n

+
n−1∑
j=2

1
n− j + 1

n−1∑
l=j

1
(l − 1)n

= O

(
log3 n

n2

)
+

1
n

n−1∑
l=2

Hn−1 −Hn−l
l − 1

.

The total expected incentive cost nDn is then given by

(24)
n−1∑
l=2

Hn−1 −Hn−l
l − 1

+O

(
log3 n

n

)
.

Using Hk = γ + log k +O( 1
k ) we can estimate the sum as

n−1∑
l=2

log
(

n−1
(n−1)−(l−1)

)
l − 1

+O

(
log3 n

n

)

=
n−1∑
l=2

1
n− 1

− log(1− l−1
n−1)

l−1
n−1

.

So as n→∞ the sum will approach the integral

(25)
∫ 1

0

− log(1− x)
x

dx.

Integrating the series expansion of − log(1−x)
x gives∫ 1

0

− log(1− x)
x

dx =
∫ 1

0

∞∑
k=1

xk−1

k
dx =

∞∑
k=1

1
k

[
xk

k

]1

0

=
∞∑
k=1

1
k2

=
π2

6
.
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The switching of the limit and the integral can be justified using the monotone convergence theorem.
Let fn(x) =

∑n
k=1

xk−1

k , then for x ∈ [0, 1), limn→∞ fn(x) = − ln(1−x)
x , and f1, f2, . . . form a non-

decreasing sequence and thus
∫ 1

0 limn→∞ fn(x)dx = limn→∞
∫ 1

0 fn(x)dx.
This completes the proof of Theorem 4.

6. Open questions

The same question can be raised for any combinatorial optimization problem with random
weights. Natural candidates for consideration include a minimum spanning arborescence (rooted
tree with all arcs oriented away from the root) in the complete digraph ~Kn (the directed analogue
of MST result), a minimum-weight perfect matching in Kn (the non-bipartite analogue of Ran-
dom Assignment), and the symmetric or asymmetric Traveling Salesman Problem (in Kn or ~Kn

respectively). The natural edge weight distributions are i.i.d. uniform [0, 1] or i.i.d. exponential(1);
asymptotically these will be equivalent, but one or other may be more convenient, and with luck one
might give an exact (non-asymptotic) result like the one given here for MST. We conjecture that
in these cases too the expected Vickery cost is twice the expected minimum cost, asymptotically.
Assuming this pattern holds, it would be most interesting to understand why it is so.

References

[AB92] Florin Avram and Dimitris Bertsimas, The minimum spanning tree constant in geometrical probability and
under the independent model: a unified approach, Annals of Applied Probability 2 (1992), 113–130.

[Ald92] David Aldous, Asymptotics in the random assignment problem, Pr. Th. Related Fields 93 (1992), 507–534.
[Ald01] David J. Aldous, The ζ(2) limit in the random assignment problem, Random Structures Algorithms 18

(2001), no. 4, 381–418.
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[Wäs] Johan Wästlund, An easy proof of the zeta(2) limit in the random assignment problem, Electronic Journal
of Probability, to appear.

(Prasad Chebolu) Department of Computer Science,, University of Liverpool,, Liverpool L69 3BX
U.K.

E-mail address: P.Chebolu@liverpool.ac.uk

(Alan Frieze) Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA
15213, USA.

E-mail address: alan@random.math.cmu.edu
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