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Abstract Multiple-choice load balancing has been a topic of intense study since the seminal paper
of Azar, Broder, Karlin, and Upfal. Questions in this area can be phrased in terms of orientations of
a graph, or more generally a k-uniform random hypergraph. A (d, b)-orientation is an assignment of
each edge to d of its vertices, such that no vertex has more than b edges assigned to it. Conditions for
the existence of such orientations have been completely documented except for the “extreme” case of
(k − 1, 1)-orientations. We consider this remaining case, and establish:

– The density threshold below which an orientation exists with high probability, and above which it
does not exist with high probability.

– An algorithm for finding an orientation that runs in linear time with high probability, with explicit
polynomial bounds on the failure probability.

Previously, no closed-form expression for the threshold was known. The only known algorithms for
constructing (k − 1, 1)-orientations worked for k ≤ 3, and were only shown to have expected linear
running time.

Key words. Multiple-choice hashing, random hypergraphs, orientations.

1 Introduction

The efficiency of many algorithms and data structures rests on the fact that randomly and independently
throwing m balls into n bins ensures a distribution that is, with high probability, close to uniform. Since
the seminal paper of Azar et al. [3] a large literature has grown around even stronger multiple-choice
load balancing schemes where the location of each ball is selected within a random set of k > 1 bins.

These problems have been studied both in the on-line setting, where balls and their possible locations
are revealed one by one, and in the off-line setting where we are interested in the best allocation of a
given set of balls. Most often, the focus of multiple-choice schemes is on minimizing the maximum number
of balls contained in any bin. The question can also be turned around to ask for the largest number of
balls that can be placed such that there are at most b balls in each bin. Of course, this number depends
on the random choices made, but in the off-line setting it turns out that there is a well-defined threshold
m = (1 ± o(1))αn, below which it is highly likely that the allocation is possible, and above which it is
highly unlikely that the allocation is possible. Here, α is a constant that depends on k and b, but not
on n.

In this paper we consider the scenario where each ball comes in d copies, and must be placed in
exactly d (distinct) out of k possible bins. Observe that the case d = k is not so interesting, because
it is equivalent to the single-choice case with md balls. Thus the interesting extreme case is d = k − 1,
which is the focus of this paper. Motivation for copying each ball comes from parallel and distributed
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systems where we want high redundancy (resistance to d − 1 failures), and/or want to ensure that any
set of balls can be accessed in parallel with only a single request per bin. Early papers investigating
such schemes include [7,22,21]. As a more recent example, Amossen and Pagh [2] considered the case

k = 3, d = 2, b = 1, and showed that up to (1−ε)
6 n balls can be placed with high probability,1 for any

constant ε > 0. This was used to construct a data structure for sets that allows very fast computation
of set intersections on graphics hardware. In this paper we show that the constant 6 in [2] cannot be
reduced, i.e., that m = (1 ± o(1))n/6 is the threshold for the problem of allocating balls into 2 of 3
bins with maximum load 1. Questions in this area can be phrased in terms of orientations of a graph,
or more generally a k-uniform random hypergraph. A (d, b)-orientation is an assignment of each edge
of a k-uniform hypergraph to d of its vertices, such that no vertex has more than b edges assigned to
it. In this framework, we generalize the previous result to the extreme case d = k − 1, b = 1 for any
k > 2, giving explicit bounds on the probability of successful allocation in terms of m. We also present a
generalization of the algorithms of [2,19] to compute a (k − 1, 1)-orientation (if one exists) of a random
k-uniform hypergraph, and show that it runs in linear time with high probability. This strengthens [2]
which only shows linear running time in expectation.

1.1 Related work

Multiple-choice balls and bins scenarios can be modeled as a random k-uniform hypergraph with m edges
(balls) on n vertices (bins), where edges are chosen i.i.d. uniformly from the set of all k-sets of vertices.
Let Hn,m;k be the random k-uniform hypergraph with n vertices and m hyperedges, where each such
object is taken with equal probability. In the regime of interest in this work, when m is linear in n,
there is essentially no difference between allowing and disallowing multiple edges, because for k ≥ 3, the
probability that the multi-hypergraph analogue repeats an edge is only O(n−1). Given such a hypergraph,
a (d, b)-orientation is an assignment of each edge to d of its vertices, such that no vertex has more than
b edges assigned to it.

On-line setting. In our description of the on-line setting, we restrict attention to the case where balls
cannot be moved, once placed into bins. Azar et al. [3] considered (1, b)-orientations in the on-line
setting, and showed that the greedy algorithm that always assigns a ball to its least loaded bin achieves
a (1, O(m/n+ log logm/ log k))-orientation. Tighter bounds for the maximum load of (1, b)-orientations
were later obtained by Berenbrink et al. [4].

Off-line setting. In the off-line setting, the threshold for (1, 1)-orientations with k = 2 can be shown
(see, e.g. [19]) to coincide with the appearance of a giant component in the random graph, which is
known to happen at m = (1± o(1))n/2 with high probability [9]. Several groups of researchers [8,12,13]
independently established the thresholds for (1, 1)-orientations for every k > 2. Generalizing in another
direction, Fernholz and Ramachandran [10] and Cain, Sanders, and Wormald [6] showed thresholds for
(1, b)-orientations for k = 2, and gave expected linear time algorithms for computing an orientation. This
result was later extended to k > 2 by Fountoulakis et al. [11].

