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1 Well-known results

We begin by collecting some basic facts which can be proved via “bare-hands” techniques.

1. The sum of all of the degrees is equal to twice the number of edges. Deduce that the number of
odd-degree vertices is always an even number.

Solution: By counting in two ways, we see that the sum of all degrees equals twice the number of
edges.

2. A graph is called bipartite if it is possible to separate the vertices into two groups, such that all of the
graph’s edges only cross between the groups (no edge has both endpoints in the same group). Prove
that this property holds if and only if the graph has no cycles of odd length.

Solution: Separate into connected components. For each, choose a special vertex, and color based
on parity of length of shortest path from that special vertex.

3. Every connected graph with all degrees even has an Eulerian circuit, i.e., a walk that traverses each
edge exactly once.

Solution: Start walking from a vertex v1 without repeating any edges, and observe that by the
parity condition, the walk can only get stuck at v1, so we get one cycle. If we still have more edges left
to hit, connectivity implies that some vertex v2 on our current walk is adjacent to an unused edge, so
start the process again from v2. Splice the two walks together at v2, and repeat until done.

4. Suppose that a graph has at least as many edges as vertices. Show that it contains a cycle.

Solution: As long as there are vertices with degree exactly 1, delete both the vertex and its incident
edge. Also delete all isolated vertices. These operations preserve E ≥ V , but we can never delete
everything because once V = 1, E must be 0, so we can never get down to only 1 vertex or less.

Therefore we end up with a nonempty graph with all degrees ≥ 2, and by taking a walk around and
eventually hitting itself, we get a cycle.

5. Suppose that the graph G has all degrees at most ∆. Prove that it is possible to color the vertices of
G using ≤ ∆ + 1 colors, such that no pair of adjacent vertices receives the same color.

Solution: Consider the greedy algorithm for coloring vertices.

6. Let G1, G2, G3 be three (possibly overlapping) graphs on the same vertex set, and suppose that G1 can
be properly colored with 2 colors, G2 can be properly colored with 3 colors, and G3 can be properly
colored with 4 colors. Let G be the graph on the same vertex set, formed by taking the union of the
edges appearing in G1, G2, G3. Prove that G can be properly colored with 24 colors.

Solution: Product coloring.
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7. Let G be a graph. It is possible to partition the vertices into two groups such that for each vertex, at
least half of its neighbors ended up in the other group.

Solution: Take a max-cut: the bipartition which maximizes the number of crossing edges.

8. Let δ be the minimum degree of G, and suppose that δ ≥ 2. Then G contains a cycle of size ≥ δ + 1.
In particular, it contains a path with ≥ δ edges.

Solution: Take a longest path. Let v be its last endpoint. By maximality, every one of v’s ≥ δ
neighbors lie on the path. So path has length ≥ δ + 1.

9. (Dirac.) Let G be a graph on n vertices with all degrees at least n/2. Show that G has a Hamiltonian
cycle.

Solution: Suppose the longest path has t vertices x1, . . . , xt. We will show there is a cycle of t
vertices as well. Suppose not. All neighbors of x1 and xt must lie on the path or else it is not longest.
Minimum degree condition implies that both have degree ≥ t/2. But if x1 ∼ xk, then xt 6∼ xk−1 or
else we can re-route to get a cycle. So, each of x1’s t/2 neighbors on the path prohibit a potential
neighbor of xt. Yet xt’s neighbors come from indices 1 . . . t− 1, so there is not enough space for xt to
have t/2 neighbors there, avoiding the prohibited ones.

Now if this longest path is not the full n vertices, then we get a cycle C missing some vertex x. But
min-degree n/2 implies that the graph is connected (smallest connected component is n/2+1), so there
is a shortest path from x to C, and adding this to the cycle gives a longer path than t, contradiction.

1.1 Matching

Consider a bipartite graph G = (V,E) with partition V = A ∪B. A matching is a collection of edges which
have no endpoints in common. We say that A has a perfect matching to B if there is a matching which hits
every vertex in A.

Theorem. (Hall’s Marriage Theorem) For any set S ⊂ A, let N(S) denote the set of vertices (necessarily
in B) which are adjacent to at least one vertex in S. Then, A has a perfect matching to B if and only if
|N(S)| ≥ |S| for every S ⊂ A.

