1 Problems

2012/B1. Let S be a class of functions from $[0, \infty)$ to $[0, \infty)$ that satisfies:

(i) The functions $f_1(x) = e^x - 1$ and $f_2(x) = \ln(x + 1)$ are in S;
(ii) If $f(x)$ and $g(x)$ are in S, the functions $f(x) + g(x)$ and $f(g(x))$ are in S;
(iii) If $f(x)$ and $g(x)$ are in S and $f(x) \geq g(x)$ for all $x \geq 0$, then the function $f(x) - g(x)$ is in S.

Prove that if $f(x)$ and $g(x)$ are in S, then the function $f(x)g(x)$ is also in S.

2012/B2. Let P be a given (non-degenerate) polyhedron. Prove that there is a constant $c(P) > 0$ with the following property: If a collection of n balls whose volumes sum to V contains the entire surface of P, then $n > c(P)/V^2$.

2012/B3. A round-robin tournament of $2n$ teams lasted for $2n - 1$ days, as follows. On each day, every team played one game against another team, with one team winning and one team losing in each of the n games. Over the course of the tournament, each team played every other team exactly once. Can one necessarily choose one winning team from each day without choosing any team more than once?