Gao and Wormald [14] established thresholds for (d, b)-orientations, given that b is a sufficiently
large constant (depending on d and k). Independently of our work, Lelarge [17] recently developed new
technical machinery for this problem, which handles all combinations of the parameters k, d, and b that
satisfy max(k − d, b) ≥ 2.

1.2 Our contribution

In this paper we consider the remaining “extreme” case of max(k − d, b) = 1, i.e., d = k − 1 and b = 1.
For this, we highlight two links between Probabilistic Combinatorics and (k − 1, 1)-orientations. First,
we observe the connection between the literature on the phase transition in random hypergraphs and
(k−1, 1)-orientations, which provides a natural explanation for the threshold phenomenon experimentally
documented in [2]. Second, we derive explicit, quantitative high-probability bounds for the subcritical

1 Meaning probability tending to 1 as n→∞.
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running time, by tracking a key parameter known as “susceptibility,” through the Differential Equations
method for analyzing discrete random processes. Previous bounds were only of expected-time type. Also,
since we seek good polynomial-type dependencies in our probability bounds, we perform a more careful
analysis of the susceptibility growth, which is substantially sharper than in previous published work (e.g.,
[5]) which was satisfied with error bounds that could tend to zero very slowly. Our main theorem refers to
the pseudocode of the Orient algorithm, which can be found in section 3.1. This algorithm adds edges
one by one to the orientation in an on-line fashion, analogously to the cuckoo hashing algorithm [19].
Its running time is determined by the number of iterations, which we define to be the number of times
the condition in the while loop is evaluated.

Theorem 1 Let 0 < ε < 1
2 be given, and assume that n

log6 n
> 40000k6

ε12 . Let m = (1 − ε) n
k(k−1) . With

probability at least 1−3n−1, all edges of the random k-uniform hypergraph Hn,m;k can be (k−1, 1)-oriented
by the Orient procedure using a total of at most

3k2
(

1

ε
+

200k3 log3 n

ε7
√
n

)
· n .

iterations, each taking constant time.

This paper is organized as follows. The next section observes the natural threshold for extreme
orientability. Then, Section 3 applies the Differential Equations method to deduce quantitative high-
probability bounds for algorithmic performance in the feasible regime. The following (standard) asymp-
totic notation will be utilized extensively. For two functions f(n) and g(n), we write f(n) = o(g(n))
or g(n) = ω(f(n)) if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) or g(n) = Ω(f(n)) if there exists a
constant M such that |f(n)| ≤M |g(n)| for all sufficiently large n.

2 Non-orientability

We now investigate why there is no (k− 1, 1)-orientation when the number of edges exceeds n
k(k−1) . This

is done by exhibiting an obstruction that appears asymptotically almost surely as n approaches infinity.
One may observe many types of possible obstructions to orientability. A simple example for k > 3 is the
k-uniform hypergraph consisting of two hyperedges overlapping in three vertices. It is clearly impossible
to pick k − 1 vertices for each hyperedge, as there are only 2k − 3 vertices to share. Unfortunately, any
fixed-size obstruction has a threshold for appearance in Hn,m;k that is far beyond n

k(k−1) , so one cannot

simply pinpoint a single such hypergraph as the culprit for non-orientability.
Instead, we draw inspiration from the case k = 2 (often referred to as “cuckoo hashing” [19]) where

the desired threshold n
2 matches the appearance of the well-studied giant component. Indeed, the seminal

result of Erdős and Rényi [9] established that in the uniformly random graph with cn edges, for constants
c < 1

2 , the largest connected component has size O(log n), whereas for constants c > 1
2 , the largest

connected component has size Ω(n). Further study (see, e.g., the book [15]) revealed that for c < 1
2 , all

connected components are either trees or unicyclic (containing at most one cycle), whereas for c > 1
2 , the

giant component is multicyclic. As any multicyclic component would have too many edges for vertices
to be (k − 1, 1)-orientable, this would establish the result for k = 2.

The remainder of this section translates the random graph literature into the orientability context,
to observe the threshold for k ≥ 3. First, it is convenient to introduce a measure of how “crowded” a
component is.

Definition 1 Let k ≥ 3 be a fixed integer, and let H be a k-uniform hypergraph. The excess of H is
the difference (k− 1)e(H)− v(H), where v(H) and e(H) denote the numbers of vertices and edges in H,
respectively.

A hypergraph is said to be connected if there is no partition of its vertex set into U1 ∪ U2 such that
each edge is fully contained in some Ui. For connected hypergraphs H, the excess is always an integer
greater than or equal to −1. When it is −1, the hypergraph is acyclic, and called a hypertree. When
the excess is 0, we say that H is unicyclic, and when the excess is positive, we say that H is complex.
Note that in the context of (k − 1, 1)-orientability, any complex component is an obstruction. Given an
edge set E′ we define its capacity as cap(E′) =

∑
v∈V min(b, |{e ∈ E′ : v ∈ e}|). We have the following

consequence of the max-flow min-cut theorem (see, e.g. [20, Section 6.1]):
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Theorem 2 A k-uniform hypergraph (V,E) has a (d, b)-orientation if and only if each subset E′ ⊆ E
has capacity cap(E′) ≥ |E′|d.