This has traditionally been called the “marriage” theorem because of the possible interpretation of edges
as “acceptable” pairings, with the objective of maximizing the number of pairings. In real life, however,
perhaps there may be varying degrees of “acceptability.” This may be formalized by giving each vertex (in
both parts) an ordering of its incident edges. Then, a matching M is called unstable if there is an edge
e = ab 6∈M for which both a and b both prefer the edge e to their current partner (according to M).

Theorem. (Stable Marriage Theorem) A stable matching always exists, for every bipartite graph and every
collection of preference orderings.

1.2 Planarity

When we represent graphs by drawing them in the plane, we draw edges as curves, permitting intersections.
If a graph has the property that it can be drawn in the plane without any intersecting edges, then it is called
planar. Here is the tip of the iceberg. One of the most famous results on planar graphs is the Four-Color
Theorem, which says that every planar graph can be properly colored using only four colors. But perhaps
the most useful planarity theorem in Olympiad problems is the Euler Formula:

Theorem. Every connected planar graph satisfies V − E + F = 2, where V is the number of vertices, E is
the number of edges, and F is the number of faces.
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Solution: Actually prove that V −E + F = 1 +C, where C is the number of connected components.
Each connecting curve is piecewise-linear, and if we add vertices at the corners, this will keep V −E invariant.
Now we have a planar graph where all connecting curves are straight line segments.

Then induction on E + V . True when E = 0, because F = 1 and V = C. If there is a leaf (vertex of
degree 1), delete both the vertex and its single incident edge, and V − E remains invariant. If there are no
leaves, then every edge is part of a cycle. Delete an arbitrary edge, and that will drop E by 1, but also drop
F by 1 because the edge was part of a cycle boundary, and now that has merged two previously distinct
faces.

Now, use the theorem to solve the following problems:

1. Prove that K5 is not planar.

2. Prove that K3,3 is not planar.

3. Prove that K4,4 is not planar.

4. Prove that every planar graph can be properly colored using at most 6 colors.

The Euler criterion immediately implies that every connected graph has at least E − (3V − 6) crossings.
As it turns out, one can do much better:

Theorem. (Ajtai, Chvátal, Newborn, Szemeredi; Leighton.) Every connected graph with E ≥ 4V has at

least E3

64V 2 crossings.

1.3 Extremal graph theory

The classical starting point is Turán’s theorem, which proves the extremality of the following graph: let
Tr(n) be the complete r-partite graph with its n vertices distributed among its r parts as evenly as possible
(because rounding errors may occur).

Theorem. (Turán.) For r ≥ 3, the Turán graph Tr−1(n) is the unique n-vertex graph with the maximum
number of edges subject to having no Kr subgraphs.

There are many proofs of Turán’s theorem, and one particular approach using Zykov symmetrization
appears in the free online textbook of R. Diestel. The following results are somewhat easier to establish, and
the reader is encouraged to attempt them:

1. Every graph G with average degree d contains a subgraph H such that all vertices of H have degree
at least d/2 (with respect to H).

Solution: Condition on G is that the number of edges is at least nd/2. If there is a vertex with
degree < d/2, then delete it, and it costs 1 vertex and < d/2 edges, so the condition is preserved. But
it can’t go on forever, because once there is 1 vertex left, average degree is 0.

2. (Approximation to Erdős-Sós conjecture.) Let T be a tree with t edges. Then every graph with average
degree at least 2t contains T as a subgraph.

Solution: Graph has subgraph with minimum degree at least t. Then embed greedily. Suppose we
already put down v vertices. (v < t + 1 or else we are done.) Pick a current node to which to adjoin
a new leaf. Degree is at least t, and v − 1 vertices are already down (so blocked for embedding), so
t− v + 1 > 0 choices remain. Pick one of them for the new leaf, and continue.

3. We say that a graph G is t-degenerate if every subgraph has a vertex of degree ≤ t. Show that G can
be properly colored with ≤ t+ 1 colors.

Solution: Iteratively peel off vertex of degree ≤ t, and put these into an ordering. That is, v1 is
the first vertex pulled off, then v2, etc. Now greedily color from vn to v1.
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2 Ramsey theory

Complete disorder is impossible.
— T. S. Motzkin, on the theme of Ramsey Theory.

