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Warm-Ups
. (Po’s Lemming #2) Prove that there are infinitely many non-primes.

. Suppose that (a,m) = 1. Prove that ab=ac (mod m)=>b=c (mod m).

. Let f(z) = apz™+- -+ ag be a polynomial with integer coefficients. Show that if  consecutive values
of f (i.e. values for consecutive integers) are all divisible by r, then r|f(m) for all m € Z.

Solution: Just plug in k + r and you get the same residue (mod r) as if you plugged in k.

Theorems

. Let a,n,m be positive integers with a > 2 and n > m. Prove that
(" —1,a™ —1) = (a\™™) —1).
Solution: Use the Euclidean algorithm with the identity:
a"—1=(a"—1D)(a""" 4 a"FM) f oM 1
. (Euler’s Theorem). If (a,m) = 1, then:
a®™ =1 (mod m).

Solution: Draw out complete residue set a1, as,...,ar, where k = ¢(m). Now aay,aas,...,aay is
also a complete residue set by cancellation, so their total products are congruent modulo m. Yet we
can cancel out the common factor of ajas - - ax because that is relatively prime to m. And we are
done.

. If (a,m) = 1, then ord,,a|p(m).

Solution: Use the first Theorem to show:

m|(a®™) — 1,a0rd 1) = qlemyord) _ 4

so (¢(m),ord,,a) = ord,,a which gives us what we want.

. (Partial Converse of Fermat’s Little Theorem). If there is an a for which ™! =1 (mod m), while
none of the congruences o™ 1/P = | (mod m) hold, where p runs over the prime divisors of m — 1,
then m is prime.

Solution: By def of ord, we get that ord,,a|m — 1 but it doesn’t divide any factors of it; therefore,
ord,,a = m — 1. But since ord,,a|¢(m) and ¢(m) < m — 1, we must have precisely that ¢(m) =m —1
so m has no divisors other than 1 or itself, and is prime.



. (Dirichlet). If (a,d) = 1, then the arithmetic progression {a,a+d,a+ 2d, ...} contains infinitely many
primes.

. (Chinese Remainder Theorem). If {my} are pairwise relatively prime, then the solution to the system:

r1  (mod myq)

ro  (mod my)

x = r, (modm,)

is precisely one of the residue classes modulo mimsg - - - my,.

Solution: Induction on n. Do it for a pair; suffices to show that there is precisely one solution
in {1,2,...,mamy}. Since (mi,ms) = 1, the sequence (my,2mq,...,mamy) is a permutation of the
residues modulo mso. Hence translating each of them by +4a;, these still uniquely cover the residue
classes. Now they also repeat at (mg + 1)my, so we get as exactly once every mam;.

Problems

. (MOP98/1/1). Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers is not a perfect
square.

Solution: 3: go mod 3; 4, 5, 6: go mod 4

. (Czech-Slovak97/5). Several integers are given (some of them may be equal) whose sum is equal to
1492. Decide whether the sum of their seventh powers can equal 1998.
Solution: Fermat’s little theorem: 27 =2 (mod 7).

. (MOP97/2/4). Show that 19! cannot be written as m3 + n*, where m and n are positive integers.
Solution: go mod 13

. (Russia97/28). Do there exist real numbers b and ¢ such that each of the equations 2% + bz + ¢ = 0
and 222 + (b+ 1)z + ¢ + 1 = 0 have two integer roots?

Solution: No. Suppose they exist. Then b+ 1 and ¢+ 1 are even integers (since —(b+ 1)/2 is the
sum of roots of 2nd equation, and (c + 1)/2 is product of roots), so b and ¢ are odd and b* — 4c = 5
(mod 8), since ¢ is odd, and that cannot be a perfect square.

. Prove that 22 + y? + 22 = Tw? has no solutions in integers.

Solution: Assume on the contrary that (z,y, z,w) is a nonzero solution with |w| + |z| + |y| + |2|
minimal. Modulo 4, we have 22 +1% + 22 = Tw?, but every perfect square is congruent to 0 or 1 modulo
4. Thus we must have z,y, z,w even, and (x/2,y/2, z/2,w/2) is a smaller solution, contradiction.