Proof The capacity sums, over each vertex, an upper bound on how many edges in E′ can be oriented
towards it. If some edge set E′ has capacity less than |E′|d it is thus impossible to orient all its edges
(even ignoring edges outside of E′). For the reverse direction consider the flow network with:

– Node set E ∪ V ∪ {s, t}, i.e., a node per edge and vertex in (V,E), plus a source node s, and a sink
node t.

– Capacity 1 edges connecting the node of each e ∈ E to the k nodes in V contained in e.
– Capacity d edges from s to each vertex in E, and capacity b edges from vertex in V to t.

Observe that an integer s-t flow corresponds to an orientation of edges with a flow of 1 from an edge to
each vertex that the edge is oriented towards. This means that if there is no (d, b)-orientation, there is
no integer s-t flow of value |E|d. Since all capacities in the network are integral, this in turn means that
there exists no flow of value |E|d at all. Using the max-flow min-cut theorem this implies that there is
a minimum s-t cut (S, T ) such that the total capacity of edges from S to T is cut(S, T ) < |E|d. Let E′

denote the set of edges that are members of S. Since (S, T ) is minimal vertices in V ∩ S appear in at
least b edges in E′, and vertices in V ∩ T appear in at most b edges of E′. Thus we obtain:

cap(E′) =
∑

v∈V ∩S
b+

∑
v∈V ∩T

|{e ∈ E′ : v ∈ e}|) = cut(S, T )− |E\E′|d < |E′|d .

�

Observation. For b = 1 the capacity of a set E′ is exactly the number of distinct vertices in its edges, so
the capacity of E′ is (k− 1)|E′| minus the excess of E′. This means that the disappearance of (k− 1, 1)-
orientability exactly coincides with the appearance of a complex component.

Much is known about the phase transition in random hypergraphs. The following results are from the
paper [16] of Karoński and  Luczak, which actually determines several results of much higher precision.

Theorem 3 (Theorem 4 in [16].) Let k ≥ 3 be a fixed integer, and let m = n
k(k−1) − t(n), where t(n)

is any function of higher order than n2/3, i.e., t(n) = ω(n2/3). Then Hn,m;k consists of hypertrees and
unicyclic components with high probability (as n grows).

Remark. Theorems 2 and 3, connected by our observation, establish that hypertrees and unicyclic com-
ponents can be (k−1, 1)-oriented, although the running time for computing the orientation may increase
with the component size. The earlier result of the second author established that in expectation, this
could be done efficiently for m = (1− ε) n

k(k−1) in the case k = 3. The observed connection complements

this result by establishing feasibility, although not necessarily efficiency, when the number of edges differs
from n

k(k−1) by a sublinear term.

Theorem 4 (Theorem 10 in [16].) Let k ≥ 3 be a fixed integer, and let m = n
k(k−1) + t(n), where

t(n) is any function of higher order than n2/3 but smaller order than n2/3
(

logn
log logn

)1/3
. Then with high

probability, Hn,m;k consists of one large complex component, and some other small components that are
either hypertrees or unicyclic.

Remark. Clearly, adding more edges only creates more complex components, so the upper bound on
t(n) plays a role only in limiting the number of “large” complex components, which are components with
more than n2/3 edges.

Therefore, as soon as we exceed n
k(k−1) by even a sublinear deviation, an obstruction appears, and

hence (k − 1, 1)-orientability fails. Note that we cannot bound the size of the complex component, and
in fact its size grows with n. There remains a window of width roughly n2/3 between the lower and
upper bounds. It is worth noting that for the case of graphs, this is also well-understood, and when
m = n

k(k−1) + cn2/3 for (positive or negative) constants c, there is a constant probability of having a

complex component. See, e.g., the discussion in the book [1].
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3 High-probability running time bound

In this section we present and analyze a simple algorithm for finding (k − 1, 1)-orientations. We will
observe that the running time to orient each new edge is O(k2s), where s is the size of the connected
component formed by the new edge.

3.1 Algorithm description

The algorithm works by extending an orientation to more and more edges in an on-line fashion. The
edge being added will have one more vertex oriented towards it in each of k − 1 iterations. Extension of
the orientation is done by a greedy approach that generalizes the cuckoo hashing insertion procedure [2,
19]: There will at any time be at most one “nestless” edge that lacks a vertex. This is locally fixed by
orienting or re-orienting one of its vertices. If this vertex was not previously oriented we have the desired
orientation, and proceed to the next of the k − 1 iterations. Otherwise, when the re-assignment makes
another edge nestless, we repeat the local fixing procedure.

In the pseudocode we assume that vertices of each edge e can be traversed using methods e.first()
(which returns an arbitrary vertex) and e.next(v) (which gives the next node in the order after v, cycling
back to e.first() when all vertices have been traversed). For v ∈ V let T [v] refer to the edge that is
oriented towards v, where T [v] = ⊥ if no edge is oriented towards v. We maintain an array indexed by
V that initially has all entries set to ⊥. An edge e is directed to k − 1 vertices by calling the following
procedure. We use the notation ↔ to indicate exchange of two variable values.

procedure Orient(e)
for i := 1 to k − 1 do
τ = e
v = e.first()
while τ 6= ⊥
v = τ .next(v)
τ ↔ T [v]

end while
end for

When Orient is called, each member of the set of previously oriented edges E1 appears k− 1 times
in T . The procedure runs a while loop k− 1 times that (if it terminates) inserts e in T [v] for some v ∈ e,
while ensuring that each edge e′ ∈ E1 is still oriented towards k − 1 positions in T . The invariant of the
while loop is that all edges in E1 are oriented towards k− 1 vertices, and e is oriented towards i vertices,
with one exception: If τ 6= ⊥ the edge τ which is oriented towards one vertex less. Clearly, once i = k−1
and τ = ⊥ we have oriented all edges in E1 ∪ {e}.

We claim that the procedure always terminates if an orientation exists, and more specifically that the
time spent if e is in a component of size s is O(k2s). (Some stopping criterion is needed for termination in
case no orientation exists, but this is left out for simplicity.) Suppose the while loop does not stop, i.e., it
goes through an infinite sequence of edges. Let e1, e2, e3, . . . denote this edge sequence, with consecutive
identical edges combined into a single occurrence. We observe that there can be at most k−1 consecutive
iterations involving a particular edge. Notice also that edge ei shares at least one vertex with edge ei+1

for each i. Consider a minimal subsequence ei, . . . , ej containing 3 such occurrences of some edge, and
without loss of generality, assume that e = 1. Let `1 and `2, 1 ≤ `1 < `2 < j, be the indexes of the
edge in this subsequence that first appears for the second time (so `2 is minimal). Since all previously
fully-oriented edges already are oriented towards all but one of their k vertices, one observes that then
e`2+t = e`1−t for t = 0, . . . , `1− 1. This means that the `2− 1 distinct edges e1, . . . , e`2−1 contain exactly
(`2 − 1)(k − 1) distinct vertices. From e`2 to e`2+`1−1 = e1, the edges encountered are all repeats (in
reverse order) of those already seen. After e`2+`1−1 (which is equal to e1) each new edge introduces at
most k − 1 new vertices until we reach an edge that overlaps with a previously visited edge and only
k−2 vertices are introduced. At that point we have visited a set of edges having less than k−1 available
vertices on average, meaning that no (k − 1, 1)-orientation exists.
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Therefore, the length of the edge sequence is at most 2s, while the number of consecutive identical
edges consolidated into each element is at most k − 1. Since the while loop is run k − 1 times for each
new edge to orient, we conclude that the full orientation of the edge completes in O(k2s) time.

3.2 Probabilistic tools

We will need the following version of the Chernoff bound (see e.g. [18]):

Theorem 5 For any 0 < ε < 1, every binomial random variable X with mean µ satisfies

P [X < (1− ε)µ] < e−
ε2

2 µ and P [X > (1 + ε)µ] < e−
ε2

3 µ .

A filtration is a nested sequence of σ-algebras F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn, and a sequence of
random variables X0, X1, X2, . . . , Xn is a supermartingale with respect to the filtration if each Xt is
Ft-measurable, and for each t, the conditional expectation E [Xt+1 | Ft] is at most Xt. (Informally, the
information in Ft completely determines the value of Xt, each Ft carries successively more information,
and given all observations up to and including time t, the expected value of Xt+1 is at most the observed
value of Xt.) Azuma’s inequality (see e.g. [18]) provides control over upper tail events, and is stated as
follows.

Theorem 6 Let X0, . . . , Xn be a supermartingale with respect to some filtration, such that for every t,
the differences |Xt+1 −Xt| are deterministically at most some constant C. Then for any λ ≥ 0,

P [Xn ≥ X0 + λ] ≤ exp

{
− λ2

2C2n

}
.

3.3 Analysis of random hypergraphs

Throughout, we impose explicit bounds that keep n “sufficiently large” in order to simplify our calcula-
tions. Recall that Hn,m;k is the random k-uniform hypergraph obtained by uniformly sampling one such
object with n-vertices and m hyperedges. In this section, it will be substantially more convenient for us
to work with a process that exhibits more independence. Specifically, we consider instead the following
sequential process, which fortunately is quite similar to the original Hn,m;k.

Lemma 1 Let n > k ≥ 2, with n > 2000. Consider the random hypergraph process H0, H1, . . ., where
H0 is the empty hypergraph with n isolated vertices. At each time t, sample k vertices independently and
uniformly at random. If they are distinct, and form a hyperedge which does not yet appear in Ht, then
add it to form Ht+1. Otherwise, let Ht+1 = Ht. Then, with probability at least 1−n−1, in the first n

k(k−1)
rounds, the number of times that we do not add an edge is at most log n.

Proof. At time t + 1, a union bound shows that the probability that the k sampled vertices are not
distinct is at most

1

n
+

2

n
+ · · ·+ k − 1

n
=
k(k − 1)

2n
.

This is because if the k vertices are sampled sequentially, the probability that the i-th vertex is a repeat
of one of the i − 1 previously sampled vertices is at most i−1

n . The hypergraph Ht contains at most t
edges, so the number of sequences of k vertices whose union forms one of these hyperedges is at most
k!t. Since each of the k vertices is selected independently and uniformly at random, the probability that
we re-select an existing edge at time t+ 1 is at most k!t/nk. We are only running for n

k(k−1) rounds, so

t < n
k(k−1) , and thus the probability that the k sampled vertices form a previously-added hyperedge is

tk!

nk
<

(k − 2)!

nk−1
<

1

n
,

where we used n > k for the final bound. Thus the probability that Ht+1 = Ht is at most k(k−1)
n ,

and so the probability that this happens at least s = log n times in the first n
k(k−1) rounds is at most
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the probability that the binomial random variable Bin
[

n
k(k−1) ,

k(k−1)
n

]
is at least s. Using the standard

bounds P [Bin [N, p] ≥ s] ≤
(
N
s

)
ps and

(
N
s

)
≤
(
eN
s

)s
, we find that this is at most

P
[
Bin

[
n

k(k − 1)
,
k(k − 1)

n

]
≥ s
]
≤
( n
k(k−1)
s

)(
k(k − 1)

n

)s
≤

(
e · n

k(k−1)

s

)s(
k(k − 1)

n

)s
=
(e
s

)s
=

(
e

log n

)logn

,

which is below n−1 for all n > ee
2

. �

It is sometimes more convenient to work with the related model Hn,p;k, which is the random k-uniform
hypergraph formed by taking each of the

(
n
k

)
potential hyperedges independently with probability p.

Fortunately, the behavior of Hn,p;k closely approximates that of Hn,m;k. We formalize this by coupling
the probability spaces, i.e., by defining yet another random object Z from a new probability space, and
specifying how to construct two hypergraphs H1 and H2 deterministically from a single sample of Z. The
randomness is now entirely contained in the sampling of Z itself. Then, we show that the distribution of
Z causes H1 to have the same distribution as Hn,p;k and H2 to have the same distribution as Hn,m;k. The
advantage of deriving the two random graphs from a single Z is that they can then be compared directly.
The most commonly desired property is that of containment, which the following lemma establishes.

Lemma 2 Assume that 0 < ε < 1
2 , k ≥ 2, and n

logn > 100k2

ε2 . Let m = (1 − ε) n
k(k−1) and p = (1 −

0.8ε) (k−2)!
nk−1 . Then there is a coupling under which Hn,m;k is contained in Hn,p;k with probability at least

1− n−1.

Proof. Our coupling is based upon a random object commonly known as the random hypergraph process.
Let Z = (π,M) be an ordered pair consisting of a uniformly random permutation π of all

(
n
k

)
edges in

the complete k-uniform hypergraph on n vertices, together with an independently generated binomial
random variable M ∼ Bin

[(
n
k

)
, p
]
. Given such a Z, let H1 be the n-vertex k-uniform hypergraph with

m edges obtained by taking the first m edges according to the permutation π (completely ignoring M).
It is clear that since π is uniformly distributed, H1 has the same distribution as Hn,m;k. At the same
time, given Z, let H2 be the n-vertex k-uniform hypergraph with M edges obtained by taking the first
M edges according to π. It is also clear from the distribution of Z that H2 has the same distribution as
Hn,p;k.

If M happens to be greater than or equal to m, then it is clear that H1 is contained in H2. Therefore,
the statement of the lemma will follow if we show that M ≥ (1 − ε) n

k(k−1) with probability at least

1− n−1. To this end, we calculate

E [M ] =

(
n

k

)
p >

(n− k)k

k!
· (1− 0.8ε)

(k − 2)!

nk−1
= (1− 0.8ε)

(n− k)k

k(k − 1)nk−1
.

Next, observe that if
(
n−k
n

)k ≥ 1 − ε
100 , then we will have E [M ] > (1 − 0.81ε) n

k(k−1) . Since 1 − ε <
(1− 0.19ε)(1− 0.81ε), the Chernoff bound (Theorem 5) would then give

P
[
M < (1− ε) n

k(k − 1)

]
< P [M < (1− 0.19ε)E [M ]]

< e−
(0.19ε)2

2 E[M ]

< e−
(0.19ε)2

2 (1−0.81ε) n
k(k−1) .
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Using ε < 1
2 , and n > 100k2

ε2 log n, we conclude that this probability is at most n−1.07. It remains to show

that
(
n−k
n

)k ≥ 1− ε
100 . Rearranging, we see that the following inequalities are equivalent:(

n− k
n

)k
≥ 1− ε

100

1− k

n
≥
(

1− ε

100

)1/k
n ≥ k

1−
(
1− ε

100

)1/k . (1)

However, 1− x ≤ e−x ≤ 1− x
2 for all 0 ≤ x ≤ 1, so(

1− ε

100

)1/k
≤ e− ε

100k ≤ 1− ε

200k
.

This, together with our assumption that n > 100k2

ε2 log n > 200k2

ε , produces (1). �

Lemma 3 Let 0 < ε < 1
2 and n > 200k2

ε . Let p = (1 − 0.8ε) (k−2)!
nk−1 . In the random hypergraph Hn,p;k,

with probability at least 1− n−1, all connected components are of size at most 16k
ε2 log n.

