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1 Warm-up

1. How do you spell this title?

Solution: If you can’t spell this, you shouldn’t be a discreet mathematician.

2. Given n integers, prove that some nonempty subset of them has sum divisible by n.

Solution: Let the integers be x1, . . . , xn, and consider the partial sums. Assuming that none of the
partial sums are divisible by n, there must be a repeated partial sum; their difference is a sum divisible
by n.

3. The USAMO awards banquet at the U.S. Department of State has assigned seating.1 However, after
sitting down, the table #1 group finds that by mistake, they have all sat down at the wrong seats
(although their correct seat is somewhere else at that table). Show that it is possible for them to
simultaneously rotate around the table by some distance, such that at least two of them end up in the
correct place.

Solution: Let n be the number of people. For each person, note down the clockwise distance to
their correct seat. Since all are wrong, these are integers from 1 to n − 1, so some integer appears at
least twice.

2 Solve any 15 of these problems

1. (Erdős-Szekeres upper bound.) The Ramsey Number R(s, t) is the minimum integer n for which every
red-blue coloring of the edges of Kn contains a completely red Ks or a completely blue Kt. Prove that

R(s, t) ≤
(
s+ t− 2
s− 1

)
Solution: Observe that R(s, t) ≤ R(s−1, t)+R(s, t−1), because if we have that many vertices, then
if we select one vertex, then it cannot simultaneously have < R(s−1, t) red neighbors and < R(s, t−1)
blue neighbors, so we can inductively build either a red Ks or a blue Kt. But(

(s− 1) + t− 2
(s− 2)

)
+
(
s+ (t− 1)− 2

s− 1

)
=
(
s+ t− 2
s− 1

)
,

because in Pascal’s Triangle the sum of two adjacent guys in a row equals the guy directly below them
in the next row.

1This is true. But the rest of the problem setting is purely fictional.
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2. (Paul Erdős.) Let A be a set of n+ 1 integers from {1, . . . , 2n}. Prove that some element of A divides
another.

Solution: Partition [2n] into n sets, such that each set has the property that for any two of its
elements, one divides the other. This can be done as follows. Take {1, 2, 4, 8, . . .}, {3, 6, 12, . . .}, . . . ,
where we start with an odd number, and then keep multiplying by 2. We never need to start with an
even number, since they are automatically covered by multiplying an earlier odd number by 2. So they
partition [2n], as desired.

3. (Trivial approximation.) For x ∈ R and n ∈ Z+, there is a rational number p
q , with 1 ≤ q ≤ n, such

that ∣∣∣∣x− p

q

∣∣∣∣ < 1
n
.

Solution: Pick q = n and let p range over the integers.

4. (Dirichlet approximation.) Same as above, except with∣∣∣∣x− p

q

∣∣∣∣ < 1
nq
.

Solution: Consider the numbers {ax}, where this is the fractional part, and a runs from 0 to n.
Consider the n buckets [0, 1

n ), [ 1
n ,

2
n ), . . . . By pigeonhole, some bucket contains both {ax} and {a′x},

say with {ax} < {a′x}. This means there is some integer p such that 0 < a′x − ax − p < 1
n . Let

q = a′ − a and divide through by it, and we are done.

5. (Kronecker’s Theorem.) Let x be an irrational number, and let xn = {nx} be the fractional part of
nx. Show that the sequence x1, x2, . . . is dense in the interval [0, 1). This means that for every real
number r ∈ [0, 1), and every ε > 0, there is some n such that xn is within ε of r.

Solution: It suffices to show: Given any integer q and any integer p between 0 and q, eventually xn

falls in the interval between p
q and p+1

q . Consider the q buckets [0, 1
q ), [ 1q ,

2
q ), . . . . Eventually some xn

and xn′ end up in the same bucket, meaning that the fractional part {(n′−n)x} has absolute value less
than 1

q . Then consider xk(n′−n) for positive integers k, and this will walk through the buckets (never
skipping, but possibly backwards) until it ends up in the interval [p

q ,
p+1

q ).

This implies density, because given the r and ε, we can choose sufficiently large q such that the entire
interval [p

q ,
p+1

q ) is contained within r ± ε.

6. (Erdős-Szekeres.) Prove that every sequence of n2 distinct numbers contains a subsequence of length
n which is monotone (i.e. either always increasing or always decreasing).

Solution: For each of the n2 indices in the sequence, associate the ordered pair (x, y) where x is the
length of the longest increasing subsequence ending at x, and y is the length of the longest decreasing
one. All ordered pairs must obviously be distinct. But if they only take values with x, y ∈ {1, . . . , n−1},
then there are not enough for the total n2 ordered pairs. Thus n appears somewhere, and we are done.

7. Given any 7 points inside a hexagon with side length 1, show that some two points are separated by a
distance of at most 1.