The Ramsey Number R(s, t) is the minimum integer n for which every red-blue coloring of the edges of
Kn contains a completely red Ks or a completely blue Kt. Ramsey’s Theorem states that R(s, t) is always
finite, and we will prove this in the first exercise below. The interesting question in this field is to find upper
and lower bounds for these numbers, as well as for quantities defined in a similar spirit.

1. Prove by induction that R(s, t) ≤
(
s+t−2
s−1

)
. Note that in particular, R(3, 3) ≤ 6.

Solution: Observe that R(s, t) ≤ R(s−1, t)+R(s, t−1), because if we have that many vertices, then
if we select one vertex, then it cannot simultaneously have < R(s−1, t) red neighbors and < R(s, t−1)
blue neighbors, so we can inductively build either a red Ks or a blue Kt. But(

(s− 1) + t− 2

(s− 2)

)
+

(
s+ (t− 1)− 2

s− 1

)
=

(
s+ t− 2

s− 1

)
,

because in Pascal’s Triangle the sum of two adjacent guys in a row equals the guy directly below them
in the next row.

2. Show that R(t, t) ≤ 22t. Then show that R(t, t) > 2t/2 for t ≥ 3, i.e., there is a red-blue coloring of the
edges of the complete graph on 2t/2, such that there are no monochromatic Kt.

Solution: The first bound follows immediately from the Erdős-Szekeres bound. The second is an
application of the probabilistic method. Let n = 2t/2, and consider a random coloring of the edges
of Kn, where each edge independently receives its color with equal probabilities. For each set S of t
vertices, define the event ES to be when all

(
t
2

)
edges in S are the same color. It suffices to show that

P [some ES occurs] < 1. But by the union bound, the LHS is(
n

t

)
·
(

2 · 2−(t
2)
)
≤ nt

t!
· 2 · 2− t2

2 + t
2

=

(
2t/2

)t
t!

· 2 · 2− t2

2 + t
2

= 2 · 2t/2

t!
.

This final quantity is less than 1 for all t ≥ 3.

3. (IMO 1964/4.) Seventeen people correspond by mail with one another—each one with all the rest. In
their letters only 3 different topics are discussed. Each pair of correspondents deals with only one of
these topics. Prove that there are at least 3 people who write to each other about the same topic.

Solution: This is asking us to prove that the 3-color Ramsey Number R(3, 3, 3) is ≤ 17. By the
same observation as in the previous problem, R(a, b, c) ≤ R(a−1, b, c)+R(a, b−1, c)+R(a, b, c−1)−1.
Then using symmetry, R(3, 3, 3) ≤ 3R(3, 3, 2) − 1. It suffices to show that R(3, 3, 2) ≤ 6. But this is
immediate, because if we have 6 vertices, if we even use the 3rd color on a single edge, we already get
a K2. So we cannot use the 3rd color. But then from above, we know R(3, 3) ≤ 6, so we are done.

3 Problems

1. Prove that every n-vertex graph with n + 1 edges contains at least two (possibly overlapping) cycles.
Does it always contain at least 3?

Solution: Since the graph has at least n edges, there is a cycle. Delete one edge of that cycle.
There are still at least n edges, so there is another cycle.
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2. (Open.) Does every 3-uniform hypergraph with at least 1000n2 edges contain a (not necessarily span-
ning) tight cycle:

3. (USAMO 1986/2.) Five professors attended a lecture. Each fell asleep just twice. For each pair there
was a moment when both were asleep. Show that there was a moment when three of them were asleep.

Solution: Assume there is never a moment when three people were simultaneously asleep. The
timeline then produces a permutation of the edges of K5, where the first edge is the first pair of
simultaneously asleep professors. This permutation must hit each vertex exactly 4 times, and those
times can be spread over at most 2 intervals. It is relatively easy to show (via cases) that it is impossible
for a single one of those intervals to hit a vertex 3 or more times, so we conclude that each interval
hits every vertex exactly twice. This then corresponds to an Eulerian tour of K5. However, the vertex
at which the tour begins and ends is hit in 3 distinct intervals.