Proof. Let V be the vertex set of the entire hypergraph. Let v be a fixed vertex, and let the random
variable Xv be the size of the connected component (in Hn,p;k) containing v. For this fixed v, we may
generate Xv by exposing the presence or absence of hyperedges one at a time, via breadth-first-search.
Specifically, we maintain time-varying sets At of distinct active vertices and Bt of completed vertices, and
build a labeling of the vertices v0, v1, v2, . . ., initializing A0 = {v} and B0 = ∅. At time t, we arbitrarily
select a vertex w ∈ At (if At is empty, we stop), define the label vt = w, and set At+1 = At \ {w} and
Bt+1 = Bt ∪ {w}. Also, we expose all hyperedges which have exactly k− 1 vertices in V \ {v1, . . . , vt−1},
together with w as the k-th vertex. Here, “expose” means that we reveal whether or not the potential
hyperedge in fact appears in this particular realization of Hn,p;k. Finally, for each vertex other than w
which is in at least one newly exposed hyperedge, we add it to At+1, discarding duplicates.

Importantly, we never expose the same hyperedge twice, because the hyperedges exposed at time t
have the property that their smallest labeled vertex is precisely vt. Therefore, the decisions are inde-
pendent at each stage, and the number of vertices added to At+1 (after the removal of w) is stochas-

tically dominated by (k − 1) times the Binomial random variable Bin
[(

n
k−1
)
, p
]
. This is because each

of the
(
n−(t−1)
k−1

)
edges exposed at time t has probability p of appearing in Hn,p;k, and each one which

appears contributes at most k − 1 new vertices to At+1 (duplicates are discarded). In particular, if
we define the random variables Yt = |At|, then each successive difference Yt+1 − Yt is stochastically

dominated by (k − 1)Bin
[(

n
k−1
)
, p
]
− 1. Therefore, if we define the infinite sequence Zt as Z0 = 1,

Zt+1 = Zt + (k − 1)Bin
[(

n
k−1
)
, p
]
− 1, we may couple the probability spaces such that Yt ≤ Zt until Yt

hits 0 (the breadth-first-search is exhausted). Note that the first value of t for which Yt = 0 is precisely
the size of the connected component containing v.

Let T = 16k
ε2 log n. Since a binomial random variable is the sum of independent and identically

distributed Bernoulli random variables, the sum of independent and identically distributed binomials

is still another binomial. Thus the distribution of ZT is precisely 1 + (k − 1)Bin
[(

n
k−1
)
T, p

]
− T . The

Chernoff bound will control the probability that ZT ≥ 1, and this will be sufficient because if the integer
ZT < 1, then the breadth-first-search must have completed, as Yt ≤ Zt during it. Observe that ZT ≥ 1

happens precisely when Bin
[(

n
k−1
)
T, p

]
≥ T

k−1 . Yet the expectation of this binomial is

µ =

(
n

k − 1

)
T (1− 0.8ε)

(k − 2)!

nk−1
≤ (1− 0.8ε)

T

k − 1
,

so when ZT ≥ 1, that binomial exceeds its expectation µ by a factor of at least 0.8ε. Hence the Chernoff
bound (Theorem 5) gives

P [ZT ≥ 1] ≤ e−
(0.8ε)2

3 µ .
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To continue, we need a lower bound on µ. At the end of the proof of the previous lemma, we showed

that n ≥ 200k2

ε implies that
(
n−k
n

)k ≥ 1 − 0.01ε. Since
(
n−k
n

)k−1
>
(
n−k
n

)k
, and we assume ε < 1

2 , we
therefore have that

µ =

(
n

k − 1

)
T (1− 0.8ε)

(k − 2)!

nk−1

≥ (n− k)k−1

(k − 1)!
T (1− 0.8ε)

(k − 2)!

nk−1

≥ (1− 0.81ε)
T

k − 1

≥ 0.595 · T

k − 1
.

Thus using T = 16k
ε2 log n, we have

P [ZT ≥ 1] < e−
(0.8ε)2

3 ·0.595· Tk−1 < n−2 ,

i.e., a fixed vertex v has probability at least 1 − n−2 of having its component size at most 16k
ε2 log n. A

final union bound over the n vertices yields the desired result. �

We now move to introduce the key parameter which characterizes the overall running time of our
algorithm. This parameter has been successfully used to analyze various discrete random processes,
ranging from percolation (where its name originated from statistical physics) to the theory of random
graphs and stochastic coalescence processes.

Definition 2 Let H be a hypergraph whose connected components are C1, C2, . . . , Cs. Then its sus-
ceptibility, denoted χ(H), is defined as χ(H) = 1

n

∑
i |Ci|2, where |Ci| is the number of vertices in the

component Ci.

The utility of this parameter stems from the fact that it also equals the expected size of the component
containing a vertex sampled uniformly at random from the entire vertex set. It turns out that the
susceptibility typically evolves smoothly under the addition of random edges, and this phenomenon
provides the core of our result. The following theorem applies the Differential Equations method to
estimate its growth. Its analysis builds upon the approach used in [5], but improves the error bounds
from exponential to polynomial (in both 1

ε and n).

Theorem 7 Let 0 < ε < 1
2 be given, and assume that n

log6 n
> 40000k6

ε12 . Let m = (1 − ε) n
k(k−1) . With

probability at least 1− 3n−1, the random k-uniform hypergraph Hn,m;k has susceptibility at most

1

ε
+

200k3 log3 n

ε7
√
n

. (2)

Proof. Define
T = (1− ε) n

k(k − 1)
.

