1 Problems

Putnam 2009/B4. Say that a polynomial with real coefficients in two variables, x, y, is balanced if the average value of the polynomial on each circle centered at the origin is 0. The balanced polynomials of degree at most 2009 form a vector space V over \mathbb{R}. Find the dimension of V.

Putnam 2009/B5. Let $f : (1, \infty) \to \mathbb{R}$ be a differentiable function such that
\[
f'(x) = \frac{x^2 - f(x)^2}{x^2(f(x)^2 + 1)} \quad \text{for all } x > 1.
\]
Prove that $\lim_{x \to \infty} f(x) = \infty$.

Putnam 2009/B6. Prove that for every positive integer n, there is a sequence of integers $a_0, a_1, \ldots, a_{2009}$ with $a_0 = 0$ and $a_{2009} = n$ such that each term after a_0 is either an earlier term plus 2^k for some nonnegative integer k, or of the form $b \mod c$ for some earlier positive terms b and c. [Here $b \mod c$ denotes the remainder when b is divided by c, so $0 \leq (b \mod c) < c$.]