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1 Well-known statements

Limited roots. A polynomial of degree n has exactly n (complex) roots, counted with multiplicity.

Complete factorization. If the n roots of a degree-n polynomial p(z) are r1,...,r,, then we can express
p(z)asalz—r1)-(z—1p).

Vieta’s formulas. If p(z) = 2" + ap_12""! + - + ag, then the product of the roots is (—1)"ag, and the
sum of the roots is —a,_1.

Uniqueness. For each nonnegative integer n, if two polynomials p(z) = a,z" + --- + ap and ¢(z) =
bpx™ 4 - - -+ by are equal for n+ 1 distinct values of x, then all of their coefficients are equal, and they
are the same polynomial.

Lagrange interpolation. If p(x) is a polynomial of degree n, and we have real numbers z1,...,x,11 and
Y1y .- Ynt1 such that every p(z;) = y;, then there is an explicit formula for the polynomial p(z).
2 Problems

1. If 3 distinct points on the curve y = 23 are collinear, then the sum of the z-coordinates of those 3

points equals 0. There’s actually a similar Putnam problem: show that if 4 distinct points on the curve
y = 22* + 723 4+ 32 — 5 are collinear, then their average z-coordinate is some constant k; determine k.

2. An elliptic curve is the set of points (,y) satisfying the equation y? = 2® + ax + b. A point (z,y) on
the curve is rational if and only if both z and y are rational. Prove that given any two rational points
on the curve, the line through them intersects the curve at most one more time, and if it intersects one
more time, that intersection point is also rational.

3. Let P(z) be a polynomial with complex coefficients. Prove that P(z) is an even function if and only if
there exists a polynomial Q)(z) with complex coefficients satisfying P(z) = Q(2)Q(—=).

4. Describe all ordered pairs (a, b) of real numbers such that both (possibly complex) roots of 2% +az+b = 0
satisfy |z| < 1.

5. Suppose f : R? — R has the property that for each fixed x, the function g,(y) = f(z,y) is a polynomial
in y, and for each fixed y, the function hy(z) = f(z,y) is a polynomial in x. Prove that f(z,y) must
be a polynomial in  and y, i.e., that there is a finite n, and a finite collection of real numbers a; j
with 0 < j, k < n, such that f(x,y) = Z;L:[) o ajkrIy".

6. Prove that there is a function f: Q? — Q with the above property, but which is not a polynomial in
x and y.

7. Invent a single (binary) operation x such that for every real numbers a and b, the operations a + b,
a —b, a x b, and a =+ b can be created by applying just x (possibly many times), starting with just a’s
and b’s.



3 Homework

Please write up solutions to two of the problems, to turn in at next week’s meeting. One of them may be a
problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not
solve a problem, please spend two hours thinking, and submit a list of your ideas.