Consider the specific random hypergraph process H0, H1, . . . introduced in Lemma 1. We will run this
process to time T+log n which by Lemma 1 will contain Hn,m;k with probability at least 1−n−1, because
log n < ε · n

k(k−1) . It therefore suffices to show that with probability at least 1− 2n−1, the susceptibility

of HT+logn is at most (2). We track the evolution of susceptibility by defining Xt to be the susceptibility
of Ht. Suppose that in the (t+ 1)-st round, the k vertices of the incoming hyperedge lie in components
C1, . . . , Ck, where some of the components may be repeated. Let C ′1, . . . , C

′
l be the distinct components

among them. If no edge is added, then Ht+1 = Ht, and the susceptibility does not change. Otherwise,
the connected components C ′1, . . . , C

′
l are merged into a single connected component C ′1∪· · ·∪C ′l , of size

|C ′1|+ · · ·+ |C ′l |, and the susceptibility increases by exactly

1

n

[
(|C ′1|+ · · ·+ |C ′l |)2 − (|C ′1|2 + · · ·+ |C ′l |2)

]
=

2

n

∑
1≤r<s≤l′

|C ′r||C ′s| .
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The last equality follows from a standard algebraic identity. Since all |Ci| are nonnegative, this is at most
the full sum 2

n

∑
1≤r<s≤k |Cr||Cs|, and so in every case, the increase in susceptibility is always bounded

by 2
n

∑
1≤r<s≤k |Cr||Cs|.

Define the filtration F0,F1, . . . such that Ft captures the outcomes in our random hypergraph process
up to and including time t. Let us bound E [Xt+1 −Xt | Ft]. For this, let c1, . . . , cz be the sizes of the con-
nected components after time t. Since our process selects k independent vertices for the next hyperedge,
for any choice of indices i1, . . . , ik, each in [z] = {1, . . . , z} and not necessarily distinct, the probability
that the k new random vertices lie in the respective components Ci1 , . . . , Cik is exactly

ci1
n · · ·

cik
n . In light

of the above argument, this would increase the susceptibility by at most 2
n

∑
1≤r<s≤k circis . Therefore,

by standard algebraic manipulation,

E [Xt+1 −Xt | Ft] ≤
∑

i1,...,ik∈[z]

(ci1
n
· ci2
n
· · · cik

n

)
· 2

n

∑
1≤r<s≤k

circis

=
2

n
·
(
k

2

)
·

∑
i1,...,ik∈[z]

c2i1c
2
i2
ci3ci4 · · · cik
nk

=
k(k − 1)

n

(∑
i1

c2i1
n

)(∑
i2

c2i2
n

)(∑
i3

ci3
n

)
· · ·

(∑
ik

cik
n

)

=
k(k − 1)

n
(Xt) (Xt) (1) · · · (1) =

k(k − 1)

n
X2
t .

This suggests that the evolution of Xt may resemble that of the differential equation x′(θ) = k(k −
1)x(θ)2, where we parameterize θ = t

n , and this observation provides the key intuition for our proof. In
particular, it motivates us to define

x(θ) =
1

1− k(k − 1)θ
,

which is the exact solution of that differential equation with initial condition x(0) = 1. We will now
prove that Xt and x(t) behave similarly. We only need control of upper tail events, so we will define a
new process Zt, and prove that it is a supermartingale. Specifically, using our newly introduced function
x(θ), we first define the auxiliary process

Yt = Xt − x
(
t

n

)
− f

(
t

n

)
∆ ,

where

f(θ) =
1

(1− k(k − 1)θ)3
and ∆ =

199k3 log3 n

ε4
√
n

.

The function f(θ) is chosen so that it satisfies the following differential equation, which will be convenient
later.

f ′(θ) = 3k(k − 1) · x(θ)f(θ) ; f(0) = 1 . (3)

Also, define Et to be the event that both (i) Xt ≤ x
(
t
n

)
+ f

(
t
n

)
∆ and (ii) all components of Ht

have size at most 16k
ε2 log n. Then, define the stopping time τ to be the first t for which Et fails, or T ,

whichever is smaller. Finally, we define the process which we will prove to be a supermartingale:

Zt = Ymin{t,τ} .

We must show that E [Zt+1 − Zt | Ft] ≤ 0. It is clear that

E
[
Zt+1 − Zt | Ft, Et

]
= 0 ,

because when Et fails to hold, we already have τ ≤ t, and so Zt+1 = Yτ = Zt. We then move to control
the conditional expectation when Et does hold. Here, we have

E [Zt+1 − Zt | Ft, Et] = E [Xt+1 −Xt | Ft, Et]−
[
x

(
t+ 1

n

)
− x

(
t

n

)]
−
[
f

(
t+ 1

n

)
− f

(
t

n

)]
∆

≤ k(k − 1)

n
X2
t −

[
x

(
t+ 1

n

)
− x

(
t

n

)]
−
[
f

(
t+ 1

n

)
− f

(
t

n

)]
∆ ,
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which by convexity of x(θ) and f(θ) is at most

E [Zt+1 − Zt | Ft, Et] ≤
k(k − 1)

n
X2
t −

1

n
x′
(
t

n

)
− 1

n
f ′
(
t

n

)
∆ .