. (MOP97/6/1). Four integers are marked on a regular heptagon. On each step we simultaneously
replace each number by the difference between this number and the next number on the circle (that
is, the numbers a, b, ¢, d are replaced by a — b, b — ¢, ¢ — d, and d — a). Is it possible after 1996 such
steps to have numbers a, b, ¢, d such that the numbers |bc — ad|, |ac — bd|, |ab — cd| are all primes?

Solution: After 4 steps, all even, so then get them all to be multiples of 4, not prime.

. (USAMO98/1). The sets {a1,as,...,aggo} and {by,ba, ..., bggg} together contain all the integers from
1 to 1998. For each i, |a; — b;| = 1 or 6. For example, we might have a; = 18, ag =1, by =17, bo = 7.
Show that 327 |a; — b| =9  (mod 10).

1
Solution: If |a; —b;| = 6, then a; and b; have the same parity, so the set of such a; and b; contains an
even number of odd numbers. But if |a; —b;| = 1, then a; and b; have opposite parity, so each such pair



10.

11.

12.

includes just one odd number. Hence if the number of such pairs is even, then the set of all such a; and
b; also has an even number of odd numbers. But the total number of a; and b; which are odd is 999
which is odd. Hence the number of pairs with |a; —b;| = 1 must be odd, and hence the number of pairs
with |a; —b;| = 6 must be even. Suppose it is 2k. Then " |a; —b;| = (999 — 2k)1 +2k6 = 999+ 10k = 9
(mod 10).

(StP96/22). Prove that there are no positive integers a and b such that for each pair p, ¢ of distinct
primes greater than 1000, the number ap + bq is also prime.

Solution: Suppose a, b are so chosen, and let m be a prime greater than a+b. By Dirichlet’s theorem,
there exist infinitely many primes in any nonzero residue class modulo m; in particular, there exists a
pair p, ¢ such that p=>b (mod m),q = —a (mod m), giving ap + bq divisible by m, a contradiction.

(Czech-Slovak97/4). Show that there exists an increasing sequence {a,}7° of natural numbers such
that for any k > 0, the sequence {k + a,,} contains only finitely many primes.

Solution: Let p; be the k-th prime number, £ > 1. Set a; = 2. For n > 1, let a,41 be the least
integer greater than a,, that is congruent to —k modulo py1 for all £ < n. Such an integer exists by
the Chinese Remainder Theorem. Thus, for all k > 0, k+a, =0 (mod pg11) for n > k+ 1. Then at
most k + 1 values in the sequence {k + a,,} can be prime; from the k + 2-th term onward, the values
are nontrivial multiples of pi11 and must be composite.

(Russia96/20). Do there exist three natural numbers greater than 1, such that the square of each,
minus one, is divisible by each of the others?

Solution: Such integers do not exist. Suppose a > b > ¢ satisfy the desired condition. Since a? — 1
is divisible by b, the numbers a and b are relatively prime. Hence the number ¢? — 1, which is divisible
by a and b, must be a multiple of ab, so in particular ¢2 — 1 > ab. But @ > c and b > ¢, so ab > c?,
contradiction.

(Japan96/2). Let m and n be positive integers with ged(m,n) = 1. Compute ged(5m + 7m, 5n + Tn).

Solution: Let s, = 5" + 7". If n > 2m, note that s, = S;mSn—m — 57" Sp_2m, S0 gcd(Sm, sp) =
ged(Sm, Sn—am). Similarly, if m < n < 2m, we have ged(sm, $n) = ged(Sm, Som—n). Thus by the
Euclidean algorithm, we conclude that if m + n is even, then ged(sy,, sn) = ged(s1,s1) = 12, and if
m + n is odd, then ged(sy,, sn) = ged(so, s1) = 2.

(MOP97/5/4). Find all positive integers n such that 2"~! = —1 (mod n).