4. (IMO 1983 shortlist.) A country has 1983 cities. Every pair of cities is connected by a road. Each
road is owned by one of 10 companies. Prove that there must be a way to travel in a circuit of odd
length along a sequence of roads that are all owned by a single company.

Solution: For each company, define a (not necessarily induced or spanning) subgraph of K1983

by taking every edge owned by the company. The condition implies that K1983 is the union of these
10 (possibly overlapping) subgraphs. Yet if each subgraph is bipartite, then the chromatic number of
K1983 would be bounded by 210 = 1024, contradiction.

5. (From Ehud Friedgut.) Let T1 and T2 be two edge-disjoint spanning trees on the same vertex set.
Prove that their union G is 4-colorable. Now let T3 be a third spanning tree, also edge-disjoint from
both T1 and T2. Prove that their union G is 8-colorable. Is it always 6-colorable?

Solution: It is always 6-colorable due to 5-degeneracy. Every induced k-vertex subgraph spans
at most 3(k − 1) edges, with equality if and only if all three trees are connected on the subgraph.
Therefore, there is always a vertex of degree at most 5.

6. A tournament is a complete graph in which every edge has been oriented toward one of its endpoints.
Prove that every tournament has a Hamiltonian path: one which passes through each vertex, respecting
the orientations of the edges.

Solution: Take a median order.

7. You are given a 10 × 10 grid, with the property that in every row, exactly 3 squares are shaded, and
in every column, exactly 3 squares are shaded. An example is below.
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Prove that there must always be a shaded transversal , i.e., a choice of 10 shaded squares such that no
two selected squares are in the same row or column. An example is below.

Solution: Hall’s theorem.

8. (MOP 2007/4/K2.) Let S be a set of 106 points in 3-dimensional space. Show that at least 79 distinct
distances are formed between pairs of points of S.

Solution: Zarankiewicz counting for the excluded K3,3 in the unit distance graph. This upper-
bounds the number of edges in each constant-distance graph, and therefore lower-bounds the number
of distinct distances.

9. (MOP 2007/10/K4.) Let S be a set of 2n points in space, such that no 4 lie in the same plane. Pick
any n2 + 1 segments determined by the points. Show that they form at least n (possibly overlapping)
triangles.

Solution: In fact, every 2n-vertex graph with at least n2 + 1 edges already contains at least n
triangles. No geometry is needed.

10. (Open.) Determine, as a function of n, the minimum number of crossings that appear in any plane
drawing of Kn.

11. (Bondy 1.5.9.) There are n points in the plane such that every pair of points has distance ≥ 1. Show
that there are at most 3n (unordered) pairs of points that span distance exactly 1 each.

Solution: The unit distance graph is planar.

12. (St. Petersburg 1997/13.) The sides of a convex polyhedron are all triangles. At least 5 edges meet at
each vertex, and no two vertices of degree 5 are connected by an edge. Prove that this polyhedron has
a face whose vertices have degree 5, 6, 6, respectively.

Solution: By Euler, E ≤ 3V − 6, so in particular the sum of degrees is less than 6V . We will use
this for a contradiction. Suppose there are no 5,6,6 faces. We will count the number of edges which
connect vertices of degree 5 to vertices of degree ≥ 7.
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Let xi be the number of vertices of degree i for each i. No 5,6,6 implies that each 5-vertex has at most
2 neighbors of degree 6, thus it contributes 3 edges which cross from degree 5 to degree ≥ 7. On the
other hand, any vertex of degree d has at most bd/2c neighbors of degree 5 because no two degree-5
guys are adjacent. Thus, double-counting gives:

3x5 ≤
∑
d=7

xd ·
⌊
d

2

⌋
x5 ≤

∑
d=7

xd ·
1

3

⌊
d

2

⌋
.

Note that for d ≥ 7, the cumbersome expression satisfies bd/2c/3 ≥ d− 6. Adding to the LHS so that
it becomes 6 times the number of vertices:

x5 ≤
∑
d=7

xd · (d− 6)

6x5 + 6x6 +
∑
d=7

6xd ≤ 5x5 + 6x6 +
∑
d=7

xd · d.

Recognize the LHS as 6V and the RHS as sum of degrees, and this contradicts our opening observation.

7