Our conditioning on Et now becomes useful, because part (i) of the definition of Et provides an upper
bound on Xt. We therefore have

E [Zt+1 − Zt | Ft, Et] ≤
k(k − 1)

n

[
x

(
t

n

)
+ f

(
t

n

)
∆

]2
− 1

n
x′
(
t

n

)
− 1

n
f ′
(
t

n

)
∆

=
k(k − 1)

n

[
2x

(
t

n

)
f

(
t

n

)
∆+ f

(
t

n

)2

∆2

]
− 1

n
f ′
(
t

n

)
∆ , (4)

where we have used the fact that x′(θ) = k(k − 1)x(θ)2.
Our next objective is to show that over the range 0 ≤ θ ≤ 1−ε

k(k−1) , we always have

f(θ)∆ ≤ x(θ) . (5)

From the definitions of f and x, this is equivalent to

∆ ≤ (1− k(k − 1)θ)2 .

Yet on the range 0 ≤ θ ≤ 1−ε
k(k−1) , we have 1− k(k− 1)θ ≥ ε, and it is easy to see that our condition on n

gives us just what we need to bound ∆ ≤ ε2, so we indeed have (5). Combining (4) and (5), we conclude
that

E [Zt+1 − Zt | Ft, Et] ≤
k(k − 1)

n

[
2x

(
t

n

)
f

(
t

n

)
∆+ f

(
t

n

)
∆ · x

(
t

n

)]
− 1

n
f ′
(
t

n

)
∆

≤ ∆

n

[
3k(k − 1) · x

(
t

n

)
f

(
t

n

)
− f ′

(
t

n

)]
= 0 ,

because we chose f(θ) to satisfy the differential equation (3). Therefore, Z0, Z1, . . . , ZT is in fact a
supermartingale, as claimed.

To apply Azuma’s inequality (Theorem 6), we also need to show that the stepwise differences Zt+1−Zt
are bounded. As before, if Et does not hold, then Zt+1 = Yτ = Zt, and so there is no change. On the
other hand, if Et does hold, then by part (ii) of the definition of Et, all components of Ht have size at
most 16k

ε2 log n. Then, the addition of a single hyperedge cannot increase the susceptibility by more than

1

n

[(
k · 16k

ε2
log n

)2

− k ·
(

16k

ε2
log n

)2
]
<

256k4 log2 n

ε4n
.

Since x(θ) and f(θ) are both increasing functions, this is an upper bound for the incremental change
Zt+1 − Zt. On the other hand, the susceptibility can never decrease, and on the range θ < 1−ε

k(k−1) , the

derivatives x′(θ) and f ′(θ) increase to k(k−1)
ε2 and 3k(k−1)

ε4 , respectively. Since x(θ) and f(θ) are convex,
we conclude that as t ranges from 0 to T , the maximum one-step change in Zt is bounded in absolute
value by

C = max

{
256k4 log2 n

ε4n
,

1

n
· k(k − 1)

ε2
+
∆

n
· 3k(k − 1)

ε4

}
=

256k4 log2 n

ε4n
.

Yet Z0 = −∆, so Azuma’s inequality (Theorem 6) implies that

P [ZT ≥ 0] ≤ exp

{
− ∆2

2C2T

}
< exp

{
−4n log2 n

k2T

}
< n−1 .

Also, by Lemma 3, the probability that HT has a component with size exceeding 16k
ε2 log n is at

most n−1. Hence with probability at least 1 − 2n−1, we have that both ZT < 0 and all components
of HT have size at most 16k

ε2 log n. Condition on these two facts. The first fact implies that for all t
up to T , Xt ≤ x

(
t
n

)
+ f

(
t
n

)
∆, because the moment this fails, we immediately set τ = t, and then
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ZT = Yτ = Xτ − x
(
τ
n

)
− f

(
τ
n

)
> 0, contradicting ZT < 0. The second fact trivially implies that for all

t ≤ T , all components of Ht ⊂ HT also have size at most 16k
ε2 log n. Therefore, we must have had all Et

hold, and hence we conclude that YT = ZT < 0, implying that the susceptibility after T rounds satisfies

XT < x

(
T

n

)
+ f

(
T

n

)
∆ = x

(
1− ε

k(k − 1)

)
+ f

(
1− ε

k(k − 1)

)
∆ =

1

ε
+

1

ε3
· 199k3 log3 n

ε4
√
n

.

Adding log n more rounds to reach time T + log n, we see that these can link at most k log n compo-
nents, and since we conditioned on all components of HT having size at most 16k

ε2 log n, this can further
increase the susceptibility by at most

1

n
·
(
k log n · 16k

ε2
log n

)2

=
256k4 log4 n

ε4n
<
k3 log3 n

ε7
√
n

,

by our initial assumption on the size of n. Therefore, with probability at least 1 − 2n−1, the total

susceptibility after T + log n rounds is at most 1
ε + 200k3 log3 n

ε7
√
n

, as required. �

We now combine all of our results to produce our main theorem, which provides a single high-
probability bound for the final sum of squared component sizes in Hn,m;k.

Proof of Theorem 1. As explained in section 3.1, the time for processing each new edge is O(k2s),
where s is the number of vertices in the component of the hypergraph containing the new edge. This
means that if the final hypergraph contains a component of size s, it took only O(

∑s
i=1 k

2s) time to
insert all edges of that component, i.e., O(k2s2) operations. Each edge is in exactly one component,
and we recognize that summing the squares of the final component sizes gives exactly n times the final
susceptibility. Thus, we can bound the total running time by O(k2n) times the final susceptibility, which
by Theorem 7 is bounded by a constant with high probability. �
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