Solution: Cut the hexagon with the 3 main diagonals, to get 6 triangles with side length 1. Two
of the points lie in the same triangle.

8. (USAMO 1976.) Every square in a 4×7 array is colored either white or black. Show that there always
is a monochromatic “constellation” consisting of the 4 corners of an axis-parallel rectangle.

Solution: Key observation: 7 =
(
4
2

)
+ 1. First, suppose that some column contains 3 or more of

the same color, say black. WLOG, they are in the first 3 rows. Then, for the other 6 columns, there
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cannot ever be 2 black in the first 3 rows, i.e., there must be at least 2 white in the first 3 rows. The
number of ways to do this is all white (1), 2 white (3), so by the 5th column, there is repetition, and
this gives the 4 corners.

Thus, in every column there are exactly 2 of each color. But then after
(
4
2

)
columns, there is a repeat,

so we get the 4 corners again.

9. Let S be a set of 10 positive integers, whose total sum is less than 250. Prove that there exist two
disjoint nonempty equal-size subsets A,B ⊂ S such that the sum of the elements of A equals the sum
of the elements of B.

Solution: Consider all 5-subsets of S. There are
(
10
5

)
= 252 of them, so some pair has the same

sum. To make them disjoint, remove all common elements. The resulting sets will have the same size,
as desired.

10. (MOP 2004.) A set S of numbers is called a Sidon set if it has the property that for every distinct
a, b, c, d ∈ S, the sums a + b and c + d are distinct. (There are no repeated pairwise sums between
elements of S.) A natural question is to ask how large a Sidon set can be, if, say, the numbers must
be integers in {1, . . . , 100}. Prove that there is no such Sidon set of size 16.

Solution: The key observation is that if we find a − c = b − d, for distinct a, b, c, d, then this is
equivalent. There are

(
16

2=120

)
pairs of elements from S, so if we take the larger minus the smaller, we

get 120 positive differences. But there are only 99 possible positive differences, so we repeat. If the
repetition uses distinct a, b, c, d, then we are done. The only remaining issue is if the repetition is of
the form c− b = b− a. This corresponds to a 3-term arithmetic progression: (a, b, c).

Let us bound the number of 3-AP’s in S. If an element x ∈ S is the central term in two different
3-AP’s, say (a, x, b) and (c, x, d), then we already have a+ d = b+ c, done. So, each of the 16 elements
of S can only contribute at most one 3-AP.

To carefully account for everything, now create 99 holes for the possible positive differences. Iteratively
run through the

(
16
2

)
pairs, and put them into the holes. There will be at least 21 times that we put the

new item into a hole already containing some pigeon(s). Suppose this is the case. If there are already
2 pigeons in the hole, then the must correspond to a 3-AP, and the new pigeon can combine with one
of the other two to make the desired a− c = b− d with distinct a, b, c, d. If there is only 1 pigeon, and
it uses distinct elements, then we win as above too. The only other possibility is that there is 1 pigeon,
and it forms a 3-AP with the incoming pigeon. This situation can only happen 16 times, so there will
be some instance of the previous two types.

11. (Putnam 1993.) Let x1, . . . , x19 be positive integers less than or equal to 93. Let y1, . . . , y93 be positive
integers less than or equal to 19. Prove that there exists a (nonempty) sum of some xi’s equal to a
sum of some yi’s.

Solution: Suppose false. WLOG,
∑
yi >

∑
xi. For each partial sum of x’s, consider the shortest

partial sum of y’s that has greater sum. The difference between the y-partial sum and the x-partial
sum is then in {1, . . . , 18}. (18 because we assume it cannot be that the partial sums were equal.) But
there are 19 partial sums of x’s, so there is a repeat. Then the corresponding two intermediate sums
of x’s and y’s are equal.

12. A 100×100 array is filled with numbers from {1, . . . , 100}, such that each number appears exactly 100
times. Prove that there is some row or column which contains at least 10 different numbers.

Solution: Linearity of expectation with indicator variables. Translated to pigeonhole: 200 holes
are the rows and columns, which we call lines. A Pigeon is a pair (number, line) such that the number
appears in the line. To count the number of pigeons, note that for each fixed number i, the minimum
number of lines that it can appear in is 20 by AM-GM. So, there are at least 2000 pigeons, which
means that some hole has at least 10 of them.
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13. The Fibonacci numbers are defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3. If p is a prime
number, prove that at least one of the first p+ 1 Fibonacci numbers must be divisible by p.

14. (Putnam 2001.) Let B be a set of more than 2n+1/n distinct points in n-dimensional space with
coordinates of the form (±1, . . . ,±1), where n ≥ 3. Show that there are 3 distinct points in B which
are the vertices of an equilateral triangle.
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