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Definition 1. A linear equation with a constant term of zero, ie of the form
a1y + -+ apx, =0

is called homogeneous. A system of linear equations is called homogeneous if each of its
equations is homogeneous.

Note that a homogeneous system always has at least one solution, namely the zero
vector.

Lemma 1. Let A be an m X n matriz. If A is left-invertible then the only solution to the
homogeneous system Ax = 0 is the zero vector.

Proof. Let B be a left-inverse for A. (Why is it incorrect to talk about A~! here?) Then
if s is any solution to the homogeneous system Ax = 0, we have

s=1s=(BA)s=B(As)=B0=0
So in fact, 0 is the only solution. 0

The proof of the following lemma will have to wait for a later date. I'll give a sketch,
and an example of its use.

Lemma 2. Suppose a system Ax = b, where A is m xXn, has at least one solution, p € R™.
Let k be the number of free variables in some echelon form of the system Ax = b. Then
there exist solutions hy, ..., hy € R™ to the homogeneous equation Ax =0, such that

{seR" | As=b} ={p+cithi+ -+ chp|c1,...,cr €R}

Proof sketch. The main idea here is that if h € R™ is any solution to the homogeneous
system Ax = 0, then

Alp+h)=Ap+Ah=Ap+0=Ap=1>
and then so is p + h. Moreover if any s € R" is a solution to Az = b, then
A(s—p)=As—Ap=b—-0=0

and so s — p is a solution to the homogeneous system Az = 0. This tells us that a vector

s € R™ is a solution to Az = b if and only if it’s of the form p + h, where h is a solution
1



to the homogeneous system Az = 0. To see that there are fixed vectors hy,..., hy € R"
which generate the solutions to Ax = 0 will require more work; it essentially falls out of
back-substitution. 0

Ezrample. The system

T + 2+ w=2
2z —y + w=1
r+y+3z+2w=>5

has a solution (

=—=OoO

). What about the homogeneous system? It reduces to

zr + z+w=0
y+2z24+w=0
0=0

Then the solution set to the homogeneous system is

-1 -1
-2 -1
| +w 0 z,weR

0 1
and so the solution set to the original system of equations is

0 -1 1
2|, -1
1 Ll Y

0 1

+ z z,weR

0
1
1

Lemma 3. Suppose R is an invertible, n X n matriz in reduced row echelon form. Then

R=1

Proof. Consider the homogeneous system Rx = 0. If there were any free variables in this
system, then there would be a nonzero vector h € R" such that Rh = 0. But as R is
invertible, by the lemma above this can’t happen. So there can’t be any free variables in
this system. Since R is in reduced row echelon form, this means exactly that R = 1,,. U

Lemma 4. If A and B are square, invertible matrices of the same size, then AB is also
invertible. Moreover, (AB)™t = B71A~L

Proof. We have
(AB)(B'A™) = A(BBHA ' = ATA ' = AA =1



and
(BflAfl)(AB) = Bfl(AflA)B =B 'IB=B'B=1
O

Corollary 1. If Ay, ..., Ay are square, invertible matrices of the same size, then A;As -+ - Ay
is also invertible, and (Ay--- Ay)~t = At ATL

Proof. By induction on k. This proof is routine, but I'll include it here just to give an
example of such a routine. When k& = 1 the statement is trivial. So suppose it holds for k.
To prove it for k+ 1, let Ay, ..., Ak, Axs1 be square, invertible matrices of the same size.
Then A - -+ Ay, is invertible and (A --- Ap)™! = A,;l .-+ A7! by the induction hypothesis.
Hence by the above lemma, (A --- Ay) Ay is invertible, and

(A Ap) Apr) = A (A Ay = A (A AT
Hence the statement is proven for k + 1, and by induction it holds for all k. 0

Lemma 5. If A is an invertible matriz, then so is A™', and (A7)~ = A,

Proof. We have
AAT =T  AT'A=1
simply by definition of A=!. Then A is both a left and right inverse for A~!. O

We've already essentially seen the following result, but I’ll repeat the proof for clarity.

Lemma 6. If E is an elementary matriz, then E is invertible, and E~' is the elementary
matriz which implements the row operation that reverses that which E tmplements.

Proof. Suppose E is m x m. Let F be the (m x m) elementary matrix which implements
the reverse of the row operation E implements. (I'm not calling it E~! yet because that
would be presumptuous.) Then (EF)A = A and (FE)A = A for all m x n matrices A,

for all n. In particular, with A = I,,,, we get
EF = (EF)I, =1, FE = (FE), =1,
O

Theorem 1. Let A be a square matriz. Then A is invertible if and only if A is row-
equivalent to 1.

Proof. Let R be the reduced row echelon form of A. Since we can obtain R from A by
row operations, there are elementary matrices Fy, ..., F) such that

R=EE;,---E1A

As we've seen before, elementary matrices are invertible. Hence by the above, R is
invertible, and square. Then R is actually I.



If A is row-equivalent to I, then there are elementary matrices F1,..., Ey such that
EyEy - -F1A=1
Then
A=TA= (ExEy - B) (BB EN)A= (BB E) ' = (EyEpy--- B!
O

The proof of the theorem above actually gives us a way of computing the inverse of a
square matrix. I'll summarize it in this fact.

Fact 1. Let A be an invertible matrix, and let Ey, ..., Fy be elementary matrices reducing
A to I, ie, such that
EkEkfl t ElA == [

Then A~' = E,Ej_q --- E1I. In terms of row-operations, to find the inverse of A, we start
with I and apply the same row operations we used to reduce A to I.

Typically, when finding the inverse of A, one performs row operations on A and [ in
parallel, as in the following example.

Example. Let A= (37). Then we compute A~! using the following.

D ()

o 1 4 01
9 1 4 0 1
P2 P2 P1 0 —1 1 -9
1 0 4 -7
1 0 4 -7
2= —p2 0 1 ~1 2

Now to check, we compute;

CDEY)=01Y)

So it worked!



