1 Problems

Putnam 2013/A1. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39. Show that there are two faces that share a vertex and have the same integer written on them.

Putnam 2013/A2. Let S be the set of all positive integers that are not perfect squares. For n in S, consider choices of integers a_1, a_2, \ldots, a_r such that $n < a_1 < a_2 < \cdots < a_r$ and $n \cdot a_1 \cdot a_2 \cdots a_r$ is a perfect square, and let $f(n)$ be the minimum of a_r over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3$, $2 \cdot 4$, $2 \cdot 5$, $2 \cdot 3 \cdot 4$, $2 \cdot 3 \cdot 5$, $2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so $f(2) = 6$. Show that the function f from S to the integers is one-to-one.

Putnam 2013/A3. Suppose that the real numbers a_0, a_1, \ldots, a_n and x, with $0 < x < 1$, satisfy

$$\frac{a_0}{1 - x} + \frac{a_1}{1 - x^2} + \cdots + \frac{a_n}{1 - x^{n+1}} = 0.$$

Prove that there exists a real number y with $0 < y < 1$ such that

$$a_0 + a_1 y + \cdots + a_n y^n = 0.